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Class 5: Probability distributions over OT rankings II 

 

 
 
 
 
 

Overview: Less-restrictive probability distributions: Stochastic OT and its learning algorithms 

1 What probability distributions should a theory allow? 

Suppose three constraints: A, B, C 
6 linear orders: A>>B>>C, A>>C>>B, B>>A>>C, B>>C>>A, C>>A>>B, C>>B>>A 
• Last time, we considered a totally unrestricted theory. We can attach any probabilities to 

the 6 rankings, as long as they add up to 1 
� 100% A>>B>>C, 0% for the rest 
� 95% A>>B>>C, 1% each for the rest 
� 50% A>>B>>C, 50% C>>B>>A, 0% for the rest 
� ...and infinitely many more 

• We then saw Anttila’s partial ordering model, which allows only certain distributions 
� 100% A>>B>>C, 0% for the rest (and similarly for the other 5 rankings) 
� 50% A>>B>>C, 50% B>>A>>C   
� 50% C>>A>>B, 50% C>>B>>A (and similarly for the other 2 pairs of constraints) 
� 16.7% for each ranking 

 
• Today we look at a model that’s a bit less restrictive than Anttila’s, Stochastic OT 

� We won’t try to decide which model is a better empirical match to the world’s languages. 
 

2 The basic idea 

• Assign each constraint to a range on the number line.  
� Early version of the idea from Hayes & MacEachern. Each constraint is associated 

with a range, and those ranges also have fringes, indicated by “?” or “??” 

(Hayes & MacEachern 1998, p. 43) 
 
• Each time you want to generate an output, choose one point from each constraint’s range, 

then use a total ranking according to those points. 

To do for tomorrow (Tuesday) 

• Put your own data (real or fake) in OTSoft input-file form, and bring it to the lab tomorrow. 
• You may want get a head start on the upcoming required readings, Coetzee 2009 (for Thursday) 

and section 4.7 of Martin 2007 (for Friday). 
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3 Stochastic OT 

Boersma 1997; Boersma & Hayes 2001 

• This was the first theory to quantify ranking preference. 
• “stochastic” just means “probabilistic”, so various theories could be described as 

“stochastic OT”. With a capital S, though, I mean specifically Boersma’s theory 
 
As you read, in the grammar, each constraint has a “ranking value”:  
 *θ  101 
 IDENT(cont)   99 
Every time a person speaks, they add a little noise to each of these numbers, then rank the 
constraints according to these numbers. 
 
⇒ Go to demo (I’ve prepared an Excel file so we can see how this works) 
 
o Researchers who use this model often acknowledge stylistic conditioning, but idealize 

away from it. Ideas on how we could modify the model to add in the effect of style? 
 

4 Stochastic OT 

(Boersma 1997; Boersma & Hayes 2001) 
• This was a groundbreaking aspect of the proposal: it came with a procedure for learning 

the values. 
� Important theoretically: if this is a theory of what a person’s grammar looks like, we 

need some theory of how the grammar gets that way, during childhood and beyond 
� Important practically: it meant you could apply these models to your own data  

 
Procedure:  

1. Suppose you’re a child. You start out with both constraints’ ranking values at 100. 
2. You hear an adult say something—suppose /θɪk/ → [tɪ̪k] 
3. You use your current ranking values to produce an output. Suppose it’s /θɪk/ → [θɪk]. 
4. Your grammar produced the wrong result! (If the result was right, repeat from Step 2) 
5. Constraints that [tɪ̪k] violates are ranked too low; constraints that [θɪk] violates are too 

high. 
6. So, promote and demote them, by some fixed amount (say 0.33 points)  

 /θɪk/ *θ IDENT(cont) 

the adult said this [θɪk] * 
demote to 99.67  

 

your grammar produced this [tɪ̪k]  * 
promote to 100.33 

7. Repeat. 
 
⇒ Go to demo (same Excel file, different worksheet) 
 
o Suppose, as in our demo, that adults produce [tɪ̪k] 90% of the time. Will your grammar 

ever stop making errors? 
o What’s the effect of the column labeled ‘plasticity’? 
o What if the adults actually don’t vary, and the outcome is always [θɪk]. What will happen 

to the ranking values? (After discussing, let’s try it in the spreadsheet.) 
o In that case, will your grammar ever stop making errors?  
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5 Using the Gradual Learning Algorithm  

• Fortunately, you don’t need to make an Excel file like this.  
• Bruce Hayes’s OTSoft (Hayes & al. 2003) will do the work for you! 
• You can also use Praat (Boersma & Weenink 2012)  
 
⇒ Go to OTSoft demo 
 

6 Some interesting options in OTSoft’s GLA function 

 
 
 
 
 
 

  

Some useful tricks: 

• To just see what probabilities are assigned to candidates under a certain grammar: 
� create a file with customized initial ranking values (use “Initial rankings” menu) 
� set “Number of times to go through forms” to 0 

• To train a grammar on certain data (training data) and test it on other data (testing data): 
� In your OTSoft input file, for the testing data, give frequency of 0 to all candidates.  
� Thus they won’t contribute to learning, but they’ll still be used in testing 

 

If 0, initial rankings values never 
change. 

How much does each ranking value change when 
there’s an error (at the beginning of learning) 

Plasticity gradually changes from initial value to 
final value. It’s common for “final” to be lower. 
The idea is that your grammar changes less as 
you get older/more experienced 

After learning is finished, for each input the 
software will generate an output using the 
grammar that it learned.  
If it does this 100,000 times, you get a good 
estimate of each candidate’s probability of 
winning under that grammar 

By default, all 
constraints start at 
100. You can 
change that. 

By default, plasticity 
gradually changes from the 
initial to the final value. You 
can change that. 

You can specify that certain 
constraints must outrank others—
they will be kept 20 units apart (or 
some other value that you specify) 
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Now let’s turn to some case studies 
 

7 Albright & Hayes 2006: “Junk” constraints 

Albright & Hayes 2006 is one of a series of papers developing a model for learning 
constraints from morphological mappings. 
Navajo sibilant harmony: 

(Albright & Hayes 2006, p. 3) 
  
The Albright/Hayes learner (which we won’t get into) learns some sensible constraints like 
these: 

� USE ŠI  / __[-anterior]  local harmony: should be high-ranked 
� USE ŠI  / __X[-anterior] distal harmony: should be mid-ranked 
� USE SI    default is [+ant] should be lower-ranked 

but also some “junk” constraints like these: 
� USE SI / __([-round])* [+ant, +cont] ([-cons])* # happens to be true in training data 

but probably not high-ranked in real 
grammar 

 
==> Demo: let’s see what happens if we apply GLA to a schematic case like this 
 
• Albright & Hayes’s solution:  

� constraints’ initial ranking values reflect their generality 
� generality of USE ŠI/__[-anterior] = 19 (# of  __[-anterior] words) / 56 (# of words that 

use ŠI ) = 0.34 
� generality of junk constraint = 37/181 = 0.20 
� These numbers are then scaled so that they range from 0 to 500 (see paper for details): 
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==> Let’s try this in our demo 
 
• Why does it work?  

� USE SI is ranked high enough from the beginning to avoid errors like /si+tala/ → 
[šitala] 

� So, the junk constraint never getse promoted 
• Albright and Hayes would probably both favor a MaxEnt approach now (Friday’s class),  

� but this is a nice demonstration of how to introduce bias into a learner 
� In this case, the desired bias is not to put too much trust into constraints that cover 

only few cases 
 

8 Boersma & Level 2000: predicting acquisition order 

• The G in GLA stands for “gradual”  
� The algorithm doesn’t just return its final grammar 
� Instead, it gradually updates the initial grammar 
� At every step, it’s possible to “pause” the grammar and ask what its current output is 
� This provides a concrete analogy to child language acquisition 

 
• Levelt had previously done work on the order in which different syllable types are 

produced by children. 
� Here are data for 12 children acquiring Dutch: 

(Boersma & Levelt, p.1) 
 

� Can we get the GLA to replicated this?  
• Boersma & Levelt fed the GLA the frequencies of the faithful syllables in Dutch 

� They also, importantly, set markedness constraints’ initial ranking value to 100, and 
faithfulness constraints’ to 50 

Hayes & Albright 
2006 p. 11 
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� This means that initially, all outputs will be [CV], regardless of input 
� Gradually, some faithfulness constraints will climb (they just use one, FAITH), some 

markedness constraints with fall, and some other syllable shapes will get produced  
 
==> DEMO—let’s try this with different amounts of learning 
 
Boersma & Levelt’s resulting ranking values over time 

(Boersma & Levelt p. 5) 
 
Here are the rates of correct (faithful) production for each syllable type over time 

(Boersma & Levelt p. 7) 
 
• Jarosz 2010 shows how the frequencies of the different syllable types in the language 

matter 
� if a syllable type is rare, then errors on it are always rare 

� ...even if the accuracy of the current grammar on these syllable types is low 
� A markedness constraint’s demotion rate depends on how many word tokens violate it 

 
•  Here are Jarosz’s results (following the Boersma & Levelt procedure) for Dutch, English, 

and Polish 
� Same constraints, faithful candidate is always the winner—but the input frequencies 

differ. 
 
(results on next page) 
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Jarosz p. 573 

Dutch, Jarosz p. 594 
 
 

Jarosz p. 598 
 
 

Jarosz p. 600 
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9 Escudero & Boersma 2001: learning to weight perceptual cues 

• English /i/ (“peach”) and /ɪ/  (“pitch”) are differentiated by two main cues 
� F1 (≈ tongue/jaw lowering) and duration 

 
• Different dialects use the cues differently in production: 

 
� So the boundary between the two categories in this 2-dimensional space is something 

that must be learned 
 
• Boersma has been a proponent of using OT tableaux for perception. Example:   
 [350 Hz, 80 ms] 350 Hz ≠ /ɪ/ 350 Hz ≠ /i/ 80 ms ≠ /ɪ/ 80 ms ≠ /i/ 
perceive as /i/  *  * 
perceive as /ɪ/ *  *  
This is too low to be [ɪ] in Southern dialect, too short (and high) to be [i] in Scottish dialect 
 
• I didn’t attempt a full demo, but we can look at Escudero & Boersma’s results 

� training data for each dialect: typical realizations of [i] and [ɪ] 
� If learner’s current grammar miscategorizes this item, ranking values are adjusted 
� At the end, one can test how often each Hz-msec combination is categorized as each 

vowel 
� ==> I’ll step through Escudero & Boersma’s results graphs on-screen 

 

10 Summary of today and last time 

• One way to characterize variation is as a probability distribution over non-variable 
grammars (some of which can generate the same outputs) 

• In the case of OT, there are some natural restrictions we might want to put on such 
distributions 
� Anttila’s partial ranking: assign constraints to strata, within which each ranking is 

equally probable 
� Stochastic OT: assign a ranking value (number) to each constraint. A ranking’s 

probability depends on how far from that ranking value each constraint would have to 
be in order to produce it. 

 
Next time: Convergence problems with the GLA and possible solutions. In-class lab on 
probability distributions over rankings 
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Escudero & Boersma slide 6 

“Elspeth”: a Scottish English speaker 
“Lis”: a Southern British English speaker 
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