

Manual: Phonotactic learning program1

Version 1.1, June 2008

Manual revised November 2009

Frank Capodieci
Bruce Hayes
Colin Wilson

UCLA

1 This manual was written by Bruce Hayes, reflecting input from Colin Wilson and Frank Capodieci.

Manual: Phonotactic learning program p. 2

Contents

1. Authorship ... 3
2. What the program does .. 3

2.1 Output files created... 4
3. Installing the program.. 6

3.1 A caution regarding running the program in Windows.. 6
4. Launching the program.. 7

4.1 Construct your input files ... 7
4.2 Tell the program where your files are .. 8
4.3 Specify a task... 8

5. Controlling the program: optional elements ... 9
5.1 Testing data... 9
5.2 Projections .. 9
5.3 Specifying gram size ... 10
5.4 Specifying maximum O/E.. 10
5.5 Maximum number of constraints to discover.. 11
5.6 Allowing complement natural classes... 11

6. Using the program with preexisting results ... 11
6.1 Starting from scratch: learn the constraints and weights.. 11
6.2 Testing an existing grammar with the test data .. 12
6.3 Add more constraints to an existing grammar.. 12
6.4 Reweight the constraints of an existing grammar... 12

7. Other control parameters... 13
7.1 Advanced files ... 13

7.1.1 Limitation on n-gram constraints.. 13
7.1.2 Accuracy schedule .. 13

7.2 Advanced parameters.. 13
7.2.1 Smoothing ... 13
7.2.2 Sigma .. 13
7.2.3 Target size of learning samples... 13
7.2.4 Maximum length of machines used to generate E(xpected) value 13

8. More on phonetic symbols and features ... 14
8.1 Legal symbols.. 14
8.2 The natural classes file ... 14
8.3 Adequacy in feature systems: specifying each segment uniquely 14

9. Mapping from model predictions to experimental data.. 15
10. Troubleshooting and queries ... 16

Manual: Phonotactic learning program p. 3

1. Authorship

This program embodies the phonotactic learning algorithm described in the following
article: Bruce Hayes and Colin Wilson (2008) “A Maximum Entropy Model of Phonotactics and
Phonotactic Learning,” Linguistic Inquiry 39: 379-440.2 The program was written in Java by
Colin Wilson, with a user interface by Frank Capodieci.

2. What the program does

The focus of the program is the phonotactics of a language; that is, the principles that
determine what is a phonologically legal word. For example, in English “blick” [blɪk] is legal,

“bnick” [bnɪk] is illegal, and “bwick” [bwɪk] has an intermediate status.

When provided with a corpus of language data consisting of words in phonetic transcription,

the program attempts to learn the phonotactic constraints implicit in the corpus. These
constraints can then be used to evaluate novel forms, assigning them numerical values
corresponding to their predicted phonotactic well-formedness.

The learning data consist of a list of forms in a user-chosen transcription, each datum

accompanied by a integer frequency value. For example, the file of learning data from the Shona
simulation reported in Hayes and Wilson (2008) begins like this:

a dh a 1
a k i t a 1
a m b u r a 1
a m w a 1
a N g a r a 1
a N g a r a r a 1
a n zv a 1
a sh a n u dz a 1
a t s a m a 1
a u d y u dz a 1
. . .

The program also needs a feature chart, which defines the symbols according to their

phonetic (featural) properties. The format is very simple: the top row labels are feature names,
the left side labels are the speech sounds, and the values are +, -, or 0 (unspecified). The
separator for the columns is a tab. For example, the upper left hand corner of the feature chart
for Shona looks like this:

2 Preprint version downloadable from

http://www.linguistics.ucla.edu/people/hayes/Papers/HayesWilsonMaximumEntropyPhonotacticsAugust2007.pdf.

Manual: Phonotactic learning program p. 4

 syllabic consonantal approximant sonorant
w - - + +
y - - + +
m - + - +
v - + + +
p - + - -
pf - + - -
b - + - -
bh - + - -

Lastly, users of the program normally include a set of testing data, to see if the grammar

learned by the program is adequate. Testing data consist of single words, in the same
transcription system as the learning data, and optionally annotated with one or more classifying
headings (tab-separated). Here is the start of the testing data for the Shona example; the right
two columns serve purely for the convenience of the users: 3

m e m i m a SingleC_bad 3
m e m o m a SingleC_bad 0
m u m e m a SingleC_bad 4
m a m e m a SingleC_bad 3
m u m o m a SingleC_bad 1
m i m e m a SingleC_bad 0
m a m o m a SingleC_bad 1
m i m o m a SingleC_bad 0
m o m i m a SingleC_bMarginal 23
m o m u m a SingleC_bMarginal 20
m o m o m a SingleC_good 705
m e m e m a SingleC_good 601
m i m i m a SingleC_good 507

The program will read the learning data and the feature chart, will attempt to find the best

phonotactic grammar it can, and will print out output files listing the grammar and what it
predicts for the test forms.

2.1 Output files created

The program will create these files in a new folder called output, which will be the daughter
of the folder that contains the input files.

 Grammar.txt. This has the constraints that the system discovered, along with their

weights. For example, in the Shona simulation, the first four constraints are:

*[+word_boundary][+word_boundary] (tier=Vowel) 1.756
*[-syllabic][+word_boundary] (tier=default) 7.529
*[-low][+word_boundary] (tier=Vowel) 7.347
*[-voice][-continuant] (tier=default) 4.105

3 As it happens, “singleC” means one consonant between the first and second vowels, and the integers denote

the frequency of the pair consisting of the first two vowels in the CBOLD database; see Hayes and Wilson (in press)
for details. The point is that any number of tab-separated fields that might be useful to the program user (for
example, in sorting the output file in a spreadsheet program) may be included.

Manual: Phonotactic learning program p. 5

The “tiers” are discussed below in section 5.2.

 blickTestResults.txt. This file includes all the forms that you included in your testing

data, and gives their constraint violations and the computed weighted sum for these
violations (summed products of violations times constraint weights), indicating the
degree of penalty assigned.4 For the Shona simulation, the output file (truncated to make
it visible) looks like this:

word score *

[
+
w
o
r
d
_
b
o
u
n
d
a
r
y
]
[
+
w
o
r
d
_
b
o
u
n
d
a
r
y
]

*
[
-
s
y
l
l
a
b
i
c
]
[
+
w
o
r
d
_
b
o
u
n
d
a
r
y
]

*
[
-
l
o
w
]
[
+
w
o
r
d
_
b
o
u
n
d
a
r
y
]

(
o
t
h
e
r

c
o
n
s
t
r
a
i
n
t
s

o
m
i
t
t
e
d
)

annotation

 Vowel default Vowel
 1.832 7.527 7.348
m e m i m a 0 0 0 0 … AsingleC_bad
m e m o m a 3.599 0 0 0 … AsingleC_bad
m u m e m a 3.863 0 0 0 … AsingleC_bad
m a m e m a 0 0 0 0 … AsingleC_bad
m u m o m a 3.863 0 0 0 … AsingleC_bad

For how to convert the scores into probabilities, see section 8 below.

Other files, less crucial but possibly useful, are as follows.

 sampleSalad.txt. A set of randomly-created forms, which match the probability

distribution defined by the grammar.5
 NatClassesFile.txt. The set of natural classes defined by your feature system.

4 The name “blick test” comes from the example given by Chomsky and Halle (1965, Journal of Linguistics),

who offer “blick” as an example of a non-existing but possible word of English, and “bnick” as a non-existing and
impossible word. A “blick test” for English might consist of obtaining native speakers well-formedness judgments
for words of the “blick” type and words of the “bnick” type. It can be illuminating to give the same blick test to
both native speakers and proposed computational models; hence the name of the output file.

5 The file name is whimsical: if for whatever reason the program does a bad job, the outputs will look like
phoneme salad. The inspiration is “word salad”, used by the linguist Haj Ross for an utterly ungrammatical
sentence.

Manual: Phonotactic learning program p. 6

 LearnerSettings.txt. A file that records the settings used in running the learning
simulation.

 ProgramTrace.txt. The program’s report of its own behavior; not really for public
consumption but possibly useful for various purposes.

3. Installing the program

You need a computer that runs Java. This can include several different operating systems
(Windows, Mac, Linux).

To enable your computer to run Java, you need to download the “Java runtime

environment.” Most computers already have it; you can check yours by searching for the file
“java.exe”. If you don’t have the Java runtime environment, first download it (for free) from
http://www.java.com/en/download/index.jsp.

The program uses a version of Java that is quite up-to-date (as of late 2007), at least version

1.6. You’ll need to update your Java if your own copy is older than this.6

The program is downloaded in the form of a zip file. Put the file in a new folder and use

unzipping software (readily obtained on the Internet) to unzip it.

The crucial materials are:

 uclaplui.jar — this is the program itself, click on it to run
 A folder called lib. This is a library of software, obtained under various open-source

software packages,7 that the main program uses when it runs. The materials in this
library are licensed under various free public licensing agreements. You need to have the
lib folder sitting in the same folder at uclaplui.jar.

3.1 A caution regarding running the program in Windows

Java and Windows are run by different companies and suffer from certain (manageable)
compatibility problems. If you are using Windows to run this program, you can avoid trouble if
you never put spaces into file names or folder names involving the program. This will let Java
find the files that it needs.

6 This will be harder if you have an older Mac, which may not run the newer Java. Try the SoyLatte Java, at

http://landonf.bikemonkey.org/static/soylatte/.
7 For the licenses, consult the following. commons-math1.0.jar, commons-cli-1.0.jar:

http://jakarta.apache.org, colt.jar: http://dsd.lbl.gov/~hoschek/colt/, jas.jar: http://java.freehep.org/, trove.jar:
http://trove4j.sourceforge.net/, datafile.jar: http://sourceforge.net/projects/datafile/, pal-1.5.jar:
http://www.eso.org/science/scisoft7/, commons-io-1.2.jar: http://commons.apache.org/, swing-layout-1.0.jar:
https://designgridlayout.dev.java.net/. If you download and use this software, you are agreeing to abide by the
licenses for all of these packages (merely using the software will satisfy this requirement).

This program itself is hereby licensed under the GNU General Public License, described at
http://www.gnu.org/copyleft/gpl.html.

Manual: Phonotactic learning program p. 7

You can still make your file and folder names reasonably legible by using traditional
devices, for example, you can name a file CapitalizeAllWords.txt or put_in_underscores.txt.

4. Launching the program

The program is in a single file called UCLA_Phonotactic_Learner.jar. Click on this file
to launch the program.

Once it launches, you will see an interface like this:

To run the program, you will need to do the following.

4.1 Construct your input files

The minimum you need is the following, each of which has a box and a Change button on
the interface to permit you to fill it in. Set up these files and put them into the folder for your
simulation.

 Learning data: file containing learning data
 Features chart: file containing features and segments

You can give them any name you like, though it would be normal to make the file suffix be .txt,
to indicate that they are plain text files. The file specifications are given above (section 2), and

Manual: Phonotactic learning program p. 8

you can see examples by looking at the sample files for Shona phonotactics (Features.txt,
LearningData.txt) that come with the program.

When you construct your learning data file, it is wise to make sure that the frequencies total
above 3000. You can simply edit your file (e.g. with a spreadsheet program) to insure this—note
that if the items differ in their frequency, it’s only the proportional difference that matters, so
you can freely multiply all frequencies by a constant.

The program will warn you if your data total less than 3000.8

4.2 Tell the program where your files are

Fill in the box labeled Working folder with the folder where you’re keeping the files for
this particular simulation (you can use the Change button to do this easily).

You must keep all of your input files in this folder, and not scattered across your hard disk,

so if you want to use (say) a particular features file for more than one simulation, you must put a
copy in each folder that uses the file.

4.3 Specify a task

The default task is simply to examine the learning data and construct a grammar from
scratch. To do this, check the default box at the top of the interface.

There are three other possible tasks, discussed section 6 below.

4.4 Start

Click the “Go” button.

A text window reporting the program’s progress will pop up. Its content is somewhat

technical, but you will be able to discern first some preliminary work, then the learning of the
constraints (note: they are numbered starting with zero), then the final precision calculation of

8 It will issue a really dire warning if the total is 100 or less; the behavior of the program with very short

learning-data files is rather unpredictable.

Manual: Phonotactic learning program p. 9

the weights (see Hayes and Wilson (in press), section 3.3.2). This material is kept for later
inspection in the output file ProgramTrace.txt.

5. Controlling the program: optional elements

5.1 Testing data

You will probably want to include a file of testing data, to which the program will assign
predicted scores, making it possible to evaluate the grammar. The file specification is given in
section 2 above, and you can see an example by looking at the sample Shona file Testing.txt that
comes with the program.

Enter the name of your testing data file in the appropriate box. You can do this with the

Change button.

If you don’t include a testing data file, then the program will automatically make up its own:

it will test all of your training data.9

5.2 Projections

The system has more power to discover generalizations if you create projections, which are
substrings selected from the full string of phonemes for each learning form. For example, if you
select the substring consisting solely of vowels, it will make possible the learning of
generalizations about vowel harmony more feasible. For full discussion of projections, see
Hayes and Wilson (in press), sections 6 and 7.

To create a projection, create a text-format file that looks like this (example is from the

Hayes/Wilson simulation for Shona vowel harmony):

Vowel +syllabic : high, low, back, word_boundary Grams: 3

 “Vowel” is the name of the projection, used to identify it in the learned grammar. Projection
names should consist solely of letters, and should include no spaces.

 “+syllabic” is the feature that defines the projection; that is, the projection consists of just the
[+syllabic] sounds. To more than one feature, separate the feature values with commas; so,
for example, “+syllabic,+high” would create a projection of high vowels.

 “high, low, back” are the projected features; i.e. the projection consists of sequences of
underspecified matrices that include just these three features.

 “Grams 3” is explained below in section 5.3.

9 This is less trivial than it might sound: rare phonological sequences in the learning data often result in

penalty scores, reflecting their underrepresented status.

Manual: Phonotactic learning program p. 10

The program will make use of your projections file if you enter the location of the file in the
box labeled Projected tiers. You can leave this box blank, in which case the program will work
only with complete phonological strings.

5.3 Specifying gram size

“Gram size” means the number of feature matrices that appears in a constraint. For
example, the gram size of the constraint *[+nasal][–voice] is two.

The maximum gram size of constraints will be 3 unless you specify otherwise. (However,

it’s quite possible that none of the constraints learned will actually be this long—the system is set
up that if it can explain the data using shorter constraints, it will.)

Generally, if you specify a high value for this parameter, the system will take longer—

perhaps even unfeasibly long (see Hayes and Wilson, section 6.2) to finish learning.

There are several ways to specify maximum gram size.

 If you do nothing, it will be set at 3.
 Or you can fill in a value (1, 2, 3, or 4) on the interface, which will override the default

value.

 Or, if you are using projections, you can separately specify the gram size separately on
each projection, using the format given in the previous section.

5.4 Specifying maximum O/E

The value “O/E” (“observed over expected”) is a measure of constraint effectiveness, the
ratio of the number of times a constraint is violated in the learning data, to the number of times it
would be expected to be violated, based on the grammar as learned so far. For discussion, see
Hayes and Wilson, section 4.2.1.

Powerful, important phonotactic constraints tend to have low O/E values. The program

searches for these constraints first. But, unless you specify otherwise, it will continue to search
for constraints, even rather nonuseful ones, essentially to the bitter end—i.e. up to the value of 1
for O/E. However, you can tell it to stop earlier by filling in a lower maximum O/E value in the
appropriate window:

Manual: Phonotactic learning program p. 11

In this case, the program will give up after having explored only the constraints that do
better than this O/E criterion. Most of the simulations in Hayes and Wilson’s paper were set up
to stop at 0.3.

5.5 Maximum number of constraints to discover

This is a different way of making sure your simulation will terminate in reasonable amount
of time. Note that it is not always necessarily to impose such a maximum—often, there are only
a limited number of constraints that meet the specified O/E threshold, and the program will halt
after it has discovered them.

5.6 Allowing complement natural classes

When you check this box, the program will (if appropriate) learn “implicational” constraints,
of the type: “any segment occurring in (some environment) must belong to some particular
natural class.” Formally, this means that the constraint includes a matrix, designated with “^”,
meaning “any segment which is not this”. Example: *[^–voice,+ant,+strid][+nasal], as applied
to English, means “assess a violation for any nasal preceded by a segment other than [s].” For
further discussion, see Hayes and Wilson, section 4.1.1.

5.7 Long words

If your words are particularly long, you’ll need to adjust a parameter to enable it to run. Go
to the box labeled “Maximum length of machines used to generate E value”, and enter the length
in segments of your longest word.

6. Using the program with preexisting results

The basic task menu at the top of the interface:

allows you to operate the program with some information already in place.

6.1 Starting from scratch: learn the constraints and weights

This is covered above.

Manual: Phonotactic learning program p. 12

6.2 Testing an existing grammar with the test data

Suppose you have already learned a complete grammar, including weights, and want to find
out what it predicts for a new data set. To do this:

 Make sure your grammar is in the input folder for the simulation as a whole. (You will

usually have to copy it “upward” from the output folder, where it was created, to the
mother folder.)

 Include the file name for your grammar in this box:

 Include the file name for your testing data in the testing data box.

Note: if you want to test a grammar, but it doesn’t already have weights, you must select a

different option, namely Reweight the constraints of an existing grammar, described under
§6.4 below.

6.3 Add more constraints to an existing grammar

Suppose you’ve learned a grammar containing, say, 50 constraints, and want to add more.
To do this:

 Make sure your grammar is in the input folder for the simulation as a whole. This means

you’ll have to take it from the output folder and put a copy in the input folder.
 Include the file name for your grammar so far in this box:

 Make sure that the current settings won’t halt learning where it already is. This means

that Maximum number of constraints to discover has a number higher than what is
already in your grammar, and that your O/E threshold (see section 5.4 above) is generous
enough to allow more constraints to be found.

The program will learn new constraints and add them to what you specified. Note that if the

initial batch of constraints included weights, they will be ignored; a complete set of new weights
will be assigned to the expanded grammar as a whole.

6.4 Reweight the constraints of an existing grammar

Check this box in the following situation: you have n predetermined constraints, and want
the program simply to find the best weights for them and conduct a blick test. The weights
already in the grammar file will be overwritten.

Manual: Phonotactic learning program p. 13

It is not necessary for your constraints to have been learned by the program—provided you

format them with care, the constraints can be ones that you made up yourself. You can find a
sample format in the file grammar.txt, which comes with software, part of the Shona
simulation. You may find it helpful if you are creating a grammar to first run the program in
conventional model, creating the file NatClassesFile.txt. This will tell you what natural classes
you can use in making up constraints, and the particular feature values you should use in
formulating them.

7. Other control parameters

7.1 Advanced files

7.1.1 Limitation on n-gram constraints.

Specify any list of feature values, one value (e.g. +syllabic) per line. Then, for constraints
with 3 or 4 matrices, there will be a complexity limit: all but two of the matrices will be limited
to containing feature values from your list. This is useful in guiding the program towards more
sensible hypotheses for the longer constraints. See Hayes and Wilson, sections 4.1 and 5.1.

7.1.2 Accuracy schedule

Specify your own ascending sequence of O/E threshold values. One number, in the interval
0 < x <= 1, per line. The default in the program is .001, .01, .1, .2, .3, .4, .5, .6, .7, .8, .9, 1. For
discussion, see Hayes and Wilson, section 4.2.1.

7.2 Advanced parameters

7.2.1 Smoothing

Added to O in computing O/E. Default is 0.5.

7.2.2 Sigma

Defines the Gaussian prior that prevents overfitting (Hayes and Wilson, section 3.1.1).
Default is 1; you can use a larger value to get a closer (and perhaps: dangerously, overfittingly
closer) fit to the learning data.

7.2.3 Target size of learning samples

Increasing this (above about 3000) will slow learning but make it more accurate.

7.2.4 Maximum length of machines used to generate E(xpected) value

Make this longer if you learning data has longer words; it should roughly match the longest
words length as measured in segments.

Manual: Phonotactic learning program p. 14

8. More on phonetic symbols and features

8.1 Legal symbols

Phonetic symbols for the program may have more than one character (e.g., you can use “ch”
or “CH” for [tʃ]). They may not begin with digits, nor may they contain apostrophes, colons, or
the symbol @. There may be other restrictions as yet undiscovered! It is probably wisest to use
ordinary letters for your symbols.

8.2 The natural classes file

When you run the program, it will create an output file (in the output folder) called
NatClassesFile.txt. For example, the natural classes file for the sample Shona simulation begins
like this:

Novel of size 1: +word_boundary #
Novel of size 1: -word_boundary N,a,b,bh,bv,ch,d,dh,dz,dzv,e,

f,g,h,i,j,k,m,n,o,p,pf,r,s,sh,sv,t
,tsv,u,v,vh,w,y,z,zh,zv

Novel of size 3: +cont,-voice,+distr sh
Novel of size 2: -continuant,-anterior ch,dzv,j,tsv
Novel of size 2: -del_rel,+anterior d,dh,t
Novel of size 2: +voice,+coronal d,dh,dz,dzv,j,z,zh,zv
Novel of size 2: -continuant,+labial b,bh,bv,p,pf
Novel of size 1: +back a,o,u,y
Novel of size 2: +del_rel,+voice bv,dz,dzv
Novel of size 2: +approximant,+labial v

The featural descriptions can be useful if you wish to try constructing your own constraints

(to include in a handcrafted grammar file). Also, for any sort of work using feature systems it
seems a good idea to know what natural classes the system defines.

Note that under a particular segment inventory, many of natural classes will have multiple,

synonymous featural expressions in handcrafting a constraint you would want to use the same
featural expressions used by the program.

8.3 Adequacy in feature systems: specifying each segment uniquely

Another important aspect of feature systems for purposes of this program is their ability to
designate each segment uniquely. When one is designing a feature system, it is surprisingly easy
to omit the values needed to do this. For instance, the following schematic system provides no
unique designation for either labial /p/ or velar /k/, as each one has a subset of feature values of
labial-velar [k ͡p].

 [p] [k ͡p] [k]
[labial] + + 0
[dorsal] 0 + +

Manual: Phonotactic learning program p. 15

This means that, if the program were to use these features, it would be unable to formulate
constraints applying specifically to just [p] or just [k]. The alternative is to provide a richer
specification, such as the following:

 [p] [k ͡p] [k]
[labial] + + –
[dorsal] – + +

The program is designed to watch for such cases and give you a warning where they

occur.10 Should you wish to do phonotactic learning with an incomplete feature system, thi
still possible (though perhaps not advisab

s is
le).

9. Mapping from model predictions to experimental data

For purposes of matching up model predictions with experimental data, Hayes and Wilson
(2008) give the following equations:

 predicted-rating(x) = P*(x)1/T , where

 P*(x) = exp(– h(x)) and

 h(x) is the “score” output by the model

They use best-fit values for T. Finding this value is best done with a sophisticated statistics
package such as R (http://www.r-project.org/), but a quick alternative is to make a spreadsheet
whose entries look like this:

 A B C D

1 scores (from
model output)

Native speaker
preferences (scaled

0-1)

7.3 =CORREL(B2:B11,C4:C11)

2 0 0.818 =EXP(A2/-C$3)
3 4.844 0.667 =EXP(A3/-C$3)
4 0 0.606 =EXP(A4/-C$3)
5 4.843 0.576 =EXP(A5/-C$3)
6 4.898 0.455 =EXP(A6/-C$3)
7 4.843 0.424 =EXP(A7/-C$3)
8 6.661 0.394 =EXP(A8/-C$3)
9 10.868 0.394 =EXP(A9/-C$3)
10 10.754 0.394 =EXP(A10/-C$3)
11 12.913 0.394 =EXP(A11/-C$3)

10 Specifically, it checks the list of natural classes to see if every single segment forms a (degenerate) natural

class.

Manual: Phonotactic learning program p. 16

You can then hand-adjust the value in C1 (which is T) until the correlation value shown in D1
reaches a maximum.

10. Troubleshooting and queries

In pre-testing, we have succeeded in running this program on Windows machines (both the
XP and Vista versions of Windows), as well as on a Macintosh running OS X, version 10.4.10.
The program has bugs that hopefully will be addressed when the original programmer returns to
service.

 If you can’t get the program to start up, a likely problem is that your copy of Java is

out of date—it needs a fairly recent (1.6 or later) version of Java. Download a new Java
(free from http://www.java.com/en/download/index.jsp) and install it. Older Macs may
have trouble running a new enough Java to work; see fn. 6 above.

 Possible error on startup: the program pops up a message saying “There’s a problem

writing the following file…”. This is due to a bug in the program, but there is a
workaround. Go into the folder where your input files are located and make a new folder,
called output, inside it. (The bug evidently arises because Java is unable to make this
new folder itself.)

 Program starts, but complains, “The system cannot find the file specified.” The

probable cause is an incompatibility between Java and Windows: Windows allows
spaces in file names and folders, but Java does not. Rename all associated folders and
file names, then try again.

 Program runs, but doesn’t produce an output. The most likely problem is that the

input files aren’t in the exact form the program expects (we work on auto-detecting these,
but this is an ongoing process).

 One way to detect errors is to look at the program output file called ProgramTrace.txt.

Look at the very end; this often gives a constraint that the program couldn’t deal with
because it it misformatted.

 Three common file-format errors:

 A particularly common error is using upper case for lower. Java, alas, was made
case-sensitive.

 If you are making up your own constraints, it is essential that they use natural
classes taken from the file NaturalClassesFile.txt, which you can generate by
running the program in its “generate constraints” mode. It is located in the temp
folder, which will be a daughter folder of the folder in which you keep your input
files.

 Also, if you are making up your own constraints, it is essential that the last
constraint be on the last line of the file. This must be a complete line (hit Enter),
and there must be no blank lines after it.

Manual: Phonotactic learning program p. 17

 Program runs, generates an output, and gives every constraint a weight of one. Most

likely, you’ve asked it to test a preexisting grammar that doesn’t have any weights in it.
Rerun the program with the “reweight” option.

 Program tries to run a big simulation and hangs up. You may need more memory, which

can be done by launching the program with a command line (in Windows: open a “DOS
window” and paste the command line in, or put the command line in a file with the name
RunMe.bat). The command line should read:

 java -Xms650m -Xmx650m -jar UCLA_Phonotactic_Learner.jar

For queries about the program, or for source code, please contact Bruce Hayes at

bhayes@humnet.ucla.edu. If your simulation won’t run, it may be helpful to send the input files.

	1. Authorship
	2. What the program does
	2.1 Output files created

	3. Installing the program
	3.1 A caution regarding running the program in Windows

	4. Launching the program
	4.1 Construct your input files
	4.2 Tell the program where your files are
	4.3 Specify a task
	4.4 Start

	5. Controlling the program: optional elements
	5.1 Testing data
	5.2 Projections
	5.3 Specifying gram size
	5.4 Specifying maximum O/E
	5.5 Maximum number of constraints to discover
	5.6 Allowing complement natural classes
	5.7 Long words

	6. Using the program with preexisting results
	6.1 Starting from scratch: learn the constraints and weights
	6.2 Testing an existing grammar with the test data
	6.3 Add more constraints to an existing grammar
	6.4 Reweight the constraints of an existing grammar

	7. Other control parameters
	7.1 Advanced files
	7.1.1 Limitation on n-gram constraints.
	7.1.2 Accuracy schedule

	7.2 Advanced parameters
	7.2.1 Smoothing
	7.2.2 Sigma
	7.2.3 Target size of learning samples
	7.2.4 Maximum length of machines used to generate E(xpected) value

	8. More on phonetic symbols and features
	8.1 Legal symbols
	8.2 The natural classes file
	8.3 Adequacy in feature systems: specifying each segment uniquely

	9. Mapping from model predictions to experimental data
	10. Troubleshooting and queries

