Variation in the French suffix -esque
Due Friday, Nov. 20, 2012 to my mailbox in Campbell 3125 by 4 PM
This problem is based on Plénat 1997, with additional data from Wiktionnaire (fr.wiktionary.org/wiki/-esque) and Sajous \& Tanguy 2006. You're free to consult those sources if you really want to, but I don't think it will help.

The French suffix -esque forms adjectives from nouns, much like its English correspondent. But some interesting phonological changes can results.

Contents

Part I: Develop an OT analysis of the basic pattern.. 1
Part II: Modeling the variation.. 5
Part III: Comparing GLA and MaxEnt ... 5
What your write-up should include.. 7

Part I: Develop an OT analysis of the basic pattern

Here are some ordinary examples of the suffix. You'll notice, for the few words where the surface form of the noun is different from the underlying form, that sometimes an underlying vowel and following nasal coda consonant combine to form a nasal vowel-but sometimes they don't (Clinton). You don't have to account for this.

underlying form of noun ${ }^{1}$	surface form of noun, if different from underlying	surface form of adjective	gloss (just the French spelling)
tyb		tybesk	tube
katakomb	katakz̃b	katakj̃b\&sk	catacombe
Strumf		Strumf\&sk	schtroumpf
prydom		prydomesk	Prudhomme
sizif		sizifısk	Sisyphe
plantigrad	plãtigrad	plãtigradzsk	plantigrade
klinton		klintכnesk	Clinton
aligator		aligatoresk	alligator
santor	sãtวr	sãtoresk	centaur
animal		animalısk	animal
bryncl		brynılesk	Brunel
karnaval		karnavalısk	carnaval
katedral		katedralısk	cathédrale
karava3		karava3\&sk	Caravage

[^0]| klerdəlyn | klırdəlynısk | clair de lune |
| :---: | :---: | :---: |
| aristJfan | aristJfanદsk | Aristophane |
| barsəlın | barsəlכnєsk | Barcelone |
| danbron | danbronesk | Dan Brown |
| klun | klunesk | clown |

These examples show that even when the VN sequence that can change to a nasalized vowel is final, nothing much happens in the -esque form:

asiltalon	a iltalวิ	afiltalın^sk	Achille Talon
akordeon	akordeว̃	akordeכnहsk	accordéon
babuin	babuẽ	babubinesk	babouin
lapin	$\operatorname{lap} \tilde{1}$	lapinzsk	lapin
kaiman	kaimã	kaimanısk	caïman
kameleon	kameleフ̃	kameleonısk	chaméléon
kamjon	kamjõ	kamjonısk	camion
Sampinon	Sãpiņ	Jãpiṅnesk	champignon
Sarlatan	Sarlatã	Sarlatanesk	charlatan
tSjoran	t \int jorã	tSoranesk	Cioran
danton	dãtフ̃	dãtכn¢sk	Danton

One more thing you don't have to analyze: sometimes an underlying consonant deletes when word-final. But it doesn't affect the -esque form.

fragonard	fragonar	fragonardzsk	Fragonard
kanard	kanar	kanardzsk	canard
kofmard	kofmar	kofmardzsk	chauchemar
Sarlot	Sarlo	Sarlotısk	Charlot
dykrot	dykro	dykrotzsk	Ducrot
soldat	solda	soldatzsk	soldat
abrakadabrant	abrakadabrã	abrakadabrãt\&sk	abracadabrant
elefant	elefã	elefãtısk	éléphant
pedant	pedã	pedãt\&sk	pédant

Now the fun begins. Here are some words ending in sibilants (deleting word finally and nondeleting), arranged by syllable count (in leftmost column). These words show two different behaviors. Develop an analysis of which words do what.

1	ros		rosesk	rosse

1	buz		buzesk	bouse
1	fars		farsesk	farce
1	dœz	dœ	dœzzsk	（Louis）II
2	fidjas		fidjısk	Phidias
2	gijuz	giju	gijesk	Guilloux
2	marez	mare	mar\＆sk	marais
3	bymamys		bymamesk	bumammus
3	servantes	s\＆rvãtes	servãtદsk	Cervantes
3	klitıris		klitoresk	clitoris
3	kjsinys		kjsin̨sk	Cosinus
3	djafwarys		diafwaresk	Diafoirus
3	myljebris		myliebresk	muliébris
3	klapJtis	klapsti	klapot\＆sk	clapotesque
3	3avanez	3avan¢	3avanesk	javanesque
3	sis3urnez	sizurne	sizurnesk	six journées
4	sezneres		sezner\＆sk	CNRS
4	øpalinos		øpalinદsk	Eupalinos
4	faraminœz	faraminœ	faraminesk	faraminesque
4	galimatias	galimatia	galimatizsk	galimatiesque
4	libidin＠z	libidinœ	libidinesk	libidinesque
5	zyljenas		3yljenzsk	juliénas
5	mefistofeles		mefistכfelısk	Méphistophélès
5	jœvuzをkompriz	jœvuzعkõpri	jœ⿰亻zı\＆kõpr\＆sk	je vous ai compris

Here are some words that end with a velar stop，again arranged by syllable count．They show a new type of candidate．They also show variation．Pretend that all of the velar－final words can show the same set of variants（even though that＇s not what the data say），and determine what are the conflicting constraints that need to be variably ranked：

Here are some nouns that end in vowels; they show variation. Pretend that all these words can show the same variants, and identify the conflicting constraints whose ranking must be variable:

goja		gojesk, gojatzsk	Goya
zola		zolatesk	Zola
kaka		kakat\&sk	caca
nana		nanısk	nana
koma		kכmat\&sk	coma
ferja		ferjatesk	féria
gargantua	gargãtua	gargãtuzsk	Gargantua
gevara		gevar\&sk	Guevara
alibaba		alibabssk, alibabarsk	Ali Baba
ajatola		ajatolesk	ayatollah
imalaja		imalajısk	Himalaya
pasilina		pasilinesk	Paasilinna
bede		bedersk	BD
kokto		kJkt\&sk, kıktossk	Cocteau
toro		toresk	taureau
gogo		gogotzsk	gogo
ulipo		ulipesk	Oulipo
bigorno		bigornesk	bigorneau
gobino		gobinesk	Gobineau
berni		berniesk, bernesk	Berni
myrfi		myrfiesk	Murphy
barbari		barbar\&sk	barbarie
Səvalri		Səvalr\&sk	chevalerie
kosmati		kJsmatesk	Cosmati
polini		polinesk	Pollini
sarkozi		sarkozizsk	Sarkozy
f\&lini		felinesk, fعlinizsk	Fellini
kaligari		kaligaresk	Caligari
Sony		Jonyesk	Сhaunu
staty		statyesk	statue
yby		ybyzsk	Ubu
pjupju		pjupjesk, pjupjutzsk	pioupiou
vodu		vodursk	vaudoue
mobutu		mobut\&sk	Mobutu

Part II: Modeling the variation

Plénat reports that the rates of the three variants in vowel-final words depend on the quality of the vowel and the number of syllables in the noun form. Here is a simplified version of his table, counting how many examples he found of each type:

example			/i/	/y/	/u/	/e, $\varepsilon, \frac{\text { / }}{}$	/o/	/a/
nanzsk	2 sylls	delete V	3	0	1	3	7	5
pjupjutzsk		insert C	1	0	1	0	2	8
vodursk		normal	10	3	3	1	4	0
mobutesk	3 sylls	delete V	15	0	2	7	26	27
?		insert C	0	0	0	0	2	2
fılinizsk		normal	8	1	3	0	1	0
pasilinzsk	4 sylls	delete V	12	1	0	7	13	16
none		insert C	0	0	0	0	0	0
alibabarsk		normal	1	2	0	0	0	0^{2}

Inspect the table to understand the trends and think about what constraints you might need to capture them.

Open the OTSoft input file 01FrenchVariation.txt (download from course web page). You'll see that it already has inputs (including one imaginary one, /faramino/) and output candidates for all the crucial cases. In the third column is the frequency of each output, which I estimated from Plénat's data. Add the constraints that you've devised, and how many times each is violated.

Feel free to add more examples and/or more candidates, if your analysis calls for them.
Run the GLA and take a look at your results. See if you can get a better match to the input frequency by increasing the number of iterations.

Then run MaxEnt and do the same.
Try changing your constraint set if you're not getting at least the trends in the data-it's OK if not all the numbers match exactly though.

Part III: Comparing GLA and MaxEnt

Run the GLA again, with your final constraint set. You will notice that in the folder where you saved 01VariationFrench.txt, OTSoft has created a folder called FilesFor01VariationFrench.txt. In that folder is now a file 01VariationFrenchDraftOutput.txt that contains your GLA results. Open that file (with Notepad or whatever):

[^1]You're going to create a plot showing how well the frequencies given to the GLA in the input file match the frequencies generated by the grammar it leayned. These numbers are in columns side by side in your results file.

To start plotting the correlation, open the file that OTSoft produced called 01VariationFrenchTabbedOutput.txt in MS Excel, OpenOffice Calc, or any other spreadsheet program. Now the numbers you want are here and here:

To make the plot, select the numbers in columns H and I, then, depending on your software, do something like Insert>Chart. You may have to fiddle a bit (come see me for help!), but you want a picture like this:

To get a numerical measure of the correlation, use Excel's CORREL() function. For the numbers that went into the plot above, the result is 0.978 (that's pretty good-the highest possible is 1).

Now do the same for the MaxEnt grammar. Save your TabbedOutput file under a different name, because it will get overwritten next time you run OTSoft. Run OTSoft again, this time using Maximum Entropy. When you open the TabbedOutput.txt file, this time the numbers of interest will be here and here:

区 Microsoft Excet frenchoTSoftTabbedOutput.txt						\square	X
国 Fichier Edition Affichage Insertiom Format Outils Données Fenêtre ? - a \times							
B1 * f_{x} Candidate							
		B	C	L			
1	Input	Candidate	Freq. in input file	Target proportion		proportion	\wedge
2					Weig		
3	karnaval+esk	karnavalesk	1	1		0,999985	
4	karnaval+esk	karnavesk	0	0		0,00001	
5	karnaval+esk	karnavaltesk	0	0		0	
6	karnaval+esk	karnavalest	0	0		0,000006	
7	buz+esk	buzesk	1	1		0,86449	
8	buz+esk	besk	0	0		0	
9	buz+esk	buztesk	0	0		0,135505	
10	buz+esk	buzest	0	0		0,000005	
11	bymamys+esk	bymamesk	1	1		0,843252	
12	bymamys+esk	bymamysesk	0	0		0,135507	
13	bymamys+esk	bymamustesk	0	0		0,02124	
14	bymamys+esk	bymamusest	0	0		0,000001	
15	blag+esk	blagesk	0.5	0,5		0,614785	
16	blag+esk	blesk	0	0		0	
17	blag+esk	blagtesk	0	0		0,016353	
18	blag+esk	blagest	0.5	0.5		0,368862	
19	pipik	pipikesk	0.75	0.75		0.599615	
20	pipik	pipesk	0	0		0,024676	
21	pipik	pipiktesk	0	0		0,015949	
22	pipik	pipikest	0,25	0,25		0,35976	\checkmark
Prêt							

Once again, make a plot of these two columns, and check the correlation.

What your write-up should include

- An analysis of the data in Part I (which may have changed after you did parts II and III). Include suitable examples and tableaux, and make clear which constraints must be variably ranked and why.
- A discussion of how well the GLA and MaxEnt did at matching the data. Include a scatterplot for each of the two models (like the one illustrated above) and report the correlation results. Are there items that both models do badly on? If so, discuss why that might be (e.g., there doesn't seem to be any high-ranked constraint favoring the morecommon output). Are there items that just one model does badly on?
- Correlation coefficient is a rather crude measure of how close the match was. If you'd like to try some additional measure(s) and know how, feel free.

References

Plénat, Marc. 1997. Analyse morpho-phonologique d'un corpus d'adjectifs dérivés en -esque. Journal of French Language Studies 7. 163-179.
Sajous, Franck \& Ludovic Tanguy. 2006. Répérage de créations lexicales sur le web francophone.. Paper presented at the ATALA, Le web comme ressource pour le TAL.

[^0]: ${ }^{1}$ For convenience I'm using "r" for the French rhotic consonant, which is typically a uvular fricative or approximant.

[^1]: ${ }^{2}$ How can there be a zero when we have the example [alibabacsk]? Because that example doesn't come from Plénat's paper.

