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 The study of generalized quantifiers over the past 15 years has enriched enormously our understanding of 
natural language determiners (Dets).  It has yielded answers to questions raised independently within generative 
grammar and it has provided us with new semantic generalizations, ones that were basically unformulable 
without the conceptual and technical apparatus of generalized quantifier theory.    Here we overview results of 
both these types. 
 
 historical note  It was Montague (1969) who first interpreted natural language NPs as generalized quantifiers 
(though this term was not used by him).  But it was only in the early 1980's with the publication of B&C 
(Barwise and Cooper, 1981) that the study of natural language Dets took on a life of its own. Also from this 
period are early versions of K&S (Keenan and Stavi, 1986) and Higginbotham and May (1981).  The former fed 
into subsequent formal studies such as van Benthem (1984, 1986) and Westerstähl (1985).  The latter focussed 
on specific linguistic applications of binary quantifiers, a topic initiated in Altham and Tennant (1974), drawing 
on the mathematical work of Mostowski (1957), and pursued later in a more general linguistic setting in van 
Benthem (1989) and Keenan (1987b, 1992).  Another precursor to the mathematical study of generalized 
quantifiers is LindstrÅm (1969) who provides the type notation used to classify quantifiers in many later studies.    
 
 Since these beginnings work on the semantics of Dets has proliferated, both empirically and mathematically.  
Westerståhl (1989) provides an historical overview up to 1987.   Some important collections of articles are:  van 
Benthem and ter Meulen (1985), Gärdenfors (1987), and van der Does and van Eijck (to appear).  From a more 
linguistic perspective we note Lappin (ed., 1988a) and ter Meulen and Reuland (1987).  K&W (Keenan and 
Westerståhl, to appear) is a recent overview relating the natural language studies and concurrent work in 
mathematical logic.   
 
1. Background notions and terminology 
 
 Terminology first:  In the S in (1), we call work hard a (tensed) one place predicate or P1, 
 
(1) Most students work hard 
 
most students is a noun phrase or NP, student(s) is a (common) noun or N, and most is a (one place) Determiner 
or Det(1) .  So we think of a Det1 as combining with an N to make an NP, the latter combining with P1s to make 
Ss. 
 
 Semantically we interpret Ss like (1) as true (T) or false (F) in a given situation (state of affairs).  A situation 
s consists, in part, of a universe Es, the set of (possibly abstract) objects under discussion in s; we think of tense 
marking on P1s as giving us some information about the situation we are to interpret the sentence in.  Given a 
situation s, we interpret P1s as subsets (called properties) of Es and we interpret NPs as generalized quantifiers 
(GQs), that is as functions from properties to truth values (possible sentence interpretations).  Using upper case 
bold for interpretations (in a situation s), the truth value of (1) is given by: 
 
(2)  (MOST STUDENTS)(WORK HARD) 
 
That is, the truth value (T or F) which (1) is interpreted as in s is the one the function MOST STUDENTS 
maps the set WORK HARD to.  (An equivalent formulation common in the literature:  interpret most students 
as a set of properties and interpret (1) as T if the set WORK HARD is an element of that set).  
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 Now the denotation of most students is built from those of most and student.  And given a universe E, Ns like 
student (as well as tall student, student who Mary likes, etc.) are, like (tenseless) P1s, interpreted as properties 
over E  (= subsets of E).  So Dets like most can be represented as functions from PE, the set of properties over E, 
into GQE, the set of generalized quantifiers over E  (We usually suppress the subscript E when no confusion 
results).   
 
 We illustrate the interpretation of some Dets.  Let E be given and held constant throughout the discussion.  
Consider EVERY, the denotation of every.  We want to say that Every student is a vegetarian is (interpreted as) 
true, T, iff each object in the set STUDENT is also in the set VEGETARIAN.  Generalizing,  
 
(3)  For all properties A,B  EVERY(A)(B) = T iff A f B 
 
 What (3) does is define the function EVERY.  Its domain is the collection PE of subsets of E and its value at 
any A in PE is the GQ EVERY(A) S namely, that function from properties to truth values which maps an 
arbitrary property B to T if and only if A is a subset of B.  Here are some other simple cases which employ 
some widely used notation: 
 
(4)  a.  NO(A)(B) = T  iff  A 1 B = i 
 
  Here i is the empty set and (4a) says that No A's are B's is true iff the set of things 
  which are members of both A and B is empty. 
 
 b.  (FEWER THAN FIVE)(A)(B) = T  iff   |A 1 B|  <  5 
 
 c.   (ALL BUT TWO)(A)(B) = T  iff  |A S B| = 2 
 
  Here A S B is the set of things in A which are not in B, and in general for C a set, |C| 
  is the cardinality of C, that is, the number of elements of C.  So (4b) says that All but 
  two A's are B's is true iff the number of things in A which are not in B is exactly 2.  
 
 d.   (THE TEN)(A)(B) = T  iff  |A| = 10  and  A f B 
 
  This says e.g. that The ten children are asleep is true iff the number of children in 
  question is 10 and each one is asleep. 
 
 e.    NEITHER(A)(B) = T  iff  |A| = 2 & A 1 B = i 
 f.    MOST(A)(B) = T  iff  |A 1 B|  >  |A S B| 
 
   Here we have taken most in the sense of more than half.  Q 
 
 To test that the definitions above have been properly understood the reader should try to fill in appropriately 
the blanks in (5). 
 
(5)  (MORE THAN FOUR)(A)(B) = T  iff  _____ 
 
 BOTH(A)(B) = T  iff  _____ 
 
 (EXACTLY TWO)(A)(B) = T iff _____ 
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 (JUST TWO OF THE TEN)(A)(B) = T iff  _____ 
 
 (LESS THAN HALF THE)(A)(B) =  T iff  ______ 
 
 (BETWEEN FIVE AND TEN)(A)(B) = T iff _____ 
 
 Finally,  Keenan and Moss (1985) extend the class of Dets to include two place ones such as more...than... 
which they treat as combining with two Ns to form NPs like more students than teachers.  Such expressions 
have the basic distribution of NPs:  they occur as subjects (6a), objects (6b), objects of prepositions (6c); they 
occur in ECM = "raising to object" constructions (6d), and they move under passive (6d). 
 
(6)  a.  More students than teachers came to the party 
  b.  John knows exactly as many students as teachers 
  c.  Mary has talked with fewer students than teachers 
  d.  We believe more students than teachers to have signed the petition 
  e.  More students than teachers are believed to have signed the petition 
 
 We may correctly interpret NPs like more students than teachers as the value of the Det2 function 
(MORE...THAN...) at the pair <STUDENT,TEACHER> of properties given as follows (writing MORE A 
THAN B  instead of (MORE...THAN...)(A)(B)): 
 
(7)  For all properties A,B,C  (MORE A THAN B)(C) = T  iff  |A 1 C| > |B 1 C| 
 
 Again on this pattern the reader should be able to define the functions in (7).  See Beghelli (1992, 1993) for 
much more extensive discussion of cardinal comparatives. 
 
(8)  FEWER...THAN..., FIVE MORE...THAN..., EXACTLY AS MANY...AS..., MORE  THAN 
TWICE AS MANY...AS..., THE SAME NUMBER OF...AS... 
 
 
2. Two Types of Generalizations 
 
 One type of generalization we will be concerned with involves characterizing linguistically significant classes 
of NPs in terms of the Dets used to build them.  (So here semantic work converges with such syntactic work as 
Abney (1987), Stowell (1987, 1991) and Szabolcsi (1987), which takes Dets as the "heads"of expressions of the 
form [Det + N]).   For example, which NPs occur naturally in the post of position in partitives is significantly 
determined by the choice of Det: 
 
(9) a. Two of the/these/John's cats      b. *Two of no/most/few cats 
 
Changing the N from cats to students or pictures that John took does not change grammaticality in (9a) or (9b), 
but changing the Dets may.  Similarly which NPs occur naturally in Existential There contexts, (10a,b), and 
which license negative polarity items in the predicate, (11a,b), are significantly determined by the choice of Det. 
 
(10)  a.  There aren't more than ten boys in the room   
   b. *There aren't most boys in the room 
 
(11)  a.  Fewer than five students here have ever been to Pinsk  
   b.*Some students here have ever been to Pinsk 
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 Queries like those in (12) determine a second type of Det based generalization: 
 
(12) a. Are there constraints on which functions from properties to generalized quantifiers 
   can be denoted by natural language Dets? 
  
    b. Do lexical (= syntactically simple) Dets satisfy stronger constraints on their 
   possible denotations than syntactically complex ones? 
 
Questions like these arise naturally within generalized quantifier theory, but they also have a natural 
interpretation in a more classical linguistic setting.  An affirmative answer to (12a) limits the task faced by the 
language learner and thus helps account for how the semantic system is learned with limited exposure to 
imperfect data.  An affirmative answer to (12b) is even more interesting from the learning theory perspective.  
Modulo idioms, syntactically complex expressions are interpreted as a function of their parts.  Thus if we know 
how a complex expression is built and we know what its parts mean we can figure out what the entire 
expression means.  So a significant part of the learning problem in semantics reduces to the learning of the 
meanings of lexical items (including grammatical morphology).  
 Both the types of questions we raise push us to consider as large a class of Dets as possible.  The more Dets 
we consider the more NPs we classify and the more significant are claims concerning constraints on Det 
denotations.   
 Let us first then overview the classes of Dets we consider.  The classes overlap and are only informally given; 
later we provide several precisely defined subclasses of Dets.  Our purpose is to make the reader aware of the 
diversity of NP and Det types we generalize over.  Some linguists would prefer to analyze some of our complex 
Dets differently.  But eliminating some of our examples preserves the generalizations we make, since they hold 
for the larger class.  Delimiting the class too narrowly by contrast runs the risk that our generalizations will be 
vitiated when new examples are added.  Our discussion of Det1s draws extensively on K&S. 
. 
3.  Some Types of Determiners in English 
 
 Lexical Dets  
  every, each, all, some, a, no, several, neither, most, the, both, this, my, these, John's,  
  ten, a few, a dozen, many, few 
 Cardinal Dets  
  exactly/approximately/more than/fewer than/at most/only ten, infinitely many, two dozen, 
  between five and ten, just finitely many, an even/odd number of, a large  number of 
 Approximative Dets  
  approximately/about/nearly/around fifty, almost all/no, hardly any, practically no 
 Definite Dets  
  the, that, this, these, my, his, John's, the ten, these ten, John's ten 
 Exception Dets 
  all but ten, all but at most ten, every...but John, no...but Mary,  
 Bounding Dets 
  exactly ten, between five and ten, most but not all, exactly half the, (just) one...in ten, only SOME  
  (= some but not all; upper case = contrastive stress), just the LIBERAL, only JOHN's 
 Possessive Dets 
  my, John's, no student's, either John's or Mary's, neither John's nor Mary's 
 Value Judgment Dets 
  too many, a few too many, (not) enough, surprisingly few, ?many, ?few 
 Proportionality Dets 
  exactly half the/John's, two out of three, (not) one...in ten, less than half the/John's, a  third of the/John's,  
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  ten per cent of the/John's, not more than half the/John's 
 Partitive Dets 
  most/two/none/only some of the/John's, more of John's than of Mary's, not more than two of the ten 
 Negated Dets 
  not every, not all, not a (single), not more than ten, not more than half, not very many, not quite enough,  
  not over a hundred, not one of John's 
 Conjoined Dets 
  at least two but not more than ten, most but not all, either fewer than ten or else more 
  than a hundred, both John's and Mary's, at least a third and at most two thirds of the, 
  neither fewer than ten nor more than a hundred 
 Adjectively Restricted Dets 
  John's biggest, more male than female, most male and all female, the last...John visited, the first ...to set  
  foot on the Moon, the easiest...to clean, whatever...are in the cupboard 
 
 The three dots in the expressions above indicate the locus of the N argument.  E.g. in not one student in ten 
we treat not one...in ten as a discontinuous Det.   In general we have two prima facie reasons for positing 
discontinuous analyses:  One, often the N + postnominal material has by itself no reasonable interpretation and 
so is not naturally treated as a constituent.  Thus if we analyzed not one student in ten as [not one[student in 
ten]] we should have to assign a meaning to student in ten, but this string seems meaningless.  So does student 
but John in no student but John and man to set foot on the Moon in the first man to set foot on the Moon.    
 And two, often the presence of the postnominal material and the prenominal material are not independent.  If 
the N + postnominal material, such as student in ten above, were a  constituent it would have to be able to 
combine with Dets (e.g. not one) prenominally.  But in fact the choice of Det is highly constrained.  How would 
we block *the/this/John's student in ten and *the/this/Mary's/one student but John? 
 Our point here is simply that there are some sensible reasons (K&S) for treating the complex expressions 
above as Dets.  Our analysis is certainly not without problems of its own (Lappin 1988b and Rothstein 1988) 
and very possibly some of our cases will find a non-discontinuous analysis (see Moltmann, to appear and von 
Fintel, 1993 on exception Dets). 
 Finally we note some further candidates for two (and k > 2) place Dets.  The most natural cases are the 
cardinal comparatives like more..than.. and as many...as... mentioned in (6) and (8).  But Keenan & Moss 
(1985), the most extensive discussion of k-place Dets, suggest for example a 2 place analysis of every...and... in 
(13). 
 
(13) a. every man and woman jumped overboard 
  b.  (EVERY...AND...)(MAN,WOMAN)(JUMPED OVERBOARD) 
  c. (EVERY...AND...)(A,B)(C) = T iff EVERY(A)(C) = T and EVERY(B)(C) = T 
 
On this analysis (13a) would be true iff every man jumped overboard and every woman jumped overboard, in 
fact the natural interpretation of (13a).  Possibly (13a) has another interpretation on which it means that 
everyone who was both a man and a woman jumped overboard.  This is accommodated by treating man and 
woman as conjoined Ns, combined then with the Det1 every.  Such an analysis is less implausible in every 
author and critic.   One advantage of the 2 place analysis of every...and... is that it generalizes naturally to k > 
2 place Dets.  In every man, woman and child we allow that every...and...has combined directly with three Ns.  
So we might treat every...and... as a Det of variable arity, combining with k $ 1 Ns to form an NP and taking the 
form every in the case k = 1.  
 
 Before turning to our promised generalizations we note first one restriction on the Dets we generalize about.  
Namely, we limit ourselves to Dets that are extensional defined by: 
 
(14) Det1 D is extensional iff for all common noun phrases N,N' if N and N' are interpreted as the same set in a 
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situation s then [D + N] and [D + N'] are interpreted as the same GQ in s. 
 
One sees that not enough and too many are not extensional:  We can imagine a situation in which the doctors 
and the lawyers are the same individuals but Not enough doctors attended the meeting is true and Not enough 
lawyers attended the meeting is false (say we need a hundred doctors for a quorum and just one lawyer for legal 
purposes, and just 95 doctor-lawyers show up).  Judgments concerning the interpretation and extensionality of 
many and few are problematic in the literature.  K&S argue that they are not extensional but B&C, Westerståhl 
(1985) and Lappin (1988b) attempt more extensional treatments, though their proposals are not identical.  In 
this paper we shall largely exclude many and few from the generalizations we propose since our judgments 
regarding their interpretations are variable and often unclear.  Comparable problems obtain for Det2s when 
many modifies them, as in many more students than teachers [came to the party]. 
 
4.  Generalizations about English Determiners 
 
 Let us write DNP (Determined NPs) for NPs built from a Det and an appropriate number of Ns.  Some 
semantic properties of DNPs are determined by the semantic nature of their Ns and other of their properties are 
determined by the Det.  
 
 For example, whether a DNP is animate, human or female is determined by the nature of its Ns.  More 
generally, whether a DNP satisfies the selectional restrictions of a predicate is determined by its Ns.  Thus 
#Every ceiling laughed is bizarre (here noted #) since ceilings are not the kinds of things that can laugh.  And 
the judgment doesn't change if every is replaced by most of John's or at least two but not more than ten. 
 
 For DNPs built from Det2s both Ns are relevant (Keenan, 1987c).  Thus Fewer girls than boys laughed at that 
joke is natural, but #Fewer floors than ceilings laughed..., #Fewer children than ceilings laughed..., and #Fewer 
floors than children laughed... 
 
 Here we are concerned with properties of DNPs that are due to their Dets rather than their Ns.  As a first case, 
we consider several monotonicity generalizations, including the linguistic problem of characterizing the subject 
NPs which license negative polarity items, discussed in depth in Ladusaw (this volume).  We shall later provide 
a general definition of monotonicity which will have (15) and (16) as special cases:   
 
(15) A function F from properties to truth values is increasing if and only if for all properties 
  A,B  if  F(A) = T and A f B then F(B) = T.  An NP is said to be increasing if it always 
   denotes an increasing function.  One verifies that an NP X is increasing by checking that 
   it satisfies Test 1 below (making changes in number agreement where appropriate): 
 
Test 1  If all As are Bs and X is an A  then  X is a B 
 
 For example more than six women is increasing since if all A's are B's and the number of women with 
property A is more than six then all those women with property A are also ones with property B, so more than 
six women are B's.  By contrast fewer than six women is not increasing:  Imagine a situation in which, exactly 
four women are A's, all A's are B's,  and there are many B's who are not A's, including as it happens two 
women.  Then Fewer than six women are A's is true but Fewer than six women are B's is false, so fewer than six 
women is not increasing.  The same situation shows that exactly four women is also not increasing.   
 
 Whether a DNP is increasing is determined by the choice of Det and not the choice of N.  If [D + women] is 
increasing then so is [D + men], [D + students who John knows], etc.   
For the most part, syntactically simple (= lexical) NPs are increasing.  Here is a snapshot of the lexical NPs of 
English:  they include one productive subclass, the Proper Nouns:  John, Mary, ..., Siddartha, Chou en Lai, ... 
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('productive' =  new members may be added without changing the language significantly).  They also include 
listable sprinklings of (i) personal pronouns S he/him,.. and their plurals they/them; (ii) demonstratives S 
this/that and these/those; (iii) possessive pronouns S his/hers .../theirs; and (iv) possibly the "indefinite 
pronouns" everyone, everybody; someone/body; and no one/body, though these expressions appear to have 
meaningful parts.  We might also include some uses of Dets, as all in A good time was had by all, some in Some 
like it hot, and many and few in Many are called but few are chosen, though the lexical status of these "NPs" is 
again doubtful as we are inclined to interpret them as having an understood N people to account for their 
+human interpretation (a requirement not imposed by the Dets themselves).   
 
 Now one verifies that except for few and the "n" words (no one, nobody) the lexical NPs above are increasing.  
Moreover the exceptions, while not increasing, have the dual property of being decreasing.   
 
(16) A function F from properties to truth values is decreasing iff for all properties A,B if A f B and F(B) = T 

then F(A) = T.  To verify that an NP X is decreasing verify that it satisfies Test 2: 
 
Test 2  If all A's are B's and X is a B then X is a A 
 
 Clearly if all A's are B's and the number of women who are B's is less than six then the number who are A's 
must be less than six (if it were six or greater then all those women would be B's, making the number of women 
who are B's greater than six, contrary to assumption).  Thus fewer than six women is decreasing.  So is no 
woman and so are no one, nobody and few (people).  Now, calling a function monotonic if it is either increasing 
or decreasing and calling an NP monotonic if it always denotes a monotonic function we claim: 
 
(17)  Lexical NPs are always monotonic, almost always monotonic increasing 
 
(18)  Lexical Det1s always form "continuous" NPs, usually monotonic (increasing) 
 
(17) has already been supported, but we should note that many NPs are not monotonic at all (whence even the 
weak form of (17) is logically very non-trivial).  We have already seen that exactly four women is not 
increasing.  But equally it is not decreasing:  if all A's are B's and exactly four women are Bs it might be that 
just two are A's, the other two being B's who are not A's.  Thus exactly four women is neither increasing nor 
decreasing, hence not monotonic.  Here are some other NPs that are not monotonic: 
 
(19) between five and ten students, about a hundred students, every/no student but John,        
  every student but not every teacher,  both John and Bill but neither Sam nor Mary, most 
  of the students but less than half the teachers, either fewer than five students or else      
    more than a hundred students, more boys than girls, exactly as many boys as girls 
 
 Thus the kinds of functions denotable by the NPs in (19) are not available as denotations for lexical NPs in 
English.  In fact K&S show that over a finite universe each GQ is denotable by some NP.  So (17) is a strong 
semantic claim about natural language, one that restricts the hypotheses the language learner need consider in 
learning the meanings of NPs.  
 
 To support (18) observe that of the lexical Det1s in 3, most clearly build increasing NPs: each, every, all, 
some, my, the, this, these, several,... most.  But no and neither clearly build decreasing NPs.  many and few we 
put aside for the reasons given earlier.  The remaining case is bare numerals, like two, which are problematic 
since their interpretation seems to vary somewhat with the linguistic context.  In environments like Are there 
two free seats in the front row?, we interpret two  free seats as at least two..., which is clearly increasing.  In 
contexts like Two students stopped by while you were out the speaker seems to be using two students to 
designate two people he could identify, and as far as he himself (but not the addressee) is  concerned he could 
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refer to them as they or those two students.  So this usage also seems increasing.  But in answer to a question 
How many students came to the lecture? S Two the sense is "exactly two (students)", which is non-monotonic.  
It is perhaps not unreasonable to think of the basic uses of bare numerals as increasing (B&C, K&S), and the 
non-monotonic uses as ones which draw on additional information from the context.   
 
 But even if we take as basic the non-monotonic sense of bare numerals it remains true that the GQs denotable 
by NPs of the form [Det + N] with Det lexical are a proper subset of the set of denotable GQs.  Reason:  GQs 
denotable by NPs of the form exactly n A's are expressible as a conjunction of an increasing NP and a 
decreasing one:  Exactly n A's denotes the same as At least n A's and not more than n A's, and Thysse (1983) has 
shown that meets of increasing and decreasing functions are just the continuous functions, defined by:    
 
(20)  A GQ F over E is continuous iff œA,B,C f E, if A f B f C and F(A) = F(C) = T then 
    F(B) = T. 
 
 So monotonic NPs are special cases of continuous ones.  But many NPs are not continuous.  Typical 
examples are disjunctions of increasing with decreasing NPs (either fewer than six students or else more than 
ten students) or disjunctions of properly continuous ones (either exactly two dogs or exactly four cats).  Also 
NPs like more male than female students are not continuous.  Thus in analogy with the distinction between 
lexical vs complex NPs we also see that there are functions denotable by complex Dets which are not denotable 
by lexical ones, examples being the functions denotable by more male than female and either fewer than ten or 
else more than a hundred.   
 
 Some further monotonicity generalizations are given by the ways the monotonicity of complex NPs and Dets 
depends on that of the expressions they are built from: 
 
(21)  a. Conjunctions and disjunctions of increasing (decreasing) NPs are increasing   (decreasing).  The 

corresponding claims hold for Dets.  Thus John and every student is increasing since both conjuncts 
are.  And both John's and Bill's builds increasing NPs (both John's and Bill's cats) since each conjunct 
builds increasing NPs. 

 
b. Negation reverses monotonicity.  Thus not[more than six cats] is decreasing since the NP more than 

six cats is increasing.  And not more than six, as in at least two and not more than six, builds 
decreasing NPs since more than six builds increasing ones. 

 
   c. The monotonicity value of partitives is determined by the Det preceding of.  Thus  
   less than five of the students is decreasing since less than five builds decreasing NPs. 
 
   d.  Possessive Dets, e.g. [X's] in [X's N], build increasing NPs if X is increasing, 
   decreasing NPs if X is decreasing, and non-monotonic ones if X is not monotonic. 
  
 Thus no student's builds decreasing NPs (no student's doctor) since no student is decreasing.   
 
 A more surprising monotonicity generalization concerns negative polarity items (npi's).  To characterize the 
set of English expressions judged grammatical by native speakers, we must distinguish (22a) and (23a) from 
their ungrammatical counterparts (22b) and (23b). 
 
(22)  a.  John hasn't ever been to Moscow 
   b. *John has ever been to Moscow 
 
(23)  a. John didn't see any birds on the walk 
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   b. *John saw any birds on the walk 
 
 Npi's such as ever and any above, do not occur freely; classically (Klima 1964) they must be licensed by a 
"negative" expression, such as n't (= not).  But observe: 
 
(24) a.   No student here has ever been to Moscow 
  b. *Some student here has ever been to Moscow 
 
(25) a.  Neither John nor Mary saw any birds on the walk 
  b. *Either John or Mary saw any birds on the walk 
 
(26) a.  None of John's students has ever been to Moscow 
   b. *One of John's students has ever been to Moscow 
 
 The a-expressions here are grammatical, the b-ones are not.  But the pairs differ with respect to their initial 
NPs, not the presence vs. absence of n't.  The linguistic problem: define the class of NPs which license the npi's, 
and state what, if anything, those NPs have in common with n't/not. 
 
 A syntactic attempt to kill both birds with one stone is to say that just as n't is a "reduced" form of not so 
neither...nor... is a reduced form of [not (either...or...)], none a reduction of not one, and no a reduction of not a.  
The presence of n- in the reduced forms is thus explained as a remnant of the original not.  So on this view the 
licensing NPs above "really" have a not in their representation, and that is what such NPs have in common with 
n't.  Moreover NPs built from not do license npi's:  
 
(27)  a. Not a single student here has ever been to Moscow 
   b. Not more than five students here have ever been to Moscow 
 
But (Ladusaw, 1983) this solution is insufficiently general:  The initial NPs in the a- sentences below license 
npi's; those in the b- sentences do not.  But neither present reduced forms of not. 
 
(28) a.  Fewer than five students here have ever been to Moscow 
  b. *More than five students here have ever been to Moscow 
 
    a.  At most four students here have ever been to Moscow 
    b. *At least four students here have ever been to Moscow 
 
    a.  Less than half the students here have ever been to Moscow 
    b. *More than half the students here have ever been to Moscow 
 
   A better hypothesis, discovered by Ladusaw (1983), building on the earlier work of Fauconnier (1975, 1979), 
(See also Zwarts, 1981) is given by: 
 
(29)  The LadusawSFauconnier Generalization (LFG) 
 
   Negative polarity items occur within arguments of monotonic decreasing  
   functions but not within arguments of monotonic increasing functions 
 
 (The LFG assumes the properly general definition of decreasing; see (32)).  Clearly the NPs in (24) S (28) 
which license npi's are decreasing, and those which do not are not.  Also, drawing on (21d) and (21c) we see 
that the LFG yields correct results for (30) and (31), NP types not considered by Ladusaw or Fauconnier. 
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(30)   No player's agent should ever act without his consent 
   *Every player's agent should ever act without his consent 
    Neither John's nor Mary's doctor has ever been to Moscow 
 
(31)  None of the teachers and not more than three of the students have ever been to Moscow 
 
 To see what property decreasing NPs have in common with negation we must give the properly general 
definition of decreasing.   
 
(32)  a.  A partial order is a pair (A,#),  where A is a set, the domain of the partial order, 
    and #  is a binary relation on A which satisfies, for all a,b,d 0 A, a # a (reflexivity),  
    a # b & b # a Y a = b (antisymmetry) and a # b & b # d Y a # d (transitivity). 
 
  b.  If A and B are domains of partial orders and F is a function from A into B,  
 
    i. F is increasing iff for all x,y 0 A,  if x # y then F(x) # F(y).   
 
   (That is, if elements x,y of A stand in the order relation in A then their values 
    F(x) and F(y) stand in the order relation in B.  So F preserves the order.) 
 
    ii. F is decreasing iff whenever x # y in A then F(y) # F(x) in B.  So decreasing 
     functions are ones which reverse the order. 
 
 Now it is overwhelmingly the case that the sets in which expressions of an arbitrary category denote are 
domains of partial orders.   P1s denote elements of P(E), the collection of subsets of E, and the ordering relation 
is just the subset relation, f.  (One verifies that f is reflexive, antisymmetric and transitive).  As for Sentence 
denotations, the set {T,F} carries the implication order, defined by:  œx,y 0 {T,F}, x # y iff an arbitrary 
formula of the form "if P then Q" is true when P denotes x and Q denotes y.  So the relation obtains in just the 
following cases:  T # T, F # T and F # F.  Again one verifies directly that this relation is a partial order 
relation.  And one sees from our earlier definition (15) that increasing NPs are just the ones which denote order 
preserving maps from the P1 order into the implication order.  And from (16) we see that decreasing NPs are 
just the ones that reverse the order relations. 
 
 But now we can observe that (ignoring tense) didn't laugh denotes E S LAUGH the set of objects under 
discussion that are not in the LAUGH set.  So not (n't) maps each subset A of E to E S A.  And clearly, if A f 
B then E S B  f  E S A, that is, not(B) f not(A), so not is decreasing.  (So is classical logical negation which 
maps T to F and F to T). 
  
 In this way then we find a semantic property that "negative" NPs and negation have in common:  They all 
denote decreasing functions.  For more extended and refined discussion see Zwarts (1990) and Nam (to appear).  
We turn now to a second type of generalization. 
 
Constraints on Determiner Denotations 
 
 In the interpretation of Ss of the form [[NP Det + N] + P1] the role of the noun argument is quite different from 
that of the P1 argument.  It serves to limit the domain of objects we use the predicate to say something about.  
This simple idea of domain restriction is captured in the literature with two independent constraints:  
conservativity and extension. 
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 To say that a Det is conservative (CONS) is to say that we can decide whether Det A's are B's if we know 
which individuals are A's and which of those A's are B's.  So for B and C possibly quite different predicate 
denotations, if it happens that the B's who are A's are the same individuals as the C's who are A's then Det A's 
are B's and Det A's are C's must have the same truth value.  Formally, we define:   
 
(33)  A function D from PE to GQs is conservative  iff œA,B,C f E 
 
    if A 1 B  =  A 1 C  then  D(A)(B) = D(A)(C) 
 
 Note that if D is CONS as per (33) then for all properties A,B we have that D(A)(B) = D(A)(A1B), since B 
has the same intersection with A as A1B does.  The converse holds as well.  For suppose that for all X,Y 
D(X)(Y) = D(X)(X1Y).  We show that D satisfies the condition in (33).  Let A1B = A1C.  Then by the 
condition on D,  D(A)(B) = D(A)(A1B) =  D(A)(A1C), by the assumption, = D(A)(C), again by the condition 
on D.  9   
 
 To check that Det is CONS check that (34a) and (34b)  must always have the same truth value (= are logically 
equivalent), changing singulars to plurals where appropriate. 
 
(34)  a.  Det doctor is a vegetarian 
   b.  Det doctor is both a doctor and a vegetarian 
 
So e.g. John's is CONS since John's doctor is a vegetarian is logically equivalent to John's doctor is both a 
doctor and a vegetarian. 
  
 The apparent triviality of such equivalences suggests, wrongly, that CONS is a very weak condition.  K&S 
show that, for |E| = n, the number of conservative functions is 23, whereas the total number of functions from PE 
to GQs is 24.  Thus in a situation with just 2 individuals there are 216 = 65,536 functions from PE to GQs, but 
only 512 of these are CONS.  So conservativity rules out most ways we might associate properties with NP 
denotations.  For example, the function G given by G(A)(B) = 1 iff |A| = |B| is not CONS.  Nonetheless, 
 
(35)    With at most a few exceptions1 English Dets denote conservative functions 
  
 We note finally here that the format in which Conservativity is stated, (33) or its equivalent, does not require 
that D(A)(B) be a truth value, it just requires that D(A)(B) = D(A)(C) (or D(A)(A1B) in the equivalent 
formulation).  Thus it makes sense to ask whether interrogative Dets such as Which? are CONS.  An affirmative 
answer would imply that e.g. Which students are vegetarians? and Which students are both students and 
vegetarians? are logically the same question, that is, request the same information.  And this seems to be the 
case S a true answer to either of these questions is a true answer to the other.  So interrogative Which? is CONS. 
 
 Moreover (33) is actually just the special case of conservativity for Det1 denotations.  The general statement 
is:  if D is a k-place Det denotation (that is a function from k-tuples of properties to GQs) then D is CONS iff 
for all k-tuples A and all properties B,C if Ai 1 B = Ai 1 C then D(A)(B) = D(A)(C).  In other words if two 
predicate properties B and C have the same intersection with each noun property then the Det takes the same 
value at the noun properties and the first predicate property as it does at the noun properties and the second 
predicate property.  Usually for ease of reading in what follows we just give definitions for the case of Det1 
denotations, assuming the appropriate generalization to Detk's. 
 
 A more subtle constraint satisfied by Det denotations is Extension (EXT), first noticed by van Benthem  
(1984).  The intuition is that Dets cannot make crucial reference to objects which fail to have the property 
expressed by their noun arguments.  So English could not have a Det blik such that Blik A's are B's would mean 
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that there are exactly three things that aren't A's.  One might have thought that this was covered by 
Conservativity but in fact it is not.  E.g. given E, the function F defined by F(A)(B) = T iff |ESA| = 3 is CONS.  
The problem here is that once E is given a condition on ESA, the non-As in E, can always be expressed as a 
condition on As, and conservativity allows that we place conditions on the noun arguments A.  (See K&W for 
worked out examples).  To test whether crucial reference to non-As is made we must hold A constant and vary 
the non-As, ESA.  So we now we think of a Det denotation D as a functional which chooses for each universe E 
a function DE from PE to the generalized quantifiers over E.  Then, 
 
(36) D satisfies Extension2  iff œE,E' with A,B f E and A,B f E',  DE(A)(B)  =  DE'(A)(B) 
 
 Thus if D satisfies extension (EXT) then the truth of DE(A)(B) does not change if we change the non-As in 
the universe (and we may continue to write simply D(A)(B) instead of DE(A)(B) since the truth value does not 
vary with the choice of E).   And we claim: 
 
(37)  The denotations of natural language Dets always satisfy Extension 
 
 We note that CONS and EXT are independent:  the functional D which maps each E to that function DE 
which sends A,B to T iff A = B satisfies EXT but DE fails CONS in each (non-empty) E.  By contrast the 
functional F which maps E to EVERYE if E is finite and SOMEE if E is infinite fails to satisfy EXT but in each 
universe E, FE is CONS. 
 
 The combined effect of CONS and EXT, namely Domain Restriction, is a kind of "logical  topicality" 
condition.  It says in effect that the head noun determines the relevant universe for purposes of the statement we 
are concerned with.  Worth noting here is that mathematical languages such as those used in Elementary 
Arithmetic, Euclidean Geometry or Set Theory are special purpose in that the range of things we can talk about 
is fixed in advance (numbers, points and line, sets).  But natural languages are general purpose S  speakers use 
them to talk about anything they want, and common nouns in English provide the means to delimit "on line" 
what speakers talk about and quantify over. 
 
Subclasses of Dets:   Existential There Ss 
 
 So given a universe E, whether an arbitrary Det1 denotation D holds of a pair A,B can only depend on which 
individuals are A's and which of those are B's.  But Dets differ greatly among themselves with regard to how 
much of this information they use.  Below we distinguish several subclasses together with linguistic 
generalizations based on these classes.   
 
 We call a Det denotation D intersective (INT) if we can determine the truth of D(A)(B) just by checking 
which individuals lie in A1B.  So D(A)(B) depends just on A1B.  For example, MORE THAN TEN is INT: to 
know if More than ten students applauded we only need to know about individuals in the intersection of 
STUDENT with APPLAUD, we need not concern ourselves with students who didn't applaud.  Also SOME in 
the sense of at least one is INT.  SOME(A)(B) = T iff A1B … i, so we decide whether Some A's are B's just by 
checking the set of A's who are B's.  Since SOME is corresponds to the existential quantifier in logic we shall 
sometimes refer to intersective Dets as generalized existential Dets.   
 
 By contrast co-intersective (= CO-INT) Dets just depend on ASB, the complement of A1B relative to A.  For 
example, whether All but ten A's are B's is true is decided just by checking that ASB, the set of A's that are not 
B's, has cardinality 10.  Similarly EVERY(A)(B) = T iff ASB = i.  (Note that ASB = i iff A f B).  Since such 
Dets include EVERY and ALL BUT TEN they will also be called generalized universal.  We define: 
 
(38)  a. D is intersective (INT)  iff  for all A,A',B,B' f E, 
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    if A 1 B  =  A' 1 B'  then D(A)(B) = D(A')(B') 
 
   b.  D is co-intersective (CO-INT)  iff  for all A,A', B, B' f E, 
  
    if A S B  =  A' S B'  then D(A)(B) = D(A')(B') 
 
 (38a) for example says that an intersective D cannot tell the difference between arguments A,B and A',B' if 
they have the same intersection.  That is, whether D(A)(B) is true just depends on the intersection of A with B.   
  
 As we shall be primarily concerned with INT and CO-INT below, let us contrast them first with Dets that are 
neither.  Proportionality Dets like most, less than half the and over ten per cent (of the) are an important case in 
point.  To decide whether most students read the Times we must be able to compare the students who do with 
those who don't.  Just knowing which students read the Times is insufficient to decide whether most do; and just 
knowing which students don't is also insufficient.  Formally, 
 
(39) a. D is basic proportional iff  for some 0 < n < m  
 
      œA,B D(A)(B) = T iff  |A1B| = (n/m)@|A| or œA,B  D(A)(B) = T iff |A1B| > (n/m)@|A| 
 
    b. The proportionality Ds are the non-trivial boolean compounds of basic proportional ones. 
 
From (39b) we see that exactly a third (of the) is proportional since it denotes the same function as at least a 
third and not more than a third.  Equally (39b) covers co-proportional Dets like all but a third when the noun 
argument A is finite S the only case where proportions like (n/m)@|A| are intuitive.  In such a case All but a third 
of the A's are B's must have the same value as Exactly two thirds of the A's are B's.  The non-triviality condition 
rules out ALL and NO (expressible for example as more than half and less than half).  
 
 Thus to decide whether a Det D relates A and B we must know more if D is a proportionality one than if D is 
merely INT or CO-INT.  In fact B&C show that even if we restrict the universe E to be finite, more than half is 
not definable in first order logic.  This claim extends (see K&W and references cited there) to the full class of 
basic proportional Dets.  These results also imply that cardinal comparative Det2s like MORE...THAN... are 
not definable in first order; if they were we could use them to define MORE THAN HALF in first order by:  
MORE THAN HALF(A)(B) = MORE(A1B)THAN(ASB)(E).  This just says that more than half the A's are 
B's means more A's who are B's than A's who are not B's exist.  These remarks lay to rest the issue about 
whether natural language semantics can be represented in first order logic:  it can't. 
 
 We consider now the (co-)intersective Dets in more detail.  Observe first that the INT Dets considered so far 
satisfy a stronger condition than intersectivity:  they are cardinal (CARD):  the value of D(A)(B) only depends 
on |A1B|, the cardinality of A1B.  Dually the CO-INT Dets are co-cardinal (CO-CARD);  their value just 
depends on |ASB|. The formal definitions of these notions follow that for INT and CO-INT, replacing 
everywhere A1B with |A1B|, etc.  Some examples: 
 
 SOME CARDINAL DETS:  at least/more than/fewer than/exactly ten; between five and 
  ten; not more than ten; either fewer than ten or else more than a hundred; just finitely many 
 
  SOME CO-CARDINAL DETS:  all, almost all, not all, all but ten; all but at most ten; all 
  but finitely many 
 
 Note that not all CARD (CO-CARD) Dets are first order definable:  just finitely many (and its boolean 
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complement infinitely many) is not; nor is all but finitely many.  So the properly proportional Dets do not have a 
monopoly on being non-first order definable.   
 Note also that Det2s like more...than... are INT and in fact CARD.  To say that a Det2 D is INT is to say that 
the value of D(A1,A2)(B) depends just on the intersections A11B and A21B.  To say that it is CARD just says 
that it depends on the cardinalities of these intersections.  And in fact we can decide the truth of More A1's than 
A2's are B's if we know |A11B| and |A21B| so MORE...THAN... is CARD and so a fortiori INT.  (For further 
discussion of such Det2s see Keenan and Moss (1985) and Beghelli (1992, 1993). 
 
 Are there (co-)intersective Dets in English that are not (co-)cardinal?  There seem to be no syntactically 
simple cases, but two candidates for somewhat complex ones are Exceptive Dets such as no/every...but John in 
NPs like no student but John/every student but John and Cardinal Adjectival Comparative Dets like more male 
than female in more male than female students.  In both cases alternative analyses are certainly possible (see 
section 3).  But interpreting them as Dets they clearly fall into the (co-)intersective class: 
 
(40)  a.  (NO A BUT JOHN)(B) = T iff A1B = {John} 
 
    b.  (EVERY A BUT JOHN)(B) = T iff ASB = {John} 
 
 (40a) says that No student but John laughed is true iff the set of students who laughed has only John as an 
element.  So the value of NO...BUT JOHN at a pair A,B of properties is decided just by checking their 
intersection, so NO...BUT JOHN is intersective.  Dually EVERY...BUT JOHN(A)(B) just depends on ASB so 
it is co-intersective.  Equally taking adjectives like male and female as absolute, that is the male A's are just the 
A's who are male individuals, so MALE(A) = MALE(E) 1 A, the reader may check that more male than 
female defined in (41) is intersective but not cardinal. 
 
(41) MORE MALE THAN FEMALE(A)(B) = T iff |MALE(A) 1 B| > |FEMALE(A) 1 B| 
 
 The notions of (co-)intersectivity play an important role in many linguistically revealing generalizations.  
Here is a first, non-obvious one.  We have been interpreting Ss like Some swans are black directly as 
SOME(SWAN)(BLACK).  But in standard logic it is represented as (›x)(Swan(x) & Black(x)), where the 
quantification is over all the objects in the model, not just the swans.  In our variable free notation this would be 
SOME(E)(SWAN 1 BLACK).  This formulation eliminates the restriction to swans in favor of quantifying 
over all the objects in the universe, and it preserves logical equivalence with the original by replacing the 
original predicate property BLACK with an appropriate boolean compound of the noun property and the 
predicate property, SWAN 1 BLACK.  Thus some does not make essential use of the domain restriction 
imposed by the noun argument.  The same equivalence obtains if we replace some by e.g. exactly two.  Exactly 
two swans are black is logically equivalent to Exactly two objects are both swans and are black.   
  
 We shall say then that quantifiers like some and exactly two are sortally reducible meaning that we can 
eliminate the restriction on the domain of quantification compensating by building a new predicate property as 
some boolean compound (in our examples it was boolean compounds with and) of the original noun property 
and the original predicate property.  Formally 
 
(42) For each E, a function D from PE to GQs is sortally reducible iff there is a two place boolean function h  
  such that for all A,B f E,  D(A)(B) = D(E)(h(A,B)).  D is called inherently sortal if there is no such h. 
 
 Query:  Which English Dets are sortally reducible, and which are inherently sortal?  One other reducible one 
comes to mind immediately, based on the standard logic translation All swans are black:  (œx)(Swan(x) 6 
Black(x)).  This just says that ALL(SWAN)(BLACK) =  ALL(E)(5SWAN w BLACK), where here the 
boolean compound has been built with complement and disjunction (drawing on the equivalence of (P 6 Q) and 
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(5P w Q)).  Thus like some, all is sortally reducible.  By contrast most is not.  Most swans are black provably 
has no paraphrase of the form (For most x)(...Swan(x)...Black(x)...) where the expression following (For most 
x) a formula built from the predicates Swan and Black (as many times as we like) using any combination of and, 
or, and not.  Now in fact Keenan (1993) provides a complete answer to the query: 
 
(43) A conservative D from PE to GQE is sortally reducible iff D is intersective or D is co-intersective 
 
 We turn now to the role of intersectivity in providing an answer to a problem which arises in the context of 
generative grammar.    Consider: 
 
(44)   There wasn't more than one student at the party 
     Are there more dogs than cats in the garden? 
     There was no one but John in the building at the time 
      Weren't there more male than female students at the party? 
 
Such Ss, called Existential There (ET) sentences,  are used to affirm, deny or query the existence of objects (e.g. 
students) with a specified property (e.g. being at the party).  NPs like more than one student which naturally 
occur in such Ss will be called existential NPs.  So the NPs italicized in (45) are not existential, as the Ss are 
either ungrammatical or assigned an unusual interpretation. 
 
(45) *There wasn't John at the party 
  *There were most students on the lawn 
  *Was there every student in the garden? 
  *There wasn't every student but John in the garden 
  *Were there two out of three students in the garden? 
  *There weren't John's ten students at the party 
 
   The linguistic problem:  define the set of existential NPs in English.  B&C, drawing on Milsark (1977), were 
the first to propose a semantic solution to this problem, and they located the solution in the nature of the Dets 
rather than the NPs themselves.  In (46) we present a somewhat different solution, one that draws on theirs and 
on Keenan (1987a).  See ter Meulen and Reuland (1987) for extensive discussion of the empirically problematic 
issues here. 
 
(46) NPs which occur naturally in ET contexts are (boolean compounds of) ones built from 
    intersective Dets  
 
 The data in (44) and (45) support (46).  The clause on boolean compounds correctly predicts the acceptability 
of Ss like There were about five dogs and more than ten cats in the kennel.  Equally one proves that boolean 
compounds of intersective Dets are intersective, whence (46) predicts good There were neither exactly two nor 
exactly four cats on the mat. 
  
 Thus we have a linguistic property which correlates reasonably well with intersectivity.   No corresponding 
property correlating with co-intersectivity is known.    But there is a non-obvious semantic property determined 
jointly by the INT and CO-INT Dets.  Namely, for each universe E, CONSE (the set of conservative functions 
over E) is exactly the functions which are buildable by boolean operations on the intersective and co-
intersective functions.  Here the negation of a Det, e.g. not more than ten, denotes the boolean complement of 
the Det denotation, 5(MORE THAN TEN), where in general 5D is that function mapping A,B to 5(D(A)(B)), 
where of course 5T = F and 5F = T.  Similarly D1 v D2 is that map sending each A,B to D1(A)(B) v D2(A)(B).  
So At least two and not more than ten A's are B's is true iff at least two A's are B's and not more than ten A's are 
B's.  And we claim (Keenan 1993): 
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(47)  For each universe E,  CONSE = the complete boolean closure of INTE c CO-INTE 
 
 In other words, modulo the boolean operations on Det denotations we can represent CONSE, the possible Det 
denotations over E, by the generalized existential and generalized universal ones.  This is a surprisingly large 
reduction.  Most elements of CONSE are not intersective or co-intersective.  E.g. in a universe of just 3 
individuals there are more than 130 million conservative functions, only 510 of which are either intersective or 
co-intersective.  The general figure: 
 
(48)  For |E| = n,  |CONSE| = 23\n  and |INTE c CO-INTE|  =  22\n  + 1 S 2 
 
 A last property of intersective Dets concerns the role INT plays in yielding the cardinal Dets from the more 
general class of "logical" Dets.  Alongside of such classical quantifiers as some, every, and most we have been 
treating as Dets "non-logical" expressions such as John's and more male than female.  But for various purposes, 
such as mathematical or logical study, we want to distinguish these classes, and we can do so in terms of 
properties of their denotations.  Informally first, the "logical" Dets are ones which cannot distinguish among 
properties according to which particular individuals have them.  So such Dets do not themselves make any 
contingent (= empirical) claims about how the world is.  Thus once we are given the set of cats and the set of 
black things in a situation the truth of Some/All/Most cats are black is determined, but that of John's cats are 
black is not.  In this latter case we must still distinguish among the individual cats according as they are John's 
or not, and which cats John "owns" in a given situation is a contingent property of that situation and may be 
different in another situation (even with the same universe).  (See K&S for more extensive discussion).  
Formally the "logical" Dets are the isomorphism invariant ones:   
 
(49)  D is isomorphism invariant (ISOM) iff œE and all bijections B with domain E, B(DE)  = DBE 
 
By BE is meant {B(x)|x 0 E}and similarly for BA and BB.  So B is just a way of replacing the objects in E 
without omitting any or collapsing any (= mapping different ones to the same one).  And by B(DE) is meant that 
map which sends each BA,BB to whatever DE send A,B to.  So (49) says in effect that DE(A)(B) = DE(BA)(BB), 
all bijections B with domain E.  And this just means that the value of D(A)(B) doesn't change if we 
systematically replace some individuals by others. 
 
 One shows that all (co-)cardinal Dets are ISOM.  So are the proportionality Dets like half of the (but not half 
of John's), and so are definite Dets like the ten (but not John's ten) which is neither proportional nor (co-) 
cardinal.  And we observe that the cardinal Dets are just the ISOM intersective Dets.   
 
(50) If D satisfies Extension2 then  
 
 a.  D is cardinal iff D is isomorphism invariant and intersective, and 
 b.  D is co-cardinal iff D is isomorphism invariant and co-intersective 
 
Definite Dets and NPs 
 The last result we consider here is again based on B&C.  We are concerned to define the set of NPs which 
occur grammatically following the of phrase in partitives such as more than ten of John's cats, each of those 
students, and all but two his ten children.  Linguists usually consider that such NPs have the form [Det1 of NP], 
one we generalize to [Detk (of NP)k] to account for such NPs as more of John's cats than of Bill's dogs of the 
form [Det2 (of NP)2].   
 
 Now it turns out that the acceptability of an NP in the post of position in partitives is significantly determined 
by its choice of Det (which is in part why, earlier, we treated more than ten of John's, each of those, etc. as 
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complex Det1s).  Observe: 
 
(51)  a. [at least two of Det cats] is acceptable when Det = the, the six, the six or more, 
     John's (six (or more)), those(six(or more)), John's doctor's (six(or more)) 
    b. [at least two of Det cats] is not acceptable when Det = each, no, most, at 
    least/exactly/less than nine, no children's (six) 
 
 To characterize the Dets which build NPs acceptable in plural partitives we need two preliminary 
observations.  First, given A f E, we say that a function G from properties to truth values is the filter generated 
by A iff for all B, G(B) = T iff A f B.  So EVERY(A) is the filter generated by A and THE SIX (A) is the filter 
generated by A if |A| = 6, otherwise it is 0, that GQ which sends each subset B of E to 0.  And (JOHN'S 
SIX)(A) is the filter generated by (A which John has) if in fact John has exactly six A's, otherwise it is 0. 
 
 Secondly, a point we have been ignoring for simplicity of presentation, given a universe E there are typically 
many acceptable ways of interpreting a non-logical Det such as John's two.  These interpretations differ 
according which individual John denotes and, for each such individual, which objects that individual stands in 
the HAS relation to.  In the general case then we should think of Dets D as functionals associating with each 
universe E a set DE of functions from PE to GQs over E.  Our earlier definitions of notions like cardinal lift 
easily2 to the more general setting.  E.g. D is CARD iff for each E, each F 0 DE is CARD as defined earlier 
(viz.,  F(A)(B) = F(A')(B') whenever |A1B| = |A'1B'|, all subsets A,A',B,B' of E).  We may now define: 
 
(52) D is definite iff D is non-trivial and for all E, all F 0 DE, all A f E, F(A) = 0 or F(A) is the filter generated 
  by some non-empty C f A.  If C always has at least two elements D is called definite plural.   
 
 The Dets in (51a) are definite plural and those in (51b) are not.  And we propose: 
 
(53) NPs which occur in plural partitive contexts like [two of  _] are (conjunctions and 
  disjunctions of) ones built from definite plural Det1s. 
 
  Conclusion  These remarks cover several of the major applications of generalized quantifier theory to 
linguistic analysis.  For each generalization we have made we encourage the reader to consult the literature 
referred to.  Of necessity an overview omits much fine grained linguistic analysis in favor of 
comprehensiveness.   
 
                 Footnotes 
 
*  in The Handbook of Contemporary Semantic Theory S. Lappin (ed) Blackwell 1996  
 pp 41S63 
 
1.  See for example K&S, Johnsen (1987), Westerståhl (1985) and Herburger (to appear).  All putative 
counterexamples to Conservativity in the literature are ones in which a sentence of the form Det A's are B's is 
interpreted as D(B)(A), where D is conservative.  So the problem is not that the Det fails to be conservative,  
rather it lies with matching the Noun and Predicate properties with the arguments of the Det denotation.  Thus 
Westerståhl points out that Ss with many as Many Scandinavians have won the Nobel Prize admit of an 
interpretation in which it means that many Nobel Prize winners have been Scandinavian.  Herburger points out 
that this reversal of the domain restricting and predicate properties is not allowed by all Dets.  E.g. Most 
Scandinavians have won the Nobel Prize does not allow such reversal.  And the whiff of generality is in the air:  
Can we find a property of Dets which allows us to predict whether they allow the reversal of the Noun and 
Predicate properties? 
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2.  See K&W for the appropriate generalization of "satisfies Extension" to the case of "non-logical" Dets, in 
which case a Det D associates with each non-empty universe E a set of functions from PE to GQE. 
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