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Theme 
• There are many fruitful areas of interaction for 

computational and descriptive/theoretical  linguistics. 
 The theoretician’s goal of modeling language as 

internalized by people offers new and intriguing 
problems for computationalists. 

 Computational linguistics can provide, and is 
providing, valuable tools to the descriptive/ 
theoretical linguist. 

• Two case studies: 
 Sonority projection 
 Ranked-bigram morphology 
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Case I:   
The sonority projection effect 
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Sonority in consonants 
• A typical arrangement of consonants by sonority: 
 glides >> liquids >> nasals >> obstruents 
 [y,w] [l,r] [m,n,ŋ] [p,t,k,b,d,g,f,s,…] 
 
  Sonority has (rough) acoustic correlates. 



Sonority sequencing principle 
• Sievers 1881; Jespersen 1904; Hooper 1976; Steriade 

1982; Selkirk 1984, etc. 
 
 

Sonority preferentially rises uniformly through 
the syllable-initial clusters, and falls uniformly 
through the syllable-final cluster.  Large rises 
(resp. falls) are better. 
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Examples of sonority sequencing 
• A pretty good syllable:   [pla]  (sonority rises [p] to [l]) 

• A mediocre syllable:  [pta]  ([p] and [t] tied in sonority) 

• A really terrible syllable:  [lpa] (sonority falls) 
 
• Languages preferentially select good-sonority syllables 

for their inventories (Greenberg 1978, Berent et al. 2007) 
 Exclude poor-sonority syllables entirely 
 Make poor-sonority syllables statistically rare 
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The Sonority Projection Effect 
• Ask an English speaker: 
 How good a syllable is [lba]?  (terrible sonority 

violation) 
 How does it compare with [bda]? (merely bad 

sonority violation) 

• Idea:  [lba] is much worse even though during language 
acquisition you’ve never heard either one—you “project 
beyond” what you’ve heard. 
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Experimental work demonstrating 
sonority projection  

• English:  Pertz and Bever (1975), Berent, Steriade, 
Lennertz, and Vaknin (2007), Albright (2007) 

• Korean:  Berent, Lennertz, Jun, Moreno, and Smolensky 
(2008) 

• Mandarin:  Ren et al. (2010)  



   9 
 

Why is there a sonority projection effect?  
— theoretical speculation 

• Is it innate?  No one has said this, but it is a logical 
possibility … 

• Is it somehow projected from phonetics; i.e. avoidance 
of articulatory/perceptual difficulty?  (cf. e.g. Hayes, 
Kirchner and Steriade 2004).  No one has explained how 
this would work. 

• Is it somehow generalized from the existing clusters?  
e.g. English [br, kw] etc. respect sonority, so others 
should. 
 Daland et al. (in press) pursue the third approach. 
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A computational/experimental study of 
sonority projection 

• Reference   
 Robert Daland, Bruce Hayes, James White, Marc 

Garellek, Andreas Davis, and Ingrid Normann (in 
press) Explaining sonority projection effects.  To 
appear in Phonology 28: 197–234. 

• Goals 
 Do our own ratings study, retesting the effect. 
 Test six computational models of phonotactic 

learning to see if they could generalize sonority 
projection from the existing lexicon. 



Experimental stimuli 
• We blended nonexisting English onsets of varying 

sonority profile, with six “tails”, e.g. pwottiff: 

 
• Sonority “goodness scores” shown follow the sonority 

categories of a standard feature system (Clements 1990). 
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Additional stimuli 
• Attested onsets and marginal (mostly loanword) onsets, 

attached to the same six “tails”; e.g. twottiff. 
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Participants and tasks 
• Participants:  from the Amazon Mechanical Turk 

(https://www.mturk.com) 

• 2 Tasks:   
 Rate items on a Likert scale, 1-6. 
 Pairwise comparison:  all possible pairs of the 96 

stimuli, i.e. which sounds “more like a typical 
English word” 
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Experiments:  sample result 
• Chart on next slide. 

• Vertical axis:  victory percentage for each cluster, in 
comparison with all other clusters 

• Horizontal axis:  sonority profile of the cluster (C2 
minus C1 in the categories of Clements 1990). 



Experiments showed sonority projection 
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Can such intuitions be predicted from a 
model that learns from the lexicon? 

• We tried six models; I will summarize just two. 

• Training data for all models:   
 groomed version of the CMU corpus, words with 

CELEX frequencies ≥ 1, affixed and compound 
forms removed. 

 
 
 



Classical bigram model 
• See, e.g. Jurafsky and Martin (2000),  Ch. 6. 

• Calculating phonotactic probability of cat [kæt]: 

 

 
 
 Good-Turing smoothing for missing bigrams. 

• Taking this as a model of human judgment:  the 
probabilities thus derived should correlate with subject 
ratings. 
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Model with feature-based n-grams:  
Hayes and Wilson (2008) 

 
• Reference:   
   (2008) Hayes, Bruce and Colin Wilson, “A 

maximum entropy model of phonotactics and 
phonotactic learning,” Linguistic Inquiry 39: 379-
440. 

• This model is meant to blend ideas from traditional 
phonological theory and computational linguistics. 
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Hayes and Wilson (2008):  framework 
 
• Employs the maximum entropy variant (Della Pietra et 

al. 1997, Goldwater & Johnson 2003) of Harmonic 
Grammar (Legendre et al. 1990, Smolensky & Legendre 
2006, Pater 2009, Potts et al. 2010). 

• Probability of a form is computed from  
 its violations of a set of constraints 
 the weights of each constraint. 
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Formula for computing probability 
 

• p(ω) = 
1
Z e−Σiλiχi(ω), where Z = Σj e−Σiλiχi(ωj)  

 
 ω  a particular word 
 Σi  summation across all constraints,  
 λi  denotes the weight of the ith constraint,  
 χ i(ω)  the number of times ω violates the ith  constraint 
 Σj  summation across all possible words 
 
• Z is computed with a finite state machine. 
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Constraint format 
 
• A constraint consists of a unigram, bigram, or trigram of 

natural classes.   

• These are defined by a standard phonological feature set, 
given to the model in advance. 

• Example:  the bigram 

*




–sonorant

–voice    




–sonorant

+voice   

(= *[p t t ͡ʃ k f θ s ʃ h][b d d ͡ʒ g v ð z ʒ]) 
“Don’t have a voiceless obstruent followed by a voiced 
obstruent.”   
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The question of search space 
 

• The features employed define 617 distinct natural classes 
of sounds. 

• So the number of possible constraints = 617 + 6172 + 
6173  ≈ 235 million—small enough to work. 



   23 
 

Picking constraints with heuristics 
• Choose as follows: 
 Fewest grams first; 
 Among equal gram size, most accurate first (rising 

sequence of accuracy thresholds) 
 Within accuracy thresholds, most general first. 

 
 



Overall organization of the model 
Search for a constraint to add to the grammar, using the 
heuristics. 
 
Add the constraint and  (re)weight the constraint set. 
 
Implement the termination criterion (next page). 

end 
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Termination criterion used 
 
• There are principled criteria available (e.g. upper limit for 

constraint accuracy) … 

• … but we simply we stopped at 100 constraints 

• We got similar but slightly worse results at various 
grammar sizes up to 350. 
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Projecting sonority: comparison of 
Hayes/Wilson model with classical 
bigrams 

• We ran both models through the experimental stimuli, 
simulating human subjects. 

• Correlation among the unattested onsets:   
 Hayes/Wilson    r = .76  — projects sonority 
 Classical bigrams:   r = .22  — mostly doesn’t 
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How does the H/W model project 
sonority? 
 

• As expected:  it uses sonority-depicting features to 
generalize from the existing sonority-respecting clusters 
of English ([bl], [gr], [kw], etc.) 

• But, an interesting wrinkle: 



Scattergrams (normalized scales) 
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• Classical bigrams model 
“flattens out” for 
unattested onsets. 

• H/W model flattens out for 
attested onsets. 
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An intuition concerning the relative 
strengths of these models:  “figure vs. 
ground” 

• The legal words of a language constitute a figure against 
the ground of all possible phoneme sequences. 

• H/W model looks at the “ground” (illegal words) and 
penalizes large areas of it with highly general constraints. 

• The bigram model looks at the figure, and makes very 
refined (no-features) distinctions within it — hence has 
little to say about the ground. 
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Possible lessons— model comparison 
• The traditional bigram model would never be taken 

seriously by a descriptive linguist!   
 Features/natural classes are considered essential for 

phonological modeling. 

• The failure of this model to project sonority results from 
its lack of features (discussion:  Daland et al.) 

• Yet the traditional bigram model has its virtues:  covers 
the existing forms in great detail. 

• For the future:  perhaps we should try a hybrid model: 
 penalties for constraint violations 
 rewards for existing sequences 
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Possible lessons—benefits for descriptive 
linguists from computational work 

• Maxent grammars are an extremely useful tool that 
descriptive linguists have borrowed from computational 
linguists.  They offer: 
 Total flexibility re. content  
 Total accuracy in mimicking frequencies of a 

training set (where constraints permit) 
 Mathematical proof of convergence 

• Finite state machines provide rigor and security for 
linguistic analysis in theories that access huge or infinite 
sets, as here.  See Riggle (2004), Karttunen (2006), 
Eisner (1997, 2001, 2002) 
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Case II:   
Weighted bigrams for morpheme 
ordering 
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Setting the scene 
• Languages frequently have multiple morphemes per word 

(Finnish, Swahili, etc.). 

• What are the principles by which these morphemes are 
linearly ordered?   

• Meaning clearly plays a role, e.g. in some languages: 
 cause to be cooked:   COOK-passive-causative 
 be caused to cook:    COOK-causative-passive 

• This is an instance of Baker’s (1985) “Mirror Principle” 

• However, meaning is often overridden by purely formal 
morpheme-ordering requirements. 
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Meaning overridden by form:  Luganda 
(McPherson and Paster 2009)  

• nyw-es-ebw-a   = drink-causative-passive-final vowel 
should mean “be made to drink” 

 
• nyw-ebw-es-a   = drink- passive-causative-final vowel 

should mean “cause to be drunk” 
 

• Only nyw-es-ebw-a is grammatical, and it has both 
meanings. 

• Such fixed orderings are common in Bantu (Hyman 
2002). 



The classic account of morpheme 
ordering:  position classes 

• Wonderly (1951)’s position classes for Zoque.  To make 
a word, pick a stem and up to one from each column. 
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STEM Position  
Class 1 

Position  
Class 2 

Position  
Class 3 

Position 
Class 4+ 

tah 
‘dig’ 
poy 
‘run’ 
ken 
‘look’ 
… 

-hay 
‘benefactive’
-atəh 
‘indef. obj. 
-ʔaŋheh 
‘leave off’ 

-u  
‘past’ 
-pa  
‘pres.’ 
-a 
‘negative’ 

-ək 
‘where’ 
-məy 
‘when’ 

(Etc.  
10 classes 
total) 
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The classical account has a natural 
expression in Optimality Theory1  

• For OT, see Prince and Smolensky (1993) et seq. 
• Constraints are of the ALIGN family (McCarthy/Prince 

1993) 
 ALIGN(Pos1, Left):  “Assess a violation for every 

morpheme that precedes a Position 1 morpheme.” 
 outranks ALIGN(Pos2, Left) 
 outranks ALIGN(Pos3, Left) 

 etc. 

 
1 See Hargus and Tuttle (1997), Trommer (2003), Jaker (2006)  



More on implementing the classical 
account in Optimality Theory 

• GEN:  candidates are all possible orderings of the 
morphemes in the input (n! for n morphemes). 

• For the morpheme list {Stem, A, B}, the candidate set is 
thus  

 
Stem-A-B, Stem-B-A, A-Stem-B 
A-B-Stem, B-Stem-A, B-A-Stem 
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Tableau:  {Stem, A, B} → [Stem-B-A] 
{Stem, A, B} ALIGN(STEM, 

LEFT) 
ALIGN(B, 

LEFT) 
ALIGN(A, 

LEFT) 
 Stem-B-A  * ** 
Stem-A-B  **! * 
B-Stem-A *!  ** 
A-Stem-B *! **  
B-A-Stem *!*  * 
A-B-Stem *!* *  
 

• Candidates are sorted lexicographically by increasing 
violation count, respecting the ranking of the constraints.  

• Winner (output of grammar) is the first in this sort. 
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Extension to free variation 
• Free variation in morpheme order is surprisingly 

common.2 

• Suppose Stem-A-B and Stem-B-A surface with 67/33 
probability (zero for all others; e.g. *A-Stem-B). 

• We can shift to maxent grammars, assigning weights to 
the constraints and computing probability of candidates 
by the formula given earlier  
 Here Z sums across candidates, not all possible 

words. 
 

 
2 See Ryan (2010, §1) 
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Tableau for the free-variation case 
{Stem, A, B}  ALIGN 

(STEM, L) 
ALIGN 
(B, L) 

ALIGN 
(A, L) 

  10.1 0.7 0 
 Stem-B-A .67  * ** 
 Stem-A-B .33  **! * 
B-Stem-A 0 *!  ** 
A-Stem-B 0 *! **  
B-A-Stem 0 *!*  * 
A-B-Stem 0 *!* *  

 
 The maxent grammar with the weights in Row 2 will 

derive the frequencies in Column 2. 
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BUT:  for hard cases, ALIGN constraints 
work badly  

• Reference:   
 Ryan, Kevin (2010) Variable affix order:  grammar 

and learning.  Language 86: 758-791 

• Ryan points out three harder phenomena that Alignment 
constraints can’t cover. 



Phenomenon I:  Free variation moderated 
by “uninterruptibility” 

• X-A-B ok, A-B-X ok, *AXB 

• Real-life case:  Chumbivilcas Quechua 

 
• No weighting of ALIGN(X), ALIGN(A), ALIGN(B) (either 

direction) will work. 
 *AXB gets unwanted probability. 
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Phenomenon II:  one morpheme “moves 
through a frame” 

• Ryan gives a real life example from Tagalog. 

• X-A-B ok, A-X-B ok, A-B-X ok, but nothing with B 
preceding A. 

• No weighting of Alignment constraints works. 
 *BAX, *BXA, *XBA get unwanted probability. 
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Phenomenon III:  Free morpheme order 
overridden by “gluing” 

• A-B ok, B-A ok, A-B-G ok, *B-A-G bad.   
 G is “glued” to B. 

• Again, Alignment fails:   
 *BAG gets unwanted probability. 

• Example from Tagalog follows, with these morphemes: 
ka-   ‘telic’ 
RED-  ‘aspect’ (realized as a copy of the following CV) 
pag-  ‘transitive’    
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Gluing example from Tagalog 
• Free order: 
both OK:  ma-RED-ka-tulong  ABIL-aspect-telic-help  
     ma-ka-RED-tulong  ABIL-telic-aspect-help 
     ‘will be able to help’ 

• Freedom overridden by gluing of ka- to pag- 
OK:     ma-RED-ka-pag-trabaho  ABIL-asp-tel-TRANS-work 
bad:        *ma-ka-RED-pag-trabaho ABIL-tel-asp-TRANS-work 
     ‘will be able to work’ 
 
• Detail:  Spelling out RED.  Forms would be pronounced 

 makakatulong, makatutulong, etc. 
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Ryan’s solution:  abandon ALIGN, use 
Bigrams instead 

• Bigrams, version I:  “Assess a violation whenever a word 
lacks the sequence A B.” 

• Version II:  “Assess a violation whenever morpheme A is 
present not followed by morpheme B.” 

• Version III:  same as II, but “precedes” instead of 
“follows” 

• Any of these works for Ryan; we follow him in using II. 
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Glueing example with bigram constraints 
{A, B}  A → B B → A B → G 
  8.0 8.0 9.7 
 A-B .5  * * 
 B-A .5 *  * 

 
{A, B, G}  A → B B → A B → G 
A-B-G 1  *  
A-G-B 0 * * * 
B-A-G 0 *  * 
B-G-A 0 * *  
G-A-B 0  * * 
G-B-A 0 *  * 

(All other possible constraints are included but weighted 0.) 
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The previous two conundrums 
• These yield to straightforward bigram solutions, too. 
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Language learners (mis)generalize 
bigrammatically:  schematic example 

• Early Tagalog 
     ma-RED-ka-  (always) 
       pag-RED-pa-   (always) 
 perhaps because RED- started as a second-position clitic. 

• Current Tagalog, long prefix string: 
      ma-RED-ka-pag-pa-      OR 
      ma-ka-pag-RED-pa-    
 
• A natural generalization, given the bigram constraints  

pag-RED and RED-pa 
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Language learners (mis)generalize 
bigrammatically:  more rigorous example 

• Ryan collected a large corpus of frequency data for 29 
prefix combinations including RED. 

• Step 1:  bigrams do quite well in matching these data. 

• More interesting:  train on idealized data consisting of 
only “first choice” forms. 

• Train incompletely with a gradual weight-altering 
algorithm.  

• At the intermediate stages, the free-variation forms of 
real Tagalog are generated, with fairly accurate 
frequencies. 
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Language learners (mis)generalize 
bigrammatically II:  the genesis of suffix 
copying in Bole (Chadic, Nigeria) 

• Morphemes get said twice; no justification in the 
meaning of the form for the extra copy. 

• Reference:  Kevin Ryan and Russell Schuh (in progress) 
Suffix doubling and suffix deletion in Bole; 
http://www.linguistics.ucla.edu/people/hayes/205/readings/ryan_bole_handout.pdf  

 

http://www.linguistics.ucla.edu/people/hayes/205/readings/ryan_bole_handout.pdf
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How Bole suffix copying works 
• Required underlying configuration (suffix order shown is 

the expected one, based on shorter words):   
 STEM + Target + Straddlee + Trigger 
 
 Target    = suffix that gets copied 
 Straddlee  = ends up flanked by copies 
 Trigger   = necessary for copying to happen  

• Realization:   
 STEM + Target + Straddlee + Target + Trigger 
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An example of Bole suffix copying 
ŋgòr + án + tá + án + kó 
tie-plural subject-fem. sg. object-plural subject-completive 
‘they tied her’ 
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The origin of Bole suffix copying 
• Related Chadic languages have the same suffixes, but no 

copying. 

• Ryan/Schuh attribute the copying to extension of 
common bigrams (next slide). 
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Origin of Bole affix copying:  the chain of 
events 

• Starting point: 

 STEM-Target-Trigger (ŋgór + án + kó) was common. 
 STEM-Straddlee-Trigger (ŋgór + tá + kó) uncommon. 

• Mislearning of grammar by a new generation: 
 STEM-Target and Target-Trigger highly weighted. 
 STEM-Straddlee, Straddlee-Trigger lowly weighted. 
 So STEM-Target-Straddlee-Target-Trigger becomes 

a plausible option. 

• Basic idea is cashed out in Ryan/Schuh’s partial-learning 
simulations.  
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Local summary 
• Bigram theory looks like a good theory of morpheme 

ordering: 
 Covers cases that alignment and scope can’t cover. 
 Plausibly explains how morpheme orders evolve 

over time. 
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Research questions for ranked bigram 
constraint grammars I 
• The generative-capacity question  
 Assume a symbol set S; the (infinite) set of input 

forms set as S*, and the set of bigram constraints 
defined on S. 

 What is the class of strings defined by the outputs of 
such grammars? 

 Does this change if we use “existence” vs. 
“implicational” bigrams? 

 How does this change when copying is permitted? 
 Ditto for insertion and deletion (Noyer 2001, 

Nunggubuyu) 
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Research questions for rank bigram 
constraint grammars II 
• The search question: 
 Classical OT has been made formally rigorous by 

computational work that uses finite-state machines to 
insure we’ve considered all candidates 

 Could similar work be done for the free-ordering 
candidate sets needed here? 

 How does the picture change when deletion, 
insertion and copying are permitted? 
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Summing up 
 

• Ranked-bigram constraint grammars are of interest for 
 solving previously unsolved problems in 

morphological analysis 
 relating to native speaker knowledge (historical 

change as a naturalistic wug test) 
 involving perhaps-unexplored issues of computation 
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Thank you 
 

• Thanks to Kevin Ryan and Jason Riggle for helpful input. 

• Author’s contact information:   
 bhayes@humnet.ucla.edu 
 Department of Linguistics, UCLA, Los Angeles, CA, 

90095-1543 
 
•  These slides are posted at 
 
  http://www.linguistics.ucla.edu/people/hayes/ 
  
 and include the references cited. 
 

mailto:bhayes@humnet.ucla.edu
http://www.linguistics.ucla.edu/people/hayes/
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