To do

- Friday: Hakha Lai assignment is due (after that, you have a week off from problem sets)
- by end of week: Meet with me to discuss term paper—tomorrow 9-11 is a great time for it.

Overview: Should processes be able to look forward into the derivation? How far? We'll contrast SPE, OT, and a major variant of classic OT, OT with harmonic serialism. Then we'll start to revisit the typology of opaque process interaction and what each theory predicts.

1. Global power

- Can a rule "see" anything other than its immediate input? Can it look further ahead?
- In SPE, rules aren't supposed to have *global power* (term from Lakoff 1970).
- But global power follows naturally in OT: every candidate is the very end of a derivation.
 - Now we have a type of phenomenon that OT can handle easily but SPE can't.
 - So how robust are the claimed cases?

2. Case of global power in Walker 2010

• Basic metaphony rule again, as seen in many Romance "dialects":

basic rule: $\{\acute{e},\acute{o}\} \rightarrow [+high] / _C_0 + C_0 \begin{bmatrix} +syll \\ +high \end{bmatrix}$

• <u>Venetan version</u> (inventory: $[i,e,\varepsilon,a,u,o,\sigma]$)—more info than we saw last time

tense Vs raise	kals-ét-o móv-o	kals- í t-i m ú v-i	'sock (m. sg/pl)' 'move (1 sg/2 sg)'
lax or low Vs don't	gát-o	g á t-i	'cat (m sg/pl)'
[hi] can spread <u>through</u> unstr. V	órden-o	ú rd i n-i	'order (1 sg/2 sg)'
unless that V is /a/	lavór-a-v-a	lav ór-a- v-i	'work (1 sg [3sg?] perf/2 sg impf)'
no spreading unless [+hi] will get all the way to the stressed V	ángol-o pérseg-o	á ng o l-i p é rs e g-i	'angel (m sg/pl)' 'peach (m sg/pl)'

- Spreading shows "look-ahead"—it sees all the way to the end of its iterative application (hypothetical *[ángul-i], *[pérsig-i], where stressed V is still not high)
 - if the result doesn't solve the fundamental problem of the unraised stressed vowel, then no spreading is done at all ("**sour grapes**")
- Let's sketch a rule analysis to see why this is problematic.
- Let's develop an OT analysis.
- See Kaplan 2011 for a seemingly contrasting case of *non*-lookahead or "myopia" in Chamorro.

3. A major variant of OT: Harmonic Serialism

• Distinction between small-*h*, small-*s* and capital-*H*, capital-*S*:

• Difference #1: Gen()

 $\frac{\text{Classic OT}}{\text{Gen}(/\text{input}/)} = \{\text{all results of applying all rules to input, in any order, repetition OK}\} \\ \text{Gen}(/\text{ab}/) = \{\text{ab, b, a, tab, abi, tabi, tabii, tabiii, }\emptyset, \text{ ba, qo, ...}\} (infinite set)$

<u>Harmonic Ser</u>. Gen(/input/) = {all results of applying just one <u>minimal change</u> to input} Gen(/ab/) = {ab, b, a, tab, abi, eb, ab, ab, ap, am, ... }(finite set)

• A change is minimal iff it incurs just one faithfulness violation (so, <u>constraint inventory</u> <u>matters</u>).

• Difference #2: Overall architecture

• In Harmonic Serialism, <u>keep applying grammar to its own output</u> until the result stops changing.

Dakota, from Elfner to appear—data orig. Shaw 1985 (Siouan lang., U.S. & Canada, 15,400 speakers [Lewis 2009])

	/čap/	WORDMUST	NoCoda	DON'TADD	STRESSIS	DEP-V	DON'TDELETE	MAX-V
		HAVESTRESS		STRESS	FINAL ¹		STRESS	
a	čap	*!	*					
☞ b	čáp		*	*				
С	ča.pa	*!				*		

• Why is [ča.pá] not a candidate?

feed *čáp* into grammar—again, [ča.pá] is not a candidate (why not?)

	čáp	WORDMUST	NoCoda	DON'TADD	STRESSIS	DEP-V	DON'TDELETE	MAX-V
		HAVESTRESS		STRESS	FINAL		STRESS	
d	čap	*!	*				*	
е	čáp		*!					
F	čá.pa				*	*		

¹ Not the real constraint—see Elfner, who uses feet.

feed čá.pa into grammar:

čá.p	a	WORDMUST	NoCoda	DON'TADD	STRESSIS	DEP-V	DON'TDELETE	MAX-V
		HAVESTRESS		STRESS	FINAL		STRESS	
g ča.p	a	*!					*	
<i>☞ h</i> čá.p	a				*			
<i>i</i> čá.pa	á			*!				
j čáp			*!					*

Input=output, so stop iterating.

- \circ What does this grammar predict for input like /čite/²
- Why can't we get *[ča.pá] in this Harmonic Serialism grammar?
- What happens if we switch the ranking of WORDMUSTHAVESTRESS and NOCODA?
- What happens if we try to analyze Veneto in Harmonic Serialism?

4. Classic look-ahead: Hill 1970's "peeking" rule in Cupeño

Uto-Aztecan language from Southern California with no known speakers today [Lewis 2009].

• Read the derivations from left to right:

	Underlying	Α	в	С	D	Е	Final
	Forms	Vowel	-ine, yaxe	a-Reduction	HAB	۶ In-	Form
		Deletion	Reduction			sertion	
(1)	cí, HAB	cí, HAB			cí	cí	cí?
(2)	hú, HAB	hú, HAB			hú	hú?	hú?
(3)	yélice-ine, HAB	yélic-in, HAB	yélic-i, HAB		yélic-i		yélici
(4)	céle-ine, HAB	cél-in, HAB	cél-i, HAB		cél-i		céli
(5)	k™áwe-yaxe, HAB	k™áw-yax, HAB	k ^w áw-ya, HAB	k ^w áw-ye, HAB	k‴áw-ye		k™áwye
(6)	qá ² aye-yaxe, HAB	qá ² ay-yax, HAB	qá ² ay-ya, HAB	qá ⁷ ay-ye, HAB	qá ² ay-ye		qá ² aye
(7)	píne ² wexe, HAB	píne ⁷ wex, HAB			pine?wex		píne ² wex
(8)	cáșpele, HAB	cáșpel, HAB			cáșpe?el		cáșpe ² el
(9)	pácike, HAB	pácik, HAB			páci ² ik		páci ² ik
(10)	qáwe, HAB	qáw, HAB			qá?a?aw		qá ² a ² aw
(11)	cále, HAB	cál, HAB			cá?a?al		cá?a?al
(12)	tĕwĕ, HAB	téw, HAB*			té ² e ² ew		té ² e ² ew
(13)	hel ^y épe, HAB	hel ^y ép, HAB			hel ^y é ² e ² ep		hel ^y é ² e ² ep

Figure 1. Application of Rules to Examples (1)-(13) of Section 1.1

(Hill p. 536)

² hypothetical—real examples have clusters that muddy the issue

- Step D, Habilitative Formation, adds glottal stop(s) and copied vowel(s) only if the word ends in a consonant at this point in the derivation.
 - Let's practice transformation rule notation by writing the basic rule.
- The key is that Habilitative copying applies to the extent needed to provide two syllables following the stressed syllable.
- So what's the look-ahead issue? Let's step through the derivation for (13) and think about the first application of copying.
- Hill points out that of course we *can* write rules that will do this without look-ahead, but they seem to miss the point about word shape.

	feeding	bleeding	counterfeeding	counterbleeding
examples so far	 Guinaang Kalinga syncope/assimilation Tshiluba nasalization (self-) 	 English plurals Klamath glottalized Cs (self-) Eastern Ojibwa glide formation (self-) French schwa deletion 	 Palauan vowel reduction Tundra Nenets V deletion (self-) Morphological truncation (self-) 	 Polish vowel raising and devoicing Southern Kikuyu spirantization (self-)
OT	ОК	ОК	no—unless we can construct a reasonable faithfulness scale and forbid large jumps on that scale	no
SPE	OK	OK	OK	OK

5. Back to process interaction types: (counter){f,bl}eeding

- Today we'll look at what some SPE variants predict
- Thursday we'll complicate the typology

6. How about variants of SPE that you read about?

- SPE assumes that a language can impose any order it wants on rules. Many researchers have proposed that this is not the case—that at least sometimes, rules are *intrinsically* ordered.
- Let's see ways to do that...

7. Koutsoudas, Sanders, & Noll 1974: Simultaneous repeated application

- = all rules apply simultaneously to the UR, then again to the result, and again until no more application is possible. This results in *maximal application* (feeding rather than counterfeeding, counterbleeding rather than bleeding).
- Let's try a simple example, /panipa/ with $V \rightarrow Ø / VC_CV$ and nasal place assimilation
- And another one, English $/w_1 f + z/$

Plus an additional principle, "proper inclusion precedence"

• Latin American varieties of Spanish, rather abstract analysis (Harris 1983?):

	/akeʎ/	/ake&+os/	
1. $\Lambda \rightarrow 1 / _ #$	akel		
2. $\Lambda \rightarrow j$		akej+os	
	'that'	'those'	(but see Lloret & Mascaró 2007)

• What kind of rule ordering is this?

- \circ Try to apply these rules simultaneously and repeatedly to /ake Λ /—what's the issue?
- Koutsoudas & al. propose (p. 9):

"For any representation R, which meets the structural descriptions of each of two rules A and B, A takes applicational precedence over B with respect to R if and only if the structural description of A properly includes the structural description of B."

the structural description (SD) of A properly includes the SD of B = you can match B's SD up with part of A's SD that it is nondistinct from, and still have part of A's SD left over.

• How does the definition apply to the two Spanish rules? Which rule is A and which is B?

• <u>Aside</u>: if we adopt the analysis above I think it's a bit of a problem for OT. Why is the problematic $/\delta$ / resolved by changing place in one instance, and manner in the other?

	/akeʎ/	λ^*	*⁄\#	*\langle V	IDENT(place)	IDENT(manner)	*j#	*lV
а	akeл	*(!)	*(!)					
$\otimes b$	akel		1		*!			
€ [™] c	akej					*	*	

	/ake&+os/	λ^*	*⁄\#	*\langle V	IDENT(place)	IDENT(manner)	*j#	*lV
а	akeʎos	*(!)		*(!)				
b	akelos		1		*!			*
°₽°C	akejos					*		

- The constraints at the bottom can't be ranked any higher, because of forms like *cielo* and (rarer) *ley*.
- Such "constraint-specific repairs" are predicted in SPE or in some versions of rules+constraints, but not in OT.
- I'm not saying OT can't capture the Spanish data—it just can't directly translate the analysis with $\Lambda \rightarrow 1/$ # and $\Lambda \rightarrow j$.

. . .

8. Bleeding: example originally from Kiparsky (1968?)

• Schaffhausen dialect of Swiss German:

1. V \rightarrow [-back] / complicated 'umlaut' context,	/bogə/ 	/bodə/ 	/bogə+PL/ bøgə	/bodə+PL/ bødə
including plurals			5	
2. $o \rightarrow o / _ \begin{bmatrix} +cons \\ +cor \\ -lat \end{bmatrix}^3$		bədə		

- Why is this ordering crucial?
- What happens if we use the Koutsoudas & al. approach?
- K & al. propose that in all apparent cases of bleeding (and counterfeeding?), the rules need to be revised. In this case, they propose a context-free rule œ → ø (remember Myers's persistent rules, which apply everywhere in the derivation that they can).
- Apply this solution to $/bod \partial + PL/$.
- What additional fact needs to be true in Schaffhausen for this to work?

³ In the original it's not [+cor] but [-grave]. *Grave* is an acoustic feature (roughly, lower frequencies are stronger for [+grave] segments), not much used these days. Labials and velars are [+grave]; dentals and alveolars are [-grave] (a.k.a. *acute*).

- 9. Another intrinsic ordering idea: the Elsewhere Condition (Anderson 1969, Kiparsky 1973...)
- Recall once more disjunctive ordering of the rules that a schema expands into:

$$V \rightarrow [+stress] / _ C_0(VC_0) \# \implies V \rightarrow [+stress] / _ C_0VC_0 \#$$

else V \rightarrow [+stress] / _ C_0 #

- Kiparsky argues that disjunctive ordering doesn't really have anything to do with expansion conventions. He proposes that what really drives disjunctive ordering is...
- *Elsewhere Condition (revised in later Kiparsky works)*

(p. 94) "Two adjacent [in the ordering] rules of the form

$$A \to B / P _ Q$$

$$C \rightarrow D / R _ S$$

are disjunctively ordered if and only if:

- (a) the set of strings that fit [are nondistinct from] *PAQ* is a subset of the set of strings that fit *RCS*, and
- (b) the structural changes of the two rules are either identical or incompatible"
 - We also need to define 'incompatible'—probably it means that the results of applying the two rules are *distinct*, in our technical sense.
- What does the Elsewhere Condition say about the pair of stress rules above?
- How does the Elsewhere Condition compare to proper inclusion precedence? Are there cases where the two conditions apply differently? (Let's try Spanish)

10. Anderson 1974 ch. 10: natural order

- Example from Icelandic (Indo-European language from Iceland with 250,000 speakers)
 - syncope, roughly: certain unstressed Vs $\rightarrow \emptyset / C _ \{l,r,n,\delta,s\}+V$

• u-umlaut:
$$a \rightarrow \ddot{o} / \underline{C}_0 u$$
 (where "u" usu. = [Y], " \ddot{o} " = [α])

barn	'child'	b ö rn+um	'child-dat.pl.'
svangt	'hungry-neut.nom.sg.'	sv ö ng+u	'hungry-neut.dat.sg.'
kalla	'[I] call'	k ö ll+um	'[we] call'
(lax, unstress	ed vowels deleteV)		
ham a r	'hammer'	hamr+i	'hammer-dat.sg.'
fíf i ll	'dandelion'	fífl+i	'dandelion-dat.sg.'
morg u nn	'morning'	morgn+i	'morning-dat.sg.'
(11 men stand f	an long la and maximoona is n	agent to be emplied	(abla)

(*ll*, *nn* stand for long *l*s and *n*; syncope is meant to be applicable)

- If syncope precedes umlaut, what kind of process interaction results for the UR /katil+um/ 'kettledat.pl'? For /jak+ul+e/ 'glacier-dat.sg.'?
- What about umlaut before syncope for /katil+um/? /jak+ul+e/ (see data below)?

→ Whether a rule ordering is feeding, bleeding, etc. depends on the particular forms involved

	+ <i>r/Ø</i>		+ <i>um</i>	
/katil/	ketil+l	'kettle'	k ö tl+um	'kettle-dat.pl'
/ragin/	regin	'gods'	r ö gn+um	'gods-dat.pl'
/alen/	alin	'ell of cloth'	öln+um	'ell of cloth-dat.pl'
	+ul+r		+ul+e, +ul+an	
/bagg/	bögg+ul+l	'parcel'	b ö gg+l+i	'parcel-dat.sg.'
/jak/	jök+ul+l	'glacier'	j ö k+l+i	'glacier-dat.sg.'
/þag/	þög+ul+l	'taciturn'	þ ö g+l+an	'taciturn-masc.acc.sg.'

- If the rules are right, we have an ordering paradox!
- Here's how Anderson resolves it:
 - <u>Some pairs of rules</u> are left unordered by a language's grammar and so apply in their **natural order** in each case.
 - Other rules are ordered, but only pairwise (so ordering is not transitive, for instance).

"where only one of the two possible orders for a given pair of rules is <u>feeding</u>, the feeding order is the natural one; and that where only one of the two possible orders is bleeding, the other order [i.e. <u>counterbleeding</u>] is the natural one. In all other cases [...] no natural order is (yet) defined." (p. 147)

- $\circ~$ Is this different from the Koutsoudas & al. proposal? (Let's apply their theory to the crucial forms.)
- If a grammar consists of a list of rules and some statements about their orderings, what does a diachronic change from, say, counterfeeding to feeding involve? (Notice the extension of the evaluation metric to rule orderings, and not just the rules themselves.)
- See Kiparsky 1984 for a totally different analysis of Icelandic in Lexical Phonology.

11. Summary: now we have three main theories...

- Classic OT: all candidates are considered (powerful Gen()), Eval() runs just once
- **OT with Harmonic Serialism**: only "close" candidates are considered (restricted Gen()), Eval() applies repeatedly to its own output
- **SPE**: Rules. Rules apply one at a time, in an order must be learned. Each rule applies simultaneously to all possible targets.
- ...Plus some **SPE variants**, not so well developed
 - All rules are iterative (apply to their own output till it stops changing).
 - or rules can be tagged as either iterative or not
 - Rules can apply left-to-right or right-to-left
 - maybe this has to be learned for each rule, or maybe it follows somehow from the form of the rule.
 - No rule ordering: all rules apply simultaneously to the underlying form
 - No rule ordering: all rules apply simultaneously to the underlying form; repeat this until no more changes
 - Rules apply in order, but the order needn't be learned, because it follows from the content or potential interaction of the rules themselves
 - This can mean that rules apply in a different order to different underlying forms

Next time: Looking more carefully at the typology of process interaction—how do the main theories fare?

References

Anderson, Stephen R. 1974. The Organization of Phonology.. New York: Academic Press.

Chafe, Wallace. 1968. The ordering of phonological rules. International Journal of American Linguistics 24. 115–136.

- Elfner, Emily. to appear. Stress-epenthesis interactions in Harmonic Serialism.. In John J McCarthy & Joe Pater (eds.), Harmonic Grammar and Harmonic Serialism. Equinox Press.
- Harris, James. 1983. *Syllable Structure And Stress in Spanish: a Nonlinear Analysis*.. Cambridge, Mass.: MIT Press. Hill, Jane. 1970. A peeking rule in Cupeño. *Linguistic Inquiry* 1. 534–539.
- Kaplan, Aaron F. 2011. Harmonic Improvement without Candidate Chains in Chamorro. *Linguistic Inquiry* 42(4). 631–650. doi:10.1162/LING a 00063.
- Kiparsky, Paul. 1968. Linguistic universals and linguistic change.. In Emmon Bach, Robert Harms, Emmon Bach, & Robert Harms (eds.), *Universals in Linguistic Theory*, 170–202. New York: Holt, Rinehart and Winston.
- Kiparsky, Paul. 1984. On the lexical phonology of Icelandic.. In C. C Elert, I. Johansson, E. Stangert, C. C Elert, I. Johansson, & E. Stangert (eds.), *Nordic prosody III*, 135–164. Ume?: University of Ume?
- Koutsoudas, Andreas, Gerald Sanders & Craig Noll. 1974. The application of phonological rules. *Language* 50. 1–28. Lakoff, George. 1970. Global Rules. *Language* 46(3). 627–639.
- Lewis, M. Paul (ed.). 2009. *Ethnologue: languages of the world*. 16th ed. Dallas, TX: SIL International.
- Lloret, Maria-Rosa & Joan Mascaró. 2007. Depalatalization in Spanish revisited.. In Fernando Martínez-Gil & Sonia Colina (eds.), *Optimality-Theoretic Studies in Spanish Phonology*, 74–98. John Benjamins Publishing Company.
- Longa, Victor M. 2001. The abandonment of extrinsic rule ordering in generative grammar. *Historiographia Linguistica* 28. 187–198.
- McCarthy, John J. 2006. Restraint of Analysis. *Wondering at the Natural Fecundity of Things: Essays in Honor of Alan Prince*. Linguistics Research Center. http://repositories.cdlib.org/lrc/prince/10.
- McCarthy, John J. 2007. Hidden generalizations: phonological opacity in Optimality Theory.. London: Equinox.
- McCarthy, John J. 2008. The Gradual Path to Cluster Simplification. *Phonology* 25(02). 271–319. doi:10.1017/S0952675708001486.
- Pater, Joe. 2011. Serial Harmonic Grammar and Berber syllabification. *Prosody matters: essays in honor of Elisabeth O. Selkirk.* London: Equinox Press.
- Prince, Alan & Paul Smolensky. 2004. *Optimality Theory: Constraint interaction in generative grammar*.. Malden, Mass., and Oxford, UK: Blackwell.
- Shaw, Patricia. 1985. Modularism and substantive constraints in Dakota lexical phonology. *Phonology yearbook* 2, 173–202.
- Walker, Rachel. 2010. Nonmyopic Harmony and the Nature of Derivations. *Linguistic Inquiry* 41(1). 169–179. doi:10.1162/ling.2010.41.1.169 (25 October, 2010).