
Seoul National University Linguistics: seminar on quantitative models of phonological variation 

Kie Zuraw (UCLA), September 2012 

7 Sept. 2012 1 

Class 4: Model selection continued; Probability distributions over OT rankings I 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Overview: More about choosing among models; our first type of quantitative Optimality Theory 

1 Summary of model selection last time 

• We discussed the problem of how to choose between models 
� On the one hand, it should fit the observed data well 
� On the other hand, it should not be so exactly fitted to the observed data that it makes 

poor predictions about new data—it should not overfit 
� The more complex the model, the more danger of overfitting 

• We saw two popular methods in statistics for balancing these factors 
� Akaike Information Criterion (AIC):  a function of the number of independent 

variables (complexity) and the “likelihood” (fit). Smaller numbers are better. 
� If one model is a subset of the other, we can look up the ratio of their likelihoods1 

(how much better the complex model’s fit is) and the difference in number of 
independent variables (how much more complex the complex model is) in a table to 
get a p-value. 
� lower p-values are evidence against the simpler model 
� R can do this easily using the anova() function. 

 
• Issue: counting independent variables is a crude measure of complexity. Imagine: 

underlying form final C complex final coda? # of syllables dep. var.: final C deletes? 

ard d 1 1 1 

lit t 0 1 1 

folt t 1 1 0 

med d 0 1 0 

sabild d 1 2 1 

trod d 0 1 1 

sit t 1 1 1 

klont t 0 1 1 

slad d 0 1 0 

marikt t 1 2 1 

                                                 
1 or rather 2 * that ratio’s log 

To do for Monday 

• Try making a regression model in R for your own data.  
� I recommend starting early in case you run into frustrations with your input file or with R.  
� If you don’t have real data yet, make a fake input file.  
� Remember that each column should be a variable and each row should be one observation. 
� Get rid of any spaces or punctuation in your input file. 
� Save the input file as a .txt file  
� Turn in a brief description of what you got, including your R output for 

summary(your_model.lm). 
• Read Boersma & Hayes 
• Install OTSoft on a computer that you have access to. 

� Run the Gradual Learning Algorithm in the normal way on the Anttila data (no initial 
rankings specified, “number of times to go through forms” is 1000 or more) 

� Turn in a brief report on what happened, including your OTSoft output file:  
� did the constraints that Anttila puts in the same stratum get the same ranking value? 
� where did the GLA fit the data worse or better than the Anttilan model did?  
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� simple model: uses just final C 
� complex model #1: final C and complex final coda? 
� complex model #2: final C and # of syllables 
� When we compare each of the more-complex models to the simple model, they both 

incur an additional-complexity penalty of 1 (1 additional independent variable) 
� But, complex final coda is much more powerful than # of syllables 

� because disyllables are rare in this language, having a different rate of C deletion 
for disyllables doesn’t add that much complexity to the model 

� adding # of syllables also doesn’t increase the fit that much 
� So we might unfairly reject the model with # of syllables because it adds an additional 

independent variable without buying much improvement in fit 
• There are also model-selection approaches that don’t count the number of independent 

variables but instead look at how big their (normalized) coefficients are. 
� including an independent variable but giving it a small coefficient incurs less 

complexity penalty 
• Some regression functions even incorporate these penalties directly, making the 

coefficients a bit smaller (in absolute value—that is, closer to 0) than the best fit. 
� We’ll get into the math and how to actually do this when we talk about MaxEnt OT 

next week. 
 

2 Machine-learning approach: training set vs. cross-validation set vs. test set 

• Now we depart from traditional statistics. If you already know statistics and Tuesday and 
Wednesday were too much review for you, here is something new! 

• Here’s a method that doesn’t rely on estimating complexity, to estimate how badly the 
model would do on new data. Instead, it tests directly how badly the model would do on 
new data. 

• I got attracted to this approach by Andrew Ng’s wonderful free online course in machine 
learning. I’ve included a link on the course web page. 

• The idea is to test how well the model does on new data by holding back some data and 
then treating it as new. 

 
Training set: 

� Randomly select part of the data, say 60%. Fit each model to these data. 
Cross-validation set: 

� Of the remaining 40%, randomly select some, say half. See how well each model fits 
those data. 

• Repeat until you’ve chosen your final model. 
Test set: 

� See how well your final model fits the remaining 20% of the data. Report this as your 
accuracy. 

 
• In engineering applications, such as natural language processing, the last step (test set) is 

very important because we need to estimate the true accuracy. 
• In theoretical linguistics, we might be able to skip it (and thus use more data for training 

and cross-validation) 
� we’re less interested in quantifying how well the model performs and more interested 

in which factors are really active in cognition.  
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3 Diagnostics 

• If your model fits the training set well (low error), but fits the cross-validation set poorly, 
you probably have overfitting.  
� Consider omitting some independent variables (or constraints, or interaction terms, 

or...) 
� Or consider putting greater penalties on large coefficients 

• If your model fits both training and cross-validation data poorly, you probably have 
underfitting 
� Consider adding some independent variables (or constraints, or interaction terms, or...) 
� Or consider putting lesser penalties on large coefficients 

 

4 Multiple cross-validation 

• Especially if you have not very much data, people sometimes repeat the training-
development steps: 
� E.g., divide your training-and-development data into 10 (or some other number) equal 

subsets. (“10-fold cross-validation”) 
� Train on sets 1-9, evaluate on 10 
� Train on sets 1-8 and 10, evaluate on 9 
� Train on sets 1-7 and 9-10, evaluate on 8 
� etc. 

� Choose the model that does the best in overall on the 10 evaluations. 
� Or, for every single data item, train on the rest and then test on it. (“leave-one-out 

cross-validation”) 
 
• What I like about this approach is that it doesn’t matter what kind of model we use: 

regression, stochastic OT, MaxEnt OT... 
� all we need is a measure of how well a model’s predictions fit the data 
� for a continuous dependent variable, we can sum the squared errors (difference 

between actual and predicted) 
� for a binary dependent variable, we can count the number of incorrect classifications 

(model says 0 when it should be 1 or vice-versa) 
� or, better: -log(model’s predicted probability) if actual value is 1 
� –log(1-model’s predicted probability) if actual value is 0 

 

5 Cross-validation for regression in R 

• Fortunately, there are some packages in R that will automate cross-validate for us, at least 
for regression. 

• One is the boot package (Davison & Hinkley 1997, Canty & Ripley 2012) 
� Packages > Install packages... 

� Choose Austria (or elsewhere) from the menu that appears 
� Choose boot from the menu that appears 
� Add this command to your script: library(boot) 
� For examples, type help(“cv.glm”) 

• I had some code to show you for Hungarian but I seem to have a bug (I’m getting the 
same number for every model), so I’ll show you on-screen but I don’t want to put it in the 
handout because I don’t want to infect you with my mistake. 
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Part II of today: quantitative Optimality Theory 

Probability distributions over classic OT rankings I: Anttila’s partial rankings 

 

6 Multiple grammars 

• One way to think about within-speaker variation is that the speaker has multiple 
grammars to choose between 
� There’s quite a bit of work under this view on language change (Niyogi 2006). 

• Some examples: 
� {S → NP VP, VP → V NP } and {S → VP NP, VP → NP V} (old-fashioned 

syntactic grammars) 
� {V → Ø / __V}, {} [i.e., make no change to VV], and {Ø → t / V__V}  
� MAX-C >> *θ >> IDENT(continuant) and MAX-C >>  IDENT(continuant) >> *θ 

7 Probability distributions over grammars 

• But this class is about modeling variation quantitatively, so we want something more like: 
� {S → NP VP, VP → V NP }60% and {S → VP NP, VP → NP V}40%  
� {V → Ø / __V}20% , {}10% and {Ø → t / V__V}70%  
� MAX-C >> *θ >> IDENT(continuant)15% and MAX-C >>  IDENT(continuant) >> *θ85% 

• Labeling each grammar with how often it should be used is a form of probability 

distribution 
� a probability distribution over a variable tells us how probable each value of the 

variable is 
� if the variable is “outcome of rolling a die [주사위]”, there are 6 possible values 

(1,2,3,4,5,6), and the probability distribution is (for a fair die):  
� {1: 0.17, 2: 0.17, 3: 0.17, 4: 0.17, 5: 0.17, 6: 0.17} 

� if the variable is “grammar chosen”, then in our OT example above there are 2 
possible values, one with probability 0.15 and one with 0.85 
� a candidate’s probability of winning is the probability of choosing one of the 

rankings that generates it. 
 

8 Putting restrictions on probability distributions 

• If we have n constraints, we have n! possible rankings: 
� MAX-C >> IDENT(place) >> *θ >> IDENT(continuant) >> *DENTAL 
� MAX-C >> IDENT(place) >> *θ >> *DENTAL >> IDENT(continuant)  
� MAX-C >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� MAX-C >> IDENT(place) >> IDENT(continuant)  >> *DENTAL >> *θ  
� MAX-C >> IDENT(place) >> *DENTAL >> *θ >> IDENT(continuant)  
� MAX-C >> IDENT(place) >> *DENTAL >> IDENT(continuant) >> *θ 
� MAX-C >> *θ >> IDENT(place)  >> IDENT(continuant) >> *DENTAL 
� MAX-C >>  *θ >> IDENT(place)  >> *DENTAL >> IDENT(continuant)  
� MAX-C >> *θ >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� MAX-C >> *θ >> IDENT(place) >> IDENT(continuant)  >> *DENTAL >> *θ  
� MAX-C >> *θ >> IDENT(place) >> *DENTAL >> *θ >> IDENT(continuant)  
� MAX-C >> *θ >> IDENT(place) >> *DENTAL >> IDENT(continuant) >> *θ 
� ... and 108 more 

• Some of these rankings produce the same candidate.  
� So, to find a candidate’s probability of winning, we have to add up the probabilities of 

the rankings that choose it. 
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• In principle, we could allow any probability distribution over these rankings:  
� 3% : MAX-C >> IDENT(place) >> *θ >> IDENT(continuant) >> *DENTAL 

� 0% : MAX-C >> IDENT(place) >> *θ >> *DENTAL >> IDENT(continuant)  

� 2% : MAX-C >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� 2% : MAX-C >> IDENT(place) >> IDENT(continuant)  >> *DENTAL >> *θ  
� 0% : MAX-C >> IDENT(place) >> *DENTAL >> *θ >> IDENT(continuant)  
� 1% : MAX-C >> IDENT(place) >> *DENTAL >> IDENT(continuant) >> *θ 
� 0% : MAX-C >> *θ >> IDENT(place)  >> IDENT(continuant) >> *DENTAL 

� 3% : MAX-C >>  *θ >> IDENT(place)  >> *DENTAL >> IDENT(continuant)  

� 5% : MAX-C >> *θ >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� 1% : MAX-C >> *θ >> IDENT(place) >> IDENT(continuant)  >> *DENTAL >> *θ  
� 2% : MAX-C >> *θ >> IDENT(place) >> *DENTAL >> *θ >> IDENT(continuant)  
� 1% : MAX-C >> *θ >> IDENT(place) >> *DENTAL >> IDENT(continuant) >> *θ 
� ... and 108 more, adding up to 100% 

• But it seems strange to say that in the first two grammars, IDENT(continuant) >> 

*DENTAL is preferred, but in the other bolded pair,  *DENTAL >> IDENT(continuant) is 
preferred. 

• Such an arbitrary probability distribution means that the speaker has to learn 120 different 
probabilities (or 119, since the last one can be calculated by subtracting from 100%!) 

• We might want to try more-restrictive models first... 
� maybe instead the speaker learns a number for each constraint, and derives the 

probability distribution from that 
� or the speaker learns a number for each pair of constraints 
� or... 

9 Back to variable constraint ranking 

• Recall that for Labov’s New York City (th) case, we could say this: 
 

 /θɪk/ *θ IDENT(cont) 

� a [θɪk] *  

� b [tɪ̪k]  * 

 
• More of the ranking:  

 /θɪk/ MAX-C IDENT(place) *θ IDENT(cont) *DENTAL 

� a [θɪk]   *  * 

� b [tɪ̪k]    * * 

c [ɪk] *!     

d [sɪk]  *!    

 
• This is like saying: 

� something >0 % : MAX-C >> IDENT(place) >> *θ >> IDENT(continuant) >> *DENTAL 
� and/or something >0 % :  IDENT(place) >> MAX-C >> *θ >> IDENT(cont) >> *DENTAL 

� something >0 % : MAX-C >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� and/or something >0 % :  IDENT(place) >> MAX-C >> IDENT(cont) >> *θ  >> *DENTAL 

� 0% : every other ranking 

Jagged line: constraint 
ranking varies. 

Dotted line: ranking 
is unknown. 
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10 Anttila’s proposal 

• A speaker’s grammar is a ranking of constraints into strata:  
 
stratum 1:  MAX-C 
 
stratum 2:  IDENT(place) 
 
stratum 3: *θ  IDENT(continuant) 
 
stratum 4 :  *DENTAL 
 
• If a stratum has more than one constraint in it, every time the speaker makes a tableau 

she/he must arrange those constraints into a linear order 
� each order of constraints within a stratum is equally probable 

• In our example, this means we have the following probability distribution over rankings: 
� 50% : MAX-C >> IDENT(place) >> *θ >> IDENT(continuant) >> *DENTAL 
� 50% : MAX-C >> IDENT(place) >> IDENT(continuant) >> *θ  >> *DENTAL 
� 0% : every other ranking 

o Let’s discuss the restrictions that this theory places on probability distributions: what are 
some things that can’t happen? 

 

11 Finnish example 

• As you read, Anttila proposes the following constraint ranking for Finnish genitives: 

(Anttila 1997, p. 21) 
o Let’s rewrite this in the format we used above and consider some parts of the probability 

distribution over rankings 
• The predicted outcomes depend on the set of constraints 

� This is true in any type of model 
� But it’s even more true here because the theory puts such strong restrictions on the probability 

distribution over rankings 
� Unlike in a regression model, we can’t adjust coefficients: a constraint is either in a certain 

stratum or not in that stratum 
o Let’s discuss the reading question: what are some changes to the constraint set that would 

be a-priori reasonable? How do we think they might change the outcomes? 

12 software: OTSoft 

• It is quite tedious to compute the probability of each candidate by hand, especially with a 
big grammar like the Finnish one. 

• Fortunately, there is software that will help us—it does many other things too. 
• You can download OTSoft for free from Bruce Hayes’s webpage (see course webpage for 

direct link; Hayes & al. 2011). 

for convenience, I’ll assume that  
MAX-C >> IDENT(place), although we 
can’t know 
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�  Only for Windows, unfortunately, but you can do most of the same things in Praat too (see 
course webpage for link; Boersma & Weenink 2012) 

• Switch to projector: I’ll demonstrate how to use OTSoft to do simple OT (“Constraint 
demotion” button). (I’ll post the Excel file on the course webpage so you can try it 
yourself) 
� If you download OTSoft you’ll see it has a pretty good instruction manual. 

 

13 How to do Anttilan partial ordering in OTSoft 

• I don’t know of a way to reliably learn an Anttilan grammar with OTSoft, but if we know 
what the grammar is there’s a way to run it and get candidate percentages. 

• Switch to projector:  
� I downloaded the file Anttila_data.txt from Paul Boersma (www.fon.hum.uva.nl/paul/gla) 
� I reformatted it into an OTSoft file (posted on course webpage; there might be some other, 

minor changes) 
� We can apply OTSoft to the file but choose a different option, Gradual Learning Algorithm 

(which we’ll learn about next week). 
� We can use the “Initial rankings” menu to tell the program what the rankings should be. We 

assign bigger numbers to higher strata, with the numbers 20 points apart (next week we’ll see 
what this means) 

�  Set “Number of times to go through forms” to zero—this tells the program not to try to learn 
anything; just use the rankings we gave it 

� The results file tells us how often each candidate won in the testing phase! 
• If we have extra time, we can try modifying some of these constraints or moving them to 

a different stratum and see what happens. 
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