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Allomorph discovery as a basis for learning alternations 
 

BACKGROUND:  LEARNING MODELS IN LINGUISTICS 

1. The research program of generative grammar 

 Chomsky (1965:24-26) and similar aspirational work, on human children: 
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2. What is in the “learning device”? 

 Learning mechanisms of some sort 
 Linguistic theory; often construed as principles of Universal Grammar (UG) 
 

3. The role of computational learning models 

 We can address the content of the learning device (as with other inaccessible natural 
systems) with computational modeling. 

 That is, we model people by devising computational systems that perform the same 
way that people do — Emanuel Dupoux has called this “linguistics as reverse 
engineering.” 

 What would perfect success for such a program (in the distant future) look like?  Our 
models would make many correct predictions: 

 They will respond to elicitation identically to native speakers, including 
ambivalence. 

 They will perform identically in wug-tests and other experimental tasks. 
 Algorithms will occasionally learn patterns incorrectly, in the very same cases 

where people do (language change). 

4. Phonology seems to be a good area for trying this sort of work1 

 In Optimality Theory, we know how to rank constraints correctly, given a suitable set of 
inputs, winning candidates, and losers (Tesar and Smolensky 1993, 2000) 

 Free variation doesn’t bother us, since our frameworks and algorithms can accurately learn 
such patterns as probabilistic grammars, that match frequency (Boersma and Hayes 2000, 
Goldwater and Johnson 2003, Boersma and Pater 2016, etc.) 

 We can learn the phonotactics of a set of surface forms (Hayes and Wilson 2008). 
                                                 

1 But syntax, too!  I have noticed Clark and Lappin (2011) and Abend et al. (2017). Morphology:  Ryan (2010). 
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5. The focus here:  alternations in paradigms (morphophonemics) 

 Standard setup:  data in rows and columns 

 rows are stems, columns are inflectional categories 
 the morphemes alternate, following the principles of the phonology 

 When we analyze a data set of this kind, we 

 find the underlying form of each morpheme present 
 discover the morphological principles that order the morphemes linearly 
 formulate and order rules (Chomsky and Halle 1968), or rank a constraint set in 

Optimality Theory (Prince and Smolensky 1993), so as to derive the surface forms 
from the concatenated underlying forms. 

 This sort of analysis is utterly central to phonology  
 … and the basis for most problems sets used to train new participants in the field. 

6. Can the alternation patterns of paradigms be learned by algorithm? 

 Computer scientists are currently working on this problem, most effectively with neural 
networks — see e.g. Cotterell et al. (2017).   

 I feel that phonologists should be participating in this enterprise. 

 Some of their theoretical ideas might be directly applicable to solving paradigm 
problems. 

 We also have a lot of data experience and typological knowledge. 

7. What I’ve tried to do 

 Invent a system for solving paradigm problems that makes maximal use of ideas from 
mainstream phonological theory 

8. A cautionary note before going on:  solving problem sets is an idealization 

 A large body of research tells us that a standard problem set answer falls far short of what 
real learners know about phonological patterning — there is much more detail.   

 See Zuraw 2000, 2010, Albright 2002a, Albright and Hayes 2003, Ernestus and 
Baayen 2003, Hayes/Zuraw/Siptar/Londe 2009 

 I have ideas on how to scale up the work here to handle detail, but will not address this here. 
 

BREAKING THE PROBLEM INTO STEPS 

9. Stepwise solution of paradigm problems 

 I think phonologists share, to some extant, an intuitive sense of how phonology problems 
can be most effectively solved. 
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 In my undergraduate textbook Introductory Phonology I tried to articulate this intuition 
explicitly, and will follow the outline given there — there are five steps. 

 
10. Toy illustration:  final consonants and clusters in Catalan 

 Here is method as applied to five stems taken from Kenstowicz and Kisseberth’s (1979:328) 
Catalan problem, (11) below. 

 Go ahead and take a peek. 
 Quick answer: 

 Stems are /ultim/, /plen/, /klar/, /profund/, /fort/ 
 Fem. sg. and fem. plur. endings are /-ə/ and /-es/ 
 Phonology:  /n/ and /r/ are deleted finally, after which /t,d/ delete / C ___ ], exposing 

new [n]’s and [r]’s to word-final position. 
 

11. Step 1:  divide the word into its morphemes 

u l t i m | ‘last’ 
u l t i m | ə  ‘last fem.sg.’  
u l t i m | e s  ‘last fem.pl.’  
 
p l e | ‘full’  
p l e n | ə  ‘full fem.sg.’  
p l e n | e s  ‘full fem.pl.’  
 
k l a  ‘plain’  
k l a r | ə  ‘plain fem.sg.’ 
k l a r | e s  ‘plain fem.pl.’  

 

p r o f u n | ‘deep’  
p r o f u n d | ə  ‘deep fem.sg.’  
p r o f u n d | e s  ‘deep fem.pl.’  
 
f o r | ‘strong’  
f o r t | ə  ‘strong fem.sg.’  
f o r t | e s  ‘strong fem.pl.’  
 

 

12. Step 2:  Consulting the divisions made, list all allomorphs of each morpheme 

‘last’: [ultim] 
‘full’: [plen] ~ [ple] 
‘plain’: [klar] ~ [kla] 
‘deep’: [profund] ~ [profun] 
‘strong’: [fort] ~ [for] 

 

f.sg.: [-ə] 
f.pl.: [-es] 
 

 

13. Step 3:  Consulting the allomorph list, find the segmental alternations 

They are:  n ~ Ø, r ~ Ø, d ~ Ø, t ~ Ø. 

14. Step 4: Consider multiple hypotheses about underlying forms and reconstruct the 
       derivations that they necessitate 

 A good guess:  in Catalan nouns the feminine (prevocalic) forms always provide the right 
basis for the UR (more on this below). 

 So we provisionally adopt this idea and set up the “sketch derivations” that would be 
needed: 
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 ‘full’ ‘full-f.’ ‘clear’ ‘clear-f.’ ‘deep’ ‘deep-f.’ 
 /plen/ /plen-ə/ /klar/ /klar-ə/ /profund/ /profund-ə/ hypothesized underlying forms 

 pleØ — klaØ — profunØ — what the phonology must do 

 [plen] [plenə] [kla] [klarə] [profun] [profundə] surface forms 
 
 This set-up requires us to discover deletion at Step 5 
 A full implementation of the approach would also try the other option, /ple/, /kla/, /profun/ 

with consonant insertion — and would fail at Step 5. 

15. Step 5: Find a phonological grammar that will do what needs to be done 

 For the above, in rule-based phonology, this would be: 

 N Deletion 
 n  Ø / ___ ]word 

 R Deletion 
 r  Ø / ___ ]word 

 Alveolar Stop Deletion 
 {t, d}  Ø / C ___ ]word         (must be ordered after N Deletion and R Deletion) 
 

 /plen/ /plen-ə/ /klar/ /klar-ə/ /profund/ /profund-ə/ hypothesized UR 

 pleØ — — — — — N Deletion 
 — — klaØ — — — R Deletion 
 — — — — profunØ — Alveolar Stop Deletion 

 [plen] [plenə] [kla] [klarə] [profun] [profundə] surface forms 
 
 Success! 
 Later we will do this problem again in Optimality Theory. 
 

16. Can Steps 1-5, designed for humans, be made the basis of a learning algorithm? 

 Step 1, “break up the words”, turns out to be hardest, and is the focus here. 
 Steps 2-3, “find the alternations”, seems to be easier; see below. 
 Step 4, “guess the UR’s” is trivial for Albrightianists, hard for others; see below. 
 Step 5, “find the grammar that can achieve these mappings”, is easy if we are given OT 

constraints in advance, harder if we need to discover them. 
 
 So let’s outline the five steps and then solve some phonology problems … 

17. One reason to favor an incremental strategy 

 Explosion of hypothesis space:  the set of possible UR’s coupled with grammars is 
incomparably vast for any decent-size problem. 
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 See Tesar (2014:§6.2), Jarosz (2015) for clear discussion on this point.  
 My own system does have a big search-space bottleneck — Step 1 —but I think it’s not too 

big. 
 

STEP I:  DIVIDING WORDS INTO THEIR MORPHEMES 

18. The task for Step 1 

 Given a glossed paradigm, as above, discover an appropriate division into morphemes, 
without yet knowing the phonology. 

19. A warning before we even start   

 The success of the “find morphemes first” strategy is not guaranteed in advance. 
 Is it really possible to segment the words into morphemes without knowing the phonology?   

20. A sobering thought experiment 

 You hear: 

  [mapa] ‘cat-sg.’  [maparu]  ‘cat-plur.’ 
  [tapan] ‘dog.-sg.’ [tapanu] ‘dog-pl.’ 

 Is this /mapar/, with Final /r/ Deletion and suffix /-u/? 
 Could be, since Catalan works like this. 

 Is this /mapa/, /tapan/ with suffix allomorphs /-u/ post-C, /-ru/ post-V? 
 Could be, since Japanese works like this. 

 In fact, we will see that our model, equipped with full information about these languages, 
can make the right choices. 

21. Making it harder for realism’s sake:  discontinuous allomorphs 

 Let include cases where the surface forms are discontinuous, due to 
 infixation, as in Tagalog [bago] ~ [b-um-ago]. 
 metathesis of segments belonging to separate morphemes [pama], /naj-pama/  

[na-p-j-ama], as in Yagua (Powlison 1962) 
 For representations, we can’t just use hyphens; we must instead coindex every segment with 

the gloss of the morpheme it belongs to. 
 

22. Sample of input data:  part of my fictional “Suffix Fricatives” language 

 kuŋanpa turtle-NOM 
kuŋanta turtle-DAT 
kuŋanka turtle-ACC 

ruxiŋpa dove-NOM 
ruxiŋta dove-DAT 
ruxiŋka dove-ACC 

tuɸærpa fox-NOM 
tuɸærta fox-DAT 
tuɸærka fox-ACC 

 
 piθoɸa dog-NOM 

piθoθa dog-DAT 
piθoxa dog-ACC 

ŋexeɸa wolf-NOM 
ŋexeθa wolf-DAT 
ŋexexa wolf-ACC 
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 Pretty clear to any phonologist that we have:   
 stems:    /kuan/, /ruxi/, /tuær/, /pio/, /exe/ 
 suffixes:   /-pa/, /-ta/, /-ka/ 
 /ptk/ spirantize intervocalically to [ɸθx]. 

 
23. Correct intended algorithm-output for Suffix Fricatives 

 k4u4ŋ4a4n4p1a1 turtle4 NOM1 
k4u4ŋ4a4n4t2a2 turtle4 DAT2 
k4u4ŋ4a4n4k3a3 turtle4 ACC3 

r5u5x5i5ŋ5p1a1 dove5 NOM1 
r5u5x5i5ŋ5t2a2 dove5 DAT2 
r5u5x5i5ŋ5k3a3 dove5 ACC3 

t6u6ɸ6æ6r6p1a1 fox6 NOM1 
t6u6ɸ6æ6r6t2a2 fox6 DAT2 
t6u6ɸ6æ6r6k3a3 fox6 ACC3 

 
 p7i7θ7o7ɸ1a1 dog7 NOM1 

p7i7θ7o7θ2a2 dog7 DAT2 
p7i7θ7o7x3a3 dog7 ACC3 

ŋ8e8x8e8ɸ1a1 wolf8 NOM1 
ŋ8e8x8e8θ2a2 wolf8 DAT2 
ŋ8e8x8e8x3a3 wolf8 ACC3 

 

 
THE PROPOSED APPROACH FOR DIVIDING UP WORDS 

24. Overall plan  

 Let’s use GEN + EVAL as in OT. 
 I.e., we lay out choices, then give formal criteria for picking a winner. 
 Such architectures are not just for linguistics, but are common in cognitive science 

as learning models.2 
 

25. GEN and its size 

 Our GEN = all possible coindexations of segments with the morphemes of their word. 

 For:        [sui] ‘pig1-VOC.2’   
 GEN is: { s1u1i1, s1u1i2, s1u2i1, s1u2i2, s2u1i1, s2u1i2, s2u2i1, s2u2i2 }  

 (23) shows the correct coindexation for the Suffix Fricative language; I calculate there are 
634 octillion others.   

 In general, the GEN needed is really big, which will be an issue below. 

26. Choice of constraint-based model 

 I use Harmonic Grammar (Smolensky 1986, Pater 2009, Potts et al. 2010, etc.), so 
constraints are weighted, not ranked. 

 For the computations I use the maxent variant of Harmonic Grammar (Smolensky 1986, 
Goldwater and Johnson 2003), for reasons to be made clear. 

 
27. How we extract a prediction from the model 

 Maxent assigns a probability to every candidate in GEN. 

                                                 
2 See e.g. Samut (2010), entitled “Learning as search”, in a computer science encyclopedia. 
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 We will say that the intended division of the words into morphemes is the highest-
probability candidate. 

 
28. Constraints 

 The learning system will consist of four constraints embodying what my experience 
indicates are properties shown by correct morpheme divisions. 

 We will run through these constraints in what follows. 
 

29. The more important basis for constraints: similarity of allomorphs 

 Here is the right division for the Suffix Fricative language in (22): 
 

A. kuŋan-pa turtle4 NOM1 
kuŋan-ta turtle4 DAT2 
kuŋan-ka turtle4 ACC3 

ruxiŋ-pa dove5 NOM1 
ruxiŋ-ta dove5 DAT2 
ruxiŋ-ka dove5 ACC3 

tuɸær-pa fox6 NOM1 
tuɸær-ta fox6 DAT2 
tuɸær-ka fox6 ACC3 

 
B. piθo-ɸa dog7 NOM1 

piθo-θa dog7 DAT2 
piθo-xa dog7 ACC3 

ŋexe-ɸa wolf8 NOM1 
ŋexe-θa wolf8 DAT2 
ŋexe-xa wolf8 ACC3 

 

 The right division yields this allomorph list: 

 *-pa ~ -ɸa NOM 
 *-ta ~ -θa DAT 
 *-ka ~ -xa ACC 

   [kuŋan] ‘turtle’, [ruxiŋ] ‘dove’, [tuɸær] ‘fox’, [piθo] ‘dog’, [ŋexe] ‘wolf’  

 Here is a sample wrong division: 
 

 kuŋan-pa turtle4 NOM1 
kuŋan-ta turtle4 DAT2 
kuŋan-ka turtle4 ACC3 

ruxiŋ-pa dove5 NOM1 
ruxiŋ-ta dove5 DAT2 
ruxiŋ-ka dove5 ACC3 

tuɸær-pa fox6 NOM1 
tuɸær-ta fox6 DAT2 
tuɸær-ka fox6 ACC3 

 
 *piθoɸ-a dog7 NOM1 

*piθoθ-a dog7 DAT2 
*piθox-a dog7 ACC3 

*ŋexeɸ-a wolf8 NOM1 
*ŋexeθ-a wolf8 DAT2 
*ŋexex-a wolf8 ACC3 

 

 
 The wrong division yields this allomorph list: 

 *-pa ~ -a NOM 
 *-ta ~ -a DAT 
 *-ka ~ -a ACC 

   kuŋan  ‘turtle’ ruxiŋ  ‘dove’ tuɸær  ‘fox’  

 *piθoɸ ~ piθoθ ~ piθox  ‘dog’ 
 *ŋexeɸ ~ nexeθ ~ nexex ‘wolf’  
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 These allomorphs are far less mutually similar than the allomorphs of the correct answer. 

 N.B. Pressure toward allomorph-similarity is known elsewhere in phonology (historical 
change, Kiparsky (1982); elicitation from children, Jo (2017), Do (in press); artificial 
grammar learning studies (Wilson 2006; White 2013, 2014). 

 
30. SIMILARITY stated intuitively 

 “Penalize a candidate (paradigm with morphemic indices) to the extent that the allomorphs 
it implies fail to be mutually similar.” 

 
 What we actually want to compute is dissimilarity, since that is the basis for 

assigning constraint violations. 
 

31. Assessing dissimilarity  

 There is a substantial literature that can help; I’ve borrowed wholesale. 
 I’ll cover just a quick outline, with references. 

32. Proceed hierarchically, summing dissimilarity throughout 

 Psycholinguistic experiments can be analyzed with maxent, yielding numerical values for 
the dissimilarity created by each feature (White 2012). 

 The weights from feature differences can be added to obtain a metric of segment 
dissimilarity (Wilson and Obdeyn 2009). 

 The segments of two allomorphs can be aligned in an optimal way (Sankoff and Kruskal 
1999), such that their dissimilarity is the sum of the dissimilarity values of their aligned 
segments (Bailey and Hahn 2001, Albright and Hayes 2003).3 

 For a parse of the data into morphemes, violations of SIMILARITY are calculated as the 
summed dissimilarity of all allomorph pairs in the data. 
 For example, English visit has three allomorphs in American English (in visit, 

visitor, visitation), so three comparisons would be made: 
 
 [vɪzət]  [vɪzəɾ] 
 
 
  [vɪsətʰ] 
 

33. First refinement to SIMILARITY:  the stem/affix distinction 

 Languages widely rank Faithfulness constraints for stems higher than for affixes (McCarthy 
and Prince (1995), Casali (1997), Walker (2011:§2.5) 

 So we might expect it to be useful to penalize stem-variation more harshly than affix-
variation. 

SIMILARITYSTEM   

                                                 
3 There is also a factor for “similarity to null”, calculated simply as best fit to the overall data set. 
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“Penalize candidates to the extent that the stem allomorphs they imply fail to be 
mutually similar.” 

SIMILARITYAFFIX   

“Penalize candidates to the extent that the affix allomorphs imply fail to be mutually 
similar.” 

 
34. Second refinement to SIMILARITY:  abstract away from size of data sample 

 Stem similarity is normalized by dividing by the total number of stems. 
 Affix similarity is normalized by dividing by the total number of affixes. 

35. CONTIGUITY 

 Penalize a morpheme whose segments are not contiguous. 

 Invented (for phonology) by McCarthy and Prince (1995) 
 In practice, this penalizes: 

 Real-life cases (as in (21) above).  These candidates must win by performing better 
on the other constraints. 

 Stupid candidates we want to rule out (quite common).  Consider an example 
modeled on real-life Lomongo, with intervocalic /b/ Deletion.  Correct parse: 

 
‘duck’ ‘goose’ 

 molon-e baram-e NOM. 
 molon-o baram-o ACC. 
 pa-molon pa-aram GEN. 
 ti-molon ti-aram  DAT. 
   
 — Allomorphs of ‘goose’ are [baram] ~ [aram].  

 
Wrong parse:  
‘duck’ ‘goose’ 

 molon-e b-aram-e NOM. 
 molon-o b-aram-o ACC. 
 pa-molon pa-aram GEN. 
 ti-molon ti-aram  DAT. 

 
— Wrong parse:  ‘goose’ is [aram], [-e] and [-o] have circumfix allomorphs [b-   -e] 

and [b-   -o]; CONTIGUITY discourages them.  
 

36. VARIEGATION 

 This constraint is the least like ordinary phonology. 
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 Consider the Prefix-Temptation language:  /kimen/, /kurat/, /petep/, /loran/, with prefixes 
/ni-/, /bi-/, /ri-/ undergoing vowel harmony (vowel changes to [u] next to stem [u]).4 

 Here is the bad analysis we want to avoid: 
 
 n-ikimen ‘sing 1p.’ n-ukurat ‘swim-1p.’ 
 b-ikimen ‘sing 2p.’ b-ukurat ‘swim-2p.’ 
 r-ikimen ‘sing 3p.’ r-ukurat ‘swim-3p.’ 

 n-ipetep ‘sit 1p.’ n-uloran ‘think-1p.’ 
 b-ipetep ‘sit 2p.’ b-uloran ‘think-2p.’ 
 r-ipetep ‘sit 3p.’ r-uloran ‘think-3p.’  
 
 This analysis is perfect with respect to SIMILARITY but is probably wrong. 
 The analysis is unlikely because every stem begins in either [i] or [u]. 
 Such analyses can be discouraged by requiring the stem inventory to be Variegated. 
 

37. VARIEGATION (intuitively) 

 “Disfavor candidate parses to the extent that the stem inventory is dominated by a single 
frequent initial or final segment.” 

 I will skip formalization here. 
 

38. Summary:  the full constraint set 

 SIMILARITYSTEM  
 SIMILARITYAFFIX 
 CONTIGUITY 
 VARIEGATION 

39. Assigning weights to the constraints 

 I looking at all 20 languages I was studying, all at once, with both the right parses and 
numerous wrong parses, and found weights that permitted the discovery of the right parse in 
all 20 languages. 

 I did this with a large Excel spreadsheet and the Excel Solver add-in. 
 The best weights found were: 
 

STEM SIMILARITY 12.2 
AFFIX SIMILARITY 4.9 
VARIEGATION 240.0  
CONTIGUITY 10.8 

 But somewhat different weights also work. 
 

                                                 
4 Maltese Arabic, below, seems to be close to a real-life example where this danger arises. 
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40. The status of this sort of weighting  

 The weights are, in effect, a form of UG — me “designing” a version of humanity that is 
good at parsing out paradigms! 

 It would be worth exploring in future work how the choice of weights could be made less 
stipulative. 

41. Searching for the best candidate morpheme-parse 

 Now we have GEN (25) and EVAL (constraints and weights) — but how to find the 
winning candidate? 

 Recall:  
 Candidates look like (23) (p. 6) 
 There are a huge number of them. 

 Even worse, the search space is crammed with local maxima — the bane of learning-by-
search. 

 A few things have proven useful are given in (42). 
 

42. Things that have helped 

 Start by finding nonalternating segments and fixing their affiliations permanently. 
 Then start the core search with random guesses. 
 New candidates are found by trying out edits on the old ones. 
 Use beam search — ten best candidates are kept in contention at once. 
 Alternatingly search in various ways: 

 Search small:  change affiliation of one segment at a time, or switch the affiliations 
of two segments. 

 Search big:  re-conceive the search space as the list of allomorphs.  Change an 
allomorph, and implement the change throughout the data.  

 
THE SIMULATIONS I TRIED AND THEIR RESULTS 

43. Choice of data sets 

 10 are made-up languages, meant to pose some particular challenge to the system, e.g. 
 the variegation language of (36). 
 Pseudo-Japanese, to test the Catalan/Japanese minimal pair described in (20). 

 10 are problem sets from Kenstowicz and Kisseberth (1979):  Bizcayan, Chamorro, Catalan, 
Polish, Lamba, Maori, Maltese, Lomongo, Okpe, Modern Hebrew 

 
44. How does the system parse?  Example from Catalan 

 Data similar to (11):  27 adjectival stems, in masc. sg. (-Ø), masc. pl. ([-s]), f. sg. ([-]), f.pl. 
([-es]). 

 Sample issue:   
 We want [klarə] to be parsed [klar] + [ə], not *[kla] + [rə] (like Japanese).   
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45. Tableau 

 Standard maxent calculations leading to probability values are given in bold.   
 Candidates are parses of all 104 words in the problem, not just this stem. 
 Just two candidates are presented; many others exist (they are bad, and lose) 
 The bad candidate shown treats [r] as part of suffix, in Japanese fashion, in the three stems 

of the klar- pattern. 

 S
IM

IL
A

R
IT

Y
S

T
E

M  

S
IM

IL
A

R
IT

Y
A

F
F

IX  

V
A

R
IE

G
A

T
IO

N
 

C
O

N
T

IG
U

IT
Y

 

   

weights: 12.2 4.9 240.0 10.8 Harmony eHarmony p 
Correct parse 19.4 15.1 0.1481 0 347.8 8.66 * 10−152 1 
Parse treating stem-
final [r] as if it were 
suffix 

14.4 45.4 0.1481 0 435.3 8.91 * 10−190 0 

 
 Essential violations: 

 Correct analysis suffers from stem allomorphy:  [kla] ~ [klar] etc., so worse on 
SIMILARITYSTEM 

 Bad analysis suffers from affix allomorphy:  [-ə] ~ [-rə] and [-es] ~ [-res], so worse 
on SIMILARITYAFFIX 

 Intuitively, the stem violations are less salient because they occur only in a small subset of 
the total stem count (cf. (34)).  

 
46. How well did the system do in general?   

 All 10 made-up languages, plus 8 real languages:  the outcome of the search is the correct 
answer. 

 As we hoped, Catalan and Pseudo-Japanese (20) are each given their own correct analysis. 
 For Okpe and Hebrew, search fails, landing on a bad parse.  But this parse is far less 

harmonic than the linguist’s parse, which I conjecture to be the true-but-unfindable 
optimum. 

 
THE REMAINING STEPS TO PHONOLOGY 

47. Back to Step 2: list all allomorphs of each morpheme  

 These are trivially read off the indexed representations used here, e.g. for (23) above: 
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 k4u4ŋ4a4n4p1a1 turtle4 NOM1 
k4u4ŋ4a4n4t2a2 turtle4 DAT2 
k4u4ŋ4a4n4k3a3 turtle4 ACC3 

r5u5x5i5ŋ5p1a1 dove5 NOM1 
r5u5x5i5ŋ5t2a2 dove5 DAT2 
r5u5x5i5ŋ5k3a3 dove5 ACC3 

t6u6ɸ6æ6r6p1a1 fox6 NOM1 
t6u6ɸ6æ6r6t2a2 fox6 DAT2 
t6u6ɸ6æ6r6k3a3 fox6 ACC3 

 
 p7i7θ7o7ɸ1a1 dog7 NOM1 

p7i7θ7o7θ2a2 dog7 DAT2 
p7i7θ7o7x3a3 dog7 ACC3 

ŋ8e8x8e8ɸ1a1 wolf8 NOM1 
ŋ8e8x8e8θ2a2 wolf8 DAT2 
ŋ8e8x8e8x3a3 wolf8 ACC3 

 

 For the morpheme glossed as NOM., index 1, we get the allomorph set { [-pa], [-ɸa] } 

48. Step 3:  Consulting the allomorph list, find the segmental alternations 

 We use the standard procedure of string-alignment-by-similarity; already used in 
calculating SIMILARITY violations ((Error! Reference source not found.)). 

 For our current example, good alignment yields (a), not (b): 
 
 a. p a     not: b. p a ∅  
  | |      | | | 
  ɸ a       ∅ ɸ a  
 
 Therefore: 

 [p] ~ [ɸ]   is an attested alternation. 

 [p] ~ ∅, [a] ~ [ɸ], [a] ~ ∅  are not attested alternations. 
 

49. Step 4: Consider general hypotheses about underlying forms and reconstruct the 
       derivations needed 

 For present purposes let’s all be Albrightianists. 
 There is one privileged slot in the paradigm from which the UR of a stem is taken; the child 

makes this choice early and sticks with it for life.   
 See Albright (2002a,b; 2005; 2008a,b; 2012), Jun and Albright (2017), Do (in press) for 

supporting evidence. 
 Albrightianism is fantastic for learnability:  There are so few phonologically-distinct 

paradigm slots that it is quick and easy for an algorithmic learner to try them all.  
 Catalan:  we try just two hypotheses:  word final allomorph and prevocalic (feminine) 

allomorph.   
 Only the latter will work since it encodes the essential underlying distinctions in 

stem-final consonants. 

50. Step 5: Find a phonological grammar that will do what needs to be done 

 Let’s do it with OT. 
 

51. We need a GEN 

 Hooray, we know all the segmental alternations (Step 3), and we also have our candidate 
underlying forms. 
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 No surface allomorph can exist that is not derived from a UR by attested alternations. 
 So, if we simply apply every alternation in every possible location, we will have a GEN 

that is in a sense “complete” and sufficient for learning.5 
 

52. GEN example:  German phonology 

 Classical data:  stems contrasting in final obstruent voicing, neutralized to voiceless in final 
position  

 
 [rat] ‘wheel-nom.’ [rad-əs] ‘wheel-gen.’ 
 [rat] ‘advice-nom.’ [rat-əs] ‘advice-gen.’ 
 
 We segment morphemes, find allomorphs, and find one alternation, the [t] ~ [d] of ‘wheel’. 
 Activate GEN:  using the extracted alternation [t] ~ [d], we replace the [t] of [rat] ‘advice’ 

with [d], obtaining a new allomorph *[rad]. 
 This allomorph is completely impossible, yet it this turns out to be good, because 

when we use it as a candidate, it tells us how to rank phonological constraints (Pater 
et al. 2012). 

 
/rat-əs/ ‘advice-gen.’ IDENT(VOICE) *INTERVOCALIC VOICELESS 
 rat-əs  * 
     rad-əs *   

 
 This shows that German is a final devoicing language, not an intervocalic-voicing 

language like Korean. 

53. Constraints 

 For now, I’m just being an unreconstructed classical OT person, typing in a rather thorough 
set of universal constraints (Markedness, Faithfulness). 

 I am optimistic that these constraints can ultimately be learned from the data. 
 

54. For each choice of UR’s, do this: 

 Concatenate the aligned allomorphs (either attested or GENerated) appropriately to form 
words, combining them in all possible ways to create a candidate set for each input. 

 So far, I’ve found that this fits on a spreadsheet, not more than a few thousand rows… 
 

55. The last step 

 Add to your spreadsheet the constraints and their violations, and perform OT constraint 
ranking with any one of the many reliable ranking or weighting algorithms (see (4) above). 

                                                 
5 This must be adjusted for epenthesis, which must be given a modest context to keep it from applying 

everywhere, or indeed an infinite number of times. 
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 Since no variation is present, we can conveniently use the venerable Recursive Constraint 
Demotion algorithm (Tesar and Smolensky 1993 et seq.). 

 If ranking converges, then the UR’s you are testing are sufficient. 
 

56. Sample from a machine-generated tableau for Catalan 

 Choice of Albrightian UR for the stems:  either of the Feminine forms (/ ___ -ə, -es). 

 Candidates from GEN: 

 Catalan has [r] ~ [Ø] alternations like [klar-ə] ~ [kla], so GEN freely substitutes Ø 
for /r/. 

 Catalan has [k] ~ [ɣ] alternations elsewhere in the system, so GEN freely substitutes 
[ɣ] for /k/. 

 
/klar/ ID(VOICE) *CODA R MAX 
 kla   * 
klar  *!  
ɣla *!  * 
ɣlar *! *  

 
57. Phonology problems solved so far in this way 

 Bizcayan, Catalan, Chamorro, Lamba, Lomongo, Okpe, Polish, also Maori (not KK). 
 Not Maltese, nor my concocted pseudo-Yagua (cf. KK 73-74), since both of these have 

metathesis and my GEN so far is can only concatenate morphemes. 

CONCLUSIONS  

58. Key point:  incrementalism 

 We keep the search space size — otherwise quite fatal — under control as we proceed 
through the Five Steps toward an answer.  

 Key to this was parsing the allomorphs before we knew the phonology.   
 This work suggest that this is feasible. 

 
59. Future work 

 Remove the idealization given above in (8):  scale up to include the highly detailed 
environments, used by human learners. 

 With this done, we can take this project out of the cradle: 
 Do full-scale empirical work, with wug-testing: 

 Test the predictions of the learned grammars against intuitions of adult native 
speakers.  

 Test the predictions of grammars learned on child-size dataset on the productions 
and intuitions of children. 
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