Class 18: Stress III—more feet

To do: Samoan (last assignment) due Friday

1. Overview

Last time we started discussing some arguments for feet (and ways to undermine them). After finishing up last time's handout, we'll look at a famous asymmetry in the inventory of feet, which in a way is also an argument for feet.

2. Hayes (1995) argues that the inventory of feet is asymmetric

	trochees	iambs
quantity-insensitive	attested	unattested
quantity-sensitive	attested: moraic	attested: "uneven"'

3. Quantity-insensitive ("syllabic") trochees

Let $\mathrm{L}=$ a light syllable (1 mora, like CV)
Let $\mathrm{H}=$ a heavy syllable (2 moras, like CVV or CVC)

Any two syllables can form a trochee-moras don't matter.
(ĹL), (ĹH), (ĹLL), (H́H) vs. *(Ĺ), *(Ḱ), except maybe for leftover syllables at an edge
Pintupi, aka Pintupi-Luritja (Australian, 390 speakers; Hansen \& Hansen 1969 via Hayes)

(pá.ja)	earth'
(t'ú.ta)ya	'many'
(má.la)(wà.na)	'through from behind'
(pú.lị)(kà.la.) ${ }^{\text {ju}}$	'we (sat) on the hill'
	'our relation'
	'the first one (who is) our relation'

But what if coda consonants simply aren't moraic in this language, so that all the syllables are light? More convincing is an example from a language with contrastive vowel length:

Votic, aka Vod (Uralic language from Russia, severely endangered; data from Ariste 1968) IPA stress marks used below; otherwise, Ariste's transcription. Macron (ī) indicates vowel length.
('ka.na)
('tüt.tö)
('sā.mā)
('ā.pa)
('ko.tō)
('ра.ла).(, va)
('li.säu).(,gō)
'hen’
'girl'
'to get, obtain'
'aspen tree'
'home (ill.)'
'hot'
'let it increase'

('vē.ret).(, tēB)	'it rolls'
('so.pi).(,zim.ma)	'we got along'
('bö.ri).(ze.mä̆)	'to roar, rumble'

4. Quantity-sensitive ("moraic") trochees

A foot is composed of two moras, whether they come from one syllable or two.
But a foot can't begin or end in the middle of a syllable.
$(\mathbf{L} \mathrm{L}),(\mathbf{H}) \quad$ vs. $\quad *(\mathbf{L} \mathrm{H}), *(\mathbf{H} H), *(\mathbf{L})$ [except leftovers]
always hard to say whether (H́L) or (H́)L—see Hayes p. 78 for extrametricality arguments
Cahuilla (Uto-Aztecan, S. California, severely endangered; Seiler 1957, 1965, 1967, 1977) ${ }^{1}$
In this language, a syllable with a long vowel, diphthong, or coda [?] counts as heavy.

- Draw in the foot boundaries for the simple cases-what happens to leftover syllables?
tá.ka.lì.čem
táx.mu. Ràt
há?.tìs.qal
mú:t
pá?.lì
qá:n.kì.čem
táx.mu.?à?.tì
'one-eyed ones'
'song'
'he is sneezing'
'owl'
'the water (objective case)'
'palo verde (pl.)'
'the song (objective case)'
- What happens when a heavy syllable is awkwardly placed?

sú.kà?.tì	'the deer (objective case)'
pú.kàw.tè.mih	'gopher snakes (obj. pl.)'
kíh.mày.Kù.qal	'wonder why'
pá.làw.wè.net	'that which is beautiful, pretty'
hé.łi ká.kàw.là:.qà	'his legs are bow-shaped'

- Lexical phonology review: what could we do about these prefixed forms?

pà.pen\#tú.le.qà.le.vèh	'where I was grinding it'
ne\#yú:l	'my younger brother'
nè.sun\#ká.vì..č̀.wen	'I was surprised'
tax\#kí.Kìw.kà.tem	'companions'
pen\#pé.nì..čì.ni.qà	'translate'

[^0]
5. Quantity-sensitive ("uneven") iambs

Here, a heavy syllable can form a foot only on its own or with a preceding L. That is, H can't be the weak member of a foot.
$(\mathrm{LL}),(\mathbf{H}) \quad$ vs. $\quad *(\mathrm{HL}), *(\mathrm{H} \mathbf{H}), *(\mathbf{L})$ [except for a leftover syllable]
hard to say whether (LH) or $\mathrm{L}(\mathbf{H})$
Muskogee (a.k.a. Seminole/Creek, Muskogean, U.S., 4,300 speakers; Haas 1977; Tyhurst 1987; Jackson 1987 via Hayes)

- Use iambic feet to explain why stress is sometimes final, sometimes penultimate:

co.kó	'house'
ni.háa	''ard'
hok.tíi	'woman'
íc.ki	'mother'
o.sá.na	'otter'
ko.fóc.ka	'mint'
ak.cáwh.ka	'stork'
hi.to.tíi	'snow'
ak.ha.síi	'lake'
ha.liis.síi	'moon'
tii.niit.kíi	'thunder'
taas.ki.tá	'to jump (sg. subj.)'
a.pa.ta.ká	'pancake'
taas.ho.kíta	'to jump (dual subj.)'
a.no.ki.cí.ta	'to love'
to.kot.ho.kí.ta	'to run (dual subj.)'
a.ti.loo.yi.tá	'to gather'
in.ko.sa.pi.tá	'one to implore'
i.si.ma.hi.ci.tá	'one to sight at one'
naf.ki.ti.kaa.yi.tá	'to hit (pl. obj.)'

6. An asymmetric inventory

Hayes (1995) argues, through an extensive typological survey, that these 3 are the only foot types. There are claimed to be no languages with syllabic iambs.
[Altshuler 2006 gives a fairly convincing counterexample-Osage-complete with actual acoustic data to support the transcriptions: there is a length distinction in vowels, but still stress on all even-numbered syllables, regardless of length. There are some words with stress on all the odd-numbered syllables, suggesting trochees, but Altshuler argues from suffixation facts that those are the exceptions and the language is iambic by default.]

7. Why?

Moras correspond roughly to duration: H syllables last longer than L syllables.
Hayes cites psychological research on how people group rhythmic sequences of sounds, and concludes that (weak-strong) groupings have a greater affinity for durational differences...

8. Rice 1992, ch. 5

Reviews and replicates Woodrow 1909, 1911, 1951b. ${ }^{2}$ Schematically,

Grouping preference is stronger for duration-varying stimuli than for amplitude-varying stimuli.
Subjects were played various binary, 7-repetition sequences of tones varying in tone duration, intertone pause duration, and tone pitch (Rice didn't test intensity; Woodrow did) and had to guess whether each was weak-strong or strong-weak.

Percent trochaic (strong-weak) response
(Rice p. 195)

	Stimulus 1	Stimulus 2	Stimulus	
Group 1	59.62	67.31	71.15	equal duration, equal pitch, equal pause
Group 2	46.15	38.46	32.69	alternating duration, equal pitch, equal pause
Group 3	57.69	50.00	59.62	equal duration, equal pitch, alternating pause
Group 4	51.92	57.69	44.23	equal duration, alternating pitch, equal pause
	difference increases -----> (except Group 1, where duration changes)			

=> The duration-alternating stimuli produce the most "iambic" responses, more strongly so as the duration difference increases.

[^1]
9. Hayes cites also

- similar evidence from musicians’ judgments (Cooper \& Meyer 1960): "Durational differences...tend to produce end-accented groupings; intensity differentiation tends to produce beginning-accented groupings" (p. 10; as quoted by Hayes p. 80)
- a study of Swedish poetry (Fant, Kruckenberg, \& Nord 1991) in which...
- reciters produced greater durational contrasts in iambic verse than in trochaic
- musicians transcribing verse into musical notation "likewise reflected the pattern of the law in their choice of note values"
- poets use greater contrast in number of phonemes (for accented vs. unaccented syllables) in iambic verse than in trochaic
(see also Newton 1975 for English verse)

\rightarrow "Iambic/Trochaic Law

a. Elements contrasting in intensity naturally form groupings with initial prominence.
b. Elements contrasting in duration naturally form groupings with final prominence." (p. 80)

10. Iambic lengthening

Hixkaryana (Carib language with 550 speakers in Brazil. Derbyshire 1985 via Hayes)

- Vowel length is not contrastive; all these long vowels are derived by rule. What is it?

k^{w} á:.<ja>	'red and green macaw'
ne.mò:.ko.tó:.<no>	'it fell'
a.tSór..wo.<wo>	'wind'
to.ró:.<no>	'small bird'
àk.ma.tá:.<rì>	'branch'
òw.to.hó:.<na>	'to the village'
tòh.ku.r ${ }^{\text {j}}$ ér.ho.<na>	'to Tohkurye'
tòh.ku.r ${ }^{\text {j}}$ è. ho.nà:.ha. \int át. $<k \mathrm{ka}$ >	'finally to Tohkurye'
nàk.nòh.jàtf.ke.ná:.<no>	'they were burning it'
mi.hà̀.na.n̂̂h.<no>	'you taught him'
$k^{\text {ha }}$.nà:.n̂̂h.<no>	'I taught you'

11. Asymmetry: Trochaic lengthening is much rarer

See Revithiadou 2004 for a review of cases of trochaic lengthening and a different view of the typological bias (her explanation-foot-final lengthening-still relies on feet, though).

In moraic-trochee languages there is sometimes shortening of the strong syllable! Hayes proposes that this is to allow more syllables to get included in feet: e.g., /LLHL/ \rightarrow [(ĹL)(ĹL)] instead of [(ĹL)(H́)L].

12. Trochaic shortening example

Middle English. This is apparently a bit controversial, but here's the standard story (Mellander 2004).

Assume footing as shown-I'm leaving as open/unsolved why these footings (issues: is it extrametricality or non-finality? which consonants are moraic?)

- How can we analyze these? Draw in the feet.

(sú:ð)	'south'	(sú.ðer)<ne $>$	'southern'
di(víln)	'divine'	di(ví.ni)<tie>	'divinity'

I couldn't get clear Middle English data easily, so here are some Modern English examples that reflect the same phenomenon (whether or not it's now synchronically real), from Prince 1990, pp. 13-14, with a couple of substitutions:

- Analysis from above should extend straightforwardly:

(ó:')mən	'omen'	(ámə)nəs	'ominous'
(sé́n)	'sane'	(sánə)ri	'sanity'

- How do these work? (These examples show that "trisyllabic shortening" is a bit of a misnomer) [Prince, following Myers 1987, says that the suffix -ic is anomalous in not being extrametrical.]

(kón $)$	'cone'	(ká.nik)	'conic'
$($ májm $)$	'mime'	(mí.mik)	'mimic'

- Can we explain the different pronunciations of the prefix? (Never mind why the final syllable is now getting footed-probably something to do with the = boundary)

(.ı́.bal)	'rebel'	(ai)(bèt ${ }^{\text {a }}$	'rebate'
(ıÉ.kə ${ }^{\text {d) }}$	'record' (noun)	(fí)(flèks)	'reflex'
	'residential'	(ıì)(læ̀k)(sér) ®n $^{\text {a }}$	'relaxation'
(p.ı́.fəs)	'preface'	(p.î)(fèkt)	'prefect'
(pıé.lət)	'prelate'	(p.î)(lè̀t)	?
(pıé.məs)	'premise'	(p.î)(fiks)	'prefix'
(pıè.zən)(téı. $\int ə n$)	'presentation'	(prì)(mè.fì)(té:) $\mathrm{l}^{\text {en }}$	'premeditation

References-see web version for next page

Altshuler, Daniel. 2006. Osage fills the gap: the quantity insensitive iamb and the typology of feet.
Ariste, Paul. 1968. A grammar of the Votic language. Bloomington, IN/The Hague: Indiana University Publications/The Hague: Mouton \& co.
Cooper, Grosvenor \& Leonar Meyer. 1960. The rhythmic structure of music. Chicago: University of Chicago Press. Derbyshire, Desmond C. 1985. Hixkaryana and Linguistic Typology. Arlington, TX: SIL \& the University of Texas at Arlington.
Fant, Gunnar, Anita Kruckenberg \& Lennart Nord. 1991. Stress patterns and rhythm in the reading of prose and poetry with analogies to music performance. In , Music, language, speech, and brain, 380-407. London: Macmillan.
Fraisse, Paul. 1963. The psychology of time. Harper \& Row.

Haas, Mary. 1977. Tonal accent in Creek. In L. M Hyman (ed.), Studies in Stress and Accent, vol. 4: SCOPIL, . Los Angeles: University of Southern California.
Hansen, K. C \& L. E Hansen. 1969. Pintupi Phonology. Oceanic Linguistics 8(2). 153-170.
Hayes, Bruce. 1995. Metrical Stress Theory: Principles and Case Studies. Chicago: The University of Chicago Press.
Jackson, Michel. 1987. A metrical analysis of the pitch accent system of the Seminole verb. (Ed.) Pamela Munro UCLA Occasional Papers in Linguistics 6. 81-95.
Mellander, Evan. 2004. The iambic law: quantitative adjustment in typological perspective. (Ed.) Osama AbdelGhafer, Brad Montgomery-Anderson, \& Maria del Carmen Parafita Couto Kansas Working Papers in Linguistics 27. 21-43.
Myers, Scott. 1987. Vowel shortening in English. Natural Language and Linguistic Theory 5. 485-518.
Newton, Robert P. 1975. Trochaic and iambic. Language and Style 8. 127-156.
Prince, Alan. 1990. Quantitative consequences of rhythmic organization. In M. Ziolkowski, M. Noske, \& K. Deaton (eds.), Parasession on the Syllable in Phonetics and Phonology, 355-398. Chicago: Chicago Linguistic Society.
Revithiadou, Anthi. 2004. The Iambic/Trochaic Law Revisited: Lengthening and shortening in trochaic systems. In Boban Arsenijevic, Noureddine Elouazizi, Martin Salzmann, \& Mark de Vos (eds.), Leiden Papers in Linguistics 1.1, 37-62. Leiden University.
Rice, Curtis. 1992. Binarity and Ternarity in Metrical Theory: Parametric Extensions. University of Texas.
Seiler, Hansjakob. 1957. Die phnetischen Grundlagen der Vokalphoneme des Cahuilla. Zeitschrift für Phonetik und allgemeine Sprachwissenschaft 10. 204-223.
Seiler, Hansjakob. 1965. Accent and morphophonemics in Cahuilla and Uto-Aztecan. International Journal of American Linguistics 31. 50-59.
Seiler, Hansjakob. 1967. Structure and reconstruction in some Uto-Aztecan languages. International Journal of American Linguistics 33. 135-147.
Seiler, Hansjakob. 1977. Cahuilla grammar. Banning, CA: Malki Museum Press.
Tyhurst, James J. 1987. Accent shift in Seminole nouns. (Ed.) Pamela Munro UCLA Occasional Papers in Linguistics 6. 161-170.
Woodrow, Herbert. 1909. A quantitative study of rhythm: the effects of variations in intensity, rate, and duration. Archives of Psychology 14. 1-66.
Woodrow, Herbert. 1911. The role of pitch in rhythm. Psychological Review 18. 54-77.
Woodrow, Herbert. 1951. Time perception. In S. S Stevens \& S. S Stevens (eds.), Handbook of Experimental Psychology. New York: Wiley.

[^0]: ${ }^{1}$ Data sanitized a bit: optional de-stressing suppressed even in forms where only one transcription is given. See Hayes for discussion of final degenerate feet-they are probably de-stressed by a late rule.

[^1]: ${ }^{2}$ I tried to read Woodrow 1909 but in the time I could spare for the task it was just about impenetrable, so unfortunately I have none of his raw results to share with you. Apparently Fraisse 1963 is a good source on classic time-perception research too, if you're interested.

