Class 8: Structure above the segment II

To do

- Nanti assignment (on last week's material) is due Friday
- Next reading McCarthy \& Prince 1994 (due Tuesday)
- Project: have $1^{\text {st }}$ meeting with me by the end of next week

Overview: Last time we reviewed evidence for various structure above the segment. This time let's see one more-the prosodic word.

1 Why do words matter in phonology?

This was already an issue in SPE. Take a rule like...

accounts for alternations in bile-bilious, reptile-reptilian
What determines whether there's a \#? In SPE...

- some \#s are generated by syntactic brackets
- some affixes have a \# in their lexical entry (/\#iv/)
- \#s can also be deleted, inserted, or changed by phonological rules

OT stress and other constraints often refer to the word or to word boundaries:
$\operatorname{Align}\left(\right.$ Word, L; Foot, L), $\quad *\left[\begin{array}{l}- \text { son } \\ + \text { voice }\end{array}\right] \#$

2 What counts as a word? Descriptive example from Samoan

The domain of footing in Samoan is a lexical root (Noun, Verb, Adj), plus any associated bound morphemes after it (Zuraw, Yu, \& Orfitelli 2012):

Primary stress is trochee at right edge:

| la(vá:) | 'energized' le(léi) | 'good' | (mán'u)
 (sám'i) | 'bird'
 'sea' | ma(nón'i)
 pu(lín'i) |
| :--- | :---: | :--- | :--- | :--- | :--- | | 'smell good' |
| :--- |
| 'pudding' |

In a compound, each root starts its own stress domain:

$$
\begin{array}{lll}
\text { a(lòfi)-(váe) } & \text { 'sole of foot' (assembly+foot) } & \text { *(àlo)fi-(váe) } \\
\text { (àya)-le(áy'a) } & \text { 'bad behavior' (bad+behavior) } & \text { *a(yàle)(áy'a) }
\end{array}
$$

(HL) foot not tolerated \rightarrow "trochaic shortening"-domain again includes suffixes

	(fús'i) 'hug'	fu(sí-a)	'hug-ERG'	/fusi/
vs.	(tús'i) 'write'	(tù:)(síla)	'write-ERG'	/tu:si/
	(mà:)(lò:)(ló:)	(mà:)(lò:)(ló-ŋ'a) 'rest ${ }_{\text {' }}$		

Certain vowels have to foot together, e.g. /ai/, /au/:

(mái)le	'dog'	cf.	ma(él'a)	'hollow'
(máu) ya	'mountain'	cf.	ma(ót'a)	'pastors house'

...but not across a boundary that includes the beginning of a root:

(fà?a)-(ùlu)-(úl'u)	'be subject to' (ulu 'head') *fa(?à-u)(lu)-(úl'u)
(fàna)-(î?a)	'dynamite for fishing' (shoot + fish)
(pòna)-(úa)	'Adam's apple' (knot + neck)

In summary, if p -word is domain of footing,

- $\quad[\text { root }]_{p-w d}$
- $[\text { root-suffix }]_{p-w d}$
- prefix-[root] $]_{\text {-word }}$
- $[\text { root }]_{\text {p-word }}[\text { root }]_{p-w o r d ~}$
\rightarrow every root initiates a new p-word.
This is a very common pattern cross-linguistically (see Peperkamp 1997 for a review and some in-depth case studies).

3 How can an analysis capture what counts as a word?

Following Peperkamp 1997, we can do it with Align constraints (McCarthy \& Prince 1993), such as Align(LexWord, L; PWord, L).

- Let's try some tableaux for Samoan

4 English example

Many English function words (i.e., not Nouns, Verbs, or Adjectives) have weak and strong forms.

to	strong $\mathrm{t}^{\mathrm{h}} \mathrm{u}$	weak $\mathrm{t}^{\mathrm{h}} \partial$
at	æt	ət
for	fo.	fə
a	$\varepsilon \mathrm{I}, \Lambda$	∂
and	ænd	n

- I'm going __ London next summer. I'm looking __ Campbell Hall.

Where are you going __?
What are you looking __?

Selkirk 1995 proposes two possible structures:

		to is a p-word \rightarrow must be footed p-word ।		
stressed $\rightarrow\left[\mathrm{t}^{\mathrm{h}} \mathrm{u}\right]$			\quad	p-word
:---				
to	\quad	London		
:---				

To avoid cluttering the tableau, assume that the " $\mathrm{t}[\mathrm{u}]$ "s form a foot with stress; " $\mathrm{t}[\partial]$ "s are unfooted.

	to London	ALIGN (LexWd,L,PWd,L)	Align (PWd,R,LexWd,R)	FootMust BeDominated ByPWord
a	[tu London ${ }_{\text {PWd }}$	*!		
b	[to London] ${ }_{\text {PWd }}$	*!		
c	tu [London ${ }_{\text {PWd }}$			*!
- d	te [London $]_{\text {PWd }}$			
e	[tu $]_{\text {PWd }}[\text { London }]_{\text {PWd }}$		*!	
f	[to] ${ }_{\text {PWd }}$ [London $]_{\text {PWd }}$		*!	

(Focus changes things: I need a flight TO London, not FROM London.)

- looking at: draw a phonological tree that causes at to be pronounced in its full form
- Fill in the tableau (we needed to add some constraints). Assume "[æ]t" is footed, "[ə]" isn't.

looking at	Align (LexWd,R, PWord,R)	AlIGN (PPhrase,R, Pwd,R)	Align (PWd,R, LexWd,R)	FootMust BeDominated ByPWord	PWORDMUST Contain Foot
$a \quad[\text { looking æt }]_{\text {PWd }}$					
$b \quad[\text { looking } \boldsymbol{\text { t }}]_{\text {PWd }}$					
c [looking $]_{\text {PWd }}$ æt					
$\left.d^{[l o o k i n g}\right]_{\text {PWd }}$ ət					
${ }_{\sim} e[\text { looking }]_{\text {PWd }}[æ]_{\text {PWd }}$					
$f[\text { looking }]_{\text {PWd }}[\text { tt }]_{\text {PWd }}$					

\Rightarrow looking needs to end a p-word, but phrase wants to end w/ a p-word, so at must end its own p-word.

5 Dutch example (Gussenhoven \& Jacobs 1998)

In Dutch, resyllabification applies across some morpheme boundaries but not others.

[ont.[ri. $\left.\chi ə n]_{\mathrm{V}}\right]_{\mathrm{V}}$ 'dispossess'	$\left[[k \varepsilon r k]_{\mathrm{N}} \cdot[\ldots y l]_{\mathrm{N}}\right]_{\mathrm{N}}$	'barn owl'	[[te:.kə.n] ${ }^{\text {V }}$
‘drawing’ [on. $\left.[\mathrm{e} . . \mathrm{v} ə \mathrm{n}]_{\mathrm{A}}\right]_{\mathrm{A}}$ 'uneven' 'walker'	$\left[[r \varepsilon i n]_{N} \cdot[\mathrm{a} k]_{\mathrm{N}}\right]_{\mathrm{N}}$	'Rhine barge'	[[van.də.l] ${ }_{\mathrm{v}}$

G\&J propose that resyllabification is blocked across a p-word boundary (parentheses below mark p-words)...
(ont.)-(عi. $\chi ə n)$
(kerk.)-(œyl)
(te!.kə.n-iy)
(ən.)-(e...vən)
(řin.)-(a:k)
(van.də.l-a:r)

- Let's fill in the alignment constraints:

	$/\left[[\text { te: } \mathrm{k} \partial \mathrm{n}]_{\mathrm{V}} \text { in }\right]_{\mathrm{N}} /$			ONSET	NOCODA
(te:.kə.nin)					
(te..kən.)(in)					
(tee.kə.)(nin)					

- What should happen to function words, like pronouns and determiners, assuming the same ranking?

$[\text { rip }]_{\mathrm{v}}[\text { ən }]_{\text {det }}[\mathrm{kat}]_{\mathrm{N}} /$ called a cat				ONS	NOCODA
(rip.)(ən.)(kat)					
(ri.pən)(kat)					

6 More evidence in Dutch: long-vowel diphthongization

/e:, ø:, o:/ become [$\mathrm{e}^{\partial}, \varnothing^{\partial}, \mathrm{o}^{2}$] before [r], regardless of syllabification:

[me $\left.{ }^{\text {r }}\right]_{\text {N }}$	'more'	$\left[\mathrm{ko}^{\text {² }} \text {. } \mathrm{ral}\right]_{\mathrm{N}}$	'coral'
$\left[\chi \varnothing^{\text {r }}\right]_{N}$	'smell'	$\left[\left[k \varnothing^{\square} \cdot \mathrm{r}\right]_{\mathrm{V}} \mathrm{iy}\right]_{\mathrm{N}}$	test'

- Why doesn't the alternation apply here:
$\left[\left[\left[m e:[r \varepsilon i . z]_{\mathrm{V}}\right]_{\mathrm{V}} \text { ən }\right]_{\mathrm{V}} \quad\right.$ 'to accompany’ $\quad\left[[\mathrm{k} \boldsymbol{0}]_{\mathrm{N}}[\mathrm{rıy}]_{\mathrm{N}}\right]_{\mathrm{N}} \quad$ 'cue ring'
$\left[[\text { mil.jø: }]_{\mathrm{N}}[\text { ri.zi.ko: }]_{\mathrm{N}}\right]_{\mathrm{N}} \quad$ 'environmental hazard' $\left[\text { ne:. } \mathbf{0}:\left[[\text { re:.v }]_{\mathrm{N}} \text { ians }\right]_{\mathrm{A}}\right]_{\mathrm{A}} \quad$ 'neo-Revian'
7 More evidence in Dutch: conjunction reduction (see also Booij 1985)
$\left[[\text { land }]_{N}[\text { bouw }]_{N}\right]_{N}$ en $\left[[\text { tuin }]_{N}[\text { bouw }]_{N}\right]_{N}$ optionally becomes agriculture and horticulture
but: $\left[[\text { absurd }]_{A} i t e i t\right]_{\mathrm{N}}$ en $\left[[\text { banal }]_{\mathrm{A}} \mathrm{iteit}\right]_{\mathrm{N}}$ cannot become absurdity and banality
land en tuinbouw agri- and horticulture
*absurd en banaliteit absurd- and banality
- Why not?

8 The phonological word in some other languages

Sanskrit, Turkish, Hungarian, Malagasy, Tagalog, Bengali, and Italian have pretty much the same p-word boundaries as Samoan or Dutch, with some slight wrinkles.

In Italian, for example, only prefixes that are semantically transparent stand outside the stem's pword (Peperkamp 1997, van Oostendorp 1999):
(a)-(sociale) 'asociale' but (re-sistenza) 'resistance'

Provides a way to test Italian speakers' morphological intuitions: see Baroni 2001 on N. Italian intervocalic voicing of $/ \mathrm{s} /$, which applies only if the surrounding vowels are in the same p-word.

Yidin ${ }^{y}$ (Australian language, with very few remaining speakers. Nespor \& Vogel 1986, data from Dixon 1977)
Penults of odd-syllabled p-words lengthen-no long vowels otherwise.

gu.da'.ga	'dog'	gu.da.ga.-gu	'dog-purp.'
mu.dam	'mother'	mu.da:m.-gu	'mother-purp.'
ma.di:n.da-y	'walk up-pres.'	ga.li..-na	'go-purp.'
ga.lin	'go-pres.'	gu.nay.ga.ra:-n.da	'what-dat.'

- Based on the data above, are suffixes part of the p-word?
- So what should we make of examples like these, with longer suffixes:
gu.ma:.ri-da.ga:.-nu 'red-inch.-past' ma.di:n.da-ŋa.lin 'walk up-pres'

9 Do we need the p-word?

A group of us spent about 40 hours debating the issue (see www.linguistics.ucla.edu/people/zuraw/courses/prosword_2006.html for handouts).
Results were inconclusive:

- Often, interleaving phonology and morphology can do the job (add some affixes too late for certain processes to see them) -let's try this for a couple of cases.
- But there was a residue of cases where it seemed like we really might need the p-word. The last handout at the link above sums up the pro and con arguments.

To sum up

- We often need to refer to a domain about the size of the word.
- But it doesn't always line up with the syntactic (or orthographic!) word.
- We can let the grammar (perhaps through Align constraints) determine what counts as a word for phonological purposes.
- There might be other ways to account for the data, though.

References

Baroni, Marco. 2001. The representation of prefixed forms in the Italian lexicon: Evidence from the distribution of intervocalic [s] and [z] in northern Italian.. In Geert Booij \& Jaap van Marle (eds.), Yearbook of Morphology 1999, 121-152. Dordrecht: Springer.
Booij, Geert E. 1985. Coordination reduction in complex words: a case for prosodic phonology.. In Harry Van der Hulst \& Norval Smith (eds.), Advances in Nonlinear Phonology, 143-160. Dordrecht: Foris.
Chomsky, Noam \& Morris Halle. 1968. The Sound Pattern of English.. Harper \& Row.
Dixon, Robert M. W. 1977. A Grammar of Yidiny.. Cambridge: Cambridge University Press.
Gussenhoven, Carlos \& Haike Jacobs. 1998. Understanding Phonology.. Oxford: Oxford University Press.
McCarthy, John J \& Alan Prince. 1993. Generalized Alignment.. In Geert E Booij \& Jaap van Marle (eds.), Yearbook of Morphology, 79-153. Dordrecht: Kluwer.
Nespor, Marina \& Irene Vogel. 1986. Prosodic Phonology.. Dordrecht: Foris.
van Oostendorp, Marc. 1999. Italian s-voicing and the structure of the phonological word.. In S.J. Hannahs \& Mike Davenport (eds.), Issues in Phonological Structure, 197-214. Benjamins.
Peperkamp, Sharon. 1997. Prosodic Words.. The Hague: Holland Academic Graphics.
Selkirk, Elisabeth. 1995. The prosodic structure of function words.. In Jill Beckman, Laura Walsh Dickey, \& Suzanne Urbanczyk (eds.), University of Massachusetts Occasional Papers: Papers in Optimality Theory, 439-470. Amherst, Mass.: GLSA Publications.
Zuraw, Kie, Kristine Mak Yu \& Robyn Orfitelli. 2012. Word-level prosody in Samoan.. UCLA, ms.

