Some comments on the study of stress

Bruce Hayes
Department of Linguistics
UCLA

MIT Linguistics 50th birthday celebration
Cambridge, MA
December 10, 2011

Personal history

- I got started out in phonology at MIT (1976-1980), working on stress rules.
- They are a tantalizing topic: complex, but not overwhelmingly so, and with many cross-linguistic resemblances.
- So, I did two theoretical/typological studies:
 - > my MIT dissertation (1980)
 - ➤ a larger survey (*Metrical Stress Theory*, 1995), linking stress to a distinction of iambic vs. trochaic rhythm
- Since then, I've worked on other topics.

Plan of my talk: a laundry list

- Three topics concerning stress and phonological theory
- Some personal remarks about the MIT graduate program

I. Stress, nested regions, and phonological theory

An important descriptive generalization

• Stress abounds in patterns that can be described with **nested regions** (Prince and Smolensky 1993, §4)

Use Pattern A in this environment

But in a subregion, use Pattern B instead

But in a sub-region of B, use A.

A real-life example: Finnish stress

- Sources: Hanson and Kiparsky (1996), Anttila (1997a, 1997b, 2008), Elenbaas (1999), Elenbaas and Kager (1999), Kiparsky (2003)
- Caution: data simplified to fit time limitations

Finnish stress: the basic pattern

- Initial main stress
- Alternating secondary stress going left to right—every other syllable, hence "binary".
- Analysis: a left-to-right parse into trochaic metrical feet.

```
(jær jes)(tè le)(mæ tø)(my: des)(tæn sæ)
```

'from his lack of systematization' (Kiparsky 2003, 111)

Stressless final syllables

• Final syllables are unstressed (analytically: not footed), going against the alternating pattern.

(ér go)(nò mi) ja

'ergonomic-Nom. sg.' Elenbaas and Kager p. 302

The effect of syllable quantity

• Exception to the alternation pattern: if a trochee would be of the form **Light** + **Heavy** (quantity mismatches stress), then you make a ternary, not binary interval.

```
H H L H L L H L (vói mis) te (lùt te) le (màs ta)

'having caused to do gymnastics' Kiparsky (2003, 111)
```

```
L H avoiding: *( té lut )
```

Initial stress always holds good

• L + H *is* made into a foot when this is needed to obtain initial stress:

```
L H L H L (ká las) te (lèm me)
```

'we're fishing' K 2003, 111

Final stresslessness always holds good¹

• Don't skip over a light if as a result you would get final stress:

L H **L H** (rá vin)(**tò lat**)

'restaurants' Elenbaas and Kager 304

¹ Until later in the talk; be patient ...

The "nested regions" for Finnish

Binary default: don't skip light syllables

Don't skip light if this would create non-initial main stress. Don't skip light if this would create final stress.

Skip a light if the cost would be a L H foot.

There is more ...

• Even non-finality is negotiable, since Finnish allows monosyllables and they are stressed.

```
(táːs)
'again' K 2003, 147
```

• Anttila (1997, 2010) observes other reasons to skip lights, such as vowel height mismatches in the foot.

The merit of this kind of description

- All the complexity lies in the establishment of priorities.
- The "ingredients" of the system are
 - > Simple
 - Well-justified typologically: the principles at stake show up as inviolable in other languages.

What I'm getting at

- Finnish stress is a nice example for **Optimality Theory** (Prince and Smolensky 1993 et seq.), which expresses in formal terms the reasoning just given.
- In OT, when all goes well, *complexity is the consequence* of simple things prioritized.
- For Finnish this would be expressed as in the Hasse diagram on the next slide.

Hasse diagram for Finnish (partial)

EVERY WORD HAS STRESS MAIN STRESS IS INITIAL

Finnish is representative, I think

- My own interest in OT developed because it resolved dilemmas implicit in the stress theory I was working on (1995, completed 1993).
- ... and post-1993 study of stress in OT (a large literature) suggests that the Finnish example is not atypical.

Is OT problem-free?

- Of course not; there are many problems; conspicuously **opaque phonology** (Bromberger and Halle 1989, Idsardi 2000)
- OT is hard to apply to opaque systems while remaining faithful to its original insightful form.
- My take: we don't understand the phonology of the opaque systems well enough, particularly how they are internalized by language learners. Let's do some checking ...

II. Stress research and "analytic corpora"

It should be easy to check formal theories against many languages—what is needed?

- My 1995 book (likewise Hayes 1980, Halle and Vergnaud 1987, Idsardi 1992) provides analyses of a large number of diverse languages.
- These books have been used—beneficially, I think—by subsequent theorists, essentially as **corpora**.
- The later theorist does not accept the older theory, but accepts the crucial data generalizations, which the older theory served to express.

Analytic corpora

- *Proposed definition*: an **analytic corpus** is a corpus of language-particular analyses, using a theoretical framework and focusing on some phenomenon in language.
- In particular, it not the same as a data corpus (though it will normally included illustrative data).

What might make for good analytic corpora?

- Scrupulous checking for all possible cases: e.g. in weight-based stress, you need to examine 2^n examples for words of n syllables.
- Web installation, for easy access and expansibility.
- Full explanation in prose of each system discussed.
- (Ideally) appended to each language in the analytical corpus: a searchable raw data corpus, so that the generalizations can be tested and refined.

What is the current situation re. analytic corpora?

- Not entirely bad; see partial list in Appendix to these slides.
- But I doubt there is any analytic corpus that fits all the criteria of the preceding slide.
- In phonology, there appear to be huge gaps: e.g. reduplication and vowel harmony are intensively theorized but have (I believe) nothing like an adequate analytic corpus.² It wouldn't be that hard...

² The closest I've seen is the Graz Database on Reduplication; http://reduplication.uni-graz.at/, but I think it is fair to call it a data corpus rather than an analytic one.

III. Recent developments in phonological theory: How stress has fit in

Learnability, UG and learning simulations

- A strong test of theories of Universal Grammar to deploy them in computational modeling of language acquisition.
- Long term goal: within at most a few centuries linguistics will achieve the **synthetic child**, who will learn the same grammars as human children and behave identically to humans under any form of testing.
- Stress has been the domain of some of the most interesting work attempting to learn phonology from data.

Stress and hidden structure

- **Hidden structure** (Tesar and Smolensky 2000): inaudible but crucially referred to in the grammar.
- A canonical case is the **feet** of metrical stress theory; inaudible but essential to the analysis.

- How to learn both hidden structure and constraint rankings at the same time?
- References: Tesar & Smolensky, Apoussidou and Boersma (2003), Jarosz (to appear)

Free variation in grammar

- Finnish is actually more complex than above.
- Many words have two possible stress patterns, e.g. from above, (rá vin)(tò lat) is actually:

(rá vin)(tò lat) ~ (rá vin) to (làt) 'restaurants' EK 304

• Constraint-based grammars work well for describing this; they use **free ranking** (Anttila 1997; Elenbaas and Kager 1999, covering the Finnish case).

Beyond simple free variation: quantities and probabilities

- Free-ranking grammars often aim higher: actual matching of probabilities.
- In some variants, this means incorporating **mathematical apparatus** into the framework; e.g. stochastic OT (Boersma 1998), Noisy Harmonic Grammar (Boersma and Pater, to appear), maxent grammars (Goldwater and Johnson 2003)
- Empirically: experiments show that native speakers often have accurate knowledge of the quantitative pattern; see Hayes et al. (2009) for one example + literature survey.

IV. Some personal remarks about the MIT program

The role of the MIT department in the intellectual development of linguists

- For me, it was the value of speculative theory.
- This went against my natural inclinations and made a big difference in my thinking and my career.
- 99% + of all theoretical proposals fail; but the remaining 1% can make a big difference!
- So, what has always been important about the MIT department is its role in nurturing scholars to go out on a limb in theorizing about language.

Thank you

For advice in preparing this talk I would like to thank Janet Pierrehumbert and the participants in the UCLA Phonology Seminar.

A downloadable copy of these slides, with references included, is available at:

www.linguistics.ucla.edu/people/hayes/papers/ HayesMITSlidesDec10.pdf.

Appendix: a few analytic corpora for phonology

- Becker, Roy (2010) Acoustic typology of vowel inventories and Dispersion Theory: Insights from a large crosslinguistic corpus. Ph.D. dissertation, UCLA. http://www.linguistics.ucla.edu/research/55-ucla-phd-dissertations.html. (vowel systems, with formant data)
- Cohn, Abigail (1993). A survey of the phonology of the feature [nasal]. *Working Papers of the Cornell Phonetics Laboratory* 8, 141-203. (nasal harmony)
- Graz Database on Reduplication; http://reduplication.uni-graz.at/
- Greenberg, Joseph H. (1978). Some generalizations concerning initial and final consonant clusters. In E. A.

- Moravcsik (Ed.), *Universals of human language* (Vol. 2, pp. 243–279). Stanford, CA: Stanford University Press. (consonant sequencing)
- Maddieson, Ian (1984) *Patterns of Sounds*. Cambridge: Cambridge University Press. (phoneme inventories)
- Miehlke, Jeff (on line) P-base. http://137.122.133.199/~Jeff/pbase/index.html ("several thousand sound patterns in 500+ languages")
- Walker, R. 1998. Nasalization, Neutral Segments, and Opacity Effects. PhD dissertation, University of California, Santa Cruz. (nasal harmony)

References

- Anttila, Arto. 1997. 'Deriving variation from grammar', in Frans Hinskens, Roeland van Hout, and Leo Wetzels (eds.), *Variation, Change and Phonological Theory*, John Benjamins, Amsterdam / Philadelphia, pp. 35-68.
- Anttila, Arto (2010) Word stress in Finnish. Talk given at Yale University; http://www.stanford.edu/~anttila/research/yale-ho-2010-final.pdf
- Apoussidou, Diana and Paul Boersma (2003) Comparing different optimality-theoretic learning algorithms: The case of metrical phonology. *Proceedings of the 2004*

- Spring Symposium Series of the American Association for Artificial Intelligence.
- Bromberger, Sylvain and Morris Halle (1989) Why phonology is different. *Linguistic Inquiry* 20:51-70.
- Boersma, Paul. 1998. Functional Phonology. Formalizing the interactions between articulatory and perceptual drives.

 Doctoral dissertation, University of Amsterdam. The Hague: Holland Academic Graphics.
- Boersma, Paul and Joe Pater (to appear) Convergence properties of a Gradual Learning Algorithm for Harmonic Grammar. In John McCarthy and Joe Pater, eds. *Harmonic Grammar and Harmonic Serialism*. London: Equinox Press.
- Elenbaas, Nine (1999) A unified account of binary and ternary stress. Ph.D. dissertation, University of Utrecht.

- Elenbaas, Nine and René Kager (1999) Ternary rhythm and the lapse constraint. *Phonology* 16:273-329.
- Goldwater, Sharon and Mark Johnson. 2003. Learning OT constraint rankings using a Maximum Entropy model. *Proceedings of the workshop on variation within optimality theory, Stockholm University*, 2003.
- Halle, Morris and Jean-Roger Vergnaud (1987) *An Essay on Stress*. Cambridge: MIT Press.
- Hanson, Kristin and Paul Kiparsky. 1996. A parametric theory of poetic meter. *Language* 72: 287-335.
- Hayes, Bruce (1980) A metrical theory of stress rules. Ph.D. dissertation, MIT.
- Hayes, Bruce (1995) Metrical Stress Theory: Principles and Case Studies. Chicago: University of Chicago Press.

- Hayes, Bruce, Kie Zuraw, Péter Siptár, and Zsuzsa Londe (2009) Natural and unnatural constraints in Hungarian vowel harmony. *Language* 85: 822-863.
- Idsardi, William J. 1992. The computation of prosody. Ph.D. dissertation, MIT.
- Idsardi, William (2000) Clarifying opacity. *The Linguistic Review* 17: 337-350.
- Jarosz, Gaja (to appear) Naive Parameter Learning for Optimality Theory the Hidden Structure Problem. To appear in *Proceedings of the 40th Annual Meeting of the North East Linguistic Society*.
- Kiparsky, Paul (2003) Finnish noun inflection. In Diane Nelson and Satu Manninen, eds., *Generative Approaches to Finnish and Saami Linguistics*. Stanford, CA: CLSI Publications.

- Prince, Alan and Paul Smolensky (1993) *Optimality Theory: Constraint Interaction in Generative Grammar*. Ms., published 2004: Blackwell, Oxford.
- Tesar, Bruce and Paul Smolensky (2000). *Learnability in Optimality Theory*. Cambridge: MIT Press.