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Abstract 

The study of phonotactics (e.g., the ability of English speakers to distinguish possible words 
like blick from impossible words like *bnick) is a central topic in phonology.  We propose a 
theory of phonotactic grammars and a learning algorithm that constructs such grammars from 
positive evidence.   

Our grammars consist of constraints that are assigned numerical weights according to the 
principle of maximum entropy.  Possible words are assessed by these grammars based on the 
weighted sum of their constraint violations.  The learning algorithm yields grammars that can 
capture both categorical and gradient phonotactic patterns. The algorithm is not provided with 
any constraints in advance, but uses its own resources to form constraints and weight them. A 
baseline model, in which Universal Grammar is reduced to a feature set and an SPE-style 
constraint format, suffices to learn many phonotactic phenomena. In order to learn nonlocal 
phenomena such as stress and vowel harmony, it is necessary to augment the model with 
autosegmental tiers and metrical grids. Our results thus offer novel, learning-theoretic support for 
such representations.   

We apply the model to English syllable onsets, Shona vowel harmony, quantity-insensitive 
stress typology, and the full phonotactics of Wargamay, showing that the learned grammars 
capture the distributional generalizations of these languages and accurately predict the findings 
of a phonotactic experiment. 
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1. Introduction* 

In one of the central articles from the early history of generative phonology, Chomsky and 
Halle (1965) lay out a research program for the theory of phonotactics. They begin with the 
observation that the logically possible sequences of English phonemes can be divided into three 
categories:  

(1)  a.  Existing words, such as brick  
 b.  Nonexisting words that are judged by native speakers to be well-formed, such as 

blick.  
 c.  Nonexisting words that are judged by native speakers to be ill-formed, such as 

bnick.  

The scientific challenge posed by this categorization has two parts. The first is to 
characterize the grammatical knowledge that permits native speakers to make phonotactic well-
formedness judgments. The second, more fundamental challenge is to understand the principles 
with which phonotactic grammars are acquired.  

The difficulty of this task is evident from a further point made by Chomsky and Halle, 
namely that there are grammars that fully account for the learning data but fail to capture the 
native speaker’s knowledge. For example, they note that both of the rules given in (2) are 
compatible with the data available to the learner. However, while the rule in (2a) correctly 
excludes *bnick, it also excludes the acceptable form blick. In contrast, (2b) appropriately 
excludes *bnick but allows blick as a possible word.  

 
(2)  a.  Consonantal Segment → r / # b___k  
 b.  Consonantal Segment → Liquid / # Stop ___ Vowel  

The problem of phonotactic learning, then, is that of selecting a particular grammar — the 
one that is in fact acquired by native speakers — from among all of the possible grammars that 
are compatible with the learning data. Chomsky and Halle schematize the selection process as 
follows, where “AM” is the universal mechanism, or acquisition model, that projects grammars 
from data. 

(3) primary linguistic data → AM → grammar 

In this article, we take up the challenge posed by Chomsky and Halle, proposing an explicit 
theory of phonotactic grammars and of how those grammars are learned. We propose that 
phonotactic grammars are composed of numerically-weighted constraints, and that the well-
formedness of an output is formalized as a probability determined by the weighted sum of its 

                                                 

* We would like to thank two anonymous LI reviewers, Steven Abney, Paul Boersma, Michael Hammond, 
Robert Kirchner, Robert Malouf, Joe Pater, Donca Steriade, Kie Zuraw, and audiences at the University of 
Michigan, the University of California at San Diego, the University of Arizona, and UCLA for helpful input on our 
project.  Special thanks to Jason Eisner for alerting us to the feasibility of using finite state machines to formalize the 
computations of our model.  
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constraint violations. We further propose a learning model in which constraints are selected from 
a constraint space provided by UG and assigned weights according to the principle of maximum 
entropy. This model learns phonotactic grammars from representative sets of surface forms. We 
apply the model to data from a number of languages, showing that the learned grammars capture 
the distributional generalizations of the languages and accurately predict experimental findings.  

The organization of the paper is as follows. §2 elaborates our research goals in constructing 
a phonotactic learner, while §3 and §4 describe our learning model in detail. The next four 
sections are case studies, covering English syllable onsets (§5), Shona vowel harmony (§6), 
stress systems (§7), and finally a whole-language analysis, Wargamay (§8). In the concluding 
section (§9), we address questions raised by our work and outline directions for future research.  

2. Goals of a phonotactic learner  

We claim that the following criteria are appropriate for evaluating theories of phonotactics 
and phonotactic learning.  

2.1 Expressiveness  

The findings of the last few decades demonstrate a striking richness of structures and 
phenomena in phonology, including long-distance dependencies (e.g., McCarthy 1988), phrasal 
hierarchies (e.g. Selkirk 1980a), metrical hierarchies (e.g. Liberman and Prince 1977), elaborate 
interactions with morphology (e.g. Kiparsky 1982), and other areas, each the subject of extensive 
analysis and research. We anticipate that a successful model of phonotactics and phonotactic 
learning will incorporate theoretical work from all of these areas.  

A particular consequence of this richness is that the principles governing phonotactics are 
cross-classifying:  the legality of (say) a particular vowel may depend simultaneously on the 
various natural classes to which it belongs, its immediate segmental neighbors, its neighbors on a 
vowel tier (§6), and the position of its syllable in a metrical stress hierarchy.  Previous accounts 
of phonotactic learning, however, have relied on just a single classification of environments.  For 
instance, traditional n-gram models (Jelinek 1999, Jurafsky and Martin 2000) are quite efficient 
and have broad application in industry, but they define only an immediate segmental context and 
are thus insufficient as a basis for phonotactic analysis (§5.3, §6). Similarly, the stochastic 
context-free grammar of Coleman and Pierrehumbert (1997), while more phonologically 
sophisticated, rests on a single partition of words into onsets and rimes. As Coleman and 
Pierrehumbert point out, this makes it impossible in principle for the model to capture the many 
phonotactic restrictions that cross onset-rime boundaries (Clements and Keyser 1983:20-21) or 
syllable boundaries (bans on geminates, heterorganic nasal-stop clusters, sibilant clusters). 

The maximum entropy approach to phonotactics, like many others, is based on phonological 
constraints. 1  Crucially, however, it makes no commitments about the content of these 

                                                 

1 The use of constraints is the most widely adopted general approach to phonotactics. The alternative strategy 
of “licenses” is also the subject of current research: see Albright (2006) and Heinz (to appear a, to appear b). 
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constraints, leaving this as a question of phonological theory.  Moreover, as we will show, 
maximum entropy models can assess well-formedness using cross-classifying principles.  

2.2 Providing an inductive baseline  

While we have emphasized the primacy of phonological theory, the precise content of the 
latter remains an area of considerable disagreement. A computational learning model can be used 
as a tool for evaluating and testing theoretical proposals. The idea is that a very simple theory 
can provide a sort of inductive baseline against which more advanced theories can be compared. 
If the introduction of a theoretical concept makes possible the learning of phonotactic patterns 
that are inaccessible to the baseline system, the concept is thereby supported. For earlier work 
pursuing the inductive baseline approach, see Gildea and Jurafsky 1996, Peperkamp et al. 2006. 

Our own inductive baseline is a purely linear, feature-bundle approach modeled on 
Chomsky and Halle (1968; henceforth SPE). To this we will add the concepts of autosegmental 
tier (Goldsmith 1979) and metrical grid (Liberman 1975, Prince 1983), showing that both make 
possible modes of phonotactic learning that are unreachable by the linear baseline model.  

2.3 Accounting for gradience  

All areas of generative grammar that address well-formedness are faced with the problem of 
accounting for gradient intuitions. A large body of research in generative linguistics deals with 
this issue; for example Chomsky 1963, Ross 1972, Legendre et al. 1990, Schütze 1996, Hayes 
2000, Boersma and Hayes 2001, Boersma 2004, Keller 2000, 2006, Sorace and Keller 2005, and 
Legendre et al. 2006. In the particular domain of phonotactics, gradient intuitions are pervasive: 
they have been found in every experiment that allowed participants to rate forms on a scale (e.g., 
Greenberg and Jenkins 1964, Ohala and Ohala 1986, Coleman and Pierrehumbert 1997, 
Vitevitch et al. 1997, Frisch et al. 2000, Treiman et al. 2000, Bailey and Hahn 2001, Hay, 
Pierrehumbert, and Beckman 2003, Coetzee 2004, Hammond 2004, Berent et al., 2007).  
Gradience is also found in the frequency of “repairs” (such as excrescent vowel insertion) 
participants make when asked to utter illegal nonce forms (Davidson 2006).  Gradient intuitions 
can be found even among forms that satisfy the categorical phonotactics of the language, but 
contain rare sequences (Frisch et al. 2000, Bailey and Hahn 2001). Thus, we consider the ability 
to model gradient intuitions to be an important criterion for evaluating phonotactic models. As 
we will show below, it is an inherent property of maximum entropy models that they can account 
for both categorical and gradient phonotactics in a natural way. 

To sum up, we seek to solve Chomsky and Halle’s problem, specifying the structure of the 
module AM and testing it on actual phonotactic systems, with the goal of describing the full 
range of data including gradient intuitions. As a research strategy, we adopt the inductive 
baseline approach, requiring that phonological theories justify themselves through improvements 
in learning performance. To this end, we adopt an overall framework for learning, maximum 
entropy, that is neutral with regard to the constraints employed. We turn next to the structure of 
this model.  
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3. Maximum entropy grammars 

A maximum entropy grammar uses weighted constraints to assign probabilities to outputs.  
For general background on maximum entropy (hereafter, maxent) grammars, see Jaynes 1983, 
Jelinek 1999:ch. 13, Manning and Schutze 1999, and Klein and Manning 2003. We will rely here 
on particular results developed in Berger et al. 1996, Rosenfeld 1996, Della Pietra et al. 1997, 
and Eisner 2001.  For earlier applications of maxent grammars to phonology, in particular to the 
learning and analysis of input-output mappings, see Goldwater and Johnson 2003 and Jäger 
2004. 

Maxent grammars have special properties that recommend them as a basis for phonotactic 
learning. They have been subject to thorough mathematical analysis that establishes their 
convergence properties and their connection to the theories of information and statistical 
estimation. In addition, the solutions they embody can be said to have a highly principled 
character, discussed in the remainder of this section. 

3.1 The probabilistic conception of phonotactic well-formedness 

The core idea in the application of maxent grammars to phonotactics is that well-formedness 
can be interpreted as probability.  We suppose an infinite set Ω consisting of all universally-
possible phonological surface forms.  To every member x of this set, a maxent grammar assigns a 
probability P(x) which expresses its phonotactic well-formedness.  Naturally, the probability of 
any one given form will be extremely small.  What is important is the differences between these 
probabilities, which (as we will show) can be large and meaningful.     

Our working hypothesis is that, provided the constraint set is an adequate one, the 
probabilities assigned to forms by a maxent grammar will correspond with the well-formedness 
judgments of native speakers, with lower probabilities for forms judged less acceptable. 

3.2 Assigning probability in maxent grammars  

A maxent grammar assigns probabilities with a set of constraints, stated in the chosen 
representational vocabulary.  The constraints are free to refer to all of the featural, structural, and 
other distinctions made by the representations, and thus permit multiple overlapping 
characterizations of phonological forms, argued above (§2.1) to be crucial to an adequate 
phonotactic model.   

All of the constraints in our model are Markedness constraints, in the sense of Optimality 
Theory (“OT”; Prince and Smolensky 1993/2004).  No role is played by inputs or by OT-style 
Faithfulness constraints.  This decision is sensible in light of the task at hand:  we seek to assess 
forms simply for their phonological legality, not for their legality as derived from some 
particular input.  Some consequences of this decision are assessed in §9 below.   

Every constraint in the grammar has a weight, a nonnegative real number.  The weights can 
be thought of as scaling the importance of one constraint relative to others.  Constraints with 
higher weights have a more powerful effect in lowering the probability of forms that violate 
them.  
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The probabilities of forms are calculated from their constraint violations and the weights.  
The calculation proceeds in several steps.  To begin, we find what we will call the score of each 
form.  This is the weighted sum of the form’s constraint violations, as defined below. 

(4)  Definition: Score  

 The score of a phonological representation x, denoted h(x), is:  

  h(x) = Σ
i=1

N
 wi Ci (x)  

 where  wi is the weight of the ith constraint, 
   Ci (x) is the number of times that x violates the ith constraint, and 

   Σ
i=1

N
 denotes summation over all constraints (C1, C2, … CN). 2 

The next step is to calculate the maxent value of x, as follows. 

(5)  Definition: Maxent value  

 Given a phonological representation x and its score h(x) under a grammar, the  
 maxent value of x, denoted P*(x), is:  

  P*(x) = exp(– h(x))  

 That is, the score is negated, and e (the base of the natural logarithm) is raised to 
 the result. 

The actual probability of x is calculated by determining its share in the total maxent values 
of all possible forms in Ω, a quantity designated as Z: 

(6)  Definition: Probability 

 Given a phonological representation x and its maxent value P*(x), the   
 probability of x, denoted P(x), is:  

  P(x) = P*(x) / Z where Z = Σ
y∈Ω

   P*(y) 

As we will show below, the actual computed probabilities, while embodying the most direct 
interpretation of a maxent grammar, are not crucial in predicting relative well-formedness.  For 
this reason we will illustrate here only the calculation of scores and maxent values.  To this end, 

                                                 

2 Our “scores” are closely related to the harmony values explored in Smolensky (1986) and subsequent work 
(Smolensky and Legendre 2006); hence the abbreviation h(x).  The term “score” is also used in Prince (2002).  The 
use of scores, but without their theoretical interpretation under maximum entropy as probability, is the basis of 
“linear optimality theory” (Keller 2000, 2006).   
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Table 1 gives the evaluation of three schematic phonological representations.  The constraints are 
*#V (“no word-initial vowel”) and *C# (“no word-final consonant”).   

Table 1 

Scores and maxent values for three representations 

x *#V (w = 3.0) *C# (w = 2.0) Score (h(x)) Maxent value (P*(x)) 
CV 3.0 · 0 2.0 · 0 (3.0 · 0) + (2.0 · 0) = 0.0 exp(–0.0) = 1.00 
CVC 3.0 · 0 2.0 · 1 (3.0 · 0) + (2.0 · 1) = 2.0 exp(– 2.0) ≅ 0.14 
V 3.0 · 1 2.0 · 0 (3.0 · 1) + (2.0 · 0) = 3.0 exp(– 3.0) ≅ 0.05 

 
Inspection of this table reveals some properties that hold of all of the maxent grammars we 

propose.  Every constraint weight is required to be greater than or equal to 0.  Under this 
assumption, the highest possible maxent value is P*(x) = 1; this is assigned to forms (such as 
CV) that incur no violations, so that h(x) = 0.  Forms with one or more constraint violations 
receive a lower maxent value, because maxent value is determined by raising e to the negative of 
the score: P*(x) = exp(–h(x)). The presence of the negative sign can now be understood from the 
semantics of maxent values: forms with more violations get lower values.  

The use of maxent grammars commits us to the view that constraints can “gang up”; i.e. 
because of the addition stage in (4), two constraints A and B can together demote the status of a 
form below what would be expected from violating A or B alone.  For discussion and evidence 
concerning ganging, see Keller 2000, Jäger and Rosenbach 2006, and Pater, Bhatt, and  Potts 
2007.  The prediction of ganging effects is not unique to weight-based models like maxent; 
similar effects are possible in stochastic OT (e.g. Hayes and Londe 2006, 81), and in 
nonstochastic OT with local constraint conjunction (Smolensky 1995).  Various instances of 
ganging are discussed in the reports of our simulations below. 

In the learning simulations later in the paper, we will use the formulae above to connect 
theory to data in two ways. When discussing experimental data (§5), we test for a correlation 
between the experimental observations and the maxent values (5) predicted by a grammar.  This 
is because the maxent values have a direct theoretical interpretation in terms of probability.  
(They lack the factor 1/Z seen in the definition of probability (6), but since this factor is constant 
across forms, it may be ignored without affecting correlations). On the other hand, when we lack 
experimental data, as in our studies of vowel harmony systems (§6) and stress (§7), it suffices to 
use just the scores, to establish how well a grammar separates well-formed representations from 
those that are ill-formed. If all well-formed structures receive scores that are lower (i.e. better) 
than all ill-formed structures, then we judge the grammar to have succeeded in learning the 
nongradient phonotactic generalizations. This use of scores is equivalent to one in which a 
language is defined by all and only those representations that surpass a particular threshold of 
maxent harmony or probability. 

3
 

                                                 

3 See Hale and Smolensky (2006) for a similar threshold approach. 
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3.3 Learning maxent weights  

Up to this point, we have defined maxent grammars and described how well-formedness is 
calculated from constraint violations and weights.  We turn now to the question of learning.  Our 
starting assumption (see, e.g., Baker 1979) is that the learner has access to a large and 
representative set of observed forms drawn from the target language.  However, it has no access 
to “negative evidence”; that is, it is never told what forms are illegal.  This plausibly corresponds 
to the situation faced by real language learners.  

Postponing to §4 the question of how to find the constraints, we consider here first  the 
problem of finding the weights for a known set of constraints. 

3.3.1 Defining the objective 

The objective here is to find the set of constraint weights that maximizes the probability of 
the observed forms.  Because total probability is fixed (at 1), maximizing the probability of the 
observed forms will minimize the probability of the unobserved forms—or more precisely, the 
unobserved forms that differ in a principled way from the observed forms, as determined by the 
constraint set.  Given our probabilistic conception of well-formedness (§3.1), this objective for 
constraint weighting embodies the traditional goals of phonotactic analysis. 

The term “maximum entropy” relates to this goal.  “Entropy” is an information-theoretic 
measure of the amount of randomness in the system, given by the formula – Σ

x∈Ω
  P(x) log(P(x)) 

(Cover and Thomas 1991).  According to a theorem proved by Della Pietra et al. (1997), if 
probability is defined as in §3.2, maximizing entropy is in fact equivalent to maximizing the 
probability of the observed forms given the constraints. 

Under the standard assumption that the forms in the observed data are independent and 
identically distributed, the probability of the observed data P(D) is simply the product of the 
probabilities of all the individual data. 

(7)  Probability of the observed data under a given set of constraints and weights 

 Given a maxent grammar and a set D of observed data, the probability of D under the 
grammar is: 

  P(D) = Πx∈D P(x) 

 where P(x) is as defined in (6).   
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Finding the set of weights that maximizes P(D) is a search problem, to whose solution we 
now turn.4 

3.3.2 Finding the weights 

The search begins by giving every constraint the same initial weight; in our simulations, this 
value is always 1.  The system then carries out an iterated calculation intended to maximize 
P(D).  The calculation follows an ascending path on the multidimensional surface defined by the 
weights, achieving ever higher values for P(D) until the highest possible value has been reached.   

For mathematical convenience, the search actually finds the maximum for the natural 
logarithm of P(D), not P(D) itself.  Since the log function is monotonic, the weights that 
maximize log(P(D)) are the same are the weights that maximize P(D). 

The process of iterative ascent is illustrated in the two figures below, which depict the 
learning of the constraint weights for the two-constraint grammar discussed in Table 1.  Figure 1  
shows the three-dimensional surface corresponding to the search space, with the horizontal 
dimensions corresponding to the two constraint weights and the vertical dimension to log(P(D)).5  
Figure 2 gives the same information in the form of a contour map and includes the actual path 
taken during learning.  The ascent terminates at the peak (3, 2), where the log probability of the 
training data is maximized at log(P(D)) = –7641.8. 

                                                 

4 The text of this section oversimplifies, as it is standard in maximum entropy modeling to prevent overfitting 
(Duda, Hart, and Stork 2001, 5) by adding a term to the objective in (8) that penalizes large weights.  We used the 
Gaussian prior, discussed in Goldwater and Johnson 2003:§2, setting the parameters μ and σ to 0 and 1, 
respectively.    

5 The latter was approximated by assuming that all strings (composed of C and V) were of length 10 or less. 
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Figure 1 

The surface defined by the probability of a representative training set for the grammar given in 
Table 1.  
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Figure 2 

Iterative ascent of the surface given in Figure 1 

 
The strategy pursued here never actually calculates the surface as a whole, but instead 

determines at each stage the local gradient, or slope.  This indicates the direction (uphill) that the 
next search iteration should take.  This procedure is guaranteed to converge on the weights that 
maximize log(P(D)) because, as Della Pietra et al. (1997) show, in a maxent grammar the surface 
being ascended is always convex; that is, it contains no local maxima in which the search could 
get stuck.  Following the gradient also suffices to indicate when the upward journey can be 
terminated:  this is when the slope becomes sufficiently close (by an arbitrarily-chosen small 
value) to zero.  There are many algorithms that can iteratively ascend a surface given the 
gradient.  We used the Conjugate Gradient method (Press et al. 1992), which is known to 
converge quickly for this type of problem (Malouf 2002).   

The heart of the calculation is the determination of the gradients.  Formally, the gradient 
consists of a vector of partial derivatives, one for each constraint in the grammar.  Each partial 
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derivative has the form 
∂
wi∂  log(P(D)) and expresses the rate at which log(P(D)) responds to local 

changes in the weight assigned to constraint Ci.  The computation of the partial derivatives will 
depend on the current location along the surface and on the constraint violations in the learning 
data.   

As Della Pietra et al. (1997) showed (see also Berger, n.d.), each partial derivative  
∂
wi∂  log(P(D)) is equal to an intuitively interpretable value, namely the difference between the 

number of observed violations of Ci and the number of expected violations, a value denoted  
O[Ci] – E[Ci].  Thus, if we can determine both the observed and the expected violations for all 
constraints, we will know the direction in which the iterative search should continue, and 
converge on the right answer.  

Calculating the observed violation count of a constraint O[Ci] is straightforward:  one 
simply sums the violations of the constraint over all examples in the learning data.  However, 
calculating the expected violation count E[Ci] is more difficult—seemingly impossible, in fact—
since we must sum over the set of all possible phonological representations x ∈ Ω, an infinite set.  
Postponing this issue momentarily, we first define expected violation count formally, as a 
probability-weighted sum:    

(8)   Definition: Expected number of violations  

 Given a grammar that determines maxent values, the expected number of violations of 
constraint Ci is: 

  E[Ci] = Σx∈Ω P(x) Ci(x)  

 where  

  P(x) is the probability of the representation x, 
  Ci(x) is the number of times that x violates Ci, and  
  Σx∈Ω represents summation of over all x in Ω. 

Instead of calculating expected values exactly, we approximate them by examining only the 
strings in Ω that are no longer than the longest string in the learning data D.  This is a finite—
albeit exponentially large—subset of Ω, and to sum over it we employ methods borrowed from 
work in computational OT (Ellison 1994, Eisner 1997, Albro 1998, 2005, Riggle 2004).  As this 
work has shown, the properties of a very large set of strings can be computed by representing the 
set as a finite state machine.  We construct our machines by first representing each constraint as a 
weighted finite-state acceptor.  Using intersection (Hopcroft and Ullman 1979), the constraints 
are then combined into a single machine that embodies the full grammar (Ellison 1994, Riggle 
2004).  Each path through this machine corresponds to a phonological representation together 
with its vector of constraint violations.  We then obtain the E[Ci] values by summing over all 
paths through the machine, using a method devised by Eisner (2001, 2002).  The sum over all 
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paths of a given length is rescaled according to the frequency of forms of that length in the 
learning data. 

We now summarize the procedure for constraint weighting.  The core process is an iterated 
hill-climbing search, designed to maximize the probability of the learning data (P(D)).  The 
search is determined at each stage by calculating a local gradient based on the observed/expected 
difference O[Ci] – E[Ci] for each constraint.  O[Ci] is determined by inspection of the learning 
data, while E[Ci] is calculated by the finite-state method described immediately above.   

4. Searching the space of possible constraints  

In principle, there exists a maxent grammar that succeeds fully in the goal of maximizing the 
probability of the learning data:  it would deploy constraints with such an extreme degree of 
detail that they banned all and only the nonobserved data.  Such a grammar is of no interest, 
because it wrongly excludes nonexistent but possible forms like blick (§1).  Grammar learning 
becomes interesting—becomes a phonological problem—when we attempt to learn more general 
constraints that have the capacity to predict which novel forms will be phonologically legal. 
However, even when the problem is considered in this way, one still faces a formidable 
difficulty:  the fact that an enormous number of distributional generalizations are consistent with 
any given set of surface forms.  We must therefore find a strategy for navigating the space of 
possible generalizations and selecting members of that space for inclusion in the grammar.  

Previous research on phonotactic learning has not addressed the selection problem in a 
general form. Work in Optimality Theory (Hayes 2004, Prince and Tesar 2004, Jarosz 2006, 
Pater and Coetzee 2006) generally assumes that the constraint set is provided by UG. No 
selection problem arises under this approach, as learning consists simply of assigning a ranking 
to the constraint set. The parameter setting approach set forth in Dresher and Kaye 1990 likewise 
confronts no selection problem, since the parameters and their cues are provided a priori. 
However, our interest in establishing an inductive baseline (§2.2) is incompatible with any rich 
UG approach, either constraint-based or parametric. Though it may be necessary to add specific 
universal constraints to UG, our present goal is to determine how much of phonotactic learning 
can be done without them.  

Another option not open to us is simply to incorporate every possible constraint into the 
grammar, relying on the weighting algorithm to determine the importance of each one. This is 
essentially the proposal of Pierrehumbert (2006), who applies it to the analysis of medial 
consonant clusters.  This strategy might be successful when the number of constraints is limited 
to a small set, either because the empirical domain is restricted or because the theory of UG 
assumed tightly limits the number of possible constraints.  However, neither condition is met 
here. 

To solve the selection problem, we assume that UG determines the feature inventory and the 
format of constraints, yielding a search space that is quite large, and hence compatible with the 
inductive baseline approach.  Nevertheless, in our experience it is effectively searchable,  
provided the right search heuristics are used.  In what follows, we first give our proposals for 
limiting the constraint space, then cover the search heuristics. 
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Like other properties of our learner, our proposals concerning the search space and 
heuristics constitute a theoretical claim about language learning. To be sure, they are also 
motivated by issues of implementation—but not, we think, in a way that sacrifices realism with 
respect to the human learner. If we have characterized the problem of learning phonotactic 
correctly, then the human learner faces the same search problem as our mechanical learner. The 
claim is that humans perform the search for phonotactics in a way that is functionally identical to 
the strategy we describe.  

4.1 The constraint space  

The learner is assumed to be provided with a set of features, the inventory of segments in the 
target language, and the feature specifications for each of those segments.6 For our purposes, it is 
the natural classes determined by the features, rather than the features themselves, that 
determine the content of a constraint. Many natural classes have multiple featural definitions, 
and it is immaterial which particular definition is used to state a constraint. To locate the natural 
classes determined by a segment inventory and feature set, we use an algorithm and software 
created by Kie Zuraw. 

4.1.1 Constraint format 

Using the natural classes, we construct two basic constraint types. The first type is just a 
sequence of feature matrices, as in (9). 

(9)* 
 
 

 

Here, F, G … are features and α, β, … take the values + and –. Such a constraint is matched 
to representations as in SPE. It acts as a function, returning the number of matches. 

 . . .
   

αF
β  G
  

  

γH 

 .  .  . 
δI 
  
  

εJ 

 .  .  . 

… 
ζK 
  
  

We also assume (cf. Halle 1959, Stanley 1967, SPE ch. 7, Fudge 1969, Prince and 
Smolensky 1993/2004) that constraints may include logical implication; schematically, “if a 
particular segment has feature values [αF, βG, … ], then any preceding/following segment must 
have the values [γH, δI … ].” An example from the grammar of English onsets is the following: 
“if a nasal occurs in an onset, any preceding sound must be [s]” (Fudge 1969:279, Selkirk 
1982:346). This is straightforward to state as an implication. But without the capacity for 
implication, we would instead have to formulate a set of constraints that jointly ban every 
segment except [s] in the context / # ___ [+nas].  Many similar cases can be found. 

To formalize implication, we allow exactly one of the matrices of a constraint to be 
modified by the complementation operator ^; thus [^αF, βG, … ] means any segment not a 

                                                 

6 For work on the learning of segments and features from the input signal, see Boersma, Escudero and Hayes 
2003, Mielke 2004, Lin 2005b, and Goldsmith and Xanthos 2006. 
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member of the natural class [αF, βG, … ]. For example, the constraint proposed by Fudge and 
Selkirk limiting prenasal segments to [s] would be formulated as *[^–voice,+ant,+strid][+nasal]. 
A slightly more general version of this is actually learned by our system; see Table 4, #3 below.7 

As we will see (§5.3.2),  the use of implicational constraints produces an improvement 
(albeit a modest one) in the performance of our system.  It also creates grammars that are smaller 
and easier to interpret. 

4.1.2 Limiting the number of possible constraints 

The number of possible constraints is proportional to |C|n, where |C| is the number of natural 
classes and n is the maximum number of feature matrices that may occur in a constraint.  Some 
exact counts for a few values of C and n are given in Table 2.8 

Table 2 

Number of possible constraints for various values of |C| and n 

   |C| 
   30 100 200 400 
  1 30 100 200 400 
  2 900 10,000 40,000 160,000 
 n 3 27,000 1,000,000 8 million 64 million 
  4 810,000 100 million 1.6 billion 26 billion 
  5 24 million 10 billion 320 billion 10 trillion 
 

With our current implementation, we find that it is feasible to search constraint inventories 
that number in the tens of millions, but not higher; hence above the line shown in Table 2.  Since 
|C|n grows rapidly with both |C| and n, we discuss below how we limit the number of possible 
constraints by restricting C and n.  In principle, similar limitations would apply for the human 
learner, whose computational capacity is unknown.  Given that exponential growth soon defeats 
any finite system, there must be limitations of some sort (see also Newport and Aslin 2004). 

|C| will in general be small to the extent that the feature system makes use of principles of 
underspecification, as embodied in works such as Kiparsky 1982; Archangeli 1984; and Steriade 

                                                 

7 We will use the following abbreviations for feature names: ant = anterior; approx = approximant; cons = 
consonantal; cont = continuant; cor = coronal; dors = dorsal; lab = labial; lat = lateral; nas = nasal; son = sonorant; 
spread = spread glottis; strid = strident; str = stress; syl = syllabic. We will also use C for [–syllabic], V for 
[+syllabic], # for [–segment] (a word boundary; cf. SPE), and [ ] for [+segment] (any segment, also as in SPE).  

8 These values, which assume no implicational constraints, are calculated with the formula Σ
i=1

n
  |C|i. With 

implicational constraints included, the formula is  Σ
i=1

n
  (|C|i + i(|^C|×|C|i-1)), where |^C| is the number of complement 

natural classes.  For the English onset simulation in §5 below, |C| is 97, |^C| is  90, and n is 3, so the total size of the 
set of possible constraints is about 3.5 million. 



Hayes/Wilson Maximum Entropy Phonotactics p. 16  

1987, 1995. In our simulations, we use feature systems embodying both privative 
underspecification (e.g., [labial], [coronal], and [dorsal] may only take the value +) and 
contrastive underspecification (e.g., for English [voice] is specified only on obstruents, where it 
is contrastive).    

Concerning n, we suggest that no particular value can be imposed on all types of constraints.  
Instead, n should be sensitive to the internal complexity of the constraint. Specifically, we 
propose a trade-off between the size of a constraint (the number of natural classes that define it) 
and its specificity.  For instance, constraints on stress patterns, which manipulate a tiny number 
of natural classes (defined only by degree of stress and syllable weight), may employ an n of up 
to 4 (§7.3), whereas segmental constraints, which manipulate a far larger set of natural classes, 
must be limited to n = 2, with 3 permitted under special circumstances (§5.1).  We postpone the 
details of our proposals about this trade-off to the discussion of the simulations.  

4.2 Search heuristics  

Given a large set of possible constraints as just defined, we must next form them into a 
grammar.  Since as already noted, we cannot simply weight all possible constraints, our learner 
must be made more discerning:  it needs a way to home in early on the constraints that are 
important for characterizing the target language.  We do this by providing the system with search 
heuristics:  we search first among the constraints that are most accurate (§4.2.1); and among 
constraints of (roughly) equal accuracy, we seek constraints that are maximally general (§4.2.2).  

4.2.1 Accuracy  

The accuracy of a constraint is defined using values already described above in the 
discussion of constraint weighting:  it is the number of violations of the constraint observed in 
the data (O[Ci]), divided by the number of violations expected given the current grammar 
(E[Ci]); that is, O/E. Under the reasonable hypothesis that languages favor accurate constraints, 
one would expect that a constraint with O/E of (say) 0/1000 would be a very powerful constraint 
whose violation would lead to a strong intuition of ill-formedness, whereas a constraint with O/E 
of 500/1000 might at best induce a small sense of ill-formedness.  For earlier use of O vs. E in 
the study of phonotactics, see Pierrehumbert 1994, and Frisch, Pierrehumbert and Broe 2004. 

We deviate from the simplest O/E criterion in two ways.  First, one would expect a 
constraint with O/E of 0/10 to be “weaker” than one with 0/1000, the intuition being that in the 
first case violations are expected to be rare in any event. To reflect this intuition, we follow the 
method of adjustment proposed by Mikheev (1997; see also Albright and Hayes 2002, 2003), 
which substitutes a statistical upper confidence limit on O/E for O/E itself. Using this method, a 
difference in accuracy between 0/10 and 0/1000 comes out not as 0 vs. 0, but as 0.22 vs. 0.002.9 
Second, in our implementation we do not actually sort the constraints by accuracy, but rather use 
an approximate criterion consisting of a stepwise rising accuracy scale (e.g., O/E < .001, O/E < 

                                                 

9 We use a value of α = 0.975 for the upper confidence limit, which in our experience helps exclude pointless 
constraints from the learned grammars without also excluding constraints with explanatory merit. 
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.01, and so on).  At each step, the entire set of candidate constraints is searched, assessing each 
for whether it meets the current O/E criterion. 

A final note on implementation:  while for constraint weighting (§3.3.2) we compute E 
using a finite state machine, this method turns out to be too slow for the task of vetting a great 
number of candidate constraints, the problem being that the machine must be rebuilt for each 
one.  Instead, we take a large random sample from the set Ω of all possible phonological 
representations.  When the sample is sufficiently large and is drawn according to well-
established techniques (Della Pietra et al. 1997, MacKay 2003) the average number of violations 
in the sample provides a fairly accurate estimate of the expected value for Ω as a whole. For 
details of sampling, see Appendix A.  

4.2.2 Generality  

Within the strata defined by the accuracy scale, our system selects constraints in order of 
generality. The idea that the learner of phonology seeks simple generalizations goes back at least 
to SPE, though SPE conceived it as applicable to entire grammars rather than to individual rules 
or constraints.  

We implement generality as a two-level hierarchy. First, shorter constraints (fewer matrices) 
are treated as more general than longer ones. This procedure is effective, because longer 
sequences can often be assessed on the basis of the shorter sequences they contain. For instance, 
the well-formedness of a consonant cluster C1C2C3 is usually determined by that of C1C2 and 
C2C3 (Greenberg 1978, Clements and Keyser 1983, Pierrehumbert 1994). In such cases, early 
discovery of simple, widely-applicable constraints obviates the need for more complex ones.  

From the same principle it follows that among constraints of equal length, one should first 
search those whose matrices contain the most general featural expressions. The classic way of 
assessing featural generality is the feature-counting metric of SPE. However, in keeping with our 
overall emphasis on natural classes instead of their featural expressions, we suggest that the 
value of a constraint is proportional to the number of segments contained in its classes, and our 
metric sorts constraints of a given length on this basis.   

In sum, our learner primarily seeks constraints that are accurate, following an ascending 
sequence of thresholds for O/E. In choosing among constraints at the same threshold, it prefers 
constraints that are short, and among these, constraints that have more general natural classes. 
Using these procedures, a constraint space in the tens of millions can be effectively searched, 
creating an inductive-baseline learner.  

4.3 Learning a phonotactic grammar  

The complete process of learning alternates between constraint selection and constraint 
weighting: a new constraint is selected, as in §4.2, and then all the constraints are reweighted, as 
in §3.3. This alternating procedure is necessitated by the O/E accuracy criterion for constraint 
selection. Recall that E values are estimated using whatever constraints are already in the 
grammar. Each newly introduced constraint, once weighted, alters the E values, and it is the 
altered values that are relevant for selecting additional constraints. Moreover, reweighting must 
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be carried out on the entire constraint set, not just the new constraint, since the new constraint 
often takes over some of the explanatory burden borne by constraints selected earlier. 

The overall algorithm is summarized in (10).  

(10)  Phonotactic learning algorithm   

 Input: a set Σ of segments classified by a set F of features, a set D of surface forms 
drawn from Σ*, an ascending set A of accuracy levels, and a maximum constraint size 
N  

  1 begin with an empty grammar G  
  2 for each accuracy level a in A  
  3   do  
 4 select the most general constraint (§4.2.2) with accuracy 

less than a (if one exists) and add it to G  
  5    train the weights of the constraints in G (§3.3)  
  6  while a constraint is selected in step 4  

As stated here, the learning algorithm terminates when the search in (10.4) fails to return a 
new constraint at the least stringent accuracy level. It is also possible, in the interest of 
expediency, simply to stipulate a maximum grammar size.  

In what follows, we first assess the effectiveness of our inductive baseline model against 
data from a classic area of phonotactic study, the onset inventory of English (§5). We then move 
away from our inductive baseline, showing the effectiveness of autosegmental tiers (Shona 
vowel harmony, §6) and the metrical grid (unbounded stress, §7). Our final analysis takes on the 
phonotactics of an entire language, Wargamay (§8).  

5. English onsets and gradient well-formedness  

The inventory of syllable onsets in English is an ideal empirical domain for the testing of 
phonotactic learning models. The basic generalizations have been extensively studied 
(Bloomfield 1933, Whorf 1940, O’Connor and Trim 1953, Fudge 1969, Selkirk 1982, Clements 
and Keyser 1983, Hammond 1999), and available experimental data permit rival models to be 
evaluated. In this section, we report the results of learning maximum-entropy constraints on 
word-initial onsets.  

5.1 Learning simulation 

In constructing a learning corpus for English onsets, we must consider the status of “exotic” 
onsets such as [zw] (as in Zwieback), [sf] (sphere), and [pw]) (Puerto Rico).  These onsets are 
rare, and some of them may well not be encountered at all during the primary period of 
phonological acquisition.  To deal with this question, we tried a variety of learning corpora.  In 
this section we report a simulation based on the assumption that exotic onsets are not 
encountered by language learners.  This corpus was obtained by culling all of the word-initial 
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onsets from the online CMU Pronouncing Dictionary (http://www.speech.cs.cmu.edu) and 
removing all of the onsets that we judged to be exotic.  This corpus was created before any 
modeling was done, so we can claim not to have tailored it to get the intended results.  We 
obtained similar, though slightly less accurate, results for a variety of “exotic” corpora, reported 
in Appendix B.   

The nonexotic corpus, with frequencies,10 is given in (11). 

(11) The English onset learning data 

k 2764, r 2752, d 2526, s 2215, m 1965, p 1881, b 1544, l 1225, f 1222, h 1153, t 
1146, pr 1046, w 780, n 716, v 615, g 537, d 524, st 521, tr 515, kr 387,  379, gr 331, 
tʃ 329, br 319, sp 313, fl 290, kl 285, sk 278, j 268, fr 254, pl 238, bl 213, sl 213, dr 
211, kw 201, str 183, θ 173, sw 153, gl 131, hw 111, sn 109, skr 93, z 83, sm 82, θr 
73, skw 69, tw 55, spr 51, ʃr 40, spl 27, ð 19, dw 17, gw 11, θw 4, skl 1 

It can be seen that no [Cj] onsets are included in the corpus; we follow Clements and Keyser 
(1983, 42) in assuming that words like pew are syllabically parsed as [[p]onset [ju]rhyme]σ. 

We used a fairly standard feature set for English, taken mostly from SPE and from Halle and 
Clements (1983). We controlled the total number of natural classes defined (§4.1) by using both 
contrastive and privative underspecification, shown in Table 3 with blanks. 

                                                 

10 These are type, not token frequencies. Using the latter produces slightly less accurate results in modeling 
the experimental data discussed below (§5.3). In general, it appears that the use of type frequencies yields better 
results in modeling any sort of phonological intuitions based on the lexicon; for discussion see Bybee 1995, 2001, 
Pierrehumbert 2001a, Albright 2002a, Albright and Hayes 2003, Hayes and Londe 2006, and Goldwater 2007.  
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Table 3 

Feature set for English consonants 

 p t tʃ k b d dʒ g f θ s ʃ h v ð z ʒ m n ŋ l r j w
cons + + + + + + + + + + + + + + + + + + + + + – – – 
approx – – – – – – – – – – – – – – – – – – – – + + + + 
son – – – – – – – – – – – – – – – – – + + + + + + + 
cont – – – – – – – – + + + + + + + + +        
nas                  + + +     
voice – – – – + + + + – – – – – + + + +        
spread             +            
lab +    +    +     +    +      + 
cor  + +   + +   + + +   + + +  +  + +   
ant  + –   + –   + + –   + + –  +  + –   
strid  – +   – +   – + +   – + +  –  – –   
lat                     +    
dors    +    +            +     
high                       + + 
back                       – + 

We set the maximum constraint size n (§4.1) at 3 and the accuracy schedule (§4.2.1) at 
[.001, .01, .1, .2, .3]. To implement our proposed trade-off between constraint size and featural 
specificity (§4.1), we stipulated that no constraint could contain more than two matrices drawn 
freely from the full feature set; the remaining matrix of a size 3 constraint was limited to a set of 
seven “core” natural classes, i.e., the class containing only the boundary marker (#, appended 
before and after each onset) and the classes [±syllabic], [±consonantal], and [±sonorant].11  

5.2 The learned grammar  

The learner was run ten separate times.  Since constraint selection is stochastic (§4.2.1), it 
learned slightly different grammars on different occasions; however, the empirical predictions of 
the grammars were very similar.  We report here the grammar that performed worst in the 
correlation test below (§5.3.2).  This grammar contained 23 constraints, which in Table 4 are 
listed in the order they were learned.12  

                                                 

11 A reviewer asks if this requirement could be tightened, so that at least one matrix in a three-matrix 
constraint would be either word boundary or the class of all segments, designated [ ].  We think this is insufficiently 
expressive, because many phonotactic constraints have intervocalic environments (*[+syllabic][αF][+syllabic]). 

In fact, for English the limitation on size 3 constraints made no difference to the grammars learned.  Since it 
is crucial to the Wargamay simulation of §8, we use it here and elsewhere for consistency.  

12 Maxent tableaux for the simulations reported here can be obtained from 
http://www.linguistics.ucla.edu/research/maxentphonotactics/.  
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Table 4 

The learned grammar for English onsets 

Constraint Weight Comment Examples 
1. *[+son,+dors] 5.64 *[ŋ] *ŋ, *sŋ 
2. *[+cont,+voice,–ant] 3.28 *[ʒ] *ʒ (see also 

#16)   

3. *
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤^–voice

 +ant
 +strid

 [–approx] 
5.91 Nasals and obstruents may only be 

preceded (within the onset) by [s]. 
*kt, *kk, 
*skt 

4. *[ ][+cont] 5.17 Fricatives may not cluster with 
preceding C. 

*sf, *sθ, 
*sh, *sfl 

5. *[ ][+voice] 5.37 Voiced obstruents may not cluster 
with preceding C. 

*sb, *sd, 
*sgr 

6. *[+son][ ] 6.66 Sonorants may only be onset-final *rt 
7. *[–strid][+cons] 4.40 Nonstrident coronals may not 

precede nonglides. 
*dl, *tl, *θl 

8. *[ ][+strid] 1.31 Stridents must be initial in a cluster. *stʃ͡ 
(see also 
#14, #22) 

9. *[+lab] ⎣⎢
⎡

⎦⎥
⎤^+approx

  +cor   

4.96 The only consonants that may 
follow labials are [l] and [r]. 

*pw vs. pl, 
pr 

10. *[–ant] ⎣⎢
⎡

⎦⎥
⎤^+approx

  –ant    
4.84 Only [r] may follow nonanterior 

coronals. 
*ʃl vs. ʃr 

11. *[+cont,+voice][ ] 4.84 Voiced fricatives must be final in an 
onset. 

*vr, *vl vs. 
fr, fl 

12. *[–cont,–ant][ ] 3.17 [t ͡ʃ] and [d͡ʒ] must be final in an 
onset. 

*t ͡ʃr, *d͡ʒr 
vs. tr, dr 
(see also 
#22) 

13. *[ ][–back] 5.04 [j] may not cluster with a preceding 
C; see above for assumed syllabic 
parsing of [ju]. 

*[bj]ons  

14. *[+ant,+strid][–ant] 2.80 Anteriority assimilation *sr vs. ʃr  
(see also 
#22) 

15. *[+spread][^+back] 4.82 [h] may only cluster with [w] 
(dialect assumed has [hw] as legal) 

*hr vs. *hw 

16. *[+cont,+voice,+cor] 2.69 *voiced coronal fricative (violable) ð, z, *ʒ  
(see also #2)

17. *[+voice] ⎣⎢
⎡

⎦⎥
⎤^+approx

  +cor   

2.97 Voiced obstruents may only be 
followed by [l, r] (violable) 

gw, dw vs. 
gr, dr 
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18. *⎣⎢
⎡

⎦⎥
⎤+cont

–strid   ⎣⎢
⎡

⎦⎥
⎤^+approx

  –ant   

2.06 [θ, ð] may only be followed by [r] 
(violable). 

θw vs. θr  
(see also 
#21) 

19. *[ ] 
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤^–cont

  –voice
  +lab

 [+cons] 
3.05 In effect:  [p] not [k] / s__l 

(violable) 
skl vs. spl 

20. *[ ][+cor] ⎣⎢
⎡

⎦⎥
⎤^+approx

  –ant   

2.06 In effect:  only [r] after [st]  ?stw vs. 
skw, str (see 
also #23) 

21. *[+cont,–strid] 1.84 [θ, ð] are rare (violable). θ vs. f, s 
22. *[+strid][–ant] 2.10 In effect:  [ʃr] is rare (violable). ʃr vs. fr 

23. *
⎣
⎢
⎢
⎡

⎦
⎥
⎥
⎤–cont

–voice
+cor

 ⎣⎢
⎡

⎦⎥
⎤^+approx

  –ant   

1.70 In effect:  [t] can only be followed 
by [r] (violable). 

tw vs. tr 

 

We think most or all of the constraints are sensibly interpretable in the context of English 
phonology; see the comment column of Table 4 for discussion.  The weights also have plausible 
interpretations.  Highly-weighted constraints, such as #1 in Table 4, reflect phonotactic 
principles that hold exceptionlessly in the learning data.  Lower-weighted constraints are of two 
types.  Some, like #23, are “violable” in the sense that they penalize onsets that occur in the 
learning data but are highly underrepresented.  Others belong to “gangs,” which collectively 
assign harsh penalties to impossible clusters (e.g. the gang #8, #14, #22, which gives *[st ͡ʃ] the 
bad score of 6.21).  Violable constraints may also belong to gangs; e.g. #2, ganging with #16 to 
rule out *[ʒ], or #18 and #21 ganging to penalize the especially rare onset [θw]. 

5.3 Assessing the learned grammar  

We assessed the learned grammar first by comparing its predictions with the English 
lexicon, then by checking it against experimental results. 

5.3.1 Comparison with the lexicon 

We sought to determine whether the grammar would admit the attested onsets of English 
(defined as those included in the learning data) and exclude all others. To this end, we created a 
list of all logically possible onsets consisting of up to three English phonemes, and determined 
the score (= h(x), defined in (4)) assigned by the grammar to each onset in this list. The ten best 
scores for clusters not in the learning data were [stw] 3.76, [dl] 4.40, [hl] 4.82, [hr] 4.82, [vl] 
4.84, [vr] 4.84, [ʃl] 4.84, [ʃw] 4.84, [sr] 4.90, [fw] 4.96, [pw] 4.96, and [spw] 4.96.  Of these, the 
least penalized form [stw] has been called an “accidental gap” (Fudge and Shockey, ms.; Rastle 
et al. 2002).  Most unattested onsets received harsher scores; for instance, the score for [rt] was 
21.81.  
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Most attested onsets received perfect scores (= 0). However, a few of the rarest onsets did 
receive penalties: [ð] 4.54, [θw] 3.91, [skl] 3.05, [dw] 2.97, [gw] 2.97, [z] 2.69, [ʃr] 2.10, [θ] 
1.85, [θr] 1.85, [tw] 1.70.  Given that these onsets are rare ([ð] in particular is illegal except in 
function words), and that rare real sequences tend to be downrated by native speakers (see §2.3), 
these scores strike us as plausible. 

We conclude that the grammar did a reasonably good job of separating good from bad 
onsets, the threshold (cf. §3.2) falling at a score of about 4. 

5.3.2 Modeling experimental data 

We also assessed the grammar on its ability to replicate the gradient judgments of English 
speakers. To this end we modeled the data from one of the earliest experiments on phonological 
well-formedness intuitions, Scholes 1966 (Experiment 5). Scholes obtained yes/no ratings of 66 
monosyllabic nonwords from a group of seventh grade students (N=33). The students were 
asked, for each form, whether it “is likely to be usable as a word of English”. The syllable rimes 
of the nonwords were kept few, and deliberately bland, so that the great bulk of the variation in 
responses can plausibly be attributed to the onsets. Following Pierrehumbert 1994 and Coleman 
and Pierrehumbert 1997, we take the proportion of “yes” responses pooled across participants to 
be an indicator of the mean well-formedness intuition of individuals in the population. Frisch et 
al. 2000 demonstrate that this method yields scores that are highly correlated with well-
formedness ratings on a numerical scale. As with results from similar studies, the pooled Scholes 
data show a gradient transition from relatively well-formed to highly ill-formed clusters, seen in 
Figure 3 below.  

In assessing the performance of the model against these data, we are comparing probabilities 
with probabilities; i.e. the probability that an experimental subject will accept the form against 
the absolute probability assigned to the form by the maxent grammar.  For this purpose, we use 
maxent values (P*(x); (5)), which are proportional to probabilities (6).  In addition, we 
incorporate a free parameter T, whose value is determined on a best-fit basis, and whose purpose 
is to render the predicted scores comparable in overall distribution to the experimental data.13  
Hence, the scores matched against the data are as in (12). 

(12) predicted-rating(x) = P*(x)1/T  

Under the best fit value (T = 7.4), the correlation of predicted ratings against observed 
ratings (fraction of “yes” responses) was r = 0.946. This means that most of the variation in the 
subjects’ responses is explained by the model. The scattergram (Figure 3) shows the predictions 
of the model plotted against subject ratings for all 62 onsets in the Scholes experiment.  

                                                 

13 T is mnemonic for the computational “temperature,” a term reflecting the origin of maximum entropy 
theory in statistical mechanics; see e.g. Smolensky 1986:270.  
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Figure 3 

Performance of the model in predicting the data of Scholes 1966 

 

The correlation of 0.946 becomes more meaningful when compared with the correlations 
obtained under alternative approaches. We tested five other models, as follows.  

 I. In order to compare our machine-learned constraints with a hand-crafted 
grammar, we translated the constraints proposed by Clements and Keyser (1983) 
into our own formalism and assigned them weights as in §3.3. 14  

We also tested four alternatives that are less expressive, in the sense that they do not allow 
well-formedness to be computed from independent cross-classifying constraints (§2.1). 

                                                 

14 The constraints consisted of numbers 1, 2, 6, 11, 12, 13, and 15 of Table 4, plus  
*[^–voice,+ant,+strid][+nas], *[^–voice,+ant,+strid][–son], *[+cont,–voice,–ant], [^–cons,+cor], *[+cont][+cont], 
*[+lab][+lab], *[–strid][+lat], *[–voice,+ant,+strid], [–cons,+cor], *[–voice,+ant,+strid][–cont,–voice,+ant][+back], 
*[–voice][+voice], and *[ ][–cont,–ant]. 
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 II. The grammar labeled “without features” in Table 5 below was learned in the same 
way as our model, but differs in having only single-membered natural classes 
(one per segment in the inventory).  

 III. We implemented Coleman and Pierrehumbert’s (1997) onset-rhyme model, which 
has one rule for each onset type in the learning data, and does not use segmental 
or featural information to relate nonidentical onsets.  

 IV. We also included an n-gram model from computational linguistics, constructed 
with the ATT GRM library (Mohri 2002, Allauzen et al. 2005; 
http://www.research.att.com/sw/tools/grm/). This model uses segmental 
representations, not features, and was trained with standard methods.  

 V. Lastly, we tested an analogical model patterned after Bailey and Hahn (2001). 
This model assesses well-formedness not with grammatical constraints, but on the 
basis of the aggregate resemblance of the onset under consideration to all the 
onsets in the learning data.15  

All models were fitted to the data with a free parameter T, as with our own model.  

The performance (measured by r) of the various models is summarized in Table 5.  

Table 5 

Comparison of performance of six models 16 
 
 Model   r        
 our model  0.946  
 Clements-Keyser constraints with maxent weights  0.936  
 Coleman and Pierrehumbert 1997  0.893  
 our model without features  0.885  
 n-gram model  0.877  
 analogical model  0.833  

 
As can be seen, our machine-learned grammar was sufficiently accurate that it slightly 
outperformed a carefully hand-crafted grammar. These two grammars outperform all the others; 
a plausible reason is they are the only models that employ the standard apparatus of phonological 
theory, namely features and natural classes.17 

                                                 

15 We explored a number of versions of this model and found that the best-performing version was one that 
used the segmental similarity metric of Frisch, Pierrehumbert, and Broe 2004 and that paid no heed to token 
frequencies in the learning data. 

16 Because many of the data points were concentrated at the ends of the scale of predicted values, we also 
performed nonparametric (Spearman) regressions for all of the models.  The values corresponding to the rightmost 
column of Table 5 were 0.889, 0.869, 0.796, 0.757, 0.761, and 0.818.   

17 A final note concerning these models. Bailey and Hahn (2001) suggest that improvements in modeling can 
be obtained if constraint-based and analogical models are blended. We find that this is true, but only to a limited 
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We also used the Scholes data to check the consequences of assumptions made in setting up 
our model.  First, we found that the model worked poorly if the search heuristics of §4.2 were 
dropped.  Simply letting the model select constraints at random and weight them yielded poor 
correlations and failed to separate legal from illegal forms; for example, one run with 1000 
randomly selected constraints yielded r = 0.855, with illegal [ŋ lr tl] rated far better than attested 
[ʃr θw].  Second, the use of implicational constraints (§4.1.1) made a modest difference to the 
performance of the model; the best grammar learned without implication had 28 (instead of 23) 
constraints and achieved a correlation of r = 0.926.  Finally, the use of token instead of type 
frequencies for the learning data (fn. 10) also yielded a somewhat lower correlation, r = 0.924 in 
the best of five runs; for the token frequencies used, see Appendix B.  

6. Nonlocal phonotactics:  Shona vowel harmony  

The English onset simulation was a demonstration of our model in its simple, inductive 
baseline version. We consider next a phonotactic pattern that requires us to move beyond the 
baseline. The pattern in question is nonlocal, imposing restrictions on nonadjacent sounds.  

Examples of this kind are numerous; we focus here on the vowel harmony system of Shona, 
a Bantu language of Zimbabwe (Fortune 1955, Beckman 1997, Riggle 1999.) We chose Shona 
because it has relatively few exceptions in stems, so that vowel harmony is plainly evident as a 
phonotactic principle. In this respect Shona differs from other vowel harmony languages (see 
Kiparsky 1973 for Hungarian, Clements and Sezer 1982 for Turkish), where abundant 
disharmonic stems might create problems for a purely phonotactic learning strategy. For the 
same reason, we limit our study to verbs, where the harmony pattern is closest to exceptionless.18  

6.1 The Shona data pattern  

Shona has five vowels: [i e a o u], whose distribution is restricted by the harmony principles 
given below (examples, given in Shona orthography, are from Hannan 1981): 

(13)  Shona vowel distribution 

 a.  a is freely distributed.19  
 b. e, o may occur as follows: 
   i. in initial syllables, as in beka ‘belch’, gondwa ‘become replete with 

water’. 
   ii. e may occur noninitially if the preceding vowel is e or o, as in cherenga 

‘scratch’, fovedza ‘dent’. 

                                                                                                                                                             

extent.  Using the base model augmented by the analogical model, the values corresponding to the rightmost column 
of Table 5 (first five values) are 0.947, 0.939, 0.923, 0.916, and 0.901.  

18 For the idea that particular parts of speech have special phonotactics, see Kelly 1991, Smith 2001.  
19 However, in our learning data, final vowels are always /a/, since the dictionary entries for verbs all end 

with the suffix /-a/. 
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   iii. o may occur noninitially only if the preceding vowel is o, as in dokonya 
‘be very talkative’. 

 c.  i, u may occur as follows. 
   i. in initial syllables, as in gwisha ‘take away’, huna ‘search intently’. 
   ii. i may occur noninitially unless the preceding vowel is e or o, as in kabida 

‘lap (liquid)’, bhigidza ‘hit with thrown object’, churidza ‘plunge, dip’. 
   iii. u may occur noninitially unless the preceding vowel is o, as in baduka 

‘split’, bikura ‘snatch and carry away’, chevhura ‘cut deeply with sharp 
instrument’, dhuguka ‘cook for a long time’. 

In dynamic terms, this implies a kind of asymmetrical harmony for [high]: the mid vowels e, 
o require a following high i to be lowered to e, and the mid vowel o requires a following u to be 
lowered to o. In fact, Shona suffixes alternate in height in order to remain in conformity with 
these requirements (Fortune 1955:26, Beckman 1997:10-11), though our focus is on harmony as 
a phonotactic pattern.  

We analyzed 4399 Shona verbs from the online version of Hannan’s (1959) Shona 
dictionary, available from the CBOLD project (http://www.cbold.ddl.ish-lyon.cnrs.fr/). 
Inspection of the corpus showed that even in verbs, the harmony system is not free of exceptions: 
a fair number of idiophones and borrowings violate the normal harmony pattern. The details are 
given in Table 6, which gives totals from our training set for all 25 possible two-vowel 
sequences. The table gives both the raw counts and an ad hoc O/E estimate, namely the raw 
frequency divided by the product of the two individual vowel frequencies. The latter depicts 
underrepresentation more clearly by compensating for the overall frequencies of vowels. 
Phonotactically aberrant cases are classified intuitively as “ ”, “?”, or “*” according to the kind 
of violation they contain.  
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Table 6 

Shona vowel distribution: corpus data 

Vowel 
sequence Count 

Ad hoc 
O/E 

 
Status Comment 

a a     1443 1.03   
a e 3 0.02 * Noninitial e without harmony trigger 
a o 0 0.00 * Noninitial o without harmony trigger 
a i 500 1.69   
a u 568 1.24   
e a 639 0.77   
e e 587 5.30   
e o 0 0.00 * Noninitial o without harmony trigger 
e i 2 0.01 * i not lowered after e 
e u 260 0.96  e not a lowering trigger for back vowels 
o a 638 0.75   
o e 153 1.35   
o o 694 6.56   
o i 23 0.13 ? i not lowered after o (weak trigger) 
o u 20 0.07 ? u not lowered after o (weak trigger) 
i a 1130 1.14   
i e 0 0.00 * Noninitial e without harmony trigger  
i o 0 0.00 * Noninitial o without harmony trigger 
i i 478 2.29   
i u 175 0.54   
u a 1737 1.14   
u e 4 0.02 * Noninitial e without harmony trigger 
u o 1 0.005 * Noninitial o without harmony trigger 
u i 175 0.55   
u u 811 1.63   

The detailed data illustrate an aspect of Shona that has to our knowledge not been previously 
noticed: o is somewhat “weak” as a harmony trigger, in that the high vowels i and u follow it 
with modest frequency. The sequences o i and o u are nevertheless underrepresented, and we will 
assume that a phonotactic grammar should take account of this; this assumption is reflected in 
our assignment of “?” status to these sequences. 

6.2 Failure of the inductive baseline model  

Adopting a straightforward feature system for Shona segments, we ran our inductive 
baseline learner on Shona. The settings were the same as for the English onset simulations 
(§5.1), with a few exceptions. We set n (the maximum number of feature matrices in a 
constraint) at 4, the reason being that for V1CCV2 sequences, the harmonic dependency between 
V1 and V2 has no chance of being detected unless constraints can span four feature matrices. In 
addition, we extended the highest accuracy threshold (§4.2.1) slightly from 0.3 to 0.35, which 
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(ultimately) proved necessary for capturing the marginal status of o u and o i. We ran the learner 
for several days, forming a grammar of 300 constraints.  

To test this grammar, we gave it 50 test words to rate. Of these, 25 took the form mVmVma, 
where the two slots labeled “V” were filled with all possible vowel pairs (mimima, mimema, etc.) 
The remaining 25 were similar, but took the form mVndVma, chosen to test if the system had 
learned the harmonic restrictions across consonant clusters.  

The inductive baseline model achieved only minimal descriptive success. It did find five 
valid harmony constraints applicable to VCV sequences, shown in Table 7. 

Table 7 

Results of the inductive baseline learner applied to Shona 

 Constraint Weight Comment 

1. *[–back][ ][–high,–low,+back] 4.20 *[ei][ ]o 
2. *[+low][ ][–high,–low,+back] 1.35 *a[ ]o 
3. *[+high][ ][–high,–low] 3.77 *[iu][ ][eo] 
4. *[–high,–low][ ][+high,–low,–back] 3.19 *[eo][ ][i] 
5. *[+low][ ][–high,–low] 4.15 *a[ ][eo] 

 

These sufficed to rule out all the ill-formed cases of mVmVma; they also penalized ?momima 
(with the same value as *memima), and left only ?momuma classified erroneously as perfect. 
However, for the mVndVma forms, the model failed completely: no constraints regulating the 
vowels of V1CCV2 were found, so all of these were classified as perfect.  

We judge that the reason for this failure lay in the unmanageable hypothesis space. The 
number of possible 4-matrix constraints is extremely large (1.9 billion, with our feature set), and 
the available search time was consumed before the relevant V-to-V constraints could be found.20 
The presence of a not inconsiderable number of triple clusters in Shona (e.g. [ndw]) renders the 
possibility of the inductive baseline learner succeeding even more remote, because the learner 
would have to search 328 billion 5-matrix constraints. 

6.3 Moving beyond the inductive baseline: projections  

From the viewpoint of contemporary phonological theory, the analytic approach to vowel 
harmony offered by our inductive baseline system is implausible. Phonologists have long been 

                                                 

20 As a control, we also considered whether the Shona lexicon fails to instantiate the principles of harmony 
for vowel pairs that are separated by consonant clusters. To test this, we made up a set of pseudowords of the form 
VCCV, extracted from all such sequences in the real training set (e.g., [iŋga] from chingamidza. Our improved 
vowel-projection learner (see below, §6.3) learned from these a reasonable approximation of the harmony pattern. 
This shows that the failure of the inductive baseline learner cannot be attributed to gaps in the learning data, but 
rather must be the result of the wrong learning strategy. 
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aware that vowel harmony systems normally “care” only about the vowels of the string, and have 
adopted formal devices that permit this, expressing the nonlocal process in local terms. This can 
be done, for instance, with an autosegmental tier for vowels (Clements 1976, Goldsmith 1979), 
perhaps incorporated into some conception of feature geometry (Archangeli and Pulleyblank 
1987, Clements and Hume 1995). Without attempting to choose between these theories, we 
argue that a vocalic representation offers a solution to the problem of learning harmony systems. 

To create the effects of a vowel tier in our system, we use the idea of projection (Vergnaud 
1977, McCarthy 1979).  In particular, the vowel projection of a phonological representation is 
the substring consisting of all and only its vowels, appearing in the same order as in the main 
representation. Projections are scanned during constraint discovery in the same way as the full 
representation, and every constraint applies on its own projection. For example, the constraint 
*[–high, –low][+high], as defined on the vowel projection, forbids mid-high vowel sequences 
irrespective of how many consonants intervene.  

Technically, a projection is defined by a set of criterial feature values, and consists of feature 
matrices containing only the values of the projected features. For example, the vowel projection 
employs the criterial value [+syllabic] and projects the features that classify vowels, which for 
our Shona feature set are [high], [low], and [back]. We assume that projections also include the 
SPE feature [segment], which (in its minus value) designates the word boundary. To give an 
example, the verb gondwa, from (13), is shown in (14) in both its complete representation (which 
we will call the “default projection”) and its vowel projection.  

(14) [–seg] g o n d w a [–seg] Default projection 

 [–seg]  
⎣
⎢
⎡

⎦
⎥
⎤+high

–low
+back
+seg

     
⎣
⎢
⎡

⎦
⎥
⎤–high

+low
+back
+seg

  [–seg] Vowel projection 

We amplified our inductive baseline learner to create projections and scan them for 
phonotactic generalizations. The modified version of the learner alternates among the available 
projections, learning from each in turn.  In calculating maxent values (§3.2), the constraints on 
all projections are applied in parallel. 

6.3.1 A vowel projection-based grammar for Shona 

Using a vowel projection, we reran the Shona simulation. The learner quickly found all 
available vowel projection constraints; they were always among the first 30 learned. Since the 
constraints from the default projection are of little interest here, we therefore allowed learning to 
terminate after 40 constraints.  We ran the model five times and obtained similar results on each 
run.   

For the least effective grammar (lightest penalty for illegal vowel sequences), the crucial 
constraints for vowel harmony were as in Table 8.   
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Table 8 

Vowel projection grammar for Shona:  harmony constraints  

  Constraint Projection Weight Comment 

 1. *[^–high,–low][–high,–low] Vowel 5.02 *[^eo][eo] 
 2. *[^–low,+back][–high,–low,+back] Vowel 4.43 *[^o]o 
 3. *[–high,–back][+high,–back] Vowel 1.91 *ei   
 4. *[–high,–low][+high,–back] Vowel 2.33 *[eo]i  
 5. *[–high,–low,+back][+high,+back] Vowel 2.26 *ou  

The core harmony constraint is #1, an across-the-board ban on noninitial mid vowels that are not 
licensed by a preceding mid vowel.  The vowel [o] is subject to a stricter licensing requirement 
that it be preceded by [o], and this is enforced by #2.21 The remaining three constraints are all 
violable and penalize high vowels in lowering environments.  The near-unattested [e i] receives a 
substantial penalty due to the ganging of #3 and #4, whereas the merely-underrepresented [o i] 
and [o u] are only lightly penalized by virtue of violating #4 and #5 respectively.  A further 
discovered vowel-projection constraint, *[–high,–low,+back][ ][+high,+back], weighted 3.49, 
penalizes an unattested nonlocal sequence, [o V u]. 

We tested the vowel projection grammar with the same set of words (mVmVma, mVndVma) 
with which we had tested the inductive baseline grammar.  The vowel projection grammar 
correctly sorted the mVmVma forms into the categories given in Table 6 ( , ?, *),  assigning 
harsh penalties (at least 4.24) to all starred forms (e.g. *[mamema]), lighter penalties (2.33 and 
2.27 respectively) to ?[momima] and ?[momuma] (which illustrate the “weak trigger” 
characteristic of [o]), and perfect scores to all other forms.   

However, the crucial comparison concerns the mVndVma forms, where the inductive 
baseline grammar had failed entirely.  The vowel projection grammar correctly assigned the 
same score to each mVndVma form as to the corresponding mVmVma form—all of the vowel 
harmony constraints were learned on the vowel projection, which treats such forms alike.  For 
the same reason, the vowel projection grammar would assign these scores to analogous forms 
with consonant clusters of any length.  

In conclusion, we claim that that our learner has achieved a reasonable approximation to 
Shona vowel sequencing phonotactics. The learning of Shona harmony became possible when 
we moved beyond our inductive baseline model to incorporate a vowel projection. Thus, the 

                                                 

21 The learner formulated #2 so that it is obeyed by [u o] sequences; we suspect this is because the training 
data included one case of [u o] but none of [a o], [i o], or [e o].  [u o] is penalized only by #1. Since #1 and #2 gang 
up on [i o] and [a o] (both frequency zero), these are predicted to be the worst possible harmony violations. 
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concept of a vowel tier can be defended on learnability grounds: in controlled comparative 
simulations, it makes phonotactic learning possible where it would not otherwise be so. 22  

7. Locality in stress patterns: the metrical grid  

Another type of nonlocal phonotactics is found in stress systems. Where stress is 
predictable, it is often analyzed derivationally: a grammar assigns a stress contour to each form, 
based on its segmental or syllabic representation. But predictable stress is also a phonotactic 
pattern, a regularity of surface forms. We adopt this perspective here, noting that it readily 
extends to languages like English (Selkirk 1980b) where stress is not fully predictable, but obeys 
important restrictions.  

7.1 Unbounded stress  

The locality of stress is seen clearly in so-called unbounded stress patterns. One such 
pattern, attributed to Eastern Cheremis and various other languages (Hayes 1995:§7.2), works as 
follows:  

(15)  a.  Every heavy syllable bears some degree of stress.  
 b.  Every initial syllable bears some degree of stress. 
 c.  Of the stressed syllables in a word, the rightmost bears main stress.  

In terms of main stress, this is a “default to opposite” system (Prince 1985), with the pattern 
“rightmost heavy, else initial.” The generalization in (15c) has been called “End Rule Right” 
(Prince 1983), a term we will use below. 

This description implies two clear instances of nonlocality. First, the fact that exactly one 
syllable bears main stress (“culminativity”; Hayes 1995) is a nonlocal observation that cannot be 
stated in our inductive baseline model. Because our model imposes a limit n on the number of 
feature matrices that may appear in a constraint (§4.1.2), it can only require that the main stress 
appear within n – 1 syllables of a particular word edge or other landmark; it cannot quantify over 
all syllables of a word to determine that exactly one of them bears main stress. The same 
considerations imply that the End Rule Right restriction in (15c) cannot be captured by our 
inductive baseline learner; there is no guarantee that this syllable will fall within the n-syllable 
limit. 

                                                 

22 Our reviewers asked if we could dispense with projections and use Kleene-star notation (i.e. (x)*, “zero or 
more x”) instead.  For example, Table 8, #1 would be stated to rule out [^–high,–low] ([^+syllabic])*[–high,–low].  
We are skeptical that this would work. Kleene-star is much less restrictive than projections, as it need not employ 
the same intervention class throughout a constraint.  We judge that this would lead to severe search space problems.  
For example, the constraint of Hungarian that Hayes and Londe (2006) call LOCAL NN is stated by them as *[–
back][–back][+back] on a vowel tier; in Kleene-star notation it would require [–back]([–syllabic])*[–back]([–
syllabic])*[+back].  With any reasonably large number of natural classes, five-matrix constraints lead to a very large 
search space. 

In general, however, work pursuing the inductive baseline approach must be prepared to consider multiple 
approaches to solving a learnability problem.  The result in this section shows the sufficiency of vowel projections 
for the task at hand, but to demonstrate necessity would be a long-term project. 
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A representation for stress that addresses these locality issues is the metrical grid, proposed 
by Liberman (1975) and employed as a basis for stress theory by Liberman and Prince (1977), 
Prince (1983), Gordon (2002), and others. From the earliest work, theorists have recognized the 
implications of the grid for phonological locality.23  

In a typical grid, every syllable is assigned to a terminal level grid position, represented here 
as a row of x’s at the bottom of the grid. Every stressed syllable is designated as such by 
assigning it an additional x on the second row up from the bottom. Main stressed syllables are 
also assigned an x on the third, highest row. This is illustrated in the following representation, 
which shows a schematic 13-syllable word containing three heavy syllables, obeying the stress 
pattern in (15). 

(16)         x      Main stress row 
 x   x  x   x      Stress row 
 x x x x x x x x x x x x x  Syllable row 
 L L L H L H L L H L L L L  Syllables: H = heavy,  

word L = light 
 

Since all of this phonological material belongs to a single word, the brackets for word 
division enclose all levels of the grid.  

Grid formalism makes it possible to characterize the nonlocal patterns described above in 
local terms. The requirement that every word have exactly one stress is expressed by requiring 
that there be exactly one x between each pair of word brackets on the main stress row. The 
constraint for the End Rule Right generalization can be expressed locally as in (17). 

(17) * x  Main stress row 
  x x Stress row 

The literal interpretation is, “avoid a main stress mark when another grid mark follows on the 
immediately lower row.” 

7.2 Formalizing grids as projections  

By providing localist representations of patterns that would appear as nonlocal in an 
inductive baseline representation, the grid makes possible the learning of stress generalizations 
that would otherwise be missed. To demonstrate this, we constructed a formalization of the grid, 
using the same device of projection used earlier for vowel harmony.  

For simplicity, we assumed an inventory of terminal elements consisting of just six symbols, 
each designating a syllable type: { L , ˌL, ˈL, H , ˌH, ˈH }. L designates light syllables and H heavy; 

                                                 

23 It has often been argued that the grid should be amplified with constituency information, such as foot 
structure (Liberman and Prince 1977, Halle and Vergnaud 1987, Hayes 1995). The present discussion makes no use 
of such constituency, taking an agnostic view on whether it exists. For discussion of “hidden structure” of this kind, 
see §9.5. 
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and the IPA diacritics [     ˌ  ˈ ] designate stressless, secondary stressed, and main stressed 
syllables. These six entities were classified with the prosodic features [heavy], [stress], and 
[main]:  primary stress is [+stress, +main] and secondary stress is [+stress, –main]. We used 
these features (plus the SPE feature [segment], which distinguishes segments from word 
boundaries) to express the grid as a set of projections, as in Table 9. 

Table 9 

Formalizing a metrical grid with projections 

   Criterial features  Projected features  

 a. Main projection  [+main]  [segment]  
 b. Stress projection  [+stress]  [segment], [main]  
 c. Default projection  none  all  

 

The three projections are shown in detail for a schematic form in (18).  

(18) Representing a grid with projections: [ˌL L  ˈH L] 

 [ ]–seg     [ ]+seg    [ ]–seg   
Main
projection  

 [ ]–seg   ⎣⎢
⎡

⎦⎥
⎤+seg

–main    ⎣⎢
⎡

⎦⎥
⎤+seg

+main    [ ]–seg   
Stress
projection  

 [ ]–seg   
⎣
⎢
⎡

⎦
⎥
⎤+seg

–heavy
+stress
–main

  
⎣
⎢
⎡

⎦
⎥
⎤+seg

–heavy
–stress
–main

  
⎣
⎢
⎡

⎦
⎥
⎤+seg

+heavy
+stress
+main

  
⎣
⎢
⎡

⎦
⎥
⎤+seg

–heavy
–stress
–main

  [ ]–seg   
Default
projection  

This representation is closely analogous to a traditional grid, as can be seen if one simply 
replaces every matrix containing [+seg] with x and marks word boundaries with brackets, as 
shown in (19).  

(19)    x  Main stress row 
 x  x  Stress row 
 x x x x Syllable row 
 L L H L   

word 

The projection version may appear to be richer in information, since each row encodes the 
presence of higher level grid marks with its featural content. However, traditional use of grids 
has generally done more or less the same, relying on geometrical (“dominated by”) rather than 
featural descriptions.   
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7.3 Learning stress with grids  

We tested our learner under this scheme by having it try to learn the schematic stress pattern 
in (15). As training data, we employed all strings of length five or less drawn from the symbol 
set { L  ˌL ˈL H ˌH ˈH } that obey (15) ( [ˈL], [ˈH], [ˈL L], [ˌL ˈH], [ˈH L], [ˌH ˈH], [ˈL L  L], and so 
on). With this training set, the projections of Table 9, and the same learning parameters as in the 
English onset simulation (§5.1), our system consistently discovered the constraints and weights 
in given Table 10. 

Table 10 

Grammar learned for stress pattern (15) 

  Constraint Projection Weight Comment 

 1. *# #  Main 6.18 Culminativity 
 2. *[+main][  ] Stress 7.18 End Rule Right 
 3. *H Default 6.57 WEIGHT-TO-STRESS (Prince and Smolensky 

1993:56) 
 4. *# [–stress] Default 5.44 Every word must begin with a stress. 

 5. *⎣⎢
⎡
⎦⎥
⎤  

   ⎣⎢
⎡

⎦⎥
⎤+stress

–heavy   Default 6.57 Light syllables may be stressed only if 

initial. 
 
We tested this grammar by calculating the scores it derives for every possible string up to 

length five drawn from the complete inventory { L , ˌL, ˈL, H, ˌH, ˈH }. The grammar successfully 
assigned perfect scores to all legal forms and penalty scores of at least 5.44 to all illegal ones. 

Our inductive baseline learner cannot learn this stress pattern. Indeed, it cannot even 
represent the grammar that would be needed: if the maximum number of matrices used in a 
constraint is n, the grammar will be defeated by words of length n + 1. Thus, when we set n at 4, 
the grammar learned failed to rule out five-syllable forms like *[ˈH L  L  L  ˈH] (with two primary 

stresses) and *[ˌH L  L  L  L] (with none).  

In sum, hierarchical representations permit the statement of nonlocal generalizations using 
formal principles that are stated locally. In previous work, this property has been noted as an 
important basis for developing a constrained theory of possible stress patterns (see, e.g., Hayes 
1995:34). But by the same token, the locality property is important to learning, since it makes it 
possible to discover the crucial generalizations using a learner with a restricted search space.  

7.4 Other stress rules  

To get a clearer idea of the performance of the model in learning stress systems, we let it 
attempt to learn similar schematic simulations for the empirical typology of quantity-insensitive 
systems compiled by Gordon (2002). Gordon’s research interest was in developing an a priori 
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constraint set whose factorial typology (Prince and Smolensky 1993:§3.1) would match with the 
observed natural language systems. Here, we simply use his 33 observed stress patterns as a 
criterion for our model, to determine whether they could all be learned.  

Our simulations were done along the same lines as in §7.2, except that since the languages 
in question make no distinction of syllable quantity, the terminal vocabulary was limited to just 
three elements distinguished by stress level (σ, ˌσ, ˈσ). We followed Gordon in including all legal 
patterns of up to eight syllables in the training sets, and in a couple cases made minor corrections 
to Gordon’s typology based on the cited source materials.  

For n (the maximum number of matrices in a constraint), we employed a value of 4. This 
follows our earlier claim (§4.1.2) that constraint systems permit a trade-off of length against 
internal complexity. Since the feature system for prosodic properties (here, just {[±stress], 
[±main]}) is impoverished, a value of 4 is feasible without creating a huge search space. Setting 
n at 4 permits the system to learn constraints like [–main][ ][ ] #, which is used for deriving 
antepenultimate stress (see, for example, the entry for Georgian in Appendix C). 

The 33 grammars learned by our system contained a variety of constraints, of which the six 
most common are given in Table 11. 

Table 11 

Commonly learned stress constraints 

  Constraint  Tier  Languages/33 Comment 

 1. *# # Main 33 Culminativity – existence 
 2. *[+stress][+stress] Default 25 *CLASH (Prince 1983) 
 3. *[ ][ ] Main 23 Culminativity – uniqueness 
 4. *#[–main] Stress 13 End Rule Left 
 5. *[ ][+stress] # Default 13 See §9.2. 

We tested the 33 learned grammars by examining all possible strings of length 8 or less 
composed of the elements (σ, ˌσ, ˈσ).  The model was entirely successful in distinguishing the 
well-formed from the ill-formed strings, assigning a perfect score to every legal form and a 
substantial penalty to every illegal one, in each language.24  

8. A whole-language analysis: Wargamay  

The ultimate goal of our learning model is to induce a complete description of the 
phonotactics of any given language. In this section, we take a first step toward this goal by 
applying the model to data from the Australian aboriginal language Wargamay (Dixon 1981). 
Wargamay was chosen because of its interesting quantity-sensitive stress system, and because 

                                                 

24 For the full set of learning data and grammars, see Appendix C.  As one would expect, the system could 
also learn many imaginable but unlikely stress systems; for discussion see §9.4. 
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Dixon’s meticulous description of its phonotactics provides a baseline against which our learned 
grammar can be evaluated (see also Sherer 1994, Hayes 1995, Kager 1995, McGarrity 2002). 
The theoretical issues addressed here are similar to those discussed earlier. In particular, our 
study of Wargamay provides further evidence for the utility of multiple projections in 
phonological representations, and reveals gradient well-formedness patterns that are not fully 
accounted for by previous work on the language.  

8.1 Segments, features, and training data 

Table 12 gives the phoneme inventory of Wargamay in IPA.  

Table 12   

Wargamay phonemes 

 Consonants  Labial Apico- Retro- Lamino- Velar 
    alveolar flex palatal 
 Stops  b d  ɟ g 
 Nasals  m n  ɲ ŋ 
 Trill   r 
 Approximants lateral  l  
  central w  ɻ j 
 
 
 Vowels Front Central Back 
 high i, iː  u, uː 

 low  a, aː 
 

These phonemes have various allophones, involving contextual or free variation, as well as 
optional neutralizations, described in Dixon (1981:16-17). We idealize somewhat in abstracting 
away from these details.  

The segmental features we assumed are as in Table 13. 
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Table 13 

Feature chart for Wargamay 

 b d ɟ g m n ɲ ŋ r l ɻ j w i a u iː aː uː 
syl – – – – – – – – – – – – – + + + + + + 
cons + + + + + + + + + + + – – – – – – – – 
approx – – – – – – – – + + + + + + + + + + + 
son – – – – + + + + + + + + + + + + + + + 
lab +    +               
cor  + +   + +  + + +         
ant  + –   + –  + + –         
lat         – + –         
dors    +    +            
high            + + + – + + – + 
back            – + – + + – + + 
long              – – – + + + 

In addition, we assumed that vowels are classified by the prosodic features [stress] and [main], as 
in §7.2.  

We used as our learning data the vocabulary of approximately 950 items included in 
Dixon’s grammar. We removed reduplicated forms, which Dixon treats as two separate 
phonological words, and a handful of forms that contain blatant violations of the phonotactic 
system.25

 The set of remaining forms was considerably smaller than the learning data for our 
previous analyses and contained only one item of more than four syllables. We judged this 
corpus to be too limited to serve as input to our learner, particularly because we are interested in 
learning the stress system of the language. Therefore, we inflected each nominal and verbal root 
according to the morphological description given by Dixon (1981:27ff.). The resulting set 
contains about 6000 words and instantiates the stress pattern across a range of word lengths from 
one to six syllables. In the following sections, we discuss how the grammar learned from these 
data accounts for the segmental and stress phonotactics of Wargamay.  

8.2 Learning simulation  

The resources our learner used for Wargamay integrate those from the previous sections. We 
deployed projections for a metrical grid (as in (18)) as well as a vowel projection (§6.3).26

 Our 

                                                 

25 These are [ŋijaɲma] ‘ask’ ([ɲm] cluster), [jawujɲbaɻi] ‘big grey kangaroo’ ([jɲb] cluster, with the 
phonotactically-regular variant [jawujmbaɻi]), and the loanwords [drajga] ‘tracker’ (initial cluster), [gaːguɻuɟ] 
‘cockroach’ (final obstruent), and [lajn] ‘line’ (initial [l] and final cluster). 

26 As it happened, no constraints were learned on the Vowel projection.  However, assuming that projections 
are not learned on a language-specific basis, but are specified in UG, learners have no choice but to search each one 
during phonotactic learning. 



Hayes/Wilson Maximum Entropy Phonotactics p. 39  

Wargamay grids were amplified versions of what was used in the previous section, since instead 
of just schematic syllable strings, we had to deal with complete representations. Sidestepping the 
question of syllabification (see §9.5), we defined a Weight projection whose criterial feature was 
[+syllabic] and whose projected features were [long], [stress], [main], and [segment]. Since only 
long-voweled syllables count as heavy in Wargamay, this sufficed to provide a lowest-level grid 
layer that could represent syllable count and weight. 

The feature matrix limit n was set at 4 for the grid projections (see §7.4) and 3 elsewhere; 
otherwise, all parameter settings for the learner were set the same as in the English onset 
simulation (§5.1).  

The system learned a large grammar, which we limited by fiat to 100 constraints. Multiple 
runs yielded essentially identical results, and we discuss only one representative run here.  In 
brief, we found that our system learned every Dixonian phonotactic principle:  examination of a 
systematic set of test forms (§8.3-§8.4) indicates that any form that violates one of Dixon’s 
phonotactics is penalized, usually severely, by the learned grammar.  However, our grammar 
may also have overfitted the data, learning constraints that characterize accidental gaps (§8.5). 

In what follows, rather than covering the whole grammar all at once, we will divide 
Wargamay phonotactics into various empirical domains, discussing the constraints learned and 
the system’s performance for each.  

8.3 Segmental phonotactics  

8.3.1 CV sequencing  

The sequencing of consonants and vowels in Wargamay phonotactics is straightforward. 
Every word must begin with a consonant, vowel sequences are not permitted, and consonant 
clusters cannot appear at the beginning or end of the word. The grammar constructed by our 
learner accounts for these restrictions economically, as shown in Table 14.  

Table 14 

Constraints on CV sequencing 

  Constraint  Weight  Comment  

 1. #V  2.64  No initial vowels 27 
 2. *VV  5.43  No vowel sequences  
 3. *#[ ]C  5.71  No initial consonant clusters (given *#V)  
 4. *CC#  3.94  No final consonant clusters  

                                                 

27 This constraint has a low weight because it is ganged with various others (e.g. Table 14: #2, #3) that also 
penalize vowel-initial forms.  No vowel-initial form receives a score lower than 5.41. 
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8.3.2 Initial and final consonants  

Any consonant except [r] or [l] (the anterior approximants) can appear at the beginning of 
the word, and a subset of the sonorants ([m n ɲ l r j]) may appear word-finally. The learned 
grammar captures these restrictions with the constraints listed in Table 15.  

Table 15 

Constraints on word-initial and word-final consonants  

  Constraint  Weight  Comment  

 1. *# [+approx,+ant]  4.70  No initial [r] or [l]  
 2. *[–lat] #  4.06  No final [r] or [ɻ]  
 3. *[–son] #  4.27  No final obstruents  
 4. *[–syl,+back] #  4.18  No final [w] 
 5. *[+dors] #  4.20  No final dorsals  
 6. *[+lab] #  3.61  No final labials  
 7. *[+approx, –ant] #  1.68  No final [ɻ]  

 

With these constraints, the grammar penalizes all of the unattested word-initial and word-final 
consonants, and gives all of the attested word-initial consonants perfect scores. However, with 
respect to word-final position it is more restrictive than Dixon’s description. The constraint 
*[+lab]# penalizes both [b], which is not possible finally, and [m], which does occur in that 
position. Similarly, the constraint *[–lat]#, whose weight seems too high to us, penalizes both 
unattested [ɻ]# and attested [r]#.  

Inspection of the learning data explains why the learner singles out [m] and [r], among the 
consonants that are attested finally, as relatively ill-formed. There are exactly four items in 
Dixon’s vocabulary that end in [m], and none of the inflectional affixes end in this consonant. 
Consequently, [m]-final words make up less than 1% of the consonant-final words in the 
inflected learning data. The numbers for [r]-final words are only slightly higher (11 vocabulary 
items, < 1% of consonant-final learning data). In comparison, all of the other attested word-final 
consonants occur in at least 5% of the consonant-final inflected words of the learning data. Thus,  
the learner has selected constraints against the attested word-final consonants that are 
substantially rarer than their competitors.  

8.3.3 Intervocalic consonants and clusters  

The richest area of Wargamay’s segmental phonotactics is its inventory of intervocalic 
consonant sequences. Every single consonant is attested intervocalically, and our learned 
grammar contains no constraints against consonants in the environment / V ___ V. However, the 
inventory of biconsonantal and triconsonantal clusters is quite restricted. Dixon identifies the 
following cluster types as possible root-internally:  
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(20)  Legal root-internal consonant clusters in Wargamay (Dixon 1981)  

 a.  homorganic nasal-stop sequences ([mb nd ɲ ŋg])  
 b.  [n l r ɻ j] followed by [b  g m ɲ ŋ] (i.e., by the set of nonapical stops and nasals) 
 c.  [l r ɻ j] followed by legal nasal-stop sequences or [w]  

Many of the clusters included in this description are unattested ([nɲ lɲ ɻm ɻɲ jɲ lnb lnd lnɟ 
lng rmb rnd rnb rnɟ rng ɻnb ɻnd ɻnɟ ɻng jnd jng jw]) or occur in just one vocabulary item ([nŋ jŋ 
rw ɻɲɟ ɻŋg ɻw jnb]). A generalization not noted by Dixon is that triconsonantal clusters 
containing nonhomorganic nasal-stop sequences are marginal: [lnb lnɟ lng rnb rnɟ rng ɻnb ɻnɟ ɻng 
jng] are among the unattested clusters, and [jnb jnɟ] occur in only one or two roots. A 
generalization evidently related to (20b) is that the apical sequence [nd] never occurs within a 
triconsonantal cluster (thus [lnd rnd ɻnd jnd] are unattested in roots).  

Because roots can end in consonants, and some of the inflectional affixes are consonant-
initial, one might expect a much larger inventory of intervocalic clusters in conjugated forms 
(Dixon 22). To a large extent, this expectation is dashed by morpheme-specific alternation. For 
example, the ergative/instrumental case ending, which is [-ŋgu] after vowels, loses its initial 
nasal and undergoes place of articulation assimilation when combined with nasal-final roots; this 
alternation, like others documented by Dixon, serves to reinforce the phonotactic pattern found 
root-internally. There are, however, clusters that appear only under inflection, namely [mg ɲg mɲ 
nɲ ɲɲ rd ld lɲ jɲ lnd]. While [nɲ lɲ jɲ] are accidental gaps on Dixon’s analysis, the other 
members of this set expand the phonotactic system in virtue of their initial nonapical nasals and 
clustering apical stops.  

The constraints learned by our model, given in Table 16, capture the major generalizations 
on Wargamay consonant clusters and adjudicate the marginal cases in way that is sensitive to 
frequency of occurrence.  

Table 16 

Constraints on intervocalic consonant clusters  

  Constraint  Weight  Comment  

 1. *[–son]C  5.63  The first member of a cluster must be a 
sonorant. 

 2. *C[+approx,–syl] 4.25  The second member of a cluster must not be 
[r l ɻ j].  

 3. *[+dors][+cor]  4.48  No dorsal-coronal clusters  
 4. *[+lab][–son,+cor]  4.42  No labial-[d ɟ] clusters (allows [mg mɲ])  
 5. *[–ant][+ant]  4.04  *[ɲ ɻ ɟ][d n r l] (allows [nd ɲɟ jɟ])  
 6. *[–approx,–ant][+lab]  4.11  *[ɲ ɟ][+labial] (allows [nb nm])  
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 7. *[+dors][+lab]  4.07  No dorsal-labial clusters  
 8. *[+lab][+dors]  3.36  No labial-dorsal clusters  
 9. *[–lat][+son,+ant]  2.10  *[r ɻ][n r l]  
 10. *CC[–syl,+son] 2.10  *CC[+sonorant]  
 11. *[+dors][–syl,+son]  1.75  Allows [ŋg] 
 12. *[–approx][+son,+ant] 0.51  *[nn] vs. [nd] 
 13. *[+lab][+son,–syl]  1.67  Allows [mg]  
 14. *[–approx,–ant][+son,+dors] 1.08 *[ɲ ] before [ŋ]  
 15. *[+back,–syl]C  1.84  No [w]-initial clusters  
 16. *[–cons,–syl][+ant]  2.21  No glides before apico-alveolars  
 17. *[+lab][+son,+lab]  1.90  *[mm] (allows [mb])  

Of the approximately 2400 two- and three- consonant clusters that are logically possible given 
the Wargamay segment inventory, these constraints assign perfect scores to only 46. The clusters 
predicted to be perfect include all of the homorganic nasal-stop sequences (20a), all of the 
clusters of type (20b), and the clusters of type (20c) that contain homorganic nasal-stop 
sequences (i.e., [rmb rɲɟ rŋg lmb lɲɟ lŋg ɻmb ɻɲɟ ɻŋg jmb jɲɟ jŋg]).  

The constraints assign perfect scores to some clusters that are not found in the learning data, 
namely [rmb rɲg lɲg jɲg ɻɲg]. Of these, [rmb] is an accidental gap according to Dixon’s analysis.  
The remaining clusters, [rɲg lɲg ɻɲg jɲg], can be rationalized as projections from the attested 
triconsonantal clusters (which begin with [r l ɻ j]) and the frequent occurrence of [ɲg] in the 
learning data (resulting from the combination of a root ending in [ɲ] and the invariant 
dative/allative suffix [-gu]).  The constraints also assign rather weak penalties to other unattested 
clusters; we discuss here only those not considered accidental gaps in Dixon’s account.  [jd] 
(2.21) and [jnɟ] (3.17) are assigned low penalties probably because of the presence of one single 
stem in the learning data, [juɻujnbi] ‘river bank’.  Four clusters with geminates are slightly 
underpenalized ([ɲɲg] 3.55, [ɲɲɟ] 3.55, [mm] 3.57, [ŋŋ] 3.91), suggesting it might be profitable 
to amplify the learner with the capacity to recognize adjacent identical items (“Obligatory 
Contour Principle,” Leben 1973, Goldsmith 1979, McCarthy 1986).   

In addition, the constraints penalize a few consonant clusters that are found in the learning 
data:  these are [mɲ] 1.67, [nŋ] 2.16, [jnb] 2.21, [ɻŋ] 2.83, [mg] 3.36, and [{l,r,ɻ}w] 4.25.  Of 
these, two occur only under inflection ([mg mɲ]); the others are clusters that occur in just one or 
two roots.  

In summary, there is a good numerical and qualitative fit between the clusters predicted by 
the learned grammar and Dixon’s analysis. To the extent that the two differ, this can be attributed 
either to the fact that the set of clusters found in conjugated forms is larger than the set found in 
roots, or to a greater sensitive to frequency on the part of our model. The present analysis 
captures one major generalization that was not noted by Dixon, namely that nonhomorganic 
sequences are marginal post-consonantally.  
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8.3.4 Consonant-vowel combinations  

In comparison to consonant cluster phonotactics, the regularities governing consonant-vowel 
combinations in Wargamay are understudied. However, Dixon (1981) does note one restriction 
on VC sequences: [ij] occurs pre-vocalically, but not before a consonant or at the end of the 
word. Further evidence for this phonotactic comes from the phonological rule of Yotic Deletion 

(Dixon 1981: 23), which eliminates [j] in the environment / [i] ___
⎩
⎨
⎧

⎭
⎬
⎫C

#  .  

Our model learns three constraints (Table 17) to cover this part of the system. 

Table 17 

Constraints for yotic deletion  

  Constraint  Weight  Comment  

 1. *[–back,+syl][–cons][^–long,+back]  3.99  *[i][jw]C, *[i][jw][i]  
 2. *[+high,+syl][^+son,+cor]#  2.88 *[iu]C#, where C ∉ [nɲrlɻ]  
 3. *[–back,+syl][^+son,+cor]#  1.99 *[i]C#, where C ∉ [nɲrlɻ]  

It can be seen that the learner, in its rigorous pursuit of general constraints (§4.2.2), goes beyond 
Dixon’s narrow description of the [ij] phonotactic. In the learning data, there are no instances of 
[iw]C (recall that [w] cannot appear in the first position of a consonant cluster), [iji], or [iwi]; the 
first constraint folds these gaps together with the ban on [ij]C. Similarly, there are only nine roots 
in the vocabulary that exemplify [uj]#; the second constraint therefore expresses a gradient 
prohibition on both [ij]# and [uj]#, while the third constraint forms with the second a gang 
ensuring that unattested [ij]# receives a greater penalty. (The complement class [^+son,+cor] 
appears in these constraints because it is the largest class that contains all of the legal word-final 
consonants except [j].)  

8.4 Metrical phonotactics  

Wargamay stress respects a distinction between heavy and light syllables, where a heavy 
syllable is defined as one containing a long vowel, irrespective of whether it is closed. Words 
containing all light syllables exhibit a right-to-left trochaic pattern:  
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(21) Stress pattern of light-syllable words in Wargamay28
 

 ˈσ σ   [ˈbada]  ‘dog’ 
 σ  ˈσ σ   [gaˈgara]  ‘dilly bag’ 
 ˈσ σ  ˌσ σ   [ˈgiɟaˌwulu]  ‘freshwater jewfish’ 
 σ  ˈσ σ  ˌσ σ   [baˈɟinɟiˌlaŋgu]  ‘spangled drongo-ERG/INSTR’  

 ˈσ σ  ˌσ σ  ˌσ σ   [ˈjajimˌbaliˌlagu]  ‘play about-INTR.PURP’  

As is evident from these examples, primary stress falls on the leftmost stressed syllable, 
following End Rule Left.  

Heavy syllables (i.e., syllables with a long vowel) are limited to word-initial position in 
Wargamay, and all heavy syllables bear primary stress. Even-syllable words containing heavies 
exhibit the same stress pattern as all-light words. But three-syllable words of this type contain a 
lapse (sequence of unstressed syllables), because polysyllables never have final stress (Dixon 
1981: 20).  

(22) Stress pattern of heavy-syllable words in Wargamay  

 ˈσ̄ σ̆  [ˈmuːba]  ‘stone fish’  
 ˈσ̄ σ̆ σ̆  [ˈgiːbaɻa]  ‘fig tree’ (*[ˈgiːbaˌɻa], [ˈgiːˌbaɻa])  
 ˈσ̄ σ̆ ˌσ̆ σ̆  [ˈguːŋaˌɻaɲiɲ]  ‘rubbish-ABL’  

There are no six-syllable words that begin with a heavy syllable in the training data and only 
one such word with five syllables. The stress pattern of this last form, [baːlbalilagu] ‘roll-
INTR.PURP’, is uncertain: in particular, Dixon’s description does not make clear whether there is a 
lapse after the heavy syllable ([ˈbaːlbaliˌlagu]) or at the end of the word ([ˈbaːlbaˌlilagu]). We 
selected the former, based on pattern congruity, but will not consider such forms any further in 
light of our uncertainty about the facts.  

To summarize, Wargamay has an essentially right-to-left trochaic stress pattern, with 
primary stress on the leftmost stressed syllable. Heavy syllables are limited to initial position, 
and three-syllable words that begin with a heavy have a final lapse.  

The learned grammar contains the constraints on stress and length given in Table 18. 

                                                 

28 Dixon 1981:20 explicitly describes the stress pattern of words up to five syllables. We make the 
straightforward assumption that six-syllable words follow the same alternating pattern. 
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Table 18 

Constraints on stress and length 29 

 Constraint  Projection Weight  Comment  

 1. *[ ][ ]  Main  3.26  Culminativity (uniqueness)  
 2. *# #  Main  3.10  Culminativity (existence)  
 3. *# # Stress 2.16 Culminativity (existence) 
 4. *#[–main] Stress 1.55 End Rule Left 
 5. *[^–long,–str][+str] Weight 6.53 *CLASH, since all heavies are stressed 
 6. *[^+long,+main][–str][–str]  Weight  6.51  Lapse is legal only after heavy main 

stressed syllables. 
 7. *[ ][–str][^–long,–main,+str][ ] Weight 4.45 *LAPSE, in a restricted context 
 8. *[–long,+str] # Weight 4.37 NONFINALITY (Prince and Smolensky 

1993:42), except for heavy 
 9. *[ ][+long]  Weight  3.55  No noninitial heavy  
10. *#[–main][^–long,+main]  Weight  3.51  Initial window for main stress  
11. *[^–long,–str]#  Weight  2.77  Penalizes final stress, found only in 

monosyllables; violable 
12. *[+long,–main] Weight 2.12 WEIGHT-TO-STRESS 
13. *[+long][ ]# Weight 0.19 Minuscule penalty for CVːCV 

We tested this set against all possible strings of up to length six of the set of possible 
syllables [ˈga ˈgaː ˌga ˌgaː ga gaː]. ([g] and [a] were chosen to avoid distracting segmental 
violations.) As our test showed, the constraints of Table 18 assign penalties of at least 5.26 to all 
incorrectly-stressed words and perfect scores to all correctly-stressed words except [ˈgaːga] 
(0.19) and [ˈgaː] (2.78). The reason for the latter penalty was that there are only 15 monosyllabic 
words (all heavy) in the learning data (<1% of the total).  

We experimented with learning Wargamay without projections, and discovered that without 
a Weight projection the stress pattern was inaccessible, owing to the nonlocality of the vowels 
(which were assumed to be the stress-bearing units, standing in for syllables). This is essentially 
the same reason why Shona vowel harmony was unlearnable without projections (§6.2). The 
system could learn Wargamay stress without the higher grid projections (Main and Stress, 
needed for unbounded stress; §7.2), though the resulting grammar was more complicated. 

                                                 

29 End Rule Left (Table 18, #4) is ganged with #10 and others; no form violating it receives a penalty less 
than 8.09. Weight-to-Stress (#12) is ganged with #9 and others; no form violating it receives a penalty less than 
5.86. 
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8.5 Additional constraints 

The 43 constraints discussed above account for all of the phonotactics of Wargamay 
discussed by Dixon (1981). The learner also selected 57 additional constraints that have no direct 
analogue in Dixon’s analysis. A complete list of these constraints appears in Appendix D.   

These additional constraints tend to be somewhat complex and unintuitive from a 
phonologist’s point of view.  They either are unviolated in the training data (28 constraints), or 
are violated only a few times, indicating underrepresentation (29 constraints).  All are stated on 
the default projection; i.e. they are segmental constraints. None is weighted higher than 5.0; in 
contrast, the learner assigned values over 5 to several highly general, exceptionless constraints 
listed above.   

We have two conjectures for the presence of these puzzling constraints.  First, it is possible 
that they are valid, by which we mean that had it been possible to carry out experiments with 
Wargamay speakers of the kind Scholes performed, it would have emerged that test forms 
violating these constraints were rated low.  Another possibility, however, is that our learner 
overfitted the data, seizing on generalizations that are accidentally true.  If this is the case (as 
parallel study of living languages could reveal), there are two possible responses.  

One would seek phonology-independent measures of grammar complexity that would 
limited the number of constraints learned.  We note that the last “Dixonian” constraint in our 
grammar (ignoring the mostly redundant Table 17.2)) was discovered 56th; thus, halting 
constraint selection earlier would have eliminated most of the problematic constraints.  It may be 
worth exploring measures (such as Minimum Description Length, Grünwald et al. 2005) that 
could prune away constraints that do not appreciably increase the probability of the learning 
data.  

The other possibility is that our system is still too close to the inductive baseline:  it requires 
principles of phonological theory that will help it avoid accidentally-true generalizations on the 
default projection.  One such principle concerns the role of stress in segmental sequencing.  
Twelve of our puzzling constraints mentioned the natural class [+stress, –main], i.e. secondary-
stressed vowels.  We suspect that no such constraints are possible in phonology; segmental 
sequencing is often sensitive to stress, but hierarchically:  a particular sequence is possible when 
it includes a vowel with a degree of stress greater or lower than some particular value.  Formal 
means for characterizing such hierarchies are given in Prince and Smolensky 1993:§5.1 and de 
Lacy 2004.  For the remainder, it may be useful to invoke general principles of segment 
licensing, notably the principles of sonority sequencing (Sievers 1901) and cue theory (Steriade 
1999, 2001a).    

8.6 Summary  

The present investigation of Wargamay has demonstrated the ability of our model to account 
for an entire phonotactic system. It has also sharpened Dixon’s (1981) description of the 
language’s segmental phonotactics, revealing gradient patterns in the word-final consonant 
inventory and a previously unnoticed restriction on nonhomorganic nasal-stop clusters, and 
demonstrated the ability of metrical projections to account for a weight-sensitive stress pattern.  
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The learner may also have overfit the system of segmental phonotactics, an issue for further 
research. 

9. General discussion  

In sum, we claim to have developed a system that can learn a non-trivial portion of the 
phonotactics of natural languages, given only a modest amount of information in the form of a 
segment inventory, a feature system, and a projection set. In so doing, we have developed 
arguments that phonological representations must include apparatus similar to the vowel tier (§6) 
and the metrical grid (§7, §8). In this final section we discuss questions that arise from our study 
and outline directions for future work.  

9.1 Comparison with Optimality Theory 

Our model differs from OT in three main respects: the constraints in a grammar are not 
universal, but learned from language-specific data, the constraints are weighted rather than 
ranked, and the well-formedness of a surface form is determined independently of an input or 
any other type of conditioning information. Many hybrid approaches are possible; for example, 
Pater et al. (2006) propose a model in which constraints are weighted, but which otherwise 
adopts the assumptions of OT. Without attempting to explore the entire space of possibilities, our 
comparison with OT will be restricted to the topics of weighting vs. ranking and the role of 
inputs. 

As originally observed by Prince & Smolensky (1993:219) (see also Smolensky and 
Legendre 2006, Prince 2002), the languages defined by strict domination are not the same as 
those defined by numerical weighting, given the same set of constraints. The question of whether 
constraints are ranked or weighted in natural language is an empirical one.  

Two important advantages of our approach are that it has a well-established mathematical 
foundation and that it permits grammars that make gradient predictions.  For OT, the Constraint 
Demotion algorithm family of Tesar and Smolensky (1998, 2000) satisfies the first of these 
criteria in a sense, as it provably converges for the case of consistent input-output mappings.  
However, for purposes of phonotactic learning, where the goal is to learn a maximally restrictive 
grammar, the algorithm does not suffice, and efforts to adapt it to phonotactic learning have been 
limited to adding ad hoc heuristics intended to rank Faithfulness constraints as low as possible 
(Hayes 2004, Prince and Tesar 2004).  Moreover, the grammars learned with these heuristics are 
“brittle”—they cannot rate forms gradiently (going against experimental observation; §2.3), and 
they cannot treat phonotactic patterns that have even one counterexample. Thus, for example, 
one single word containing [pw] (e.g. Puerto Rico) would suffice to produce a low ranking for 
the constraint against labial + [w] clusters. In contrast, a maximum entropy model responds 
flexibly and sensitively to the range of frequencies encountered in the learning data.  

Other algorithms satisfy the gradience criterion, but fail elsewhere.  The Gradual Learning 
Algorithm (Boersma 1997, Boersma and Hayes 2001) responds flexibly to gradient data, but in a 
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well-defined class of cases it fails to find the target grammar (Pater, in press).30  The OT model 
of Pater and Coetzee (2006) also has the capacity to treat gradience, reacting to imperfect 
phonotactic generalizations by creating lexically-specific Faithfulness constraints. However, the 
statistic this model employs is just O (Observed), not O/E (Observed/Expected)—essentially, it 
ranks Markedness constraints by sorting them in increasing order of O. This is problematic, 
because constraints with identical O values but sharply different E values differ in their effects. 
For example, Clements and Keyser (1983:48) propose a constraint whose sole purpose is to ban 
the onset [stw]; its analogue in our grammar is in Table 4, #20. Since English lacks [stw], the O 
value for this constraint is zero.  Its E value is low, since [stw] contains [tw] and thus is already 
penalized by #23, Table 4.  In contrast, the onset [skt] violates a very general constraint on 
sonority sequencing, the highly-weighted #3. This constraint also has an O of zero, but because it 
does not substantially overlap with simpler constraints, it has a much higher E. While we lack 
experimental data, we think it very likely that [skt] would be rated as much worse than [stw]. 
Such cases suggest that O alone will not suffice to model native intuition; E is needed, too.  

The closest OT model to our own is that of Jarosz (2006).  As in our model, Jarosz uses a 
search procedure that maximizes the probability of the learning data.  She treats gradience by 
letting the system learn multiple grammars, each with its own probability.  While Jarosz’s model 
is mathematically principled, it relies upon enumeration of all N! rankings, and thus could not be 
used at present for modeling data patterns of realistic size.   

9.2 No Faithfulness 

Our system assigns probabilities to each form on its own, not as a member of a candidate set 
derived from a particular input.  It follows that our system uses no Faithfulness constraints, 
which penalize differences between inputs and outputs.   

In a system that includes inputs and Faithfulness constraints, Markedness constraints can 
often be simplified.  For example, to characterize a penultimate-stress language that tolerates 
stressed monosyllables (e.g., Polish) our system deploys the constraint *[  ][+stress] # (Table 11, 
#5).  With Faithfulness and ranking, this constraint can be simplified to a straightforward ban on 
final stress, *[+stress] # (NONFINALITY; Prince and Smolensky 1993:42).  The crucial ranking is 
{ DEP(σ), CULMINATIVITY } >> *[+stress] #, where DEP(σ) forbids the insertion of syllables of 
any kind and CULMINATIVITY requires words to have stresses.  This partial grammar is illustrated 
in (23). 31 

                                                 

30 More recent work has proposed substitutes for the GLA that address its shortcomings:  Lin 2005a, ms., 
Maslova, to appear; Wilson, ms.  However, this work has not yet addressed the problem of learning phonotactics. 

31 We omit for brevity whatever constraint is needed to force penultimate stress in words of three or more 
syllables. 
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(23) A Faithfulness-based account of penultimate stress 

a. /σ σ/ CULMINATIVITY DEP(σ) *[+stress] # 
 ˈσ σ    

σ ˈσ   *! 
σ σ *!   

 
b. /σ/ CULMINATIVITY DEP(σ) *[+stress] # 

 ˈσ   * 

ˈσ σ  *!  
σ *!   

 
It can be seen that Faithfulness, in the form of  DEP(σ), is needed to let [ˈσ] win for 

underlying /σ/ instead of  [ˈσ σ].  Our own FAITH-less system, equipped with just CULMINATIVITY 

and NONFINALITY, would assign all of the probability to polysyllabic forms, thus wrongly 
designating [ˈσ] as illegal. 

More generally, Faithfulness constraints permit probability to be distributed not across all of 
Ω, but across specific subsets of it:  [ˈσ] is legal because it is the best monosyllable, not because 
it is violation-free.  Our own system, in contrast, needs to set up grammars in which all 
phonotactically perfect forms are free of violations.32 

We concede a lesser elegance in such cases, but not necessarily the scientific ground, for the 
following reasons.  

First, as Chomsky and Halle (1968:331) emphasize, we can only evaluate an acquisition 
model (3) by “confronting it with empirical evidence relating to the grammar that actually 
underlies the speakers performance”; they go on to say “we stress this fact because the problem 
has so often been misconstrued as one of ‘taste’ or ‘elegance”’. We agree that the question is an 
empirical one. Phonotactic grammars that are insufficiently general typically leave gaps: illegal 
forms that fall between the constraints and are thus misclassified as legal. However, this has not 
been a problem for the grammars learned by our system. As we have shown with exhaustive 
testing, these grammars effectively separate well-formed structures from ill-formed, with overlap 
limited to attested forms that are highly underrepresented. The reason is that the model is 
designed to defend actively against gaps. The process of sample creation (§3.3) constantly 
explores the space of phonotactic possibilities, looking for illegal forms that should be ruled out 
with new constraints. 

                                                 

32 We emphasize that the issue at hand is not whether or not maxent grammars can mimic the effects of strict 
constraint ranking.  This becomes clear when one considers applications of maximum entropy intended to derive 
outputs from inputs, as in Goldwater and Johnson 2003.  Here, strict ranking is mimicked by large differences in 
weights.  For instance, for (23) a maxent grammar that weights the constraints (in order of appearance) at 32.2, 32.2, 
and 15.6 derives the correct output probabilities (i.e., 1 for winners, 0 for losers)  to within seven significant figures. 
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The other reason to favor general grammars is that only such grammars can account for how 
humans extend their knowledge to new forms. For instance, a grammar of English that simply 
listed the existing syllable onsets would fail to generalize to unattested onsets in the way 
observed by Scholes (1966). Because our model seeks general constraints (§4.2.2) based on 
natural classes, it captures the distinctions among the unattested clusters tested by Scholes rather 
well. Whether the model would perform even more accurately if it made use of Faithfulness is a 
matter for future work to determine. 

9.3 Relating phonotactics to alternation  

Phonological alternation occurs when morphemes take on different forms in different 
contexts. It is related to phonotactics because alternations frequently are seen to enforce the 
phonotactics dynamically. For instance, the English plural morpheme /-z/ is altered to [-s] 
following voiceless obstruents, as in cups [kps], in order to avoid a violation of the phonotactic 
constraint that bans voicing disagreement in final obstruent clusters. This is the essence of the 
“conspiracy problem” (Kisseberth 1970), which has been the focus of a great deal of 
phonological theorizing, notably in Optimality Theory. OT seeks to reduce the description of 
alternations to the same principles that govern phonotactics:  the ranking of Markedness over 
Faithfulness constraints results in both static restrictions on surface forms and alternations that 
respect those restrictions.  

Despite the many successes achieved in OT, we are not convinced that the link between 
phonotactics and alternation is as tight as the theory claims.  In fact, not all alternations solve 
phonotactic problems. In Yidiɲ phonology, [u] is chosen (productively) as the epenthetic vowel 
following a nasal consonant, yet there is no evident connection between nasality and [u] in Yidiɲ 
phonotactics (Hayes 1999b). English vowel length alternations (SPE) are phonotactically 
motivated insofar as they optimize foot structure (Prince 1990, Hayes 1995), but the 
accompanying quality alternations ([iː] ~ [ɛ], [eɪ] ~ [æ], [aɪ] ~ [ɪ], [oʊ] ~ []) have no evident 
phonotactic basis.   

We suggest that the proper link between alternations and phonotactics is at the level of 
language learning: knowing the phonotactics makes it easier for the language learner to discover 
alternations.  Thus, for example, an English-learning child who already knew the principle of 
voicing agreement in final obstruent clusters would be in a good position to understand and 
analyze the voicing alternation in the plural suffix (Albright and Hayes 2002, Hayes 2004, Prince 
and Tesar 2004). That is, it would be immediately apparent that the simple concatenation 
[kʌp]+[z] is insufficient for the plural of cup, owing to its phonotactic violation; and it would 
remain only to find the change needed to produce the correct output [kʌps].  

There is experimental evidence compatible with this conception. Children evidently learn at 
least some of the phonotactics of their language very early (i.e., in infancy; see Hayes 2004 for 
literature review)—so that whatever model of acquisition is developed should in any event 
include the capacity to learn phonotactics solely from distributional data. Moreover, the 
experimental findings of Pater and Tessier (2003) suggest that phonotactic knowledge does 
indeed assist learners in finding alternation patterns. A learning system for phonological 
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alternations devised by Albright and Hayes (2002, 2003) already incorporates an elementary 
capacity to use phonotactic knowledge to assist learning, as does the OT-based system of Tesar 
and Prince (2003).  

We suggest that human language learners first obtain an outline analysis of their language’s 
phonotactics, following the method described here, then take on the many forms of string 
mapping that must be learned:  mapping from paradigmatic base forms to the other paradigm 
members (Albright 2002b), from bases to reduplicants (McCarthy and Prince 1995), from one 
free variant to another (Kawahara 2002), and so on. These mappings are learned as a maxent 
grammar that incorporates Faithfulness constraints. The constraints used for string mappings 
would include Markedness constraints learned at the phonotactic stage, but they might also 
include constraints learned from the mapping data themselves, to cover cases like the Yidiɲ and 
English alternations just mentioned. 

This sketch is one instantiation of what we call learning-theoretic phonology, by which we 
mean a theory whose overall architecture recapitulates the incremental process through which 
phonological knowledge is acquired.  

9.4 How is phonological typology to be explained?  

While establishing the content of the acquisition module AM ((3) above) strikes us as the 
central theoretical challenge in phonology, there is a second question that also deserves attention: 
why are languages the way they are? More specifically, what is the basis for the systematic 
cross-linguistic patterns, especially involving markedness, that emerge from typological study? 
Certainly an inductive-baseline learner cannot explain them; typologically unnatural patterns that 
can be characterized by general and accurate constraints will be just as learnable as the 
typologically natural ones.  

One possible response to this question would be to say that, as our inductive baseline 
strategy is pursued further, it will turn out that the only effective learning strategy is one with an 
extremely rich UG—a UG that incorporates the entire constraint set for phonology (Prince and 
Smolensky 1993/2004; Tesar and Smolensky 1998, 2000; McCarthy 2002). If so, the problem of 
typology will likely be solved, and the outcome of our efforts will be an inductive-baseline 
argument for the universal-constraint approach.   

However, there are other ways to enrich the inductive baseline model that are more 
conservative in their reliance on UG. For instance, language learners could make use of their 
own phonetic experience, accessing it to discover phonetically natural constraints grounded in 
articulation and perception (Boersma 1998, Hayes 1999a, Steriade 1999, 2001a, b, Gordon 2004, 
Hayes, Kirchner and Steriade 2004). Preference for such constraints would constitute a learning 
bias in favor of phonological systems that are easier to produce or perceive, or that suffer a lesser 
recognition burden from alternation. For experimental evidence in favor of learning biases, and a 
mechanism (based on maximum entropy) whereby they could be incorporated into a general 
learning scheme, see Wilson (2006). 

Further afield, we note that many scholars hold the view that not all typological patterns 
should be explained by UG; instead, the diachronic process of language transmission and 
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mistransmission is responsible for much or all of typology. For representative statements of this 
idea, see Ohala 1981, Baroni 2001, Blevins 2004, and Myers, ms.. We think that more serious 
assessment of this position will become possible as formally implemented models of the process 
of phonological evolution (de Boer 2001, Kochetov 2002, Boersma 2005, Boersma and Hamann 
2006, Wedel 2007) become increasingly available and are applied to data patterns of realistic 
size.   

9.5 Hidden structure  

Tesar and Smolensky (1998, 2000) and Tesar (2004) address the problem of “hidden 
structure” in phonological learning. By this they mean structure that is not detectible in the 
phonetic signal, but which is phonologically present and provides order and systematicity to the 
data pattern. An example of hidden structure is syllable weight (e.g. Hayes 1995:§3.9.2): certain 
properties of syllables are used to classify them into light and heavy categories, which then can 
be used to make sense of other patterns, particularly stress.  

Hidden structure is often partly language-specific; for example, different languages impose 
different criteria for what counts as a heavy syllable. This creates a “chicken-or-egg” problem: 
we need to know the language-specific criterion of syllable weight in order to detect the stress 
pattern, but it is often the stress pattern itself that gives the main evidence for the syllable weight 
criterion. Tesar and Smolensky offer intriguing methods, based on expectation maximization and 
inconsistency detection, to discover both the hidden structure and the generalizations based on it.  

While our present model incorporates no clear cases of hidden structure, we believe it could 
be scaled up to learn it. The key idea is that the correct choice of hidden structure is detectable by 
maxent methods:  the correct hidden structure will yield a tighter phonotactic characterization, 
which increases the probability of the learning data, a measurable quantity under the maxent 
approach. In future work we hope to address the problem in these terms.  

9.6 Directions for future work  

In expanding the approach taken here, we think an important line to follow will be to enrich 
the class of formal mechanisms it can access. In other words, while we have shown that vowel 
tiers and grids are important to phonotactic learning, we judge that our system is still too close to 
its original inductive baseline, as there are phonological phenomena it clearly cannot learn unless 
further modified. We end by giving two examples.  

First, we cannot claim that our system of projections has fully solved the problem of 
learning nonlocal phonotactic dependencies. Notably, it cannot account for consonant-to-
consonant dependencies of the kind studied in McCarthy 1979, 1988, MacEachern 1999, Frisch 
and Zawaydeh 2001, Frisch, Pierrehumbert, and Broe 2004, and Rose and Walker 2004. Simply 
adding a consonant projection is unlikely to suffice for these cases, because of two special 
factors. Consonant-to-consonant phonotactics relies heavily on similarity—those consonants that 
are most similar are the ones whose distribution is phonotactically regulated. Further, there are 
also gradient distance effects: consonants that are separated at a short distance are regulated more 
closely than those at greater distances. Neither of these effects could be modeled merely by 
introducing a consonant projection. We anticipate that the right approach would be to incorporate 
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a similarity metric into the theory (for a review of various possibilities, see Bailey and Hahn 
2001) and use it to scan the nearby segments.  

We also lack a theory to learn the phonotactics of neutral vowels; i.e. cases where particular 
vowels (not just consonants) are skipped over in vowel harmony. We are encouraged here by 
findings (Gordon 1999, Gick et al. 2006, Benus and Gafos 2007) that in their allophonic forms, 
neutral vowels can be weakly harmonic, taking on slightly different phonetic forms depending on 
the neighboring harmonic vowels. The incorporation of such phonetic detail into the 
representations would “localize” the phonotactics on the vowel projection, perhaps sufficing to 
make neutral-vowel phonotactics learnable.  

Appendix A:  Generating samples 

As noted in §4.2.1, to obtain E[Ci] (expected violation counts) when we are seeking a new 
constraint to add to the grammar, we generate a “sample”; that is, a set of forms drawn from the 
probability distribution defined by the current grammar.  Our procedure for sample creation is as 
follows.  We assume that the current grammar has been represented as a finite state machine G, 
constructed as in §3.3.2.  G is intersected with the machine that accepts Σ

n
 (the set of all strings 

of length n), yielding an acyclic machine M, which represents every possible string x of length n 
together with its score h(x), as defined in (4).   

Each transition t in M has a violation vector V(t), representing the violations incurred by 
any path traversing t.  The cost of t is defined as e taken to the negative power of the dot product 

of the current weights and V(t); i.e. exp(–Σ
i=1

N
 wi V(t)i).  Following MacKay (2003), M is globally 

normalized by dividing each transition t’s cost by the total cost of all paths from the terminus of t 
to the final state in M.   

Samples of length n are generated by beginning at the initial state of M and randomly 
selecting transitions until the final state is reached.  Specifically, if the current state is q, the 
probability of choosing transition t from q is equal to t’s share of the total probability of 
transitions leaving q. The number of samples of length n is determined by fitting a Poisson 
distribution to the observed distribution of lengths in the learning data, and the sample size as a 
whole roughly matches that of the learning data.   

Appendix B:  Modeling English onsets with “exotic” items included in the learning data 

We mentioned in §5.1 that it hard to determine to what extent children pay attention to 
extremely rare onsets (e.g., from borrowed words) when learning English onset phonotactics.  In 
the main text we report a simulation using only “nonexotic” data.  In this appendix we show 
what happens when exotic onsets are included. 

Following a method given in Pierrehumbert 2001b, we attempted to mimic the language 
learning experience of the children who participated in Scholes’s (1996) experiment.  To this 
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end, we employed the CELEX English database (Baayen et al. 1995).33  We first removed the 
null-onset words, then obtained frequency estimates of the remaining 39,053 forms by counting 
the hits for each when searched on the Google search engine.34  We then used these counts as the 
basis of simulated childhoods:  sampling from the overall token frequencies, we selected words 
to be included in the simulated vocabularies.  A word was included in a vocabulary once it had 
been “heard” five times, and the vocabularies were set at 10,000 words.  We repeated this 
procedure ten times.   

This method yielded learning sets that included a modest number of exotic onsets, while 
matching closely in overall frequencies with the primary corpus (11), the median correlation 
being r = 0.967.  We report here just one learning run, the one that did worst in matching the 
Scholes data.  In this run, the training data included three “exotic” onsets (4 instances of [sr], 1 of 
[ʒ], and 1 of [sf]), but lacked any cases of [hw], [skl], or [θw].  Given these learning data, our 
model produced a grammar that correlated fairly well with the Scholes data (r = 0.929, compared 
to 0.946 for the main simulation given above), and did about as well as the main simulation in 
separating attested from unattested clusters.  In the other nine learning sets, the correlation with 
the Scholes data ranged from 0.930 to 0.943. 

We also tried simply learning a grammar from the type frequencies for all onsets, using the 
entire CELEX database.  This produced a considerably larger number of “exotic” onsets (25 not 
included in (11)), and learning performance was somewhat worse.  Correlation across ten runs 
with the Scholes data ranged from 0.913 to 0.928, and separation of legal forms from illegal was 
rather more haphazard. 

We conclude that phonological learning is possible under our system with exotic onsets but 
that performance is better when the exotic forms are removed.  It does not seem impossible that 
children could recognize exotic items as such, because they often contain clues to their status, 
specifically their limitation to learned words ([sf]), interjections ([pʃ]), or words describing 
faraway places and cultural items ([labial + w]). 

Appendix C: Training sets and constraints for the stress typology of Gordon 2002 

Constraints are listed in discovery order. Abbreviations: M = Main tier, S = Stress tier; 
otherwise Default tier; [s] = [stress], [m] = [main], 1 = [+main], 2 = [+stress, –main], 0 = [–
stress]. 

                                                 

33 We used CELEX here, not CMU, since we judged that the latter contains substantially more typographical 
errors.  These are more perilous in preparing non-hand-edited corpora. 

34 For discussion of this method, see Blair et al. 2002, Hayes and Londe 2006:64-65. 
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Language Stress pattern  Constraints learned 
Araucanian 1, 01, 010, 0102, 01020, 010202, 0102020, 

01020202 
*## M 4.6, *#[-m] S 1.4, *[+s][+s] 5.5, *[ ][ ] M 2.7, 
*00 2.7, *#[ ][-m] 6.1, *[+s][ ][^+s,-m] 4.7 

Atayal 1, 01, 001, 0001, 00001, 000001, 0000001, 
00000001 

*## M 6.3, *[-m] S 1.9, *[+s][ ] 8.0 

Biangai 1, 10, 210, 2010, 22010, 202010, 2202010, 
20202010 

*## M 4.6, *1[ ] S 3.4, *#0 2.7, *[ ][ ][ ][-m] S 1.0, 
*00 3.2, *[ ][+s]# 2.6, *[ ][+s][+s] 5.2, *[-m][ ]# 4.2, 
*[^+s,-main][ ][+s] 4.0, *#[^+s,-m][+s] 3.5 

Cavineña 1, 10, 010, 2010, 02010, 202010, 0202010, 
20202010 

*## M 5.0, *1[ ] S 2.8, *[+s][+s] 5.4, *00 3.2, 
*[ ][+s]# 2.7, *[-m][ ]# 4.3, *[^+s,-m][ ][+s] 4.4 

Cayuvava 1, 10, 100, 0100, 00100, 200100, 0200100, 
00200100 

*## M 5.6, *[ ][-m] S 1.1, *[+s][+s] 2.5, *[ ][ ] M 
1.6, *[ ][+s]# 4.6, *[+s][ ][+s] 1.9, *1[ ] S 1.8, *000 
2.2, *[ ][+s][ ]# 3.0, *[+s][ ][ ][-m] 3.8, *[-m][ ][ ]# 
3.5, *[^+s,-m][ ][ ][+s] 3.3 

Central Alaskan 
Yupik 

1, 01, 021, 0201, 02021, 020201, 0202021, 
02020201 

*## M 4.6, *1[ ] S 20.0, *[-m]# 20.0, *[ ][ ][ ][-m] S 
4.6, *#[+s,-m] 20.0, *[+s][+s,-m] 20.0, *[^+s,-m]0 
20.0, *[^+s,-m][ ][+s][ ] 20.0 

Chitimacha 1, 10, 100, 1000, 10000, 100000, 1000000, 
10000000 

*## M 3.1, *[-m] S 2.6, *#[-m] 3.9, *[ ][ ] M 2.6, 
*[ ][+s] 5.7 

Creek 1, 01, 010, 0201, 02010, 020201, 0202010, 
02020201 

*## M 6.2, *1[ ] S 2.9, *[+s][+s] 2.7, *#[+s,-m] 2.1, 
*00 5.4, *#[+s][ ] 4.9, *[^+s,-m][ ][+s] 5.0 

Estonian (data 
from Hint 1973) 

1, 10, 100, 1020, 10200, 10020, 102020, 
100200, 1020200, 1020020, 1002020, 
10202020, 10200200, 10020200, 
10020020 

*## M 2.6, *#[-m] S 2.1, *#[-m] 3.5, *[ ][ ] M 2.8, 
*[-m][ ][ ][ ] S 0.1, *[+s][+s] 6.6, *[+s,-m]# 2.4, 
*0[^+s,-m]0 5.8, *[ ][+s]# 4.3 

Garawa 1, 10, 100, 1020, 10020, 102020, 1002020, 
10202020 

*## M 1.7, *#[-m] S 1.2, *#[-m] 5.4, *[ ][ ] M 3.2, 
*[-m][ ][ ][ ] S 0.1, *[+s][+s] 6.3, *[+s,-m]# 5.9, 
*[-m][^+s,-m]0 6.3, *[ ]1 S 3.4 

Georgian 1, 10, 100, 0100, 20100, 200100, 2000100, 
20000100 

*## M 5.3, *[ ][-m] S 12.0, *[+s][+s] 7.6, *[ ][ ] M 
10.1, *[ ][+s,-m] 12.1, *[ ][+s]# 4.4, *#0[-m] 20.0, 
*[ ][+s][ ]# 0.2, *[-m][ ][ ]# 10.0, *1[ ][ ][ ] 16.1 

Gosiute 
Shoshone 

1, 12, 102, 1022, 10202, 102022, 1020202, 
10202022 

*## M 6.8, *#[-m] S 1.3, *#[-m] 1.8, *[ ][ ] M 4.5, 
*0# 1.4, *0[^+s,-m] 6.6, *[+s][ ][^+s,-m] 0.9, 
*[+s][+s][ ] 6.2, *[ ][^+s,-m]# 6.2 

Hopi 1, 10, 010, 0100, 01000, 010000, 0100000, 
01000000 

*## M 4.6, *[-m] S 2.7, *[+s][+s] 1.2, *[ ][ ] M 2.6, 
*#[-m][-m] 2.0, *#[ ][-m][ ] 6.2, *[ ][ ] S 5.0, 
*[ ][+s]# 4.4 

Indonesian 1, 10, 010, 2010, 20010, 202010, 2002010, 
20202010 

*## M 7.5, *1[ ] S 7.0, *[+s][+s] 20.0, *[ ][+s]# 7.1, 
*[-m][ ]# 18.5, *#[ ][+s,-m] 1.3, *#0[-m] 5.4, 
*[^+s,-m]00 1.3, *[ ][ ]00 20.0 

Ioway-Oto 1, 01, 010, 0100, 01002, 010020, 0100200, 
01002002 

*## M 4.6, *#[-m] S 1.7, *[+s][+s] 5.8, *[ ][ ] M 2.0, 
*#[ ][-m] 6.1, *[-m][ ][ ] S 1.0, *[+s][ ][+s] 4.6, 
*00[^+s,-m] 3.2, *[+s][ ][ ][^+s,-m] 3.6 

Lakota 1, 01, 010, 0100, 01000, 010000, 0100000, 
01000000 

*## M 4.5, *[-m] S 2.8, *[+s][+s] 1.1, *[ ][ ] M 2.7, 
*#[ ][-m] 7.3, *[ ][ ] S 5.2 

Lower Sorbian 1, 10, 100, 1020, 10020, 100020, 1000020, 
10000020 

*## M 5.0, *#[-m] S 5.4, *#[-m] 20.0, *[ ][ ] M 20.0, 
*[-m][ ] S 20.0, *[+s][+s] 20.0, *[+s,-m]# 20.0, 
*[+s,-m][ ][ ] 20.0, *[-m][^+s,-m][ ]# 20.0 

Macedonian 1, 10, 100, 0100, 00100, 000100, 0000100, 
00000100 

*## M 20.0, *[-m] S 20.0, *[ ][ ] M 20.0, *[ ][+s]# 
20.0, *[ ][+s][ ]# 20.0, *[ ][ ] S 20.0, *[+s][ ][ ][ ] 
20.0, *[-m][ ][ ]# 20.0 

Malakmalak 1, 10, 010, 1020, 01020, 102020, 0102020, 
10202020 

*## M 4.8, *#[-m] S 2.4, *[+s][+s] 2.9, *[ ][ ] M 1.4, 
*00 5.4, *[+s,-m]# 2.1, *[ ]1 S 1.9, *[ ][+s]# 4.9, 
*[+s][ ][^+s,-m] 4.6 
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Maranungku 1, 10, 102, 1020, 10202, 102020, 1020202, 
10202020 

*## M 20.0, *#[-m] S 11.5, *#[-m] 11.5, *[ ][ ] M 
4.0, *[-m][ ][ ][ ] S 5.4, *[+s][+s] 20.0, *0[^+s,-m] 
20.0, *[+s][ ][ ][+s] 2.8 

Nahuatl 1, 10, 010, 0010, 00010, 000010, 0000010, 
00000010 

*## M 4.6, *[-m] S 2.9, *[+s][+s] 1.8, *[ ][ ] M 2.9, 
*[ ][+s]# 3.5, *[+s][ ][ ] 5.1, *[-m][ ]# 3.8 

Pacific Yupik 1, 01, 010, 0102, 01002, 010020, 0100202, 
01002002 

*## M 4.6, *#[-m] S 1.4, *[+s][+s] 5.9, *[ ][ ] M 2.5, 
*#[ ][-m] 6.2, *[-m][ ][ ] S 1.1, *00# 2.2, 
*00[^+s,-m] 1.8, *[+s][ ][ ][^+s,-m] 5.9, 
*[+s][ ][^+s,-m]# 3.7 

Palestinian 
Arabic 

1, 10, 201, 2010, 20201, 202010, 2020201, 
20202010 

*## M 6.2, *1[ ] S 7.1, *[+s][+s] 6.8, *#0 6.1, *00 
6.5 

Pintupi 1, 10, 100, 1020, 10200, 102020, 1020200, 
10202020 

*## M 2.8, *#[-m] S 1.8, *#[-m] 3.5, *[ ][ ] M 2.7, 
*[-m][ ][ ][ ] S 0.2, *[+s][+s] 6.1, *[+s,-m]# 5.3, 
*0[ ][+s] 2.0, *0[^+s,-m][ ] 5.6, *[ ]1 3.4 

Piro 1, 10, 010, 2010, 20010, 202010, 2020010, 
20202010 

*## M 5.1, *1[ ] S 5.8, *[+s][+s] 5.6, *[ ][+s]# 3.0, 
*[-m][ ]# 3.7, *#[ ][+s,-m] 2.2, *#0[-m] 4.7, 
*[^+s,-m][ ][+s,-m] 1.5, *[^+s,-m]0[-m] 5.2 

Quebec French 1, 21, 201, 2001, 20001, 200001, 2000001, 
20000001 

*## M 2.7, *[ ][-m] S 3.9, *[-m]# 4.4, *[ ][ ] M 2.6, 
*#0 7.3, *[ ][ ][ ] S 3.8, *1[ ] 4.3 

Sanuma 1, 10, 010, 2010, 20010, 200010, 2000010, 
20000010 

*## M 5.0, *[ ][-m] S 3.1, *[+s][+s] 4.5, *[ ][ ] M 
3.1, *[ ][+s,-m] 3.5, *[ ][+s]# 2.7, *[-m][ ]# 4.2, 
*#0[-m] 5.8, *1[ ][ ] 4.4 

Southern Paiute 1, 10, 010, 0120, 01020, 010220, 0102020, 
01020220 

*## M 4.6, *#[-m] S 1.4, *[+s]1 2.2, *[ ][ ] M 2.0, 
*[-m][ ][ ][ ] S 0.1, *00 5.4, *[+s,-m]# 2.2, 
*#[+s][+s] 1.0, *[ ]1 S 2.4, *[+s][+s][+s] 5.0, 
*#[ ][-m][ ] 5.8, *[+s][ ][^+s,-m][ ] 5.6, *[ ][+s]# 4.9 

Tauya 1, 21, 201, 2201, 20201, 220201, 2020201, 
22020201 

*## M 3.5, *1[ ] S 5.6, *[-m]# 3.8, *#0 5.6, 
*[^+s,-m]0 6.3, *[ ][+s][+s] 6.5 

Udihe 1, 01, 201, 2001, 20001, 200001, 2000001, 
20000001 

*## M 2.9, *[ ][-m] S 3.3, *[+s][+s] 4.4, *[ ][ ] M 
3.1, *[-m]# 4.2, *[ ][+s,-m] 3.7, *#[^+s,-m][-m] 6.0, 
*1[ ] 4.4 

Urubu Kapor 1, 01, 201, 0201, 20201, 020201, 2020201, 
02020201 

*## M 3.6, *1[ ] S 1.9, *[+s][+s] 6.9, *[-m]# 3.8, 
*[^+s,-m]0 6.7 

Walmatjari 
(data from 
Hudson 1978) 

1, 10, 100, 1020, 10200, 10020, 100200, 
100020, 1000200, 1000020, 10000200, 
10000020 

*## M 20.0, *#[-m] S 20.0, *#[-m] 20.0, *[ ][ ] M 
5.1, *[-m][ ] S 20.0, *[+s][+s] 20.0, *[+s,-m]# 20.0, 
*0[^+s,-m][ ]# 20.0 

Winnebago 1, 01, 001, 0010, 00102, 001002, 0010020, 
00100202 

*## M 4.7, *#[-m] S 1.5, *[+s][+s] 20.0, *[ ][ ] M 
14.6, *#[+s][ ] 4.4, *[-m]00 20.0, *[ ]1 S 14.6, *00# 
20.0, *[-m][ ][ ] S 20.0, *#[ ][ ][-m] 20.0, 
*[+s][ ][ ][^+s,-m] 14.5 

Appendix D: Constraints for Wargamay not discussed in the text 

All constraints listed were discovered on the default projection. 

 Constraint  Weight  

 1. *[+syl][+son,+dors][–back] 3.91 
 2. *[+long][+ant,–lat][^–long,–high,–str] 3.65 
 3. *[+son,–approx][^–long,+back,–str]# 3.60 
 4. *[–approx][–syl][^–long] 3.55 
 5. *[+high,–main,+str][–lat] 3.51 
 6. *[–main][–son,+ant][+high,–main] 3.49 
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 7. *[+syl][+back][^–long,+back] 3.43 
 8. *[+approx,–syl][+ant][+str] 3.33 
 9. *[+high,+back,–main][–son][–back,–main] 3.18 
 10. *[–syl][+son,+cor][+back] 3.18 
 11. *[–main,+str][–son,+lab] 3.10 
 12. *[+cons][+son,+ant][^–son,+ant] 3.05 
 13. *[^–son,–ant][+long][–cons] 3.04 
 14. *[+son,+lab][–back,–main,+str] 3.04 
 15. *[+son,+dors][–main,+str] 3.02 
 16. *[+back][+long][+approx] 2.97 
 17. *#[+cons,+approx][^–long,+back] 2.92 
 18. *[+high,+back,–main,+str][–son,+cor] 2.90 
 19. *[–ant][+son][+back,–main] 2.83 
 20. *[–str][+ant][+back,–str] 2.82 
 21. *[^–long,+high,–str][–ant]# 2.81 
 22. *[+cons,+son][+long,–back] 2.77 
 23. *[–back][+high,–main,+str] 2.76 
 24. *[–main,+str][–cons][+back] 2.74 
 25. *[–high,–main,+str][–son,+ant] 2.74 
 26. *[+high,+back][–approx]# 2.73 
 27. *[–approx,+cor][+high,+back,–main][–cons] 2.70 
 28. *[–back][+long][^+cons,+son] 2.70 
 29. *[–back,–main][+back] 2.66 
 30. *#[+ant][^–long,+back] 2.66 
 31. *[–back][+high,+syl][–cons] 2.65 
 32. *#[+son,+ant][–high,+str] 2.64 
 33. *[–approx][+son][+high,+back,+syl] 2.60 
 34. *[+son,–approx,–ant][–high,–main,+str] 2.58 
 35. *[–cons][+long,+high][–approx,+cor] 2.57 
 36. *[+high,+back,–main,+str][+lab] 2.52 
 37. *[–back,–main,+str][–son,+ant] 2.51 
 38. *[+long][^+lat][+son,–syl] 2.48 
 39. *[–main][+back][^–long,+back,+str] 2.47 
 40. *[–cons][+long,–high][+approx] 2.47 
 41. *[+long,–back][+son,+lab] 2.47 
 42. *[–ant][+son][–back,+str] 2.44 
 43. *[–syl][+ant][–back,–main] 2.43 
 44. *[–syl][+son,+cor][+high,+main] 2.40 
 45. *[–approx][+son][+high,+str] 2.34 
 46. *[+long,–back][–son,+ant] 2.25 
 47. *[+son,+cor][+long] 2.18 
 48. *[–approx][+son,+dors] 2.16 
 49. *[+high,–main,+str][–cons] 2.15 
 50. *[+long,+high][–cons][^–long,–back,–str] 2.09 
 51. *[–main][–back][+high,+back,–main] 2.09 
 52. *[–cons][+high,+syl][+back] 1.92 
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 53. *[+back,–syl][–syl] 1.84 
 54. *[+long][+back] 1.52 
 55. *[–syl][+son,+cor][+high,+back] 1.16 
 56. *[–syl][+ant][–ant] 0.95 
 57. *[+son,+cor][+long,–back] 0.40 
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