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Individuals Explained Away

Edward L. Keenan

As a linguist wading into philosophical waters I begin with two semantic observa-
tions concerning some intensional common nouns and their modifiers. I provide 
them with a minimal semantic analysis whose justification is twofold. One, it is lin-
guistically enlightening: it points out some semantic generalizations about English 
and provides a formally explicit analysis of the relevant entailment patterns. Two, it 
generalizes standard extensional model theory without adding novel entities such as 
possible worlds or propositions. Such entities may facilitate the semantic analysis of 
modal adverbs and propositional attitude verbs, but are not needed for the inten-
sional expressions we study here. Our analysis is explanatory in that it characterizes 
what we are trying to understand only using notions we already understand, not 
novel ones we don’t.

Our analysis may also have some consequences for Direct Reference Theory (see 
Almog (2012), Bianchi (2012), Kaplan (1989), Napoli (1995), Wettstein (2004)). Among 
them is that it eliminates from our naïve ontology a universe of objects we think of 
singular terms as denoting and unbound pronouns and individual variables in logic 
as ranging over. It also establishes some boundary points limiting the purview  
of Direct Reference Theory. And, if nothing else, it may serve as a “bad example”  
function—“Just look at what happens if you do not adopt a direct reference stance”. 
As well, our use of judgments of entailment is more at home in a Fregean setting than 
a Direct Reference one (Capuano 2012).

18.1  Some Common Noun Phrases and their Modifiers
We are concerned first with a class of common noun phrases (cnps) we call agentive. 
Some examples are given in (1), accompanied by the indefinite article a/an to facili-
tate readability.

(1) a. a surgeon, a lawyer, a poet, a philosopher, a politician, a sculptor, an author;
  b. a pianist, a flautist, a neurologist, a biologist, a perinatologist, a psychiatrist;
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  c.  a heart surgeon, a poker player, a mountain climber, a race car driver, a por-
trait painter, a criminal lawyer, a natural language philosopher.

Agentive cnps designate individuals who regularly engage in activities in which 
they may be more or less accomplished. Such cnps may be syntactically simple—
not formed from other words—as in (1a), they may be morphemically complex,  
as those formed with -ist or -er, or they may be syntactically compound with  
an object noun preceding the final noun, as in (1c). Other complexities also  
exist.

Second, we treat evaluative modifiers of such cnps, ones which concern how well 
participants in the designated activity perform it. Some examples are underlined  
in (2). Per (2b), they may themselves be syntactically complex.

(2) a.  a skillful (heart) surgeon, a talented flautist, a graceful ballet dancer, a com-
petent pool player, a gifted mathematician, a good linguist, a professional 
boxer, an accomplished mountain climber;

 b.  a very skillful surgeon, a well-qualified engineer, a heart surgeon wrongly 
regarded as inept, an exceptionally talented bridge player.

A first semantic property that a semantic analysis of English should account for is 
that the sentences on the left below entail those to their right:

(3) a. John is a skillful surgeon. a′. John is a surgeon.
  b. Sue is a gifted pool player. b′. Sue is a pool player.
  c. Kim is a talented flautist. c′. Kim is a flautist.

This entailment pattern is not banal, in that, as Montague (1970) noted, not all 
adjectival modifiers in such environments support a judgment of entailment: Ted 
is an ostensible millionaire (an alleged murderer) does not entail Ted is a million-
aire (a murderer). Our second semantic property is:

(4)  Non-extensionality of evaluative adjectives. If the heart surgeons and the por-
trait painters happen to be the same individuals in some context, the skillful 
heart surgeons and the skillful portrait painters may still be different individu-
als. Skillful is replaceable with other evaluative adjectives and heart surgeon and 
portrait painter by other (distinct) agentive cnps, preserving the truth of (4).

We state (3) and (4) more formally. In each context (model) c, we interpret agen-
tive cnps by properties p of individuals. Ext(p), the extension of p (in c, a qualifica-
tion we usually omit in what follows) is the set of individuals which have p. And we 
interpret evaluative adjectives by extensionally restricting functions F from proper-
ties to  properties, meaning that for all properties p, ext(F(p)) ⊆ ext(p). So, noting 
denotations in a context in bold, ext(skillful(surgeon)) ⊆ ext(surgeon). This 
accounts for the entailment pattern in (3).
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Much trickier, however, is how to account for the non-extensionality facts in (4), 
though their general statement in (4ʹ) is now straightforward:

(4ʹ)  For p,q agentive cnp interpretations and F an evaluative adjective interpreta-
tion it may happen that ext(p) = ext(q) but ext(F(p)) ≠ ext(F(q)).

Note that a variety of (non-evaluative) cnp modifiers are extensional, failing (4ʹ). In a 
model in which the heart surgeons and the poker players happen to be the same indi-
viduals we can infer that the female heart surgeons and the female poker players are 
the same individuals. Equally the heart surgeons that John shook hands with at the 
party must be the same individuals as the poker players that John shook hands with at 
the party, though John may not know that.

18.2 A New Type of Intensionality?
Our judgments in (4) derive from the meaning of evaluative adjectives. The proper-
ties a heart surgeon must have to be a skillful heart surgeon are quite different from 
those a poker player must have to be a skillful poker player, and both are different yet 
from those making a flautist a skillful flautist. It is easy to see that in a given context a 
given individual might be both a skillful surgeon and an inveterate but only a medi-
ocre (hence not skillful) poker player. No cross model comparisons are suggested by 
this judgment, in contrast to our naïve understanding of modal adverbs like neces-
sarily and possibly or frequency adverbs: Kim often/rarely walks to school. So the 
appeal of a possible worlds approach to non-extensionality is absent in the case of 
interest to us.

18.3 If Not Possible Worlds, Then What?
We want to say that surgeon and flautist are interpreted by different properties wheth-
er they have the same extension in some situation or not. We shall refer to that part of 
the meaning of a cnp which is independent of its extension as its intension. But just 
what sort of object is this? For expressions in general I doubt that there is a uniform 
notion of intension. Expressions in different grammatical categories differ too greatly 
in syntactic distribution and in fine-grained semantic interpretation. Witness the 
diversity of modal interpretations in van Benthem (2010). But here we are just con-
cerned with the intensions of agentive cnps. We shall think of the intension of a prop-
erty p which interprets such a cnp as what we have to know to know whether an 
arbitrary individual has p (that is, is in the extension of p). What we have to know to 
know if someone is a surgeon is different from what we have to know to know if that 
person is a flautist. So it is easy to see that surgeon and flautist are interpreted by dif-
ferent properties regardless of whether the same individuals have both. And this is 
why evaluative adjectives can assign them different values (with different extensions): 
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a function can take different values at different arguments. Our intuition of cnp 
intension is, broadly, compatible with Frege’s Sinn and with much later work in inten-
sional semantics (see Muskens 2007).

18.4  Constructing Non-extensional Models of Agentive 
Nouns and their Modifiers

We proceed in three steps. Step 1 reviews standard extensional semantics whose 
ontological primitives are two: a booleanly structured set of truth values {T,F} in 
which sentences are interpreted, and an unstructured non-empty universe E in 
which proper names and individual constants are interpreted. {T,F} is boolean—
equipped with functions interpreting and, or, and not. “Truth in a model” and entail-
ment are defined standardly.

The universe E is unstructured—formally its elements are inscrutable entities 
unrelated to each other in any general way. Common nouns are interpreted by sub-
sets of E—equivalently, elements of the power set of E (the set of subsets of E) here 
noted PE.

Step 2 recasts standard semantics in purely boolean terms. There is no change in 
entailment relations or truth conditions of sentences because the sets in which 
expressions of a given category are interpreted on the boolean construal are isomor-
phic to their classical counterparts (hence they make the same sentences true). But 
the unstructured universe E is eliminated in favor of a booleanly structured set P of 
properties which provides interpretations for common nouns (and, up to isomor-
phism, one-place predicates). P is isomorphic to a power set and thus not structurally 
different from the set in which common nouns are classically interpreted. But proper 
name interpretations are now derivative, defined in terms of properties and truth 
values, the definitions being rooted in primary judgments of entailment and logical 
equivalence in English (presented shortly). Recasting the ontological primitives in a 
uniformly boolean way is what enables us to generalize to intensional semantics in 
Step 3 by weakening one (perhaps unintended) assumption of standard extensional 
semantics. It also supports several other semantic generalizations about natural 
language.

Step 3 provides a semantics in which distinct properties can have the same exten-
sion in a given situation. No appeal to novel primitives, such as possible worlds, is 
invoked.

Step 1 (+ basic boolean notation). A standard extensional semantics takes refer-
ence and truth as primitive and a standard model consists of a non-empty universe E 
of objects and a boolean set {T,F} of truth values on which are defined functions like 
∧, ∨, and ¬ which provide interpretations for and, or, and not.

For purposes of later generalization we treat {T,F} as a boolean lattice rather than a 
boolean algebra. The two are definitionally equivalent, differing only in which 
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notions are taken as primitive and which are defined (Grätzer 1998: 11). The lattice 
approach, simpler for our purposes, takes as primitive just the material implication 
relation, noted →, and given standardly by: T → T, F → T and F → F. We note that → is 
reflexive, transitive, and antisymmetric (x → y and y → x implies x = y). The ∧, ∨, and ¬ 
functions are defined in terms of →: for x,y in {T,F}, ∧{x,y}, usually noted (x∧y), is 
defined as the greatest lower bound (glb) of the set {x,y}. This just means that one, the 
truth value x∧y is a lower bound (lb) for {x,y}, that is, (x∧y) → x and (x∧y) → y, and two, 
for any lb z for {x,y}, z → (x∧y). One computes that (T∧T) = T, that is, T is the glb for 
{T,T}. Similarly T∧F = F∧T = F∧F = F. So ∧ here coincides with the standard truth 
table for and. We note that in any lattice L, the glb of a subset K of L is noted ∧K.

Similarly x∨y, the least upper bound (lub) of {x,y}, coincides with the truth table for 
or. One computes that F is the least, or zero, element of {T,F}, meaning that for all x in 
{T,F}, F → x. Dually T is the greatest, the unit element: for all x in {T,F}, x → T. Also the 
→ order is distributive: (x∧(y∨z)) = ((x∧y)∨(x∧z)) and complemented: for every x in 
{T,F} there is a y in {T,F} such that x∧y is the least element of {T,F} and x∨y the greatest. 
For each x this y is provably unique and noted ¬x. So ¬T = F and ¬F = T, as expected.

We note too that PE is a boolean lattice where the primitive relation is subset, ⊆. 
This relation is reflexive, transitive, and antisymmetric. The greatest lower bound 
∧K of any collection of subsets of E is just its intersection—the set of objects that lie in 
all the sets in K. So X∧Y = X∩Y in the finite case. And the lub of K, noted ∨K, is just 
its union, the set of objects belonging to at least one of the sets in K. So X∨Y = X∪Y. 
The least element is the empty set, ∅, and the greatest is E itself. The complement of a 
subset X of E is E—X.

So interpretations for sentences and common nouns / one-place predicates (P1s) 
are both boolean lattices (of a certain sort, below).1 Interpretation sets for other cate-
gories of expression also have a boolean structure, as the expressions combine quite 
freely with the boolean connectives and, or, . . .:

(5) An attractive but not very well-built house is for sale on the corner;
  She lives neither in nor near New York City;
  Sue both praised and criticized each student;
  Kim works neither rapidly nor carefully;
  All doctors and most nurses support single-payer health care.

In a standard model these boolean lattices all have two additional properties in com-
mon. One, they are complete—every subset has a glb (and a lub). And two, they are 
atomic—for every x ≠ 0 there is an atom α ≤ x (≤ is the lattice order relation, relative to 
which glbs and lubs are taken). An atom α is a smallest non-zero element—that is,  
α ≠ 0 and for any y ≤ α, y = 0 or y = α.

1 We prefer to treat P1s as elements of [E → {T,F}], functions from E into {T,F}, where the lattice order ≤ 
is given by: f ≤ g iff for all x ∈ E, f(x) → g(x). But the map sending each subset A of P to that map from E into 
{T,F} which sends x to T iff x ∈ A is an isomorphism, so there is no loss in treating P1s as subsets of E.
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The data in (5) prompt a query and a puzzle. The query: Why should we expect that 
the boolean connectives and, or, not, neither . . . nor . . ., and some uses of but are syn-
tactically ubiquitous? Combining with expressions of just about any category is 
un usual, and suggests that their meaning is not specific to the meanings associated 
with any particular category—be it sentence, n-place predicate, adjective, etc. Rather, 
we follow Boole’s (1854) lead and treat them as reflecting properties of mind, “laws of 
thought”—ways we conceive of things rather than how things are. Our approach pro-
vides an account of this syntactic ubiquity. The set of objects which interpret expres-
sions of any given category are sets with the structure of a boolean lattice (algebra) 
and and, or, and not are uniformly interpreted by the greatest lower bound, least 
upper bound, and complement operations in that lattice. (Neither . . . nor . . . denotes 
the Sheffer stroke.) Different categories are associated with different lattices.

The puzzle (solved in Step 2): the universe E is not endowed with any boolean 
structure, but singular terms form boolean compounds naturally; they also form 
such compounds with properly quantified noun phrases, (6b).

(6) a. Neither Kim nor Dana; both Kim and Dana; either Kim or the teacher.
   b. John and some student (will take the tickets).
    Neither Ed nor any foreign students (were interviewed for the position).
    The CEO and all the employees of the company (dislike the IRS).

Step 2: Eliminating the universe
Consider the interpretation of quantified subjects, as in (7):

(7) a. All poets daydream;
  b. Some poets daydream;
  c. Most poets daydream.

(8) For all subsets p,q of E,
  a. all(p)(q) = T iff p ⊆ q;
  b. some(p)(q) = T iff p∩q ≠ ∅;
  c. most(p)(q) = T iff 2⋅|p∩q| > |p| (p finite, |p| its cardinality).

We interpret these sentences directly using generalized quantifiers (GQs) which map 
properties to truth values. The quantifiers all, most, etc. map subsets of E, possible 
common noun interpretations, to GQs:

So All poets daydream is true iff the set of poets is a subset of the set of individuals 
that daydream, etc. So all poets, etc. are of a higher logical type than one-place 
predicates, consistent with Frege’s conception of quantifier. And in a model with 
an unstructured universe it is not feasible to treat such quantified phrases as 
denoting elements of E. For example, in a model with just two poets, Kim and 
Dana, all poets is interpreted the same as both Kim and Dana, and (9a) has the 
same truth value as (9b).
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But if all poets denotes an element of E here we can infer that both Kim and Dana are 
that entity, whence Kim and Dana are the same individual contra the assumption 
that they constituted two poets.

A natural solution to this problem is to interpret proper names as GQs, as in 
Montague (1970) and Lewis (1970). Here we present an equivalent analysis, but with 
more immediate linguistic motivation. Consider the mutual entailment patterns 
below, using ≡ for “is logically equivalent to”:

(10) a. Ned is a linguist and a poet ≡ Ned is a linguist and Ned is a poet;
      b. Ned is a linguist or a poet ≡ Ned is a linguist or Ned is a poet;
      c. Ned is not a linguist ≡ It is not the case that Ned is a linguist.

(10a) says that the GQs which interpret proper names are those that map a glb of 
properties to what you get when you apply them to the properties separately and take 
the glb of the results in the truth-value lattice. So proper name interpretations respect 
glbs. Similarly (10b) says they respect lubs, and (10c) that they respect complements. 
Thus proper name interpretations, henceforth called individuals, are homomor-
phisms from the property lattice to the truth-value lattice.2

This analysis allows us to dispense with E as a primitive in favor of an arbitrary 
complete, atomic lattice P, whose elements will be called properties. P provides deno-
tations for common nouns and does not really differ from the standard model, in 
which cnps denote in PE, as a boolean lattice P is complete and atomic iff it is isomor-
phic to a power set  lattice.3 Subjects, quantified or not, are interpreted as maps from P 
into {T,F}, with proper names denoting the homomorphisms in this set. Adjectives 
will denote maps from P into P.

But have we not moved a little rapidly? Does our “elegant” analysis of proper names 
correspond in any sense to what we intend on the classical view? It turns out it does. 
Consider the Lewis/Montague notion of individual (stripped of its intensional wrap-
pings) as an intermediate step.4

2 The homomorphisms we use here and later are understood to be complete. That is, they respect arbi-
trary greatest lower bounds and least upper bounds: h(∧K) = ∧{h(k)|k ∈ K} and h(∨K) = ∨{h(k)|k ∈ K}. 
More generally, individuals are homomorphisms from n+1-place predicate denotations to n-place ones: 
to both praise and criticize John is to both praise John and criticize John; to either praise or criticize John 
is to either praise John or criticize John, and to praise Bill but not John is to praise Bill and not praise John. 
But here we are only concerned with individuals as denotations of subjects.

3 Given P(A), the power set of A, its boolean relation is just subset, ⊆. Its atoms are the unit sets {b} for 
each b ∈ A and for K any collection of subsets of A, ∧K is provably ∩K, the collection of b which lie in each 
set in K, and ∨K is ∪K, the x which are in at least one of the sets in K. Going the other way, if P is complete 
and atomic, then the map sending each p ∈ P to {α ∈ P| α ≤ p} is an isomorphism from P to P(Atom(P)), 
the power set of the set of atoms of P.

4 Lewis/Montague treat John as λp.p(j), which maps a property q to the truth value q(j). This is the 
function Ij, where we write Ib for arbitrary b in E below.

(9) a. All poets daydream.
   b. Both Kim and Dana daydream.
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(11) For all b ∈ E define the function Ib from PE into {T,F} by: Ib(p) = T iff b ∈ p.

Classically John is a poet is interpreted by T if the entity, say j, denoted by John is in the 
set poet denoted by poet. Now we interpret John is a poet by Ij(poet), which is T iff j ∈ 
poet. So there is no change in truth conditions, only an organizational change in the 
function-argument structure of John is a poet, John now denoting the function and 
the P1 is a poet the argument. This interpretation of proper names as GQs still defines 
them in terms of a primitive universe.

But observe now that the Ibs are homomorphisms from PE into {T,F}:

6  The proof is basically the same as in note 5, with α replacing {b} and ≤ replacing ⊆.

(12) Ib(p∩q) = T  iff b ∈ p∩q        def Ib 
                        iff b ∈ p and b ∈ q       def ∩  

                        iff Ib(p) = T and Ib(q) = T           def Ib  
                        iff (Ib(p) ∧ Ib(q)) = T                      def ∧ in the {T,F} lattice.

Thus we see that Ibs map glbs of properties to glbs of truth values. Similarly they map 
lubs to lubs and complements to complements. So Ibs are homomorphisms from 
properties to truth values. And the converse holds as well: the (complete) homomor-
phisms are exactly the Ibs.5 So now we define proper name denotations as the com-
plete homomorphisms from P into {T,F} with no reference to any E, so E can be 
eliminated from our semantic primitives.

Observe the close connection between entities on the classical view and atomic 
properties on the boolean view. Given P complete and atomic, the map sending each 
q in P to the set of atoms α ≤ q is an isomorphism from P to the power set of the atoms 
of P. So the atomic properties in P play the role entities do in classical semantics.

Further, for α an atom in P, define Iα as that GQ which maps a property p to T iff  
α ≤ p. One checks that the Iαs are just the complete homomorphisms from P into 
{T,F}.6 If P is a power set lattice, then an atom is just a unit set, {b}, and {b} ⊆ poet iff b 
∈ poet, so Ib(poet) in Lewis/Montague says the same as I{b}(poet) on the boolean view, 
so individuals on the boolean view correspond one for one to those on the Lewis/
Montague construal of the classical view.

Also we should solve our puzzle—that boolean compounds of proper names were 
embarrassing on the classical view since a bare E does not support boolean structure, 
yet we form boolean compounds of proper names and interpret them naturally. But it 
is now easy to see that boolean compounds of proper names do not behave as homo-
morphisms. For example, both John and Bill does not respect negation, as (13a) and 
(13b) are not logically equivalent:

5  Let h be a complete homomorphism from P into {T,F}. All homomorphisms map the unit A to the 
unit T of {T,F}, and A = ∪{{b}|b ∈ A} so h(∪{{b}|b ∈ A}) = ∨{h{b}|b ∈ A}, so for some b, h({b}) = T. h can’t 
map two different unit sets to T, otherwise it maps their intersection to T, but their intersection is empty, 
∅, which all homomorphisms map to F. So h maps exactly one {b} to T. If {b} ⊆ B, then {b}∩B = {b} so 
h({b}∩B) = h({b})∧h(B) = T, so h(B) = T. If b ∉ B, then {b}∩B = ∅ and h({b}∩B) = h({b}) ∧ h(B) = T ∧ h(B) 
= F, so h(B) = F. Thus h = I{b} since h holds of exactly the sets that {b} is a subset of.
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(13) a. Both John and Bill did not pass the exam;
    b. It is not the case that both John and Bill passed the exam.

But boolean compounds of proper names do behave semantically as boolean func-
tions of generalized quantifiers.7

An unexpected dividend of our abstract approach to proper names is that we can 
account for why both linguists and philosophers so often take them to be the basic 
subject phrases. Our account is the observation that all GQs—functions from an 
arbitrary complete atomic boolean lattice into {T,F}—are boolean functions of indi-
viduals (Keenan and Faltz 1985: 92; Keenan and Westerståhl 1997). Only individuals 
are a parameter here as boolean functions are properties of mind. So the full class of 
quantified subject phrases is determined by the choice of individuals. Here is a quick 
proof using variables in ‘I’ to range over individuals.

Theorem 1 All generalized quantifiers are boolean functions of individuals.
a.  For all p ∈ P, let fp be that map from P into {T,F} which maps p to T and all other  

q∈P to F. fp is, informally, “every p and no non-p”. Formally, fp = ∧{I|I(p) = T}  
∧ ¬∨{I|I(¬p) = T}. So fp is a boolean function (defined in terms of ∧, ∨, and ¬) of 
individuals.

b.  For any H from P into {T,F}, H = ∨{fp|H(p) = T}. So H is a boolean function of 
individuals. ☐

This theorem may seem linguistically unnatural, as complex subjects are often not 
built syntactically as boolean compounds of proper names or singular terms (though 
some are: John and either Bill or Sue, etc.). But the theorem only says that the functions 
denotable by subjects are boolean functions of ones denotable by proper names. And 
it is worth noting that cross-linguistically proper names are often (always?) historic-
ally derived from property-denoting expressions.

Think of Amerindian names, often given in English glosses: Sitting Bull, Thunder 
Cloud, Dances with Wolves. A few are borrowed: Cochise from Apache k’uu-ch’ish 
‘oak’, Mississippi from Ojibwa mshi- ‘big’, and ziibi ‘river’. Schuylkill in the Schuylkill 
River in Philadelphia comes from Dutch schuil ‘hidden’ and kill ‘river’. Malagasy 
(Austronesian; Madagascar) forms proper names by prefixing property-denoting 
expressions with a particle (Ra- for adults, I- for children and foreigners). 
Ramanandraibe = ‘Ra+manana+ray+be, Ra+has+father+big’; Ramasinaivo = 
‘Ra+masina+naivo, Ra+power+second-born’; Randriamasimanana = ‘Ra+andriana
+masina+manana, Ra+noble caste+power+has’.

7  In general (as with P1s), when B is any boolean lattice and A any non-empty set, [A → B], the set of 
functions from A into B is a boolean lattice which inherits the structure of B pointwise: f ≤ g iff for all x ∈ 
A, f(x) ≤ g(x). Provably (f∧g) maps each x to f(x)∧g(x), (f∨g) maps each x to f(x)∨g(x) and (¬f)(x) = ¬(f(x)). 
The zero function maps each x to the zero in B, and the unit to the unit in B. So generalized quantifiers, 
maps from P into {T,F}, have a complete atomic boolean structure pointwise.
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In English we find some bird and mammal names: Crow, Crane, Partridge, Fox, 
Wolf; in Hebrew Aryeh ‘lion’, Dov ‘bear’, Snait ‘squirrel’, Yael ‘ibex’. Family names 
(the most recently innovated) in European languages are often transparent:  
occupations—Shoemaker, Carpenter, Taylor, Smith, Wright, Tanner, Baker, Butcher; 
color names—Brown, Black, Green, White, Gray; descendants’ designation—Fitzwil-
liam (fils ‘son’ of William), MacArthur ‘son of Arthur’, Robertson, Jackson, Johnson—
Jonsson in Swedish, which retains the genitive ‘s’, as does Siggursdottir ‘Siggur’s 
daughter’ in Icelandic. Benjamin is Hebrew ben ‘son of ’ + yamin ‘right hand’. Edward 
derives from Anglo Saxon ead ‘wealth, happiness’ and weard ‘guardian’, hence 
‘wealth protector’. Even John (Johan, Ivan, Yiannis, Sean, Juan) derives from Hebrew 
Yehohanan ‘God has favored’. Jones is derived from John’s (child). In Irish we find 
Barry from Old Irish Bairre, short for Fionbarr from fionn ‘white, fair’ and barr 
‘head’, Fergus Anglicized from Irish Fearghas from fear ‘man’ and gas ‘vigor’. From 
Hindi—Kumar ‘boy / son / prince’, Shankar ‘conferer of welfare’, Siddartha ‘one who 
has accomplished his goal’. From Arabic—Fahd ‘panther, leopard’, Mubarak ‘bles-
sed, fortunate’, Mahmud ‘praiseworthy’. From Chinese—Cheng ‘accomplished’, Yu 
‘jade’, Zedong (as in Chairman Mao) ‘East of the marsh’. Japanese—Jiro ‘second son’, 
Masao ‘correct man’, Midori ‘verdant’. (See Hanks et al. 2007.)

18.5 An Objection: Just Jazzy Mathematics?
Is our boolean construal of classical model theory anything more than mathematical 
gymnastics, sound and fury signifying little? Indeed our boolean construal is simply 
one, mathematically explicit, way of formulating standard extensional semantics. 
But it is this format, rather than the usual set-theoretical one, that generalizes to a 
non-extensional semantics. We just relax the atomicity requirement on P, so there 
will be non-zero properties which dominate no atom. Explicitly:

Step 3 A semantic analysis of cnps is extensional if properties p,q are the same 
whenever they have the same extension. Formally:

(14) Extensionality: For all p,q ∈ P, if I(p) = I(q), all individuals I, then p = q.

Theorem 2 Our Step 2 formulation of P is extensional.
proof: Assume I(p) = I(q), all I. Then for any atom α, Iα(p) = Iα(q), so α ≤ p iff α ≤ q. So p 
and q dominate the same atoms and for each x in an atomic boolean lattice L, x =  
∨{α∈Atom(L)| α ≤ x}, whence p = ∨{α∈Atom(P)|α ≤ p} = ∨{α∈Atom(P)|α ≤ q} = q. ☐
(In a power set lattice L, the condition x = ∨{α∈Atom(L)|α ≤ x} just says that a set x is 
the union of its unit sets).

Now, to build a non-extensional analysis we relax the atomicity requirement on P 
as follows:

(15)  A model for our fragment of English is a pair (P,{T,F}), with {T,F} as before, and 
P a complete non-atomic boolean lattice with at least one atom.
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But, do such Ps exist? And if so, what do they look like? Can they have as many atoms 
(individuals) as we like? All finite boolean lattices are isomorphic to power sets and 
thus atomic. So P must be infinite (even if it has only finitely many atoms). This may 
seem “technical”, but it is linguistically motivated below.

It turns out that there is a minimal atomless boolean lattice—one with a lin guistic 
character whose elements can be thought of as information packets—logical  
propositions—and whose order relation is “is more informative than”. And given any 
non-zero packet p we can always find another non-zero one q which is strictly more 
informative than p: 0 < q < p. So this lattice is atomless.

Consider the Lindenbaum–Tarski lattice LT derived from Sentential Logic 
(SL). Formulas in SL are built from denumerably many “atomic” formulas P1,  
P2, . . . by iteratively forming conjunctions, disjunctions, and negations. A model 
for SL is function v mapping the atomic formulas into {T,F} and extended to a 
function V on all formulas by setting V(ϕ & ψ) = V(ϕ) ∧ V(ψ) and V(not ϕ) = ¬V(ϕ). 
Now let ϕ be an SL formula which has a model, that is, an assignment of values to 
the atomic formulas which makes ϕ true. Since only finitely many atomic formu-
las occur in ϕ let Pk, Pk+1, . . . be a denumerable sequence of distinct atomic formu-
las not occurring in ϕ. Then (ϕ & Pk) has a model, as does ((ϕ & Pk) & Pk+1), etc. 
Every later formula has a model and properly entails (entails and is not entailed 
by) the previous ones. So we have an infinite descending chain (sequence) of for-
mulas each of which gives strictly more information about the model than its 
predecessor, but no formula in the sequence gives complete information, i.e., 
decides the truth of all the atomic formulas. Each formula leaves the truth of all 
but finitely many atomic formulas open. So infinite descending chains are com-
prehensible. They are also prominent in English cnps. Consider the following 
infinite sequence of cnps:

(16) a. h(1) = doctor;
    b. for all n > 0, h(n+1) = doctor who knows a h(n).

So h(2) is doctor who knows a doctor, h(3) doctor who knows a doctor who knows a doc-
tor, etc. If an individual I has the property expressed by any of these, then I has the 
property expressed by each of its predecessors in the enumeration.

The entailment relation, however, is not a boolean order relation since, while 
reflexive and transitive, it is not antisymmetric: there are distinct formulas each of 
which entails the other. Indeed each formula ϕ is logically equivalent to denumerably 
many distinct formulas (consider ϕ, (ϕ & τ), ((ϕ & τ) & τ), . . . τ any tautology). So we 
trade in each formula ϕ for its logical equivalence class [ϕ], the set of formulas whose 
truth value in any model M is the same as that of ϕ in M. Think of [ϕ] as the logical 
proposition expressed by ϕ. Define a ≤ relation on the set of these classes by setting [ϕ] 
≤ [ψ] iff ϕ entails ψ (that is, ψ is true in all models in which ϕ is true). This is well 
defined and a properly boolean partial order (Bell and Slomson 1971: 40–2). The zero 
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is the class of a contradiction, the unit the class of a tautology, and [ϕ]∧[ψ] = [ϕ & ψ], 
[ϕ]∨[ψ] = [ϕ or ψ], and ¬[ϕ] = [not ϕ].

The sequence [ϕ], [(ϕ & Pk)], [((ϕ & Pk) & Pk+1)], . . . of equivalence classes of the 
proper entailment chain above is an infinite descending chain: each later class lies 
strictly between zero and its predecessor. So in LT each non-zero element heads an 
infinite descending sequence so LT is atomless, and increasing information still cor-
responds to proper entailment.

Worth noting here is that LT is, mathematically, unique. First, no atomic formula 
entails any other one, so the set of equivalence classes of atomic formulas is denumer-
able. And since SL itself is denumerable, the cardinality of the set of equivalence 
classes of all formulas in SL is at most denumerable. And it is a general theorem 
(Givant and Halmos 2009: 135) that all denumerable atomless boolean lattices are 
isomorphic.

LT does, however, have one technical shortcoming (for our purposes) which is 
standardly overcome in a technical way. Namely, LT is not complete. But there is a 
minimal uniform way of adding elements to any boolean lattice L to form a complete 
one—the Tarski–MacNeille extension—here noted simply L*. To form L*, we only add 
in lubs for subsets of the original which do not have one. So we do not replace any old 
lubs and do not add any elements below those in the original. So if A is atomless, so is 
A*. For details of the construction see Givant and Halmos (2009), theorem 22. So LT* 
is complete and atomless.

Now the last step to yield a complete non-atomic lattice with k atoms, any cardinal 
k > 0, is easy. Let A be a set of cardinality k > 0 (k may be infinite). Then P(A) is a com-
plete atomic boolean lattice with k atoms and the cross-product lattice P(A)×LT* is a 
complete non-atomic boolean lattice with k atoms.

Cross-product lattices B×D behave as expected: the relation and the boolean oper-
ations are run in parallel. E.g., (b,d) ≤ (b ,ʹdʹ) iff b ≤B bʹ and d ≤D d ;ʹ (b,d) ∧ (b ,ʹdʹ) = 
(b∧Bb ,ʹ d∧Ddʹ), ¬(b,d) = (¬Bb,¬Dd), and 0 = (0B,0D) and 1= (1B,1D). Atom(B×D) = 
{<b,0>|b ∈ Atom(B)} ∪ {<0,d>|d ∈ Atom(D)} and B×D is complete iff both B and  
D are.

Thus P(A)×LT* is complete with |A| many atoms, the pairs <α,0>, α an atom of 
P(A), and 0 the zero element of LT* (determined by the equivalence class of a formula 
with no models, e.g., a contradiction). And again to finesse charges of merely engag-
ing in mathematical gymnastics we note the theorem and corollary below, where for 
b a non-zero element of a boolean lattice ↓b is {x ∈ B|x ≤ b}. ↓b is itself a boolean lat-
tice in which ∧, ∨, and 0 coincide with those in B, the unit element is b and comple-
ments are taken relative to b: ¬↓bx = b∧¬Bx.

 Theorem 3 For B a boolean lattice and 0 < b < 1, B is isomorphic to ↓b×↓¬b, the 
map sending each x in B to <x∧b, x∧¬b> is an isomorphism.

 Corollary 4 For P complete, non-atomic but with at least one atom, P ≃ 
↓∨Atom(P)×↓¬∨Atom(P), where Atom(P) is the set of atoms of P.
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And for p ∈ P, set ext(p) = p∧∨Atom(P) and int(p) = p∧¬∨Atom(P). The extensional 
part of p is ext(p) and the intensional part int(p). We note that ↓∨Atom(P) is complete 
and atomic and ↓¬∨Atom(P) is complete but atomless. A property q will be called 
extensional if q ≤ ∨Atom(P), that is, ext(q) = q, and intensional if q ≤ ¬∨Atom(P), that 
is, int(q) = q. The property expressed by individual who is John is extensional, that 
expressed by barber who shaves just those barbers who do not shave themselves is 
intensional.

We take such P as the primitive denotation set for cnps. Individuals, proper name 
denotations, are defined as before: the complete homomorphisms from P into {T,F}. 
Extensions are defined as before: the set of individuals that hold of p. But the resulting 
semantics fails extensionality, (17b):

(17) a. For all p,q ∈ P, p and q have the same extension iff ext(p) = ext(q);
    b. There are distinct p,q ∈ P with the same extension: ext(p) = ext(q).

To see (17b), suppose α is an atom of P and q ≠ qʹ in ↓¬∨Atom(P). Then α∨q and α∨qʹ 
are distinct properties with the same extension, {Iα}.

Note that the set of intensions of common nouns has a boolean structure—it is 
the lattice (algebra) ↓¬∨Atom(P). But we have said nothing about what intensions 
are. We share with Muskens (2007) the view that what is important is the struc-
ture of the set—the functions and relations it supports—not the identity of its 
members. And our set of intensions does have a distinctive boolean structure—a 
complete atomless one. Our semantic interpretation is analogous to interpreting 
the language of elementary arithmetic in any set that satisfies the Peano axioms, 
it does not have to be the set of natural numbers set-theoretically construed. For 
purposes of arithmetical study we need not say what numbers “are”. We do sug-
gest further constraints on intensions shortly and our approach does support 
that:

(18) Boolean compounds of non-extensional adjectives are non-extensional.

The reader can check this with primary judgments for expressions like both skillful 
and accomplished, competent but neither gifted nor ingenious, etc.

18.6 Evaluative Adjectives
Now let us see how the non-extensionality of evaluative adjectives is naturally repre-
sented in models of type P. As indicated, evaluative adjectives like skillful denote 
restricting functions from P to P. We impose no further constraints. It follows that 
properties p,q may have the same extension but those of skillful(p) and skillful(q) 
may be different. Here is an example type.

Let abc be an extensional property dominating three atoms a, b, and c. Let σ and τ 
be intensional properties with σ ≰ τ and τ ≰ σ, though they may overlap: σ∧τ ≠ 0. 
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surgeon and flautist empirically meet these latter conditions: what one needs to 
know to know if x is a surgeon is different from what one needs to know to know if x is 
a flautist. But there is one common requirement: x must be human (in distinction to 
freezer or screwdriver). Let surgeon = abc∨σ and flautist = abc∨τ. So surgeon and 
flautist are distinct properties with the same extension, abc, but incomparable inten-
sions. Now suppose that skillful(surgeon) = ac∨σʹ and skillful(flautist) = bc∨τ ,ʹ 
with 0 < σʹ < σ and 0 < τʹ < τ. So ext(skillful(surgeon)) = ac ≠ bc = ext(skillful(flautist)) 
and Ic is both a skillful surgeon and skillful flautist. In this model surgeon and flau-
tist have the same extension but skillful(surgeon) and skillful(flautist) do not. And 
the intension σʹ of skillful(surgeon) ≤ the intension σ of surgeon, and similarly for 
skillful(flautist), so the intensional inclusion relation corresponds to “requires more 
information than”.

Our model also accounts for a slightly subtle property of restricting adjectives. 
For every restricting map F from P to P, F ≤ id, the identity map sending each p to 
itself. This means that the set of restricting maps is ↓id, so negations of adjectives 
are just interpreted relative to id. Thus Several not very skillful surgeons work here 
does not mean merely that several people who are not very skillful surgeons work 
here, it means more specifically that several surgeons who are not very skillful ones 
work here.

One incompleteness in our treatment of restricting adjectives is the absence of a 
precise representation of what skillful surgeons and skillful flautists have in com-
mon. Informally such individuals must be “good at what they do”. But my judgment 
is that being good at is not cognitively or logically reducible to more primitive 
notions.

Unreducibility is supported experimentally by Osgood (1952) and Osgood et al. 
(1957), who did three studies designed to “measure” the meanings of adjectives. Using 
a set of 50 scales determined by antonymous adjective pairs, such as good–bad, large–
small, . . ., strong–weak, happy–sad, sharp–dull, . . ., active–passive, wide–narrow, 
each scale was presented with 7 equal divisions. In one test, subjects were asked to 
locate other adjectives along these scales. For example, eager and burning received 
similar placement on the strong–weak and active–passive scales, but different place-
ment along the hot–cold and dry–wet scales. In another test, subjects ranked each of 
20 concepts expressed by nouns—boulder, sin, father, statue, cop, America, . . . —on 
each scale. The results of each test were subjected to factor analysis to determine 
which scales gave similar results and were relatively independent of other scales.

All three tests yielded the same three main factors (correlation groups). The largest 
was one they call evaluative, grouping good–bad, beautiful–ugly, sweet–sour, tasty–
distasteful, clean–dirty, happy–sad, fair–unfair, among others. The other two were 
potency and activity, each with about half as many scales as the evaluative one. 
Potency included large–small, strong–weak, heavy–light, and thick–thin. Activity 
included fast–slow, active–passive, and hot–cold. So on these experiments evaluati-
vity was the primary unreducible factor.
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There is one case of restrictive adjectives where we can be more explicit about their 
intensional contribution, those called intersective or absolute (see Montague (1970), 
Parsons (1970), Kamp (1975), and Keenan and Faltz (1985)). Examples are male, female, 
blue-eyed, six foot tall. A blue-eyed doctor is a doctor who is a blue-eyed individual, 
where individual denotes 1P, the maximal property that all individuals have. We 
define a map F from P into P to be absolute iff for all p ∈ P, F(p) = p ∧ F(1P). Then

Fact For F absolute, p ∈ P, int(F(p)) = int(p ∧ F(1)) = p ∧ F(1) ∧ ¬∨Atom(P) = (p∧¬∨Atom(P)) ∧ 
(F(1)∧¬∨Atom(P)) = int(p) ∧ int(F(1)).

Thus the intension of blue-eyed doctor is that of doctor plus that of blue-eyed individ-
ual. We note also, without argument, that on our semantics:

(19)  For F,G absolute, F(G(p)) = G(F(p)) = (F∧G)(p), all p ∈ P. But if F and G are 
merely restricting, all three of these properties may be different.

Thus in some models small (expensive house), expensive (small house), and (small and 
expensive) house all have different extensions (Keenan and Faltz 1985). But in all mod-
els blue-eyed six-foot-tall doctor and six-foot-tall blue-eyed doctor have the same 
extension—they denote the same individuals.

18.7 Value Judgment Quantifiers
Some generalized quantifiers, functions which, like adjectives, take properties as 
arguments, have an evaluative component and are also non-extensional. Individuals 
and their boolean compounds remain extensional on our semantics: If John, or every 
student, is a vegetarian and the vegetarians and the flautists are the same individuals, 
then John, or every student, is a flautist. But there are value judgment quantifiers and 
they are, unsurprisingly, not extensional. In a situation in which the doctors and the 
lawyers are the same, (20a) and (20b) may both be true (Keenan and Stavi 1986):

(20) a. Not enough doctors came to the meeting;
    b. More than enough (even too many) lawyers came to the meeting.

Imagine a meeting of the local medical association whose bylaws require 100 doctors 
for a quorum, but just one lawyer, to take the minutes. Only 50 doctor–lawyers show 
up—not enough doctors, more than enough lawyers. Other value judgment quanti-
fiers are too many, too few, surprisingly many, disappointingly few, and in my opinion, 
simply many and few.

So intensional quantifiers are a natural follow-up to this study. But even with 
adjectives, we have only scratched the surface.

Clark (1970) notes the difference between type-building modifiers and mere 
attributive adjectives: beef stew vs. red balloon. Rotstein and Winter (2004) note a 
distinction between total vs. partial adjectives, as in somewhat dirty, which is natural, 
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vs. somewhat clean, which is not. Rett (2007) notes that some antonymous scalar 
adjectives may differ in evaluativity in the same construction: x is as tall as y is non-
committal regarding whether x and y are tall, but x is as short as y implies that both x 
and y are short. Burnett (2012) distinguishes between restricting adjectives like tall 
vs. empty, where tall can adjust its “threshold” and empty cannot. Given two glasses, 
one noticeably taller than the other but neither particularly tall, I might naturally ask 
you to hand me the tall one (even though if more glasses are added to the sample I 
might no longer call my original choice a tall one). In contrast, given two glasses of 
the same size, one half full with water, the other only one-quarter full, I cannot ask 
you to hand me the empty one.

18.8 Further Conditions Constraining Intensions
I suggest three further conditions we might plausibly impose on intensional models. 
The first is a local condition, one that concerns properties of intensions in each 
model. The second two are global, ones involving cross-model comparison of 
intensions.

1. Intensions determine extensions. In each model, if cnps d and dʹ have the same 
intension, they have the same extension. This property follows on the formally 
explicit analysis of Moschovakis (2006), where intensions are extension-computing 
algorithms. But it does not follow on our simple boolean approach.

2. Intensions are constant. We think naturally of the extension of cnps like doctor as 
varying from one situation to another. But, naïvely, what we need to know to know if 
someone is a doctor does not seem to so vary. So let us, tentatively, require that for an 
agentive cnp d, the intension of the denotation of d is the same in all models (contexts). 
Its extension of course may vary. Taking P to be P(A)×LT* where LT* is fixed and only 
A can vary suffices. (We might experiment using LT* built from languages other than 
Sentential Logic.) Note too that our other primitive, {T,F}, does not vary across models.

3. Distinct underived cnps have different intensions unless stipulated otherwise. In 
general it is difficult to find true synonyms among underived common nouns 
(Carstairs-McCarthy 1998).8 Examples of synonyms in the literature are pairs like 
oculist/eye-doctor, bachelor/unmarried man. But in each of these pairs at least one of 
the terms is morpho-syntactically complex. Candidates for complex cnps with the 
same intension are ones formed from absolute adjectives: female surgeon and surgeon 
who is female. Also blue-eyed six-foot-tall surgeon and six-foot-tall blue-eyed surgeon. 
A richer type of candidate would be famous author and critic and famous critic and 
author. Also reasonable are pairs like heart surgeon who is a portrait painter and por-
trait painter who is a heart surgeon.

8 One curious exception to this claim are scatological terms. Doubtless we can all think of several 
four-letter synonyms for male and female sex organs.
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18.8 Conclusion
We have constructed a linguistically revealing semantics of (a fragment of) natural 
language which dispenses with a universe in favor of a booleanly structured set of 
properties. So we know it is possible. And our model generalizes to one in which we 
represent non-trivial entailments (Ann is a skillful surgeon ⊨ Ann is a surgeon) with 
properly intensional modifiers such as skillful.9
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