
To appear in Rens Bod, Jennifer Hay, and Stefanie Jannedy, Probabilistic Linguistics. MIT Press. 

p. 1 

Probability in Language Change1 

Kie Zuraw 

 

0. Introduction 

Why do languages change? If children are able to infer surrounding adults’ 

grammatical systems from their utterances, and if adults adjust their lexicons and 

perhaps grammars to achieve better communication with their interlocutors, any 

linguistic innovations that might somehow arise should be quickly stamped out. 

This is a combination of Weinreich et al.’s (1968) “actuation problem” (how and 

why does a particular change occur at a particular time) and what we might call 

the “continuation problem”: what sustains the momentum of a change, causing an 

innovation to increase in frequency, to spread from word to word, or to spread 

from speaker to speaker, rather than stalling or receding? 

 Any answer to the continuation problem that has been proposed must rely 

on a probabilistic model of the language faculty. If the rise in frequency of an 

innovation results from snowballing mislearnings, we require a model of how the 

learner responds to her or his variable environment. If the rise in frequency results 

from individuals’ adopting the speech patterns of some social group, we require a 

probabilistic model of the speech community, in which individuals 

probabilistically and incrementally update their grammars and lexicons in 
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response to interlocutors’ behavior. Moreover, when the rise in frequency of an 

innovation involves variation within individuals, as we can often see that it does 

in written records, we require a probabilistic model of language representation 

and/or use. Otherwise, we have no way of representing difference between a 

generation whose members use a new variant 20% of the time and a generation 

whose members use a new variant 40% of the time. 

 The fact that language change happens seems to demand a probabilistic 

view of the language faculty, in phonology, morphology, syntax, semantics, 

processing, acquisition, and the social use of language. The probabilistically 

oriented study of language change therefore relies on probabilistic models of all 

the areas of linguistics discussed in this volume.   

 This chapter surveys the role of probability in the study of language 

change. The first section describes the use of probabilistic tools in establishing 

language relatedness through vocabulary comparison, an important task when 

historical and textual records are lacking, and inferences about language change 

must be drawn from the ways in which related languages differ. The second 

section examines how the frequencies of linguistic traits change over time in the 

historical record, and how the timecourse of a change can shed light on its 

motivation and on the continuation problem. The third section discusses the role 

that the frequencies of lexical items and constructions play in their susceptibility 

to change, and what this can tell us about the synchronic effects of frequency. The 
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fourth section asks how language change is directly molded by probabilistic 

behavior on the part of its participants—speakers, hearers, and learners. 

 

1. Probability as a tool for investigating language relatedness 

An important task in historical linguistics is establishing which linguistic changes 

are possible or probable (the “constraints problem” of Weinreich et al. 1968). In 

many cases, we can look to synchronic variation to tell us which changes are in 

progress in a particular language (see Labov 1994). In rare cases, we have written 

records of change within a language. But the vast majority of language changes 

that have taken place in human history have left no trace either in synchronic 

variation or in the written record. The only way to discover them is through 

comparison of related languages: if we can reconstruct a proto-phoneme *p, for 

example, that became b in some context in a daughter language, then we know 

that the change from p to b in that context is a possible one; if we find many such 

cases, then we know that the change is a common one. Moreover, once we have 

established by reconstruction that a change took place, we can use synchronic 

evidence to answer questions such as how regular the change was, and which 

types of exceptions were allowed to persist.  

 But how are we to know if two languages are related in the first place, so 

that an attempt at reconstruction makes any sense? A common method for 

establishing the relatedness of languages is to compare their vocabularies. A list 
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of words is collected for each language, based on a standard list of 100 or 200 

meanings (e.g., the lists proposed in Swadesh 1952, 1955) that are expected to 

have a name in every language. If the languages are related, we expect to find 

either similarities between the sounds of words with identical or similar meanings 

(e.g., if the word for meaning i begins with a labial consonant in Language A, then 

the word for meaning i begins with a labial consonant in Language B too) or 

consistent correspondences between them (e.g., wherever we see a t in Language 

A, there is a k in the corresponding word of Language B). Because reflexes of a 

proto-phoneme can differ considerably in daughter languages, consistent 

correspondences are a more appropriate criterion for languages that are not known 

to be closely related.2 The more frequent and consistent the correspondences are, 

the more likely it is that the two languages are connected, whether through 

descent from a common ancestor, or perhaps through borrowing.3 

 The mathematical challenge in using this method is, how sure can we be 

that the similarities or correspondences found are not merely due to chance? It 

turns out that the degree of similarity or correspondence necessary to establish 

relatedness is greater than we might intuit. Ringe (1992) gives a detailed and 

highly accessible demonstration of this fact using randomly generated and real 

wordlists. Ringe’s method is flawed, as discussed below, but he makes an 

important point: even though a particular event may be very unlikely to occur by 
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chance, it may be an instantiation of a larger class of events one or more of which 

is relatively likely to occur.  

Suppose, for example, that we hypothesize that two languages are related, 

and our criterion for relatedness is similarity (rather than regular correspondence). 

If we find that the word for eye begins with t in both languages, that is a piece of 

evidence in favor of the hypothesis, but how striking is it? How likely is it to have 

occurred by chance if the two languages were not related?  The probability that 

language A and language B’s words for eye should both begin with t by chance is 

equal to the proportion of words in language A that begin with t (At) times the 

proportion of words in language B that begin with t (Bt). If, in each language, only 

5% of words begin with t, then AtBt = 0.0025, a low probability. But this is a 

misleading result: the hypothesis being tested is not that both language’s words 

for eye begin with t, but that the language’s vocabularies are similar. The 

probability we should be interested in is the probability that at least one word-pair 

on the list would begin with the same sound by chance—this probability will 

depend on the phoneme distributions in the two languages, but will be much, 

much higher than 0.0025. For example, if each language has the same 20 

phonemes, each occurring word-initially 5 times in a list of 100 meanings, the 

chance of obtaining at least one match is nearly 100%. 

 Because this issue has caused so much confusion in the literature (see 

Manaster Ramer and Hitchcock 1996 for an attempt to sort out one exchange), it 
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is worth belaboring. Manaster Ramer and Hitchcock call the confusion of a 

specific event with the class to which it belongs the “birthday fallacy”: the chance 

that two randomly chosen people share the birthday of February 1st is small (1 in 

3652 = 133,225), but the chance that they merely share the same birthday is much 

greater (1 in 365).4 Choosing a specific date when calculating the probability of a 

shared birthday is analogous to requiring a correspondence to involve a particular 

sound or pair of sounds, or occur in a particular word.  

The same issue arises when we seek correspondences across multiple 

languages, as suggested by Greenberg and colleagues (Greenberg 1987, 

Greenberg and Ruhlen 1992). A correspondence seen in any two languages out of 

a group of, say, 15 languages is not as significant as a correspondence seen in a 

comparison between just two languages, because there are 







2

15
 = 105 pairs in 

which such a correspondence could have occurred, rather than just one.5 As 

Baxter and Manaster Ramer (1996) argue, it should be possible to determine the 

number of matches across a set of n languages that would be as significant a 

match in a two-language comparison, but the determination becomes much more 

complicated when, for example, each language participating in the 

correspondence is required to be from a different family (Manaster Ramer and 

Hitchcock 1996). 
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 Considering just the simpler case of a comparison between two languages, 

what we would like to do is determine how different a contingency table, as the in 

(1) (from Ringe), is from what would be expected by chance. The contingency 

table represents how often each word-initial consonant (or Ø for vowel-initial 

words) in a list of 100 English words corresponds to each word-initial consonant 

in the German word with the same meaning. For example, there are 4 words that 

begin with w in English and with v in German. We could construct similar tables 

for any other type of correspondence we were interested in, such as medial 

consonants, or consonant-vowel sequences. 

(1) (table is at end of manuscript)  

 

 

 If the two languages were not related, we would expect to see, on average, 

the values in (2), which has preserved the row and column totals of (1) but 

eliminated any row-column interaction. In a given case, the numbers will differ 

from those in (2) (minimally, they must be integers), so our question is, how 

unusual is it for a chance-generated table to deviate from (2) as strongly as (1) 

does? 

 

(2) (table is at end of manuscript) 
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 Ringe proposes calculating the probability, for each cell, that the number 

of observed matches or more would be seen by chance, by summing binomials. 

That is, he proposes that the probability of finding exactly one match of x in 

Language A with y in Language B in a list of 100 words is the product of three 

numbers: AxBy (the probability that a particular pair show the correspondence), (1- 

AxBy)99 (the probability that the 99 other pairs do not), and 100 (the number of 

places in the list where a matching pair could be found). Similarly, the probability 

of finding exactly two such pairs would be AxBy
2 · (1- AxBy)98

 · 9900. To find the 

probability of finding n or more matches, we would sum the probabilities of 

finding n through 100 matches:  

(3) 







⋅−⋅ −

=
∑ i

BABA i
yx

i
y

ni
x

100
)1()( 100

100

 

For Ax = By = 0.05 and n = 3, this sum is 0.20—in other words, at least one 

correspondence between x and y is a fairly likely event.  

The problem with Ringe’s method, as pointed out by Baxter and Manaster 

Ramer (1996), is that it wrongly assumes that the probability of seeing a 

correspondence in one word-pair is independent of whether the same 

correspondence occurs in another pair. Ax and By are based on frequencies within 

the chosen word list. Suppose that At = Bt = 0.05: there are 5 instances of initial t 

in each language’s word-list. If the words for eye begin with t in both languages, 

then the chance that the words for cheek will also both begin with t is lowered, 
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because there is one fewer t left in the pool from which cheek can draw its initial 

consonant. The probability that cheek would begin with t in both languages is now 

not 0025.0
100

5
100

5 =× , but rather 0016.0
99
4

99
4 =× . The values to be summed 

are not binomials as shown in (3), but hypergeometrics, which are unwieldy for 

numbers as high as 100.  

How, then, can we accurately determine whether a table like (1) is 

significantly different from the average table we would expect to see if the two 

languages were not at all related? Statistics such as χ2 give a measure of how 

different an observed contingency table is from the expected table,6 but in order to 

determine the significance of that difference—how likely it would be to arise by 

chance—we must rely on lookup tables that are inappropriate to the task. Lookup 

tables for the distribution of χ2, for example, assume that the data points are 

independent, and that expected cell values are relatively high (expected 

frequencies of at least 5 in each cell)—much too high for a table with dozens of 

cells and only 100 instances to go around.  

Kessler (2001) proposes an ingenious solution to the inapplicability of 

standard lookup tables, similar in spirit to Oswalt’s (1970) shift test,7 but much 

more robust. We want to know the distribution of values of χ2, or some other 

measure of skewedness, if languages A and B are not related, so that we can see 

how unusual the observed value of χ2 is. If A and B are not at all related, and if we 
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have excluded from the word-list words subject to sound-symbolism and 

onomatopoeia, then any lineup of A’s words with B’s should be equally likely—

the particular lineup that occurs in reality is the result of mere chance. Thus, the 

universe of possible arrangements that should occur by chance, while preserving 

the individual phoneme distribution of each language, is well represented by 

keeping the order of A’s list constant and permuting B’s list in all possible ways. 

If we calculate χ2 for each such permutation, we obtain the distribution of χ2. We 

can compare the value of χ2 obtained for the actual word-list to this distribution: if 

it is larger than 99% of the χ2 values in the distribution, then we know that a 

contingency table as skewed as the one we obtained will occur only 1% of the 

time if the two languages are unrelated. 

In practice, however, we cannot consider all permutations of B’s list. For a 

list of 100 words, there are astronomically many permutations: 100! ≈ 9.3 × 10157. 

This is too many to consider, even for a computer. Kessler’s solution is to instead 

randomly generate some large number of permutations to get a close estimate of 

how often the resulting χ2 values are greater or smaller than the observed one. 

The more permutations sampled, the more accurate the count; Kessler uses 10,000 

permutations. The same method can be used for any other measure: Kessler 

considers R2, the sum of the square of each cell entry (minus one if nonzero); 

various breakdowns by phonetic feature; and matching phoneme sequences rather 

than individual phonemes. For Kessler’s example data, R2 seems to work best. 
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The problem of determining whether a language resemblance is stronger 

than would be expected by chance is a tractable one, then, at least in simple cases 

such as correspondences between phonemes. As all the authors cited here agree, 

however, establishing relatedness is only a starting point. These statistical 

methods do not replace the work of establishing which words are cognates, 

determining the contextual determinants of sound changes that lead to inexact 

correspondences, or reconstructing proto-forms. They do, however, give us a tool 

with which to determine how striking an apparently striking connection really is, 

so that we can decide whether an attempt at reconstruction is warranted.  

 

2. Changes in probabilities over time 

Language change appears to take place gradually, with innovations being used at 

different rates in different parts of the speech community and in different 

linguistic or social contexts, and with an innovation’s overall rate of use rising 

gradually, often over centuries (though see discussion of Shi 1989 below). 

Changes in observed probabilities in the historical record can give evidence for 

the nature of the linguistic system underlying variable linguistic behavior, the 

nature and proximal cause of a particular change, and the way in which changes 

take hold and spread. 
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2.1. Correlations in rate of change 

Suppose that a language is observed to undergo a gradual change from an SOV 

(subject-object-verb) word order to an SVO order, that in texts from intermediate 

stages the innovative order is found more frequently in main clauses than in 

subordinate clauses, and that in the intermediate stages, variation is observed even 

within each individual writer. How should the linguistic system of an individual 

living during the middle stages be represented? If it is a grammar that encodes 

separately the probabilities of employing SOV or SVO in various contexts, then 

the innovative word order may spread at quite unrelated rates in main and 

subordinate clauses. If, however, the difference between SOV and SVO is 

controlled by a single parameter in the grammar—whose setting can be 

probabilistic to allow variation—and it is some orthogonal force (stylistic, 

perhaps) that prefers SOV in subordinate clauses, then although the frequency of 

use of the innovative order may differ according to clausal context, the rate of 

change of those contextual frequencies should all be the same, assuming that 

orthogonal forces remain constant. This is the Constant Rate Hypothesis, 

proposed by Kroch (1989): because changes occur at the level of abstract 

grammatical parameters, they spread at the same rate in every context, although 

the base frequencies of use in each context may differ for external reasons. 

 Kroch and colleagues have tested the Constant Rate Hypothesis by 

modeling S-shaped language changes with a logistic function. It has long been 
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observed (e.g., Osgood and Sebeok 1954, Weinreich, Labov, and Herzog 1968, 

Bailey 1973) that language change takes an S-shaped course: a new variant 

appears rarely for a long time, then quickly increases in frequency; finally, the 

rate of change slows as the frequency approaches its maximum (100% in the case 

of a total replacement of the earlier form). There are several mathematical 

functions that produce an S-like shape. Kroch chooses the logistic function 

because every logistic function has associated with it a slope, and therefore the 

slopes of frequency changes that should be linked, according to the Constant Rate 

Hypothesis, can be compared. 

 The logistic function takes the form in (4),8 where P, interpreted here as 

the probability of seeing some variant in some context that it could potentially 

occupy, is a function of t, time. 

(4) stkP −−+
=

e1
1  

 

Simple algebra transforms (4) into (5), where now the logistic transform, or logit, 

P
P
−1

ln  , is a linear function of t, with a slope (steepness) s and an intercept 

(initial value) k.9 

 

(5) stk
P

P +=
−1

ln  
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When frequency changes over time are plotted for the same innovation in 

different contexts, the logit for each context should have approximately the same 

slope under the Constant Rate Hypothesis, although they may have different 

intercepts. In (6) are illustrated two logistic functions whose logits have the same 

slope, but different intercepts, and one that has a different slope. 

(6) (figure is at end of manuscript) 
 

 The Constant Rate Hypothesis can also be tested using the multivariate 

analysis performed by the VARBRUL program (see Mendoza-Denton et al., this 

volume). VARBRUL represents the logit as the sum of some contextual weights, 

representing the positive and negative effects of various features of the context, 

plus a base rate of use, in this case a linear function f of time:  

(7) ...)(
1

ln 321 ++++=
−

aaatf
P

P  (Kroch 1989, p. 6) 

If the values of the aj do not change as t changes, then the contribution of 

the context is constant over time, and only the base rate of use of the innovative 

variant changes. 

Kroch and colleagues have found evidence for the Constant Rate 

Hypothesis in several cases of language change. Kroch (1989) illustrates how the 

results of Noble (1985), Oliveira e Silva (1982), and Fontaine (1985) support the 
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Constant Rate Hypothesis in the replacement of possessive have by have got in 

British English, the rise of the definite article in Portuguese possessive noun 

phrases, and the loss of verb-second in French, respectively. Kroch (1989) also 

reanalyzes Ellegård’s data of the rise of periphrastic do in English. Pintzuk (1995) 

finds that Old English I′-initial Infl roes in frequency at the same rate in main and 

subordinate clauses, and Santorini (1993) finds that the rise of a similar I′-initial 

Infl phenomenon in early Yiddish proceeded at the same rate with both simple 

and complex verbs, although in this case the intercepts of the logits are also 

similar, so we cannot be sure that the breakdown is into two truly different 

contexts. 

These findings suggest that syntactic and morphosyntactic changes do 

indeed occur at some abstract level of the grammar, affecting all contexts equally, 

and subject only to independent influences on various contexts. Tabor (1994), 

using a very different model of grammar, essentially agrees, but views constant 

rate effects as a special case of frequency linkage effects—related changes 

proceeding at related, though not necessarily identical, rates. 

Tabor’s model of (morphosyntactic) language change uses a connectionist 

network to learn associations between words and the contexts in which they tend 

to occur and among words that tend to occur in similar contexts. Words, 

represented by input nodes, are connected to intermediate hidden-layer nodes; 

words that are strongly associated to the same hidden-layer nodes act as clusters 
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somewhat like traditional grammatical categories (e.g., Noun, Verb), although 

cluster membership is a gradient property, so that a single word may belong to 

different clusters to different degrees. Hidden-layer nodes are connected to each 

other, to represent sequential information, and to output nodes, representing 

behaviors in various syntactic constructions. How strongly a word is associated to 

some syntactic behavior is therefore mediated by the hidden units, and thereby by 

the behavior of cluster-mates. 

If a network that has been trained on a corpus is exposed to an altered 

version of the original training data (representing an externally motivated shift in 

frequency), it adjusts its connection weights in response, but not only those 

aspects of the language that changed in the training data will be affected: aspects 

of the language that were strongly linked to the changed aspects will be affected 

also. In particular, if the frequency with which some word occurs in some context 

changes in the training data, the network will adjust the word’s association 

strengths with the hidden units in response, thereby altering the word’s indirect 

association to other words; as a consequence, other aspects of the word’s behavior 

will also change, under the influence of the word’s new cluster-mates.10 At the 

same time, the network must adjust associations between the word’s strongly 

associated hidden units and the output units, so that the behavior of other words 

that were strongly associated to the same hidden units will change too. This is 

where frequency linkage effects come from in Tabor’s model: a change in one 
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aspect of the language drags along with it changes in other aspects of the 

language.  

Frequency linkage of the constant-rate variety will be observed when two 

words or constructions have the same distribution (or nearly so) before the change 

begins. Tabor demonstrates with an abstract example: two nouns, N1 and N2, 

behave similarly along five binary contextual dimensions, C1 through C5 (e.g., if 

C1 is what possessive verb the nouns appear as the object of, they might appear as 

the object of have 96% of the time and as the object of have got 4% of the time). 

A third noun, N3, behaves like N1 and N2 along dimension C1, but shows 

different frequencies on the other four dimensions. A network is trained on a 

corpus with these properties, then re-trained on a corpus that is the same except 

that N2 undergoes a frequency change in C1, from choosing option A 4% of the 

time to choosing it 100% of the time; no examples of N1 and N3 are given for C1 

in the new corpus. The point of the experiment is to observe how the frequencies 

N1 and N3’s choosing option A in C1 change as the network approaches the 

desired frequency for N2 choosing option A in C1. The slope of the logit for how 

often N1 exhibits option A in C1 is almost identical to the slope of the logit for 

N2, but N3’s slope is much shallower. Because N3 does not share N2’s properties 

as well as N1 does, N3 is not “dragged along” as much as N1 is. Thus, for Tabor, 

constancy of rate is gradient; he would predict that SVO would spread at the same 
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rate in main and subordinate clauses to the extent that the behavior of main and 

subordinate clauses is otherwise similar. 

It remains to be seen whether any convincing cases of demonstrably 

partial frequency linkage exist. Tabor argues that the rise of English periphrastic 

do is such a case, but Kroch (1989) proposes that certain syntactic assumptions 

can explain why the slopes for some of the contexts for do are unequal. If clear 

cases can be found, then we have evidence that language change is indeed 

abstract, occurring at the level of structures and categories, but that structures and 

categories can be fuzzy, and membership in them gradient. 

 

2.2. Reanalysis and frequency change 

Besides bearing on the abstractness of language change, rates of use over time can 

also shed light on the relationship between reanalysis and frequency. It seems 

clear in many cases of morphological, syntactic, and semantic change that some 

word or construction has been reanalyzed—that is, its behavior has changed in a 

radical way, indicating that it has joined a different grammatical category. For 

example, be going to, which once obligatorily indicated motion towards, is now 

used as an all-purpose future marker in English.  

 How and why does reanalysis occur? In the (otherwise very different) 

models of Lightfoot (1991) and Tabor (1994), reanalysis results from frequency 

shifts that encourage or even force learners to assign a new structural analysis to a 
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form because of the contexts in which it appears. Others argue that reanalysis is a 

prerequisite for syntactic change: only after two structural options become 

available can one rise in frequency. Santorini (1993) and Pintzuk (1995), for 

example, argue that in Yiddish and English respectively, the availability of an I′-

initial position for Infl in both main and subordinate clauses occurs at the 

beginning of the rise in frequency of medial Infl, not at the end (the alternative 

analysis is that in the early stages, clause-medial Infl results from movement, and 

not until later is Infl reanalyzed as potentially I′-initial). In these two cases, the 

argument for the availability of I′-initial Infl at the early stages is mainly a 

syntactic one, but it also has a probabilistic element. Surface non-final Infl could 

be the result of base-generated I′-initial Infl or base-generated I′-final Infl, with 

rightward movement of other constituents. Santorini and Pintzuk both argue that 

the rate of such rightward movements observed in unambiguous contexts is too 

low to account for the relatively high rate of non-final Infl. Therefore, I′-initial 

Infl must have been used at least some of the time at the early stages of the 

change, before it became very frequent. 

Frisch (1994) presents another case in which evidence that reanalysis 

precedes syntactic change comes from frequencies over time. In Middle English, 

not acted like a sentence-level adverb: it could appear preverbally or postverbally, 

much like modern never; it carried an emphatic meaning; and it alone was not 
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sufficient to indicate negation (ne was instead the usual marker of non-emphatic 

negation).  

 

(8) Þat Jesuss nohht ne wollde Ben boren nowwhar i Þe land, ... 

that Jesus not neg would be born nowhere in the land, ... 

‘That Jesus did not (at all) want to be born anywhere in the land, ...” 

 (Frisch 1994 p. 189, Ormulum I: 122) 

 

It is standardly proposed (Kroch 1989, Pollock 1989, Shanklin 1990, 

Roberts 1993) that not was reanalyzed as a sentential negator, losing its preverbal 

position and emphatic meaning, because the phonological loss of the clitic ne 

eventually forced not to be so interpreted. Frisch demonstrates, however, that the 

loss of preverbal not was well underway before the loss of ne began.11 Frisch 

argues, therefore, that a semantic reanalysis of not as non-emphatic, allowing it to 

occupy the Specifier position of NegP rather than a sentence-level adverb 

position, caused ne to become redundant and be lost. With ne gone, not was free 

to occupy either the Spec or the head of NegP.  

An important assumption is that the rate of adverbial use of not in 

ambiguous cases can be extrapolated from the behavior of the unambiguous 

sentence adverb never. Never is preverbal 16% of the time, and during the first 70 
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years of Middle English, not has the same distribution. Frisch presents the 

following formula: 

 

(9) number of preverbal not = 0.16 × total number of adverbial not 

total number of adverbial not = number of preverbal not / 0.16 

 

Assuming that the rate at which true sentence-level adverbs appear 

preverbally is constant at 16% throughout the period, Frisch obtains an estimate 

of how often not is used adverbially from 1150 to 1500. The key finding is that 

this percentage falls drastically before the percentage of negative sentences 

containing ne begins to drop much at all. 

 We have, then, cases in which that reanalysis appears to occur at the 

beginning of a frequency shift, rather than at the end. Does this contradict Tabor’s 

claim that frequency shift leads to gradient reanalysis, in which a word begins to 

belong more and more to a different cluster, gradually taking on properties of that 

cluster? Perhaps not: In Tabor’s model, reanalysis and frequency shifts can be 

gradual and mutually reinforcing. If Tabor’s model were extended to include 

semantics, an increasing use of not in non-emphatic contexts (a typical case of 

semantic bleaching) could cause not to be gradually reanalyzed as a non-emphatic 

negator. The more strongly it was so re-categorized, the less often it would appear 

preverbally. Reanalysis would thus follow one frequency shift, and precipitate 
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another: frequency shifts affect probabilistic learners and in turn are affected by 

probabilistic speakers. 

 

2.3. The timecourse of language change 

As mentioned above, it has long been observed that language change proceeds 

along an S-shaped curve. Why should change begin and end slowly? If changes 

spread from speaker to speaker, the rate of spreading depends on the number of 

interactions between a speaker who has the new variant and one who has the old 

variant. There will be few such exchanges at first, because there are few speakers 

who have the new variant, and few such exchanges at the end, because there are 

few remaining speakers to whom the change has not yet spread (Bloomfield 

1933). When there is variation within individuals, as there is in nearly all studies 

of historical texts, the picture is more complicated, because there are no speakers 

with 100% use of the new variant at first. We must assume that speakers can 

slightly increment their use of a variant, and that some force (such as group 

identification or learnability) encourages the change to continue in one direction. 

The remainder of this section discusses some attempts to derive S-shaped 

language change mathematically, with limited success. 

 But first, is a cautionary note, based on Shi’s (1989) findings: Shi argues 

that a gradual, S-shaped change that appears to have taken place over 1000 years 

is actually an abrupt change that was completed in at most 200 years. The illusion 



To appear in Rens Bod, Jennifer Hay, and Stefanie Jannedy, Probabilistic Linguistics. MIT Press. 

p. 23 

of gradualness comes from the persistence of classical style in modern texts. Shi 

tracks the rise of the aspectual particle le in Mandarin, which derives from the 

classical verb liao ‘finish’. When the number of uses of le per 1000 characters is 

tracked for a corpus from the pre-10th to 20th centuries, the rate of use rises slowly 

from the 10th to 12th century, then quickly until the 17th century, and continues to 

rise slowly (though unevenly) to the present.  

Shi finds, however, that le seems to be inhibited by classical verbs, and 

hypothesizes that avoidance of le in more recent writers is merely an attempt to 

emulate classical style. Shi uses occurrences of the sentence-final copula or 

interjective ye as an index of classicalness. Classical texts have approximately 8 

occurrences of ye per 1,000 characters, so if there are n occurrences of ye per 

1,000 characters in a text, there are approximately n/8 classical characters per 

actual character in the text; the rest can be considered vernacular. When the 

number of les per 1,000 vernacular characters is plotted, the picture is very 

different from when raw character count was used: there is how a sharp rise in use 

of le from the 10th to the 12th century, and the rate of le use has not risen since. 

Shi’s study points out an important potentially distorting effect of the unavoidable 

use of written records: even when a change is abrupt, the conservatism of written 

styles may cause it to appear gradual. 

Assuming, however, that the S-shaped model is accurate (though it may 

appear artificially stretched in the written record), are there any models that can 
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derive it? Manning (this volume), points out that that stochastic Optimality 

Theory (Boersma 1998, Boersma & Hayes 2001) predicts S-shaped change if one 

constraint rises or falls at a constant rate through the grammar. In stochastic OT, 

surface forms are chosen according to their satisfaction of constraints whose 

rankings are normally distributed. Change is therefore slow when constraints’ 

distributions overlap only at the outer edges, accelerates as the centers of the bell 

curves begin to overlap, and slows as the distributions again overlap only at the 

edges. The mechanism by which the grammar is transmitted from generation to 

generation in such a way that a change is in ranking persistent and linear is not 

known, however. Below are reviewed some attempts at achieving S-shaped 

change through modeling transmission of the grammar from adults to children 

over time. 

Niyogi and Berwick (1995) present an abstract simulation of language 

change that does derive a logistic function for change, among other possibilities. 

In Niyogi and Berwick’s model, different members of the population use different 

grammars, and learners must decide which grammar to adopt. (Admittedly, this is 

an unrealistic assumption, as it predicts no variation within individuals.) Each 

grammar is a series of n binary parameters, and the distribution of sentences 

produced by each grammar is uniform (all well-formed sentences are equally 

likely). Learners set parameters on the basis of examples, permanently and 

without tracking probabilities. Because the learner has limited opportunity to 
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adjust its grammar, mislearning is likely, especially if many utterances are 

ambiguous, making even homogeneous populations potentially unstable.  

Learning proceeds as follows in Niyogi and Berwick’s model: the learner 

draws at random two utterances by members of the surrounding population. If the 

second trigger utterance unambiguously supports one parameter setting, the 

learner chooses that setting. If only the first trigger is unambiguous, the learner 

chooses that setting. And if both triggers are ambiguous, the learner makes an 

unbiased choice at random. In other words, the critical period is just two 

utterances, and if they conflict, the more recent utterance prevails.  

Niyogi and Berwick investigate by simulation the case of three parameters 

governing constituent order (yielding eight possible grammars) and find that the 

distribution of grammars sometimes changes according to a logistic function (S-

shaped curve) that varies in steepness. But with some starting distributions and 

maturation times, the function is not logistic: rapid change can occur right away 

(the initial tail of the S is cut off), or the function may fall off towards the end 

rather than continuing to approach an asymptote. 

Niyogi and Berwick apply their model to the change from Old French V2 

to Modern French SVO, using the five binary parameters suggested by Clark and 

Roberts (1993) to yield 32 possible grammars. If learning time is limited, so that 

the younger generation does not have full opportunity to acquire the older 

generation’s grammar, then in simulations even a population that begins 
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homogeneously V2 shifts away from V2, though the change is slow and does not 

proceed very far. But when even small numbers of SVO speakers were included 

in the initial population (perhaps representing foreign speakers), there was 

relatively rapid loss of V2.12 

Niyogi and Berwick’s model is deterministic if the population of agents is 

infinite (and generations do not overlap). Briscoe (2000) extends the investigation 

to cases in which the population is finite and small, and finds that the results are 

quite different. For example, if two competing grammars are initially equally 

distributed and produce equal proportions of ambiguous sentences, in the infinite-

population model the two grammars should remain in balance: half the learners 

will adopt one, and half will adopt the other. In a finite population, however, the 

probability that exactly half the learners will adopt one grammar on any given 

trial is low (just as the probability is low that exactly half of a finite number of 

coin tosses will come up heads). Therefore, one grammar will probably gain 

ground over the other. As one grammar becomes much more common than the 

other, however, it becomes less and less likely that it can maintain its advantage. 

At the extreme, if a grammar is used by 100% of the population, as long as there 

are some unambiguous sentences, some learners will learn the other grammar. 

Even a moderate bias such as 75%-25% is untenable if there are a high proportion 

of ambiguous sentences: if 75% of the population uses grammar A, with 50% of 

sentences from each grammar being ambiguous, and there are 100 learners, the 
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probability that 75 or more of the learners will adopt A is only 0.07. Grammar A 

begins to lose ground, then, falling towards 50%, which we have already seen is 

itself an unstable state. The proportions of the two grammars will therefore 

oscillate endlessly.  

Clearly, a realistic and complete model of how changes spread remains to 

be implemented.  

 

3. The role of frequency in language change 

We have seen the importance of changes in frequency over time. The individual 

frequencies of linguistic items also appear to play an important role in language 

change. Words’ frequencies affect their susceptibility to phonological, 

morphological, and morphosyntactic change. This fact reinforces the findings 

elsewhere in this volume that not lexical items are treated alike, and that the 

strength of lexical entries is gradient. These differing strength values are 

important in the lexical (word-to-word) spread of linguistic innovations. 

 

3.1. Frequency and phonological erosion 

Bybee (1994) proposes that a usage-based model of phonology13 can account for 

two relationships between word frequency and phonological change: frequent 

lexical items are the first to adopt automatic, phonetic rules, and the last to 

abandon nonphonetic rules. By “phonetic rules” Bybee means rules, like 
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American English flapping, that involve minimal articulatory or acoustic change. 

Nonphonetic rules include morphologically conditioned rules, like stress in 

Spanish verbs or English noun-verb pairs, and lexical generalizations, like the 

English sing-sang-sung and ring-rang-rung patterns.  

An important assumption for Bybee in explaining the effect of frequency 

on susceptibility to phonetic changes is that lexical representations do not include 

only the idiosyncratic aspects of a word. Redundancies and phonetic detail are 

included, so that different words may be reliably associated with slightly different 

patterns of articulatory timing, and other sub-phonemic properties. 

Phonetic rules tend to spread gradually through the lexicon, affecting 

frequent words to a greater extent. For example, in Hooper (1976), Bybee found 

that medial schwa deletion was most advanced in frequent words like every (it is 

nearly obligatory), and less advanced in less frequent words like artillery (it is 

nearly forbidden). In Bybee’s usage-based model, this is because lexical entries 

are updated by speakers and/or listeners every time they are used. If schwa 

deletion has some probability of applying every time a word is used, then there is 

a related probability that the word’s lexical entry will be updated to reflect the 

change. Because there is no reverse rule of “schwa restoration,” once the strength 

of the schwa in a lexical entry is reduced, it cannot later increase—it can only stay 

where it is or reduce further. The more often a word is used, the more chances it 
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has to drift irreversibly towards schwa deletion. Thus, highly frequent words are 

the innovators in phonetic change. 

Pierrehumbert (2000; see also this volume), in developing an exemplar-

theory based model of production, derives this finding quantitatively. In exemplar 

theory, categories are represented mentally as clouds of remembered tokens 

(projected onto a similarity map) that are typically densest in the middle. Highly 

similar tokens are grouped into a single exemplar, whose strength is augmented 

when tokens are added to the group (and, countervailingly, decays over time). An 

incoming stimulus is classified according to the number of exemplars from each 

category that are similar to it, with a weighting in favor of stronger exemplars. 

Categories are produced by choosing an exemplar at random, but with a 

preference for stronger exemplars, and with some amount of noise added, so that 

the actual production may differ slightly from the exemplar chosen. 

Pierrehumbert shows that when exemplars are chosen in this way and the 

resulting tokens added to memory, the exemplar cloud gradually becomes more 

diffuse, but its center does not shift. 

When a persistent bias (motivated by some external force) is added, 

however, drift does occur. If there is a tendency for productions to be slightly 

hypoarticulated with respect to the exemplar chosen for production (i.e., the 

articulatory gesture is reduced in magnitude), the center of the exemplar cloud 

gradually shifts towards hypoarticulation. For example, if an exemplar is chosen 
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whose articulatory effort along some dimension is 0.9, it may be produced with 

0.89 effort instead. The 0.89 token is then added as an exemplar, and if it is 

chosen in a later production, it may be pronounced with 0.88 effort, and so on.  

The shift increases as the number of productions of the category increases. 

This means that if individual words have their own exemplar clouds, then words 

that are used more often shift more rapidly, as predicted by Bybee. Pierrehumbert 

further shows how an infrequent category that is subject to lenition (or any other 

persistent bias) is absorbed into a frequent category that is not subject to lenition.  

Bybee argues that frequent words are more subject to phonetic rules for an 

additional reason: phonetic rules tend to be lenition rules, involving reduced 

articulatory gestures. Frequent words are more likely to be used in prosodically 

unemphasized positions, which are associated with less articulatory effort. This is 

because a frequent word is likely to be used more than once in a discourse, and 

subsequent occurrences of a word in a discourse tend to be less emphasized 

prosodically than the first occurrence (Fowler and Housum 1987). In addition, 

frequent words or constructions are more likely to become semantically bleached 

(see Bybee 2000, discussed below), and thus less likely to be the carrier of 

important discourse information that is subject to prosodic emphasis. 

Frequent words’ lexical entries are thus doubly subject to a phonetic rule 

when that rule is lenitive: not only does the word’s more frequent use give it more 

opportunities to undergo the change, but the word’s tendency to occur in 
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repetitive or semantically bleached contexts disproportionately subjects it to 

lenition. 

 

3.2. Frequency and nonphonetic rules 

Highly frequent words are conservative, however, when it comes to nonphonetic 

rules like the English irregular past tenses (Hooper 1976) or English noun-verb 

stress shifts (Phillips 1998, 2001):14 when the language begins to lose or gain a 

rule, they are the last words to change.15 There are two reasons for this. The first 

reason is the competition between irregulars (residual archaic forms) and regulars 

(the innovative form). This competition proceeds differently in different models 

of regulars and irregulars, but in every case an irregular requires a strong lexical 

entry in order to resist regularizing. Under the dual-mechanism model of Pinker 

and Prince (1994), for example, listed irregular words and regular morphological 

rules compete in the brain: irregular, listed sang competes with regular, 

synthesized sing+ed. If the lexical entry of an irregular word is not strong enough, 

it may not be accessed in time or with enough certainty to win the competition, 

and the regular pronunciation will win. In a model such as Albright and Hayes’ 

(2000) that encodes both regular and irregular patterns in the grammar, the 

competition is between very specific irregular rules and more general regular 

rules; in a connectionist model it is between patterns in associative memory 

(Rumelhart and McClelland 1986, Daugherty and Seidenberg 1994).  
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Frequent words’ lexical entries are strong from frequent use and 

reinforcement, and thus will tend to beat out synthesized, regular pronunciations, 

whether the pressure for those pronunciations comes from the grammar or from 

elsewhere in the lexicon. Infrequent words’ lexical entries, on the other hand, may 

not be strong enough to win reliably.  

The second, related reason for the retention of nonproductive rules in 

frequent words concerns transmission from one generation to the next. Infrequent 

irregulars may fail to be transmitted to the next generation—if a word is too 

infrequent, the child may never encounter it—and the younger generation will 

apply regular rules to the word. An abstract simulation performed by Kirby (in 

press) confirms that this mechanism can have the observed effect. Although the 

population in Kirby’s simulation begins with no lexicon at all, as a lexicon begins 

to develop, it is only the most frequent words that are able to retain an irregular 

form; words that are too infrequent to be reliably transmitted fall under a regular 

compositional rule. 

 

3.3. Frequency and the undertransmission of morphosyntax 

The instability of infrequent irregulars is one type of “undertransmission.” 

Richards (1997) is a study of a more drastic type of undertransmission in the 

morphosyntactic realm that leads to a change not just in particular lexical items, 

but in the whole grammatical system. Richards compares the word order and 
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verbal morphology of current speakers of Lardil, an Australian language, to data 

collected by Hale from speakers in the 1960s. Lardil is being replaced in everyday 

use by English, but Richards argues that the changes observed in Lardil are due 

not to the linguistic influence of English, but to the scarcity of Lardil data 

available to learners. (Richards’ arguments rest on syntactic sensitivities of the 

changes that would not be expected if the language were merely adopting English 

morphosyntax.) 

The morphological difference between “Old Lardil” and “New Lardil” 

that Richards discusses is the frequent absence of inflection on objects in New 

Lardil (the syntactic difference is the resulting rigidification of word order). 

Richards’ explanation is that in Old Lardil, certain phonological rules could delete 

object suffixes. New Lardil learners exposed to these apparently unsuffixed 

forms, and not exposed to enough overtly suffixed forms to learn that suffix 

deletion is phonologically conditioned, might conclude that overt suffixes 

alternate freely with null suffixes. 

In analyzing the behavior of particular nouns and pronouns, Richards 

found that the pronoun on which inflection was most often produced had a highly 

irregular paradigm in Old Lardil. The pronoun on which inflection was least often 

produced had a more regular paradigm. Richards suggests that although regular 

morphophonological rules have been lost in New Lardil because of insufficient 

evidence, individual lexical entries exhibiting idiosyncratic inflection have been 
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retained when frequent enough. Similarly, Richards finds that the regular 

morphophonological rules of verb augmentation have been lost, but that certain 

(presumably) irregular verbs forms of Old Lardil have been retained. High 

frequency, then, can allow a word to retain various idiosyncratic properties in the 

face of a more general language change. 

 

3.4. Frequency and grammaticalization 

Frequency may also have an effect on which words or morphemes will undergo 

morphosyntactic change. Grammaticalization, the process by which content 

morphemes or morpheme sequences become function elements, tends to be 

correlated with an increase in frequency (see Traugott and Heine 1991, Hopper 

and Traugott 1993, for overviews and many case studies of grammaticalization). 

Is this increase merely the result of grammaticalization, as the morpheme 

becomes needed in more contexts, or could it also be a cause? 

  Bybee (2000) argues that it can. Bybee traces the evolution of English can 

from a content word meaning ‘have mental ability/knowledge’ to a function word 

meaning ‘possibility exists’. Following Haiman (1994), Bybee views 

grammaticalization as a form of ritualization, whereby repetition of a frequent act 

(in this case, the uttering of a word or construction) bleaches the act of its 

significance, reduces its (phonological) form, and allows the act to become 

associated to a wider range of meanings. Bybee shows how cunnan, the ancestor 
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of can, which first took only noun-phrase objects, began to take as object 

infinitives of verbs relating to intellectual states and activities, communication, 

and skills. Bybee argues that because cunnan with a noun-phrase object was 

already common, additional mental verbs began to be added to “bolster the 

meaning,” creating seemingly redundant expressions like cunnan ongitan, ‘know 

how to understand.’ This use of cunnan further weakened it semantically—

presumably, a learner who encounters the phrase cunnan ongitan is likely to 

attribute all the meaning to ongitan and treat cunnan as merely grammatical. 

The token frequency of can increased greatly from Old to Middle English, 

partly as can came to be used with a larger number of verbs, partly as some of the 

can+VERB combinations became more frequent. The increase in both type and 

token frequency, Bybee argues, further bleached can semantically, and its verbal 

objects expanded to include emotional states, non-mental states, verbs that take as 

object another person, verbs indicating an action (rather than merely a skill). A 

few instances of inanimate subjects also began to occur. Eventually, as the 

‘possibility’ meaning became more common, the use of inanimate subjects 

increased. Thus, increasing frequency and semantic bleaching reinforce each 

other. 

Bybee further notes (citing crosslinguistic findings in Bybee et al. 1991, 

1994) that grammaticalized morphemes tend to be shorter and more 

phonologically fused with surrounding material, for reasons discussed above: 
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frequent morphemes (including grammatical morphemes) are more susceptible to 

erosive lenition rules, which can cause loss and overlap of gestures. Bybee 

proposes that the units of lexical storage are not only morphemes or words, but 

also highly frequent phrases or sequences. When grammatical morphemes enter 

into high-frequency sequences such as going to, those sequences too are subject to 

erosion (gonna). As these sequences gain their own lexical representations, they 

can also develop idiosyncratic meanings and syntactic functions. 

Tabor’s (1994) connectionist model, described above, similarly views 

frequency as a driver of syntactic change. Tabor focuses not on the overall type or 

token frequency of a lexical item, but on the frequency with which it occurs in a 

particular context. Tabor performs a series of experiments, simulating real 

changes that occurred in English, in which a network is trained on a corpus, then 

trained on a frequency-altered version of that corpus, and a word or sequence of 

words consequently changes its categorical affiliation, exhibiting new behaviors 

that were previously ungrammatical (i.e., below some probability threshold). The 

cases simulated include the rise of periphrastic do, the development of sort of/kind 

of as a degree modifier, and the development of be going to as a future auxiliary. 

 Tabor, like Bybee, argues that the changes in frequency that often precede 

a reanalysis can be the cause of the reanalysis: the more a word appears in the 

same context as words from some other category, the more it is pushed to take on 

the characteristics of that category. For example, in the sort of/kind of case, 
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sentences like (10) would have been parsed only as (10a) until the 19th century (‘It 

was a type of dense rock’), but can currently also be parsed as (10b) (‘It was a 

somewhat dense rock’). Tabor argues that a high frequency for sentences like 

(10)—where sort of/kind of is followed by and adjective+noun and therefore 

appears in a position that the degree modifiers quite or rather also can appear in—

caused sort of/kind of to become affiliated with the degree modifiers, and 

therefore become able to appear in unambiguously degree-modifying contexts, 

like (11).  

 

(10) It was a sort/kind of dense rock (Tabor p. 137) 

(a) It was [a [[sort/kind N] [of [dense rock NP] PP] N′] NP] 

(b) It was [a [[[sort/kind of DegMod] [dense Adj] AdjP] rock N′] NP] 

 

(11) We are sort/kind of hungry (Tabor p. 137) 

 

Tabor finds a sharp rise in the late 18th century how often sort of/kind of is 

followed by an adjective (crucially, preceding the rise of sentences like (11)). The 

simulation shows that increasing the frequency of <a sort/kind of Adj N> noun 

phrases does lead unambiguously degree-modified utterances like (11) to rise 

above the threshold of grammaticality (i.e., become more frequent than a near-

grammatical control sentence type that is never attested in the corpus and does not 
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become more likely over the course of the training) and continue to rise in 

frequency. Thus, again we see that reanalysis and frequency change are mutually 

reinforcing. 

 

4. Language agents in a probabilistic environment 

Speaker-hearer interactions, whether involving adults, children, or a combination, 

are the atoms of language change. What we call a language change is not a single 

event, but rather a high-level description of millions of individual interactions 

over time, with early interactions influencing later ones. If a participant, child or 

adult, comes away from an interaction with her grammar or lexicon slightly 

changed, then her altered behavior in a subsequent interaction may cause a change 

in the grammar of her interlocutor, and so on. 

The mathematics of a model built up from many probabilistic interactions 

of agents can be unwieldy, however. Rather than trying to calculate directly how 

the system will behave, researchers often use computer simulation as an 

experimental tool. Artificial agents with the desired properties and behaviors are 

left to interact and change, and the results observed. Through such simulations, 

the effects of probabilistic learning and behavior on language change can be 

explored, and we can determine under what conditions a change will continue or 

accelerate, and under what conditions variation is stable.16 
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4.1. The adoption of new words 

Zuraw (2000), in presenting a model of exceptions and regularities in the 

phonological grammar, shows that listeners’ probabilistic updating of their 

lexicons can shape the integration of new words into a language. The puzzle I 

attempted to address is that even though there is a resistance to applying 

semiproductive phonology to new words, as words become integrated into the 

lexicon they begin to undergo semiproductive phonology at rates similar to those 

seen in the established lexicon. 

In the model proposed, semiproductive phonology is encoded in a 

stochastic optimality-theoretic grammar (see Boersma 1998, Boersma and Hayes 

2001) by low-ranking markedness constraints. Existing words’ behavior is 

determined by high-ranking faithfulness constraints that require the preservation 

of idiosyncratic properties encoded in lexical entries. These constraints do not 

apply to new words, however, because those words lack lexical entries. The 

‘subterranean’ constraints emerge, therefore, to determine the pronunciation of 

new words.  

The example examined in the greatest depth is Tagalog nasal coalescence, 

which fuses a prefix-final nasal with a stem-initial obstruent: 

 

(12) stem    nasal-coalesced 

ba#kat ‘mark, scar’  mama#kat ‘to leave a scar’ 
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stem    prefixed but not nasal-coalesced 

baja#ni ‘hero, helper’  mambaja#ni ‘to offer cooperation’ 

 

As shown in nasal coalescence appears to be distributed in the lexicon 

according to a pattern—voiceless obstruents are much more likely than voiced to 

undergo it, and obstruents with fronter places of articulation are somewhat more 

likely than those with backer places to undergo it—but the pronunciation of 

individual words is unpredictable and must be memorized.  

(13) (figure is at end of manuscript) 

 
I argue that words with nasal-coalescing prefixes (or at least some of them) have 

their own lexical entries, and thus high-ranking faithfulness constraints against 

coalescing, splitting, or inserting segments within a lexical entry ensure that they 

are pronounced correctly. An additional constraint, USELISTED, which prefers 

inputs to be a single lexical entry, ensures that if a lexical entry exists, it is used as 

the basis for evaluating faithfulness.  

When no lexical entry exists, as when a prefixed form is created for the 

first time, USELISTED cannot be satisfied, and the faithfulness constraints do not 

apply, so it falls to low-ranked constraints to decide probabilistically whether 

nasal coalescence should apply. I further assume that the strength of a lexical 
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entry grows gradually as instances of the word are encountered, and that a lexical 

entry with strength of 0.5, for example, is available for use only half the time. 

Thus, in 50% of utterances, USELISTED and the faithfulness constraints will 

enforce the memorized pronunciation of such a half-strength word, but in the 

other 50% of utterances, the lower-ranked constraints will decide, because the 

lexical entry has not been accessed. 

Boersma’s (1998) Gradual Learning Algorithm is shown to be able to 

learn the distribution of nasal coalescence from exposure to the lexicon and 

encode that distribution in the ranking of subterranean constraints, preferring 

nasal coalescence on voiceless obstruents and dispreferring nasal coalescence on 

back obstruents (cross-linguistic motivations are suggested for both). The 

behavior of the resulting grammar in generating and assigning acceptability 

ratings to new morphologically complex words is shown to be a fair match to 

experimental results with speakers. The part of the model that I will describe here 

concerns the grammar and lexicon’s effects on the adoption of new words by the 

speech community.  

The grammar is biased against applying semiproductive phonology to new 

words (this is just the definition of semiproductivity in this model: an unfaithful 

mapping from input to output is productive to the extent that the ranking values in 

the grammar allow it to apply to new words). This is consistent with experiments 

in several languages’ finding that speakers are reluctant to apply semiproductive 
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phonology to new words—although various aspects of the experimental design 

can increase apparent productivity, it is always less than what might be expected 

from looking at the lexicon (Bybee and Pardo 1981; Eddington 1996; Albright, 

Andrade, and Hayes 2000; Suzuki, Maye, and Ohno 2000). It has also been 

observed in many cases, however, that words eventually tend to conform to 

existing lexical patterns after they have been in the vocabulary for some time. In 

the Tagalog case, prefixed forms of Spanish loan-stems undergo nasal 

coalescence at rates similar to those seen in the native vocabulary, as shown in 

(14). This phenomenon seems counterintuitive, if we expect that the more 

frequent pronunciation early in a word’s life (i.e., without nasal coalescence) 

should take over and become the conventionalized pronunciation as the word 

establishes a lexical entry in the minds of speakers. 

(14) (figure is at end of manuscript) 
 

I propose that the solution lies in probabilistic interactions between 

speakers and hearers, specifically in probabilistic reasoning on the part of the 

listener. Because morphologically complex words can be either drawn directly 

from their own lexical entries or formed synthetically by morpheme 

concatenation, the listener must decide whether a morphologically complex word 

that she hears was lexical or synthesized for her interlocutor, assuming that she 

wants to maintain a lexicon that is similar to her interlocutors’. For example, if a 
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listener hears mambulo, she must guess whether the speaker was using a 

lexicalized word mambulo, or merely concatenating the prefix maN- with the stem 

bulo. Factors that should enter into the calculation include how strong the 

listener’s own lexical entry for the word is (if she has one at all), and how likely it 

is that a lexicalized or concatenated input, respectively, would produce the 

observed pronunciation. The listener can apply Bayes’ Law:  

 

(15) P(synthesized | pronunciation)  

= 
)(

)()|(
ionpronunciatP

dsynthesizePdsynthesizeionpronunciatP ⋅  

 

P(lexicalized | pronunciation)  

= 
)(

)()|(
ionpronunciatP

dlexicalizePdlexicalizeionpronunciatP ⋅  

 

The grammar influences that calculation, because the probabilities 

P(pronunciation | synthesized) and P(pronunciation | lexicalized) depend on the 

grammar. P(pronunciation | lexicalized) is always close to one, because of the 

high-ranking faithfulness constraints. P(pronunciation | synthesized) is higher for 

non-nasal-coalesced pronunciations than for nasal-coalesced pronunciations—

recall that the grammar somewhat disfavors nasal coalescence on new words. 
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Therefore, there is a bias towards classifying non-nasal-coalesced words as 

synthesized and nasal-coalesced words as lexical. Intuitively, the low productivity 

of a phonological rule encourages speakers to interpret words that do display the 

rule as exceptional and therefore listed. 

The lexicon also influences the calculation, by contributing to 

P(synthesized) and P(lexicalized). P(synthesized) depends on the construction’s 

productivity, determined by how many morphologically and semantically eligible 

words participate in the construction. P(lexicalized) depends on the candidate 

word’s similarity to existing words. Thus, pronunciations that are similar to 

existing, lexicalized words (e.g., nasal-coalesced voiceless front obstruents and 

non-nasal-coalesced voiced back obstruents) are more likely to be interpreted as 

lexical. 

If a hearer does decide that a word was lexicalized for her interlocutor, she 

will create a weak lexical entry for it. The existence of this weak lexical entry 

means that when it is the hearer’s turn to speak, she has some small probability of 

using it. The bias towards recording nasal-coalesced words as lexical, especially 

when they resemble existing nasal-coalesced words (and ignoring non-nasal-

coalesced words as synthesized) results in stronger lexical entries for nasal-

coalesced pronunciations, which in turn results in an increase in the number of 

nasal-coalesced productions, leading to further strengthening of lexical entries for 

nasal-coalesced pronunciations. 
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The model was implemented in a computer simulation with ten agents of 

varying ages who from time to time “die” and are replaced by agents with empty 

lexicons. To avoid undue influence from young speakers with immature lexicons, 

in each speaker-hearer interaction the hearer probabilistically decides, as a 

function of the speaker’s age, whether to let her lexicon be affected by the 

speaker’s utterance.17 Different pronunciations for the same word (nasal-

coalesced and not) do not directly compete, but if they are not reinforced, lexical 

entries decay.18 Therefore, if two pronunciations remain prevalent, agents can 

have two strong pronunciations for the same word. This is a desirable result, 

because there are certain nasal-coalesced words whose pronunciation is variable 

within speakers. But if one pronunciation becomes much more common than the 

other, the lexical entry for the uncommon pronunciation will gradually decay. 

The result of the simulations, shown in  (16), was that new words were 

incorporated into the lexicon in a pattern similar to that seen among Spanish 

stems (though somewhat more extreme—this could be because some of the 

Spanish-derived words have not been in use long enough for their pronunciations 

to reach their final state). That is, for voiceless obstruents the final rate of nasal 

coalescence is nearly 100%, for front, voiced obstruents it is around 50%, and for 

back, voiced obstruents it is close to 0%. 

 (16) (figure is at end of manuscript) 
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 Probabilistic reasoning by adults, then, could explain the maintenance of 

lexical regularities over historical time. Such reasoning requires speakers to have 

a probabilistic grammar, so that there is variation in the treatment of new words, 

and it requires listeners to have access, whether direct or indirect, to the statistical 

characteristics of the lexicon. 

 

4.2. Learners’ response to the probabilistic environment 

If language change is a shift in the distribution of competing variants, what causes 

that distribution to change from one generation to the next? Why don’t children 

mimic the frequencies of their elders? We have seen that in some cases—

generally cases of morphosyntactic change—the shift in frequency appear to 

reflect a reanalysis (e.g., Frisch’s not case, Tabor’s sort of case): younger speakers 

use a construction at a different rate because they assign a different interpretation 

to it. In other cases—generally cases of phonological change—younger speakers 

may use the older or the newer variant according to the requirements of the social 

setting (i.e., formal vs. informal), indicating that they control a grammar that is 

qualitatively similar to their elders’, but that assigns different probabilities to 

different variants. Biber and Finegan (1989) argue that stylistic shifts in written 

English over the last four centuries similarly reflect sociological, rather than 

structural, motivations. 
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Another possible source of frequency shift that has been proposed is the 

conflict between frequency and learnability: some variable situations could be 

inherently unstable, depending on learners’ bias in dealing with ambiguous 

utterances. Yang (2000) and Briscoe (1999) both explore this idea within a 

principles and parameters framework (Chomsky 1981), where acquisition is the 

process of parameter setting.  

 For Yang, no parameters are preset—all settings must be learned. The 

learner has a finite number of grammars to choose from, each having an 

associated weight that the learner maintains.19 In each learning trial, the learner 

receives an input sentence and probabilistically selects one grammar, with higher-

weighted grammars more likely to be chosen. If the grammar selected can parse 

the sentence, then the learner augments its weight and decrements the weight of 

the other grammars. If the grammar selected cannot parse the sentence, then the 

learner decrement its weight and augment the weights of all the other grammars.  

 The final weight that each grammar will attain depends in part on the 

distribution of grammars among the adults providing the learning data, but also on 

how many ambiguous sentences occur and what the learner does with them. For 

example, adults using a V2 (verb-second) grammar will produce a high proportion 

of sentences that are compatible with an SVO grammar.  

Yang shows how this system can cause a drift in grammar probabilities. 

Suppose that the learning environment contains two grammars Gi and Gj, and that 
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a proportion α of Gi’s sentences are incompatible with Gj (this is Gi’s 

advantage—the proportion of Gi-generated sentences that unambiguously lead the 

learner to strengthen the weight of Gi), and a proportion β of Gj’s sentences are 

incompatible with Gi (Gj’s advantage). These proportions vary according to the 

specifics of the grammars and according to the likelihood of various utterances—

for example, the likelihood that an unambiguously V2 sentence is uttered given a 

V2 grammar may be quite different from the likelihood that an unambiguously 

SVO sentence is uttered given an SVO grammar. At generation n, the linguistic 

environment contains some proportion p of adult utterances from Gi and some 

proportion q of adult utterances from Gj (p + q = 1).  

The probability that grammar Gi will have its weight incremented in any 

learning trial is αp, and the probability that Gj will have its weight incremented is 

βq. The learners will therefore tend to converge on new weights p′ = αp / (αp + 

βq) for Gi and q′ = βq / (αp + βq) for Gj. This means that the weights have been 

learned unfaithfully (p′ ≠ p and q′ ≠ q), except in the special case of α = β.  

For Gj to overtake Gi, q needs to grow at p’s expense. This means that p′/ 

q′ < p / q (the ratio of p to q decreases), or, coalescing the equations for p′ and q′ 

obtained above, αp / βq < p / q, or α < β: Gi’s advantage must be smaller than 

Gj’s. Yang examines corpora in two case studies to see if α < β does indeed cause 

Gj to overtake Gi. 
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The first case is the change from Old French’s V2 grammar to Modern 

French’s SVO grammar. The SVO grammar must have generated more sentences 

not analyzable as V2 (i.e., SXVO and XSVO sentences) than the V2 grammar 

generated sentences not analyzable as SVO (i.e., XVSO and OVS sentences). 

Certain sentences would have been ambiguous: SVO, SVOX, SVXO. To get an 

idea of how many unambiguous sentences an SVO grammar would generate, 

Yang looks at modern SVO English and finds that 10% of sentences are SXVO or 

XSVO (SVO’s advantage). Looking at modern V2 languages, Yang finds that the 

combined proportion of XVSO and OVS sentences (V2’s advantage) is 30%. If 

these advantages also held for competing SVO and V2 grammars in transitional 

French, then SVO should not have been able to overtake V2. Yang proposes that 

the solution lies in Old French’s null-subjecthood: null-subject XVS sentences 

would be produced XV, which is also compatible with an SVO analysis (the XV 

sentence would be interpreted as XSV). Taking null subjects into account, V2’s 

advantage is only 5-18%. If it fell below about 10%, then SVO would begin to 

take over. 

The second case study is the change from V2 in Middle English to SVO in 

Modern English. The problem is similar to that in the French case: why would 

SVO take over? Yang proposes that the answer here is Middle English’s 

pronominal proclitics, which resulted in some XSVO and OSV sentences (“V3”). 

When cliticization waned and these pronouns had to be reanalyzed as real DPs, 
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the V3 sentences would have been compatible only with an SVO grammar, 

adding to its advantage. 

In Briscoe’s (1999) model, the instability of a variable grammar comes not 

from the frequency of ambiguous sentences, but from the (overturnable) pre-

setting of certain parameter values.20 On the one hand, a more frequent variant has 

more opportunities to shape the learner’s grammar; but on the other hand, the 

more learnable variant—the one that uses more default parameter settings—has 

an advantage from the start. Briscoe simulates changes in word order, using a 

generalized categorial grammar framework, in which the syntactic rules are 

weighted so that different well-formed sentences have different probabilities of 

being uttered under a particular grammar. The parameters of the grammar include 

the default head-complement order, the order of subject and verb, the order of 

verb and object, and several others.  

Certain parameter settings are associated with prior probabilities, intended 

to reflect innate markedness. Parameter settings are changed only when the 

learner’s current grammar fails to parse an incoming sentence. The learner tries 

changing some settings, and if this makes the input sentence parsable, those 

potential new settings are strengthened, though not adopted right away. If the 

strength of a setting exceeds a threshold value, the new setting is adopted, though 

it can be changed back if contrary evidence is encountered later. Even after a 

setting is adopted, its strength continues to be updated; this determines how easy 
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it will be to reverse the setting later. Thus, during learning each parameter has an 

innate prior probability, a posterior probability derived from learning, and a 

current setting.  

Briscoe’s approach differs from Yang’s in that, although the learner keeps 

several grammars under consideration, only one grammar is used at a time, and 

thus individual adults’ outputs will not be variable. The learner chooses the most 

probable grammar according to Bayes’ Law. Letting g be a grammar, G the space 

of possible grammars, and tn a triggering input (= the set of sentences seen so far), 

the probability of a grammar g given a triggering input tn is given in (17): 

 

(17) 
)(

)|()(
)|(

n

n
n tP

gtPgP
tGgP

⋅
=∈  

 

The prior probability of P(g) is equal to the product of the probabilities of all its 

parameter settings. P(tn | g), the probability that a given grammar produces the set 

of sentences seen, is derived from the rule weights of each grammar. The 

denominator P(tn) of (17) is unimportant, because it is the same in all grammars 

being compared. The grammar that the learner uses to try to parse incoming 

sentences, and that the learner will use when speaking, is simply the most 

probable g ∈  G. 
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Briscoe’s model, like Yang’s, is sensitive to the amount of overlap in 

triggers (e.g., surface SVO as evidence for either an SVO grammar or a V2 

grammar). Briscoe found that in a population of mainly SOV+V2-speaking adults 

(“German”) and some SVO-speaking adults, learners reliably converged to 

SOV+V2 as long as the percentage of unambiguously SVO triggers did not 

exceed 15% (the number depends on the strength of the default settings, if any).21 

If the percentage exceeded 15%, a drift towards SVO could begin. 

The learner’s response to a variable environment is crucial to language 

change. But in order to ensure that learners do not merely replicate the 

frequencies around them, there must be some persistent bias at work, whether it 

comes from social motivations, from learnability, or from ambiguity.  

 

4.3. Language change under competing forces 

We have seen several forces that may be at work in probabilistic language 

change: innate parameter settings, frequencies of ambiguous utterances, 

frequencies of individual lexical items or constructions, variation due to language 

or dialect contact. In real cases of language change, however, it can be difficult to 

tease apart these factors to determine which are necessary or sufficient triggers for 

various changes. As Dras et al. (2001) note, simulation studies provide a way to 

perform diachronic experiments on language, altering the strength of each force 

and observing the effects.  
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Few such simulations have been undertaken that attempt to model real 

changes, but this line of inquiry seems promising. This section concludes by 

reviewing preliminary results from one simulation project (Dras et al. 2001) that 

investigates the effects of various forces on changes in vowel harmony. Dras et al. 

collected corpus data on Old Turkic—in which 100% of words were harmonic for 

palatality and backness—and several of its descendants, from the 9th century to 

the present. Some of the contemporary languages have maintained very high rates 

of harmony, while others’ rates of harmony have fallen drastically. Dras et al. 

identify internal and external factors that could affect rates of vowel harmony: 

vowel co-articulation, inherent markedness of certain vowels, consonantal effects, 

merger of vowels (collapsing harmony pairs), the introduction of disharmonic 

loanwords, and language contact, and model several of them.22 Agents in the 

simulation exchange words with randomly selected neighbors, updating their 

lexical entries to reflect what they have heard. When speaking, an agent may 

mispronounce a word or co-articulation; when listening, an agent may mishear, 

ignore co-articulate, or adjust an interlocutor’s pronunciation before adding it to 

the lexicon. Agents may also mutate their lexical entries at an agent-specific rate; 

if a vowel is to be mutated, there is an agent-specific probability that it will be 

made harmonic. 

 If factors favoring harmony are strong enough, harmony can increase, 

following roughly an S-shaped curve. Dras et al. find that vowel merger alone is 
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not sufficient to eliminate harmony, nor is the addition of disharmonic loanwords. 

Though Dras et al. emphasize that their results are preliminary, and that the model 

needs to be enriched with several more factors, this study shows a promising 

direction for future work: using probabilistic simulation tools and real historical 

data to model the effects of a variety of internal and external factors on language 

change. Such simulations should help us determine which factors, alone or in 

conjunction, are strong enough to cause and continue language change. 

 

5. Conclusion 

Many linguists are interested in language change because of what it can tell us 

about synchronic language. For example, the types of reanalysis that are common 

may tell us about the learning mechanism, and the way a change spreads through 

the speech community may tell us about the social function of language.  

Because the study of language change draws on all areas of linguistics, 

and particularly on probabilistic approaches to all areas of linguistics, the study of 

language change also has something to contribute to the study of probabilistic 

linguistics: models of synchronic acquisition, representation, and use of language 

must be consistent with observed diachronic facts.  

We have seen that the probabilistic behavior of learners, speakers, and 

listeners can shape language change, and that simulation studies can help us 

explore how this happens. Simulation studies can also support or undermine 
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models of how agents represent and use linguistic knowledge: if a model yields a 

good match to the known facts concerning language change, it is to be preferred 

over one that does not. In Tabor (1994), for example, a connectionist model of 

syntactic knowledge is supported by its ability to model frequency linkage and the 

relationship between frequency changes and reanalysis. In Zuraw (2000), a 

probabilistic model of knowledge of lexical regularities is supported by its ability 

to model the incorporation of new words into the lexicon.  

Language change can be a testing ground, then, for probabilistic models of 

learning, speaking, and listening. It is to be hoped that current advances in our 

understanding of the probabilistic nature of the language faculty will have much 

to contribute to the study of language change over the coming years, and that the 

study of language change can return the favor. 
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(1) 

  German 

  f Ø h b v * k z r l n g m t ts d pf etc. 

s 0 0 1 0 0 5 1 6 1 0 0 0 0 0 0 0 0 14 

b 1 0 0 5 0 1 1 0 1 0 0 1 0 0 0 0 0 10 

h 0 0 6 0 1 0 1 0 0 0 0 0 1 0 0 0 0 9 

Ø 0 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8 

n 0 0 1 0 1 0 1 0 0 0 5 0 0 0 0 0 0 8 

f 8 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 12 

w 1 1 0 0 4 0 0 0 0 1 0 0 0 0 0 0 0 7 

l 0 0 0 1 0 0 0 0 0 4 0 0 0 0 0 0 0 5 

m 1 0 0 1 0 0 0 0 0 0 0 0 3 0 0 0 0 5 

t 0 0 0 1 0 1 0 0 0 0 0 0 0 0 3 0 0 5 

k 0 0 0 0 1 0 3 0 0 0 0 0 0 0 0 0 0 4 

r 0 0 0 0 1 0 0 0 3 0 0 0 0 0 0 0 0 4 

d 0 0 1 0 0 1 0 0 0 0 0 0 0 2 0 0 0 4 

g 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 0 0 3 

j 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 2 

, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 

p 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 

English 

total 11 9 9 8 8 8 7 7 5 9 5 5 4 2 3 2 1 103 
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(2) 

 German 

  f Ø h b v * k z r l n g m t ts d pf sum 

s 1.5 1.2 1.2 1.1 1.1 1.1 1.0 1.0 0.7 1.2 0.7 0.7 0.5 0.3 0.4 0.3 0.1 14.1 

b 1.1 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.5 0.9 0.5 0.5 0.4 0.2 0.3 0.2 0.1 10.3 

h 1.0 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.4 0.8 0.4 0.4 0.4 0.2 0.3 0.2 0.1 9.1 

Ø 0.9 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.4 0.7 0.4 0.4 0.3 0.2 0.2 0.2 0.1 8 

n 0.9 0.7 0.7 0.6 0.6 0.6 0.5 0.5 0.4 0.7 0.4 0.4 0.3 0.2 0.2 0.2 0.1 8 

f 1.3 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.6 1.0 0.6 0.6 0.5 0.2 0.4 0.2 0.1 11.8 

w 0.7 0.6 0.6 0.5 0.5 0.5 0.5 0.5 0.3 0.6 0.3 0.3 0.3 0.1 0.2 0.1 0.1 6.7 

l 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.6 

m 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.6 

t 0.5 0.4 0.4 0.4 0.4 0.4 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.6 

k 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.2 

r 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.2 

d 0.4 0.4 0.4 0.3 0.3 0.3 0.3 0.3 0.2 0.4 0.2 0.2 0.2 0.1 0.1 0.1 0.0 4.2 

g 0.3 0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1 0.3 0.1 0.1 0.1 0.1 0.1 0.1 0.0 2.9 

j 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.0 2.1 

, 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1 0.0 0.0 2.1 

p 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.0 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.9 

English 

sum 10.9 9.1 9.1 8 8 8 6.9 6.9 4.8 9.1 4.8 4.8 4.2 2.1 2.9 2.1 0.7 102.4 
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(13) 
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(14) 
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(16) 
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FIGURE CAPTIONS 
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(1)  

Observed values for initial-consonant correspondences in English and German 

(Ringe 1992, pp. 22-23) 

 

(2) 

Expected values for initial-consonant correspondences in English and German 

 

(6) 

Three logistic functions: the solid and dotted lines have the same logit slope (0.5), 

but different logit intercepts (2 and 0, respectively); the dashed line has the same 

logit intercept as the dotted line (0), but a different logit slope (0.3). 

 

(13) 

Rates of nasal coalescence in the native Tagalog lexicon, broken down by stem-

initial consonant. 

 

(14) 

Rates of nasal coalescence in Spanish loans. 

 

(16) 

Rates of coalescence on new words in simulated speech community.
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1 Many thanks to the editors, Rens Bod, Jennifer Hay, and Stefanie Jannedy, and 

to Bryan Zuraw, for their substantial feedback. The greatest thanks goes to Norma 

Mendoza-Denton and Chris Manning, whose comments significantly shaped the 

form and content of this chapter. 

 
2 When a group of languages is known to be related, we may wonder how closely. 

Although answering this question requires quantitative techniques, it generally 

does not involve probabilistic tools. Determining degree of relatedness involves 

establishing a similarity metric and a clustering technique to group the most 

similar languages most closely. See Embleton (1986) for a review of quantitative 

techniques in tree reconstruction, and Guy (1980a, 1980b) for some interesting 

computer experiments. Current work in comparative dialectology (e.g., Kessler 

1995, Nerbonne and Heeringa to appear) similarly explores the questions of 

similarity metrics and clustering techniques, although this literature generally 

does not seek to establish facts about genetic relatedness but rather seeks to 

quantify the degree of current similarity between dialects in a way that might, for 

example, be useful to language planners and educators. 
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3 The tools of probability can do little to help us identify loans; obvious loans 

could be excluded from word-lists, but, as Kessler (2001) observes, borrowings 

that took place in the distant past may be impossible to detect. 

 

4 An analogous non-linguistic example is the “lottery fallacy”: even though you 

will almost certainly not win the lottery this week (even if you buy a ticket), it is 

quite likely that someone will win. It is perhaps the high likelihood of the general 

event that makes the specific event seem within reach. 

 

5 







q
p

, “p choose q”, is the number of ways that a subset set with q elements can 

be chosen from a set of p elements. 
!)!(

!
qqp

p
q
p

⋅−
=








, where n!, “n factorial”, is 

equal to 123...)3()2()1( ⋅⋅⋅⋅−⋅−⋅−⋅ nnnn . 

 

6 χ2 is the sum of 
E

EO 2)( −  for each cell, where O is the observed value, and E is 

the expected value (the value that the cell would have if the proportion of entries 

per row were the same for each column and vice versa). 
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7 In the shift test, for a list of length n, only n permutations are considered: 

shifting list B down by 0 lines, by 1 line, by 2 lines, etc. 

 

8 Or, equivalently, stk

stk

P +

+

+
=

e1
e . 

 

9 “ln” stands for “natural logarithm”. ln(x) = y means that xy = e, where e ≈ 2.72 is 

the so-called “natural number”.  

 

10 This is the source of Tabor’s “Q-divergence”: changes in a word’s category are 

accompanied or even preceded by changes in the frequency at which it appears in 

an ambiguous context. 

 

11 A potential counterargument is that if ne was lost for phonological reasons, it 

might have been preserved in the written record for a deceptively long time. 

 

12 Niyogi and Berwick make the point that only the 5-parameter system, not a 

similar 3-parameter system, tends towards loss of V2. The 3-parameter system 

actually produces a tendency towards increasing V2. Therefore, Niyogi and 

Berwick argue, diachronic simulations such as theirs can be a way of 

investigating the plausibility of substantive proposals in linguistic theory. 
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13 See also Bybee (2001). 

 
14 Phillips finds that the stress shift illustrated by convíct (noun or verb) becoming 

cónvict (noun) / convíct (verb) affects infrequent words first. She also finds, 

however, that final stress on verbs ending in –ate in British English developed 

first on frequent words. Phillips suggests that the –ate shift is not really a 

morphological rule in Bybee’s sense. Applying the stress shift does not require 

analyzing the morphological category or morphemic structure of a word; rather, it 

involves ignoring –ate’s status as a suffix. 

 

15 Bybee (2000) proposes that just as frequent words can retain archaic phonology 

or morphology, frequent words and constructions can retain archaic syntax. Bybee 

proposes this as the explanation for why the English modal auxiliaries (can, 

might, should, etc.) retain their archaic behavior with respect to negation and 

question-formation: He should not, Should he? vs. He does not drive, Does he 

drive? The frequency effect could be thought of as complementary to, or a driving 

force for, the traditional explanation that only modals occupy Infl. 
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16 A growing literature simulates “language evolution”, that is, change whose 

starting point is a speech community that lacks any shared linguistic knowledge. 

See Steels (2000) for a very brief overview; for further reading see Kirby (1999) 

and many of the articles in Hurford et al. (1998) and Knight et al. (2000). 

 
17 Like most agent-based simulations of language change, the model lacks social 

or spatial structure: each agent has an equal probability of interacting with any 

other agent. Because leadership in a language change seems to be correlated with 

the characteristics of the speaker’s social network (see Milroy 1980, Labov 2001), 

a simulation that attempts to model the spread of a sociolinguistically correlated 

change through the speech community would require a more realistic social 

structure. Social structure is probably irrelevant, however, to merely 

demonstrating the transmissibility of a lexical pattern. 

 
18 In the simulation reported in Zuraw (2000), pronunciations do compete 

directly—when one is augmented, the other is diminished. The results here are 

from a later version of the simulation. 

 

19 In many situations, it is unrealistic for the learner to maintain a full list of 

possible grammars. In a principles-and-parameters model, the number of possible 

grammars is vp, where v is the number of values that each parameter can take, and 

p is the number of parameters. Even with binary parameters (v = 2), this number 
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grows very quickly as the number of parameters grows. In Optimality Theory, the 

situation is even worse: the number of grammars is c!, where c is the number of 

constraints. A model in which individual parameter settings or constraint rankings 

is probabilistic is more tractable (see Boersma 1998, Boersma and Hayes 2001 for 

probabilistically ranked constraints within a single grammar). 

 

20 This paper also includes some interesting simulations of creole genesis. 

 

21 The source of the variation could be dialect contact, social prestige, or random 

mislearning by the older generation. 

 

22 Co-articulation, inventory structure, lexical patterns, vowel merger, fixed non-

harmonic suffixes, and disharmonic loanwords. 
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