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Class 2, Variation II: MaxEnt OT, lexical selection 

 

To do for next time 

• Anttila study questions due tomorrow (Friday), to my mailbox in Campbell 3125, by 4 PM. 
Paper only! 

• Anderson ch. 9 study questions due Tuesday 
• First assignment (modeling variation) will be posted by tonight; due Friday, Jan. 20. 

 

Overview: Last time we saw Stochastic OT for handling free variation. We introduce a rival 
model, Maximum Entropy OT. Then, we discuss lexical selection.  

1. Recall our schematic example of free variation in Stochastic OT 

 /θɪk/ *θ 

ranking value: 101 

IDENT(cont) 

ranking value: 99 

wins ~90% of time a [θɪk] *  

wins ~10% of time b [tɪ̪k]  * 
 
The two ranking values are the right distance apart so that, after adding noise to the ranking 
values, *θ >> IDENT(cont) 90% of the time. 
 
Algorithm for learning these numbers (Gradual Learning Algorithm) demotes and promotes 
constraints in response to mismatches between current grammar and an adult’s utterance. 

2. Convergence 

Suppose for simplicity that our job is to assign numbers (like ranking values) to just two 
constraints (horizontal axes), to minimize some error rate that we can quantify (vertical axis). 
 
Suppose our learning algorithm goes downhill from wherever we start. 
 
 
 

-2 -1.5
-1 -0.5

0 0.5
1 1.5

2
-2

-1.5

-1
-0.5

0

0.5
1

1.5

2

0

1

2

3

4

5

6

7

8

 1
-2

-1

0

1

2

3

-3

-2

-1

0

1

2

3
0

5

10

15

20

2 

                                                 
1 Octave commands: [x,y]=meshgrid([-2:.2:2]); Z=x.^2+y.^2; mesh(x,y,Z) . Based on 
www.mathworks.com/help/techdoc/visualize/f0-18164.html 
2 [X,Y,Z]=peaks(30); mesh(X,Y,Z+7) . Based on www.mathworks.com/help/techdoc/ref/surfc.html 

Wherever we start from, we’ll end 
up at the lowest point: 

Here, we risk getting stuck in the 
shallower pit: 
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• Ideally, we want a situation as on the left: there’s exactly one point from which every 
direction is uphill. A learning problem like this is called “convex”. 

• And, we want to know that our learning algorithm always goes downhill, and so is 
guaranteed to find that optimum. 

By the way, here’s the plot for our ‘thick’ example. Error measure is | predicted[t]̪rate – 0.9 |: 
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3. Gradual Learning Algorithm? 

There was no proof of convergence for the standard GLA. Pater 2008 pointed out a type of case 
that is problematic (the “credit problem”). 
 

Suppose 6 constraints: NOCODA, ONSET, *VOICEDOBSTRUENT, *ɛ#, MAX-C, DEP-C 
 
o Determine the constraint ranking for this language and fill in the tableaux 

 /da/       

� a da       

b a       

 /lob/       

c lob       

� d lo       

 /tɛf/       

� e tɛf       

f tɛ       

 /kɛ/       

g kɛʔ       

� h kɛ       
 
o Let’s think about what the GLA will do for each of these tableaux if it gets it wrong 

⇒ Now let’s try it in OTSoft (I have an input file prepared) 
 
(But see www.fon.hum.uva.nl/paul/gla/ for bibliography and discussion: there are variants of 
GLA that don’t have this problem.) 

                                                 
3 [x,y]=meshgrid([97:0.2:103]); Z=abs(0.9-normcdf(x-y,0,sqrt(2))); mesh(x,y,Z). 
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4. Maximum Entropy OT (Goldwater & Johnson 2003) 

Another way to attach numbers to constraints; produces a convex learning situation. Call each 
constraint’s number its “weight”. 
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Example [I cheated and took out DEP-C] 

  ONSET 

weight: 50 

*VOICEDOBS 

weight: 19.9 

MAX-C 

weight: 23.7 

NOCODA 

weight: 16.4 

*ɛ# 

weight: 4.5 

� a /da/ → da  *    

b /da/ → a *  *   

c /lob/ → lob  *  *  

� d /lob/ → lo   *   

� e /tɛf/ → tɛf    *  

f /tɛf/ → tɛ   *  * 

g /kɛ/ → kɛʔ    *  

� h /kɛ/ → kɛ     * 
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= 0.9999925 

 
How are the weights chosen?  
• So that its predicted probabilities for the correct outputs are as large as possible 
• More precisely, maximize the sum of the logs of the predicted probabilities of the M pieces 

of data: ∑
=

M

j

jxP
1

)(ln  (this is where the “entropy” part of the name comes from) 

• You can also include a “smoothing term” to penalize weights far from default value 
 
How are the weights learned?  
• OTSoft (and other software) will do it for you, using the Conjugate Gradient Algorithm (see 

Shewchuk 1994 for tutorial), a fancy version of rolling downhill. 
 
What about free variation? 
• Suppose /da/ occurs 10 times, 90% [da], 10% [a].  
• If we have weights that produce 99% [da], sum of log probabilities is 

ln(.99+.99+.99+.99+.99+.99+.99+.99+.99+.01) = -4.696 
• But if we have weights that produce 90% [da] (matching the rate in the data), sum of log 

probabilities is ln(.90+.90+.90+.90+.90+.90+.90+.90+.90+.10) = -3.251, which is bigger.  
 

probability 
of choosing 
candidate x 

for all N constraints, sum of 
constraint’s weight * how many times 
candidate x violates that constraint 

sum of these numerators for all 
the candidates 
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In your first weekly assignment you’ll apply Stochastic OT and MaxEnt OT to the same data set 
and make some comparisons. Now, let’s change topics... 

5. Lexical selection 

Consider English monosyllables beginning sC and ending with a C, 
sC{l,ɹ,w,j}*V{l,ɹ,[+nas]}CC*#, as listed in CMU pronouncing dicitonary:4 
 

 C2 

C1 

p b f v m θ t d s z n l ɹ tʃ dʒ ʃ k g ŋ 

p    3  3 3 39 20 14 12 35 27 21 1 5 2 36 6 9 

m    2   5 12 3 1   12 5  2 2 13 2  

t 55 25 26 18 30 2 66 31 11 20 39 44 34 13 9 2 80 7 15 

n 11 4 6   1 4 4  4  6 8 3   12 5  

l 20 4 3 8 9 4 20 10 5 3 7   1 2 5 8 6 4 

k 32 9 16 2 14  33 19 5 16 19 28 20 14 4 2 13 8  

w 24 2 3 3 9 1 15 8 4 5 14 7 5 5  4 4 2 3 

 
o Certain areas of the chart are underpopulated—discuss. 
 

How underpopulated? Compare to what we expect if each combination depends just on row and column totals: 
 C2 

C1 

p b f v m θ t d s z n l ɹ tʃ dʒ ʃ k g ŋ 

p 24.1 7.5 10.0 5.3 11.1 2.7 32.1 16.5 7.0 10.2 19.4 21.1 16.3 6.3 3.7 2.9 28.4 6.1 5.3 

m 6.0 1.9 2.5 1.3 2.8 0.7 8.0 4.1 1.7 2.6 4.8 5.3 4.1 1.6 0.9 0.7 7.1 1.5 1.3 

t 53.9 16.7 22.4 11.8 24.7 6.1 71.8 36.8 15.6 22.8 43.3 47.1 36.4 14.0 8.4 6.5 63.4 13.7 11.8 

n 7.0 2.2 2.9 1.5 3.2 0.8 9.3 4.8 2.0 2.9 5.6 6.1 4.7 1.8 1.1 0.8 8.2 1.8 1.5 

l 12.2 3.8 5.1 2.7 5.6 1.4 16.2 8.3 3.5 5.1 9.8 10.6 8.2 3.2 1.9 1.5 14.3 3.1 2.7 

k 26.0 8.1 10.8 5.7 11.9 2.9 34.6 17.8 7.5 11.0 20.9 22.7 17.6 6.8 4.0 3.1 30.6 6.6 5.7 

w 12.1 3.7 5.0 2.6 5.5 1.4 16.1 8.2 3.5 5.1 9.7 10.5 8.2 3.1 1.9 1.4 14.2 3.1 2.6 

 
Now take the ratio Observed/Expected—see Frisch, Pierrehumbert, & Broe 2004. I removed 
cells where Expected < 5, and shaded cells where O/E≤ 0.5: 

 C2 

C1 

p b f v m θ t d s z n l ɹ tʃ dʒ ʃ k g ŋ 

p 0.0 0.0 0.3 0.0 0.3  1.2 1.2 2.0 1.2 1.8 1.3 1.3 0.2   1.3 1.0 1.7 

m 0.0      1.5     2.3     1.8   

t 1.0 1.5 1.2 1.5 1.2 0.3 0.9 0.8 0.7 0.9 0.9 0.9 0.9 0.9 1.1 0.3 1.3 0.5 1.3 

n 1.6      0.4    0.0 1.0     1.5   

l 1.6  0.6  1.6  1.2 1.2  0.6 0.7 0.0 0.0    0.6   

k 1.2 1.1 1.5 0.4 1.2  1.0 1.1 0.7 1.5 0.9 1.2 1.1 2.1   0.4 1.2 0.0 

w 2.0  0.6  1.6  0.9 1.0  1.0 1.4 0.7 0.6    0.3   

                                                 
4 grep '  S [^AEIOU][^AEIOU]*[AEIOU][AEIOU]*[^AEIOU]*[^AEIUO]$' cmudict_0_6d.txt 

Excluded row and columns with totals <10. See spreadsheet for what I did about when to consider {l,ɹ,[+nas]} as 
pre-C2 and when as C2 itself, and some other tricky cases. 
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[We could get deeper into this: if C1 is [+nasal], is there less likely to be a nasal preceding C2? 
Similarly for liquids.] 
 
Suppose English speakers have learned this pattern (see Coetzee 2010 for evidence that they do, 
at least for sCVC words; see Frisch & Zawaydeh 2001 for evidence that Arabic speakers know a 
similar but stronger pattern in Arabic).  
o How could the grammar express the pattern? What issues do we run into with GLA/MaxEnt, 

or with constraint indexing? 
 

6. Lexical selection as an active shaper of the lexicon 

In the English lexicon overall, if a word has two liquids, they’re more likely to be l...r or r...l 
than l...l or r...r. 
Martin 2007 shows... (pp. 76-77) 

• In Old English, about 35% of words with two liquids have identical liquids, compared to 
~55% expected by chance. 

• In Middle English, it’s about 25% (expect ~50%) 
• Today, it’s about 25% (expect ~50%) 

Even though we’ve retained only ~10-15% of the Old English vocabulary! 
 
Martin 2007 also uses the Oxford English Dictionary, which gives dates of earliest attested use 
for each word, to look at words newly entering the language. In every decade, new words avoid 
identical liquids: 

(p. 78) 
 
See Martin 2007 for an implemented model of lexical selection. 
 

% observed 
each decade 

range of %s expected if liquids 
combined randomly  
(95% interval: if you simulate random 
combination 1000 times, and throw out 
the 50 most extreme trials, this is the 
range found in the remaining 950 trial) 



Jan. 12, 2012  6 

Ling 201A, Phonological Theory II. Winter 2012, Zuraw  

7. Filters in general 

A lot of phonological and paraphonological activity has this character: it’s not so much about 
mapping an input to an output as about deciding how good the resulting output is. 
 

• Which new words enter the language, as we just saw 
• Which names people choose for babies, fantasy role-playing characters, and 

pharmaceuticals (Martin 2007) 
• Which first-name/last-name combinations people choose (Shih 2012) 
• Which words make a good pun (Fleischhacker 2006) 
• Which pairs of words make a good compound (Martin 2004; Martin 2007; Martin 2011) 
• Which lines of poetry are legal (Hayes 2009) 
• Which words can take which affixes (a big literature, but see Orgun & Sprouse 1999 in 

particular for the idea of a filter); we’ll see more of this in weeks 5 and 8 
 
See Martin 2007 for an implemented model of how different options compete. Options like... 

• couch vs. sofa 
• carp pond vs. koi pond 
• Mainer vs. Mainean vs. Maineite (for ‘person from the state of Maine’) 

pushing the idea further... 
• writing a love song about the moon in June vs. writing one about the sun in August 
• drawing a cartoon with the pun Napoleon Blown-apart in its caption vs. drawing a 

cartoon about something else, or not drawing a cartoon at all. 
 
Crucially, one factor in the competition is how phonologically “good” a competitor is. 

=> Even if each tableau has just one winner (/kawtʃ/ → [kawtʃ], /sowfʌ/ → [sowfʌ]), the 
grammar should still attach a goodness score to it (see Coetzee & Pater 2007 for a way to do it) 
 
Going back to our English example: a hypothetical input /spowm/ can surface faithfully, but with 
a poor score attached to it, so that it’s unlikely to catch on as a new word: 
 

 /spowm/ MAX-C IDENT(place)/__{V,#} *s[labial]...[labial] 

� a spowm   * 

b spow *!   

c stowm  *!  

compare    

 /spown/ MAX-C IDENT(place)/__{V,#} *s[labial]...[labial] 

� d spown    

e spow *!   

f stown  *!  
 
o Discuss ways to give different scores to (a) and (d) above 
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8. Wrapping up the week 

• We now have two competing tools for handling free variation: Stochastic OT (+Gradual 
Learning Algorithm) and MaxEnt OT (+learning algorithms we won’t worry about). 

• We’ve discussed the problem of lexical variation: how to allow each word to prefer one 
variant, while still capturing in the grammar the distribution of the variants? 

� We saw constraint indexing as one approach 
• We’ve discussed the related problem of lexical selection and filters in general: how to 

capture in the grammar the underrepresentation of certain word types? 
� We left this somewhat open, but considered attaching numbers to winning candidates 

that a higher-level selection process can use 
 
Next time: The nuts and bolts of process application, in SPE and OT.  
For example, suppose we have a rule i → Ø / VC__CV and the word /taminisiko/--what 
happens? Suppose the rule is optional—what then? 
 

Today’s bottom line 

• You’re now well equipped to model data with free variation (e.g., on a homework 
assignment!). 

• We’ve dealt conceptually with lexical variation and lexical selection, but actually modeling 
them would require some extra thought (e.g., in a term paper) 
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