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Stochastic phonological
knowledge : the case of
Hungarian vowel harmony*

Bruce Hayes
Zsuzsa Cziraky Londe
University of California, LLos Angeles

In Hungarian, stems ending in a back vowel plus one or more neutral vowels
show unusual behaviour: for such stems, the otherwise general process of vowel
harmony is lexically idiosyncratic. Particular stems can take front suffixes, take
back suffixes or vacillate. Yet at a statistical level, the patterning among these
stems is lawful: in the aggregate, they obey principles that relate the propensity to
take back or front harmony to the height of the rightmost vowel and to the number
of neutral vowels. We argue that this patterned statistical variation in the
Hungarian lexicon is internalised by native speakers. Our evidence is that they
replicate the pattern when they are asked to apply harmony to novel stems in a
‘wug’ test (Berko 1958). Our test results match quantitative data about the
Hungarian lexicon, gathered with an automated Web search. We model the
speakers’ knowledge and intuitions with a grammar based on the dual listing/
generation model of Zuraw (2000), then show how the constraint rankings of this
grammar can be learned by algorithm.

1 Introduction: irregularity in phonology

Linguists sometimes have the luxury of working with systematic,
exceptionless data. More often, we encounter data which cannot be re-
duced to a single general pattern. In phonology, the variation is usually
lexical: a subset of stems fails to adhere to the most frequent data pattern.
This article addresses the question of what the language-learning child
does when she confronts such cases. We focus on the appearance of
front- vs. back-vowel suffix allomorphs in Hungarian vowel harmony, as
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valuable input from three reviewers and the associate editor. As is usual, they are not
to be held responsible for defects. We would also like to thank our many Hungarian
language consultants for sharing their native speaker intuitions.

59



60  Bruce Hayes and Zsuzsa Cziraky Londe

for example in [fol-nok] falnak ‘wall-DAT’ vs. [kert-nek] kertnek ‘ garden-
DAT .

Most previous work concerning irregularity in phonology has adopted
an approach in which the majority pattern is characterised as regular, with
some mechanism chosen to deal with the residual cases. For instance, in
Halle & Mohanan’s (1985) account of English past tenses, irregular forms
are lexically marked to undergo minor rules. Thus, for instance, the
irregular past tense form clung is lexically listed as [kliy/ with a special
diacritic mark, which causes it to undergo Backing Umlaut, a rule which
has the effect of shifting the stem vowel from [1] to [a] in the past tense
form.

Another possibility (Pinker & Prince 1988, Pinker 1999) is to use
grammar to derive only the regular forms, and simply list all the irregulars
in the lexicon; thus for Pinker & Prince, clung is underlyingly just /klag/.
At first blush such an approach seems inadequate, as without amplification
it cannot account for the fact that irregulars usually occur in patterns, such
as cling—clung, fling—flung, sling—slung. There is evidence (Bybee & Moder
1983, Prasada & Pinker 1993, Albright & Hayes 2003) that such patterns
are partly productive, so a pure-listing account fails to capture the native
speaker’s knowledge. Therefore, Pinker & Prince (1988) amplified their
proposal with the idea that the memorised lexical entries for irregulars are
embedded in a kind of associative network. This network would be able to
generate novel irregulars by some sort of analogy, thus accounting for
whatever productivity their patterns may have.

This approach is unsatisfactory to the extent that irregulars can be
shown to be derived on the basis of principles of phonological theory,
which presumably would be included only in the grammar, and not in
the analogical network. Albright & Hayes (2003), comparing machine
implementations of grammar and analogy, argue that English irregular
past tenses must indeed be derived by a grammar and not by analogy; the
cases thought by Pinker & Prince to be analogical are in fact better derived
by grammatical principles acting on a small scale.

The Hungarian data reviewed below arguably form an especially clear
case: they are the result of completely ordinary mechanisms of vowel
harmony, so it is quite difficult to justify relegating the minority patterns
to a totally different mechanism. Indeed, the minority patterns sometimes
compete with the majority on a near-equal basis, which makes it especially
arbitrary to claim that the majority results from grammar and the minority
from analogy.

We argue here instead for a unified approach to irregularity, as developed
by Zuraw (2000). In Zuraw’s theory, all of the competing patterns are
expressed in a single grammar, along with a characterisation of their
relative strength. The grammar is implemented in stochastic Optimality
Theory (Boersma 1997, Boersma & Hayes 2001). Individual inflected
forms, which usually show invariant behaviour, are lexically listed where
necessary (just as in Pinker & Prince’s theory), and their invariance is
guaranteed by high-ranking faithfulness constraints. When a speaker must
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provide a novel inflected form (for instance, because she has never
heard the stem in the relevant inflectional category), the stochastically
ranked constraints of the grammar provide a range of options, each with
a probability of being output. This probability is determined in the
course of language learning, and approximately reflects the frequencies
of the competing patterns as they appear in the lexicon. The basic pre-
diction of the model is that the lexical frequencies, insofar as they reflect
relevant phonological properties of stems, should give rise to a grammar
that generates outputs at frequencies approximating the lexical fre-
quencies.

This is a testable prediction, since we can get speakers to use their
grammars to generate novel forms by asking them to inflect stems they
have never heard before — this is the classical ‘wug’ test paradigm (Berko
1958). Zuraw’s own work demonstrates a fairly good match between the
frequency patterns of Nasal Substitution in the Tagalog lexicon and the
intuitions of her wug-test subjects, and she develops a stochastic grammar
that links the two. Similar work in other frameworks has likewise found
a match between statistical patterns in the lexicon and gradient speaker
intuition: Eddington (1996, 1998, 2004), Coleman & Pierrehumbert
(1997), Berkley (2000), Bailey & Hahn (2001), Frisch & Zawaydeh (2001),
Albright (2002), Albright & Hayes (2003), Ernestus & Baayen (2003) and
Pierrehumbert (in press).

Here, we present a study similar to Zuraw’s, focusing on Hungarian
vowel harmony. As with earlier studies, we find that native speakers are
good frequency matchers; in a wug test, the forms they volunteer closely
match the statistical pattern of the Hungarian lexicon.

With this result in hand, we proceed to analysis, with three goals in mind.
First, we develop a grammar within Zuraw’s framework that accurately
describes the wug-test intuitions of our consultants. Second, we extend
the analysis to an area not addressed by Zuraw, namely the question
of impossible harmony patterns; i.e. the characterisation of patterns that
do not exist and (as we will claim) could not exist. Finally, we turn to
the question of learnability, suggesting a way in which algorithms pro-
posed in earlier work can be used to learn the variable Hungarian harmony
pattern.

2 Hungarian vowel harmony

Hungarian vowel harmony has been the focus of great deal of research,
which we have freely mined for generalisations and analytic insights. A
non-exhaustive list of earlier work includes Esztergar (1971), Vago (1974,
1976, 1980a), Ringen (1975), Kontra & Ringen (1986), Hare (1990),
Kornai (1991), Ringen & Vago (1995, 1998), Dienes (1997) and Siptar &
Torkenczy (2000).

The vowels of Standard Hungarian are given below in (1), both in IPA
and in orthography.
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@9)] front unrounded front rounded back
high [i] ¢ [i] ¢ [y] i [yi] @ [u] u [ur] u
mid [e] é [o] o [o:] & [o] o [o:] 6
low [e] e [2] a [a:]] 4

The vowel transcribed as [¢] is classified as low, since it is paired with the
low vowel [0] in the harmony system.

In what follows, it will be useful to express the vowel sequences of words
in formulas, and for this purpose we adopt the following abbreviations: N
(mnemonic for ‘neutral’) will designate the front unrounded vowels, F
the front rounded vowels and B the back vowels. For example, in this
notation, the word [olbe:rlo:] albérls ‘lodger’ is BNF.

Hungarian is a richly inflected language, with dozens of suffixes. We
will deal here only with the large class of suffixes that show a two-way
alternation in backness; thus we will be ignoring the harmonically
invariant suffixes (Vago 1980a: 1518, Siptar & Torkenczy 2000: 65-66),
as well as suffixes that show a three-way alternation based on backness and
rounding (Vago 1980a: 18-19, Siptar & Torkenczy 2000: 72-74). Since
the two-way suffixes generally behave alike, it suffices for present
purposes to discuss just one of them, namely the dative, which appears
as [-nok] -nak or [-nek] -nek, according to the principles of vowel
harmony.

Vowel harmony depends on the vowels that appear near the end of the
stem. For instance, if the last vowel of a stem is back, then no matter what
vowels come earlier, the suffix must also be back, as shown in the examples
of (2):

(2) BB [oblok-nok] ablaknak  ‘window-pAT’
NB [birro:-nok] birénak ‘judge-DAT’
FB [glykoiz-nok] glikéznak ‘glucose-pat’

Likewise, if the last vowel of a stem is a front rounded vowel, then the
suffix vowel must be front:

3) F  [y[t-nek] tistnek ‘cauldron-pat’
BF [Jofeir-nek] soférnek  ‘chauffeur-pat’

Again, it does not matter what vowels occur earlier in the stem.
Most stems whose vowels are all front unrounded (N) take front suf-
fixes:

(4) N [kert-nek]  kertnek ‘garden-DAT’
N  [tstm-nek] cimnek ‘address-DAT’
NN [repes-nek] repesznek ‘splinter-pat’

However, there are a few dozen exceptional all-N stems that take back
suffixes, even though they contain no back vowels:
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(5) N [hid-nok] hidnak ‘bridge-DAT’
N  [Jip-nok] sipnak ‘whistle-paT’
NN [dereitk-nok] deréknak ‘waist-DAT’

Following earlier usage, we will refer to these as sid stems, after the word
for ‘bridge’ in (5). All of the hid stems but two are monosyllabic, and of
these, most contain the vowel /i:/.

The remaining cases are those in which a harmonic vowel (F or B)
precedes a string of one or more neutral vowels at the end of the stem. Of
these, the stems of the form ... FN and ... FNN all take front harmony:

(6) FN [fyiser-nek]  fiiszernek  ‘spice-pDAT’
FNN [aeirizet-nek] drizetnek  ‘custody-DAT’

The most complex examples, which are the focus of this article, are
stems of the type ... BN, ... BNN, etc. Here, we find extensive lexical
idiosyncrasy (Vago 1980a: 14, 22, Siptar & Torkenczy 2000: 70-72):
individual stems can require back suffixes or front suffixes, or allow both
in free variation. Thus, for instance, Siptar & T'6rkenczy cite [hover] haver
‘pal’ as a stem that takes only back suffixes ([hover-nok]), [hotel] hotel
‘hotel’ as a stem that can take either front or back [hotel-nok] ~ [hotel-
nek]) and [koideks] kddex ‘codex’ as a stem that only takes front suffixes
([ko:deks-nek]). A triplet from our own data, in this case with /... Bei/, is
the following:

(7) BN  [polleir-nok] pallérnak ‘foreman-paT’
BN  [orzem-nok, orzen-nek] arzénnak, arzénnek ‘arsenic-DAT’
BBN [mutogem-nek] mutagénnek ‘mutagen-DAT’

A particular speaker of Hungarian must therefore be assumed to memorise
the vowel-harmony behaviour of individual BN(N) stems.

3 The statistical patterning

While it is not predictable in general whether a BN or BNN stem will take
front or back harmony, there are clear tendencies present. If one knows
what vowels such a stem contains, it is possible to guess, with far better
than chance frequency, what kind of harmony it will take. The crucial
generalisations have been studied by Vago (1974), Anderson (1980),
Kontra & Ringen (1986), Farkas & Beddor (1987), Siptar & Torkenczy
(2000), Benus (2005) and other scholars.

The first generalisation is what we will call the HEIGHT EFFECT, based on
the height of the rightmost vowel in ... BN : the phonologically low vowel
[e] occurs with front suffixes more often (that is, in proportionately more
stems) than the mid vowel [e:], which occurs with front suffixes more often
than the high vowels [i] and [1:]. Second, there is a COUNT EFFECT: BNN
stems take front suffixes more often than BN stems do.



64  Bruce Havyes and Zsuzsa Cziraky Londe

Since the sources cited above do not agree on the precise nature of the
height and count effects, we have sought to collect as many data as possible
on these quantitative patterns. We have followed two methods: elicitation
from native speakers of a large number of stems, and a machine-based
search of the World Wide Web. Since the latter has turned up more data,
we will cover it first.

3.1 A search-engine study of the Hungarian lexicon

The basic method of collecting quantitative patterns for phonology by
using a Web search engine was pioneered by Zuraw (2000). The idea is
that where forms occur in free variation, we can measure their relative
frequencies by counting the hits returned for each.

To see how this works, consider the forms from (7) above. A query for
these forms using the Google search engine (12 May 2004) yielded the hit
counts shown in (8).

(8) hits
[mutogem-nok]  mutagénnak 0 0%
[mutogem-nek] mutagénnek 32 100%
[orzein-nok] arzénnak 32 73%
[orzein-nek] arzénnek 12 27%
[pollerr-nok] pallérnak 15 100%
[polleir-nek] pallérnek 0 0%

These hit counts agree with findings obtained by casual elicitation from
native speakers; namely that [mutoge:n] takes front suffixes, [polleir] takes
back suffixes and [orzemn] can take either. In other words, native speaker
intuition matches native speaker behaviour, i.e. the behaviour of
Hungarian speakers who happen to be using the dative form of these stems
when composing a Web page.

In our study, we searched not just a few representative stems, but a long
list, taken from a Hungarian electronic lexicon (Miller 2002). We did this
with a computer program that queried the search engine automatically.!
The forms that were fed to the program were constructed by adding -nak
and -nek to each stem and applying the rule of Low Vowel Lengthening
(Vago 1980a: 3—4, Siptar & Torkenczy 2000: 56—58) where appropriate.
We kept data for words in which the search yielded ten or more total hits
([-nok] and [-nek] summed). The total number of stem types in our data-
base was 10,974, and the total number of word tokens ([-nok] and [-nek]
together) was about 14 million.

' Our software, called ‘Query Google,’ was programmed by Timothy Ma of UCLA.
It is implemented as a publicly accessible Web applet, available (March 2006) at
http://www.linguistics.ucla.edu/people/hayes/querygoogle/.
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Since obtaining phonological data from the Web is a fairly new tech-
nique, we mention here a few precautions. First, it should be remembered
that a search engine does not count actual tokens of the target form, but
only the number of Web pages that contain it. We believe that where the
focus of interest is relative frequency (here, of front vs. back endings), this
factor will impose only minimal distortion, particularly where the stems
under investigation are not especially common.

Second, at least some of the data retrieved in a Web search will be
nonsensical in some way. For instance, speakers who lack Hungarian
keyboards occasionally leave off umlauts or acute accents, which can distort
the results for generalisations based on backness or length. Compound
words always take the harmony of the second member, which can create
errors if they are mistakenly counted as monomorphemic. Borrowed
words are occasionally spelled as in the source language but take harmony
according to their Hungarian pronunciation; thus, for example,
Birmingham is pronounced ['bermingem] and thus takes front harmony,
despite its orthographic a.

To ward off trouble from these sources, we did some hand checking. We
went through every instance of BN and BNN stems in the corpus, elim-
inating the illegitimate examples. We also checked all baffling instances
such as B stems taking front harmony or F or FN stems taking back, and
found that (with just a tiny residue of completely mysterious forms), the
exceptions could be accounted for on the basis of the above categories.

As always in such studies, we must consider whether to count TOKENS
(e.g. ‘365,822 occurrences of BN stems in the corpus take [-nok]’) or TYPES
(e.g. ‘603 BN stems in the corpus take [-nok]’). The literature suggests
that when the extension of morphological patterns in the lexicon is at
stake, it is type frequency that is primarily relevant; for discussion see
Bybee (1995, 2001), Pierrehumbert (2001), Albright (2002) and Albright
& Hayes (2003). Our findings are in harmony with these earlier claims, as
we found that types provide a better fit to native speaker judgment (see
§4.2). We will therefore report only type frequencies here.

In counting type frequencies we assigned vacillators to the front and
back categories according to the percentage breakdown of each type; thus
for a vacillator that took [-nok] 20 % of the time and [-nek] 80% of the
time, we would add 0-2 to the total of [-nok] stems in its category and 0-8
to the total of [-nek] stems.

We report our data with a ‘backness index’: for any particular phono-
logical category (such as BN), the backness index is the proportion of
stems in that category that took [-nok], counting vacillators as just noted.
The backness index for a category takes the value 1 when every stem
always takes [-nok] and 0 when every stem always takes [-nek].

Lastly, to help relate our findings to previous work, we also include a
sorting into ‘back’, ‘front’ and ‘vacillator’ forms, where ‘back’ is arbi-
trarily defined as taking back suffixes at least 97 % of the time, ‘front’ as
taking front suffixes at least 97 % of the time and ‘vacillator’ any other
form.
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stem back vacillator front total backness
type stems index
B 6251 39 0 6290 0-999
BN 603 78 83 764 0-831
Bi 458 17 0 475 0-989
Bi: 52 0 1 53 0-980
Be: 93 18 9 120 0-845
Be 0 43 73 116 0-104
BNN 6 21 44 71 0-206
BNi1 1 12 17 30 0-223
BNi: 1 7 0 8 0-358
BNe: 4 2 6 12 0-421
BNe 0 0 21 21 0
N 14 23 259 296 0-078
NN 0 4 939 933 0-002
F 0 0 698 698 0
Table 1

Findings of the Google survey.

1-0 =
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0-4 \.
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B BN BNN N NN

proportion back harmony

5] |

Figure 1
Google data: basic stem types.

The Google survey strongly confirmed the generalisations stated in § 3
above. Figure 1 provides a coarse classification of our data, ignoring vowel
height for the moment. As can be seen, stems ending in F always take front
harmony (that is, the backness index for the 698 stems examined was
zero). Stems ending in B virtually always take back harmony (0-999; we
assume that the exceptions were typographical errors). Stems with all
neutral vowels (N, NN) are occasionally hid stems when monosyllabic
(0-078) and only rarely when disyllabic (0-002). Crucially, comparing the
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BN wvs. BNN stems, we find a strong confirmation for the count effect in
the much lower backness index for BNN (0-206) vs. BN (0-831).2

Turning to the height effect, we first sort the relevant forms (all BN and
BNN) by the height of their last vowel: Bi, Bi;, BNi and BNi: all have high
rightmost vowels and form the High category, Be: and BNe: all have
mid rightmost vowels and form the Mid category, and Be and BNe all
have low rightmost vowels and form the Low category.

stem back vacillator front total backness

type stems index

high 512 36 18 566 0-938

mid 97 20 15 132 0-806

low 0 43 94 137 0-089
Table 11

Google data: height effect.
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Figure 2
Google data: height effect.

Both the High—Mid and the Mid-Low differences are highly significant;
see note 2.

We must also consider how the two effects interact: do both BN and BNN
forms have a height effect ? The data here are equivocal, as shown in Fig. 3.3
The height effect is clearly evident in the BN forms, which are numerically
preponderant. However, the numbers for BNi and BNe: are surpris-
ingly reversed with respect to Bi vs. Bei. This fact will be relevant below
when we consider the preferences of Hungarian speakers for novel forms.

2 We submitted the data to chi-square tests, dividing the vacillators between front
and back in the same way described above. For BN wvs. BNN, )[2 =146-856,
p<0-001; for NN vs. N, > =65-248, p<0-001. For the height effect described in
the next paragraph: High os. Mid, »*=23-489, p<0-001; Mid ws. Low,
72 =140-205, p<0-001.

3 Looking ahead to comparison with our experimental data, we omit forms with /i/,
of which there are very few.
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Google data: height effect in BN vs. BNN.

Lastly, it appears that when both the height and count effects are
maximally present, the lexicon is variation-free: as Siptar & Torkenczy
(2000: 71) point out, all BNe stems take front suffixes.

3.2 Verification with native speaker consultants

As a check on the search-engine method, we selected from our lexical list
all instances of BN, BNN and N, plus representative cases of NN, for a
total of 1130 stems, and asked two adult native speakers of Hungarian
from Budapest to indicate for each whether they preferred to use [-nok],
preferred [-nek] or could use either. The speakers did not rate exactly the
same stems as the Google survey, because a few of the Google words were
unfamiliar to them, and the speakers rated a number of words that failed to
reach our threshold of ten hits on the Google survey. For the words
examined in both studies, the agreement seems quite good, as Fig. 4 shows.

® —m— Google
a ¢ speaker 1

5 / - e- ker 2
A K speaker
e

Bi Bi: Be: Be BNi BNiBNe:BNe N NN

proportion back harmony

Figure 4
T'wo native speakers compared with Google data.

To quantify this agreement, we created backness indices for the native
speaker data by assigning a value of 0-5 to each form judged to be a vacil-
lator, 1 to every back form and O to every front form. For the 768 forms
shared between Speaker 1 and the Google data, the correlation of backness
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indices was r = 0-951. For the 767 forms shared between Speaker 2 and the
Google data, the correlation was r=0-937. We conclude that the search-
engine method, which assesses naturalistic language use, gives results quite
similar to the metalinguistic judgments of native speaker consultants.

4 The productivity of the pattern: a wug test

Are the height and count effects mere statistical patterns of the Hungarian
lexicon, or are they actually internalised by Hungarian speakers and
extended productively? The usual test for answering this question is the
‘wug’ test (nonce probe task), pioneered by Berko (1958), in which pro-
ductivity is assessed by asking speakers to inflect novel stems. In the wug
test we conducted, we gave speakers new, made-up stems in the nominative
case (that is, with no suffix), and set up the experiment to elicit these stems
with the dative suffix, either [-nok] or [-nek], as the consultant chose. Our
experiment extends and complements work by Kontra & Ringen (1986)
and Gosy (1989), who tested loanwords.

4.1 Procedure

We chose our wug stems on the basis of several criteria. First, we included
both BN and BNN stems, with at least one stem of each type ending in
each of the vowels [i e: e]. In order to sample the rest of the stem inventory,
we included stems ending in F and B as well as monosyllabic and disyllabic
neutral-vowel stems. We made two such sets of 15 wug stems; any par-
ticular consultant saw just one of the two sets, chosen at random. The two
sets were as shown in (9).

9) set 1 set 2

Bi [monil, fa:dik] [kainit, pozin]
monyil, csadik kanit, pozin

Be: [ha:de:l, kolem] [vamne:l, vuselk]
hadél, kolén vanél, vuszék

Be [oirel, bontel, kaizen] [ronel, upeg, Jultek]
orel, bontel, kazen ranyel, unyeg, csiultek

BNi  [poribit] [lolivit]
poribit lolivit

BNe: [lapiterg] [ampive:l]
lanyitég anyivél

BNe [fampedeg, luteker] [ailendel, moleter]
fanyedeg, luteker dlendel, méleter

N [hi:n] [ni:f]
hiny nyis

NN  [zefert] [petleir]
zefét petlér

F [3ylyt] [hofeg]
gyiiliit hosog

B [sondot] [bortog]

szandat bortog
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In constructing these wug stems, we attempted to make them sound
as phonologically ordinary in Hungarian as possible. This was done by
extracting from our electronic dictionary the most common initial, medial
and final consonants and consonant clusters, and incorporating them into
the wug stems. T'o minimise the effects attributed to a strong direct re-
semblance to any particular existing stem (see Bailey & Hahn 2001, Frisch
& Zawaydeh 2001), we tried to avoid any stems that might invoke such a
resemblance. We also attempted to avoid stems that would be likely to be
interpreted as compounds.® This was done by generating large numbers
of candidates for each type and checking them according to the native
intuition of the second author and several other native speakers.

We administered the wug test as a written questionnaire.” The wug
words were given in paragraph frames, meant to give the participants
practice in using them before constructing their dative forms. The first
sentence of the paragraph provided the nominative form of the wug stem,
the second required the consultant to repeat the nominative by filling in a
blank and the third provided a grammatical context requiring the con-
sultant to use the dative case. Frames and instructions were composed
with the goal of encouraging the subjects to treat the stems as long-
forgotten but authentic words of Hungarian, rather than as recent loans.
Here is an example of one of our frames translated into English; italics
indicate expected responses:

(10) Sample wug-test frame
hadél
Women in the Middle Ages used hadél to wash clothing. Back then,
hadél  grew abundantly in the fields. It is very hard to find nowadays,
but it is said that  Ahddélnak or hdadélnek  had a wonderful fragrance.

We used multiple versions of each test, to make sure that no wug stem was
consistently affiliated with a particular frame, and we also changed the
order of the wug stems and frame sentences at random in the various
versions.

Two experimenters, of whom one was the second author, distributed
copies of the test forms in two Hungarian cities where the standard variety
is spoken: Budapest (161 consultants) and Tiszaftired (10 consultants).
The experimenters gave out forms to people whom they knew, mostly

* This turned out to be harder than we thought: Péter Siptar has pointed out to us the
resemblances [vuselk] wuszék ~[sekk] szék ‘chair’, [appived] dnyivél ~ [veil] vél
‘think, opine’, [ronel] ranyel ~ [pel] nyel ‘swallow’ and [monil] monyil ~ [ni:l] nyil
‘arrow’. Future work in this area should probably check for such resemblances by
machine as well as by eye.

As it turned out, written presentation provided an important additional control,
since there is now some evidence that there are tiny phonetic differences between
Hungarian stems that have the same basic vowels but take different harmony; see
Benus (2005) and Benus & Gafos (in press). Hungarian orthography provided the
subjects with an unbiased characterisation of the gross vowel phonemes present,
without the possible interference of microphonetic distinctions.
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young adults. Potential participants were told that we were conducting a
‘survey concerning one of the peculiarities of the Hungarian language’,
and those who chose to participate filled out their forms voluntarily,
without pay. It appears that our questionnaire was interesting to the par-
ticipants, as participation and completion rates were very high.

The forms began by asking the speakers about their linguistic back-
ground, and in our analysis we excluded data from any consultants who
said that they were not native speakers of Hungarian, or that they had not
spoken Hungarian in childhood.

4.2 Results

Since wug stems of the same type (e.g. [oirel], [bontel] are both /Be/)
received quite similar scores, we pooled their scores into single categories,
obtaining the results shown in Fig. 5 and Table III. For comparison,
Fig. 5 also includes the Google data from the previous section.

stem back front invalid backness
type response® index
B 165 2 4 0-988
Bi 322 16 4 0-953
Be: 127 211 4 0-376
Be 35 456 22 0-071
BNi 48 119 4 0-287
BNe: 12 153 6 0-073
BNe 5 330 7 0-015
N 10 148 13 0-063
NN 0 171 0 0-000
F 1 164 6 0-006
Table 111

Source data for Fig. 5.

Examining the individual cases, we can see that the experiment yielded
sensible results for areas where the suffix choice is obvious: virtually all
instances of F stems took front harmony, and virtually all instances of B
stems took back. Thus our consultants appear to have understood the task
and performed reliably.

In stem types for which the Hungarian lexicon includes both front
and back cases, the aggregate behaviour of the consultants tended to

® The invalid responses were mostly blanks and forms given with no suffix.
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Figure 5
Wug-test data compared with Google data.

statistically match the proportions found in the lexicon. For instance,
about 7-8 % of the monosyllabic N stems in the Google data are hid stems,
taking back harmony. In the wug experiment, 6:3 % of our consultants
interpreted [himn] and [ni:f] as if they were hid stems, attaching [-nok]. By
way of comparison, NN stems are very seldom of the Aid type (0-2 % in the
Google survey), and none of our consultants produced back harmony for
either of our NN stems [zefeit] and [petleir].

The height and count effects found in the Google survey for BN and
BNN stems also emerged in the subject responses for the wug experiment.
As can be seen in Fig. 5, the lower the final stem vowel, the more front
responses we obtained; and we obtained more front responses for BNN
than for BN.

We verified the height and count effects statistically with a repeated-
measures analysis of variance (ANOVA). There were two factors: Height
(three levels: High, Mid and Low) and Count (two levels: BN and
BNN). The analysis showed significant main effects for both Height
(F(1-964, 320-203) = 431-446, p < 0-0001)” and Count (F(1, 163) = 370-862,
p <0-0001).

The interaction of Height and Count was also significant (F(1-762,
287-229)=113-554, p < 0-0001). This arises because there is a larger height
effect for BN than for BNN (or to put it differently, there is a larger count
effect for higher vowels). In § 5.6, we will see that this interaction can be
naturally modelled with constraint ranking in a stochastic OT framework.

To check the height and count effects in fine detail, we performed two-
tailed paired t-tests on all logically adjacent categories in the data: {Bi/Be,
Be:/Be, BNi/BNe:, BNe:/BNe}, along with {Bi/BNi, Be:/BNe:, Be/BNe}.
All comparisons were statistically significant (p =0-003 for BNe:/BNg;
p <0-0001 for all others); thus the height effect comprises both a high/mid
effect and a mid/low effect, in both BN and BNN stems, and there is also a
count effect at all three heights.

7 Where applicable, we employed the Huynh-Feldt correction for sphericity, which
reduces the degrees of freedom.
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Lastly, we assessed the overall degree of agreement between the Google
survey and the wug-test results. T'o do this, we took each of the 30 stems
tested (see (9)), and paired it with the backness value obtained in the
Google survey for its general category (such as Bi, BNj, etc., as in Fig. 5).
The correlation found was r=0-896, indicating fairly close agreement.
If the proportions in the Google data are calculated from token rather than
type frequencies, this correlation emerges as somewhat lower (r =0-820);
cf. discussion above in § 3.1.8

4.3 Smoothing

Some of the discrepancies between the Google survey and the wug-test
data seem of potential importance. As noted above, in the wug data there is
an across-the-board height effect even in the BNN forms: BNi stems took
more back suffixes than BNe: stems, which in turn took more back suffixes
than BNe stems. The data from the Google survey contradicted this pat-
tern, with more back responses for BNe: than for BNi.

In our view, it is the Google data that most likely are aberrant. At this
level of phonological detail, there are only a few relevant stems in the
lexicon. The backness value of 0-421 found for BNe: is based on just 4 back
stems, 2 vacillators and 6 front stems, for a total of 12.

What is interesting is that if the aberrant figure of 0-421 does represent
the Hungarian lexicon as a whole, the aberrance is evidently not registered
by native speakers, whose wug-test values for BNN indicate a straight-
forward height effect, with higher vowels taking more back suffixes. We
conjecture that the speakers have in some sense SMOOTHED the data.
Rather than reflecting every small idiosyncrasy in the Hungarian lexicon,
they formulate more general patterns based on natural phonological
dimensions, namely the height effect and the count effect.

The surprising 1-5% of cases where our consultants volunteered [-nok]
for BNe stems, contradicting the unanimous lexical pattern, are plausibly
also an instance of smoothing. The fact that BNN stems in general can
take [-nok] and B...e stems in general can take [-nok] may have led our
consultants to arrive at the marginal possibility that BNe stems, which
intersect these two categories, can take [-nok].

4.4 Caveats

Before continuing with a formal analysis of our data, we discuss a possible
confound and a puzzle.

First, it has been suggested to us that our wug-test results merely
reflected a mixture of differing idiolects. For example, the 0-376 backness

8 A reviewer made the intriguing suggestion that we match the BNN wug-test forms
against only those Google forms that share exactly the same NN sequence; thus, for
example, using only Bii forms for predicting the wug-test responses for [poribit].
We find that this lowers the overall correlation, to 0-883. See also § 8 below.
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value for Be: stems could have resulted from 37-6 % of the speakers having
an idiolect that always assigns back endings to Be:, and 62-4% having
an idiolect that always assigns front endings. We checked this hypothesis
by testing cases where the very same consultant rated two different stems
with the same pattern. For instance, [ha:de:l] and [kolem], both Be:,
appeared on the same questionnaires, and thus were encountered in the
same session (though not consecutively) by the same speakers. In a series
of chi-square tests, we found that consultants who gave back responses
for [ha:de:l] were no more likely to give back responses for [kolein] than
consultants who gave front responses for [ha:de:l]. We obtained similar
results for all other pairs where enough data were available for testing. We
conclude that idiolect variation played at most a minor role in our results.
The level of variation is not between individuals, but within the individ-
ual: when confronted with a novel wug stem, each speaker behaved
stochastically, in a way that matched the frequencies of the lexicon.

There is one respect not yet discussed in which the wug-test results
diverged from the lexicon: overall, in comparison to the Google survey,
the wug-test subjects preferred front suffixes; averaging across the ten
categories given in Fig. 5, the wug-test values are 0-091 more front. The
frontness preference is particularly strong in the Be: forms. We conjecture
that this is because the Be: forms have medial backness indices, so that the
consultants’ judgments are not stabilised by floor or ceiling effects.’

Concerning why there should be an overall frontness preference, we
offer the following conjecture. For reasons we do not understand, there is a
weak connection in the Hungarian lexicon between stem frequency and
frontness: the rarer the stem, the more likely it is to take front suffixes.
Thus, we find that within just the BN stems, the correlation of the frequency
of the bare stem (which we also measured in the Google survey) with the
proportion of back responses is r=0-141.!" Wug stems are, by definition,
the rarest of stems (frequency zero), and this may have contributed to their
front-preferring behaviour. In principle, this factor could be entered into
the model described below, but we will not attempt to do this here.

5 A theoretical model of variation in Hungarian
vowel harmony

We turn to the task of developing an explicit analysis of our experimental
findings, drawing on various notions from current phonological theory.
To achieve descriptive adequacy, our model must accomplish three tasks.

% Indeed, because the endpoints of the scale are anchored, and the medial values show
a frontness preference in the wug test, we find that the Google data correlate better
with the square root of the wug-test values (which lower the unanchored medial
scores) than with the raw scores; r=0-923 vs. 0-896.

This connection might explain Gosy’s (1989) finding that younger children tend to
give backer responses in wug testing for the relevant word classes. Younger children
would be less likely to be familiar with rarer words.
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First, it should accommodate STEM-SPECIFIC BEHAVIOUR, permitting
speakers to list (in some form yet to be addressed) whether a particular BN
or BNN stem takes front suffixes or back suffixes, or is a vacillator (cf. (7)
above).

Second, an adequate model should characterise the native speaker’s
EXPECTATIONS about what suffixes a novel stem will take — in particular, it
should be able to account for our wug-test data.

Third, a model should characterise the LIMITS OF STEM-SPECIFIC
BEHAVIOUR. While it is true that BN and BNN stems can have their own
specific behaviour, B or F stems cannot; their harmony pattern is com-
pletely predictable. For example, our wug test included the B stems
[bortog] and [sondot], and these virtually always took back harmony;
likewise for the F stems [Jylyt] and [hef[ag], which took front harmony. We
claim that forms like *[bortog-nek] or *[jylyt-nok] are simply unacceptable
in Hungarian, and that a phonological analysis should capture this fact.

5.1 Theory

We assume Optimality Theory (Prince & Smolensky 1993), in which
the outcomes of phonological derivations depended on the ranking of
conflicting constraints. Constraint conflict arises here when a stem con-
tains both front and back vowels. A variety of constraints require that
the suffix vowels match the stem vowels in backness, and when a stem
contains both front and back vowels, these constraints will conflict.

We use a STOCHASTIC variant of Optimality Theory (Boersma 1997,
Hayes & MacEachern 1998, Boersma & Hayes 2001), in which the ranking
of constraints is probabilistic: every constraint pair (A, B) is associated
with a probability (0—1) specifying how likely it is that A will dominate B
on any given speaking occasion. The reason for using stochastic OT is that
it permits precise predictions about the relative proportions of forms
produced in free variation.

Lastly, we assume the DUAL LISTING/GENERATION MODEL of Zuraw
(2000). In this model, grammars may contain sets of markedness con-
straints that are stochastically ranked with respect to each other, but
subordinated to faithfulness constraints. This means that existing forms,
which are covered by a particular lexical entry and protected by faithful-
ness, surface without variation; whereas newly inflected forms, where
faithfulness constraints are inapplicable, are derived stochastically,
according to the pattern of the subordinated markedness constraints.

The following sections cover underlying forms, constraints and rankings,
and an assessment of the model’s performance in describing our data.

5.2 Underlying forms

The underlying phonological form of Hungarian suffixes is somewhat
difficult to establish, since they normally appear harmonised to a preced-
ing vowel. The occurrence of case suffixes as independent stems, in
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constructions like [nek-em] nekem ‘me-DAT’, could in principle justify
an underlying backness value for these suffixes (Vago 1973). However,
we will see later on that there is reason to let both allomorphs of a
harmonising suffix serve as underlying forms, and so we will assume here
that the use of the case suffixes as stems represents an arbitrary lexical
choice and does not determine a unique underlying form. For discussion,
see Reiss (2003). Below, in cases where it is not crucial to assert an
underlying backness value, we will simply use capital letters to designate
the general category of the suffix vowel; thus /A/ is a vowel that alternates
between [2] and [¢], so the underlying form of [-nok]~[-nek] will be
shown as [-nAk/.

5.3 Markedness constraints governing harmony

We assume that BN and BNN stems vary in their harmony because they
have two triggers: one which is strong but non-local (B), and another
which is weak but local (the rightmost N, which is closest to the suffix).
Suffix variation results from stochastic ranking of the conflicting con-
straints that require suffixes to agree in backness with these triggers. The
constraints are assumed to be members of the AGREE family (Lombardi
1999, Kiparsky & Pajusalu 2003), relativised to distance.

In our usage, a vowel-harmony constraint is LOCAL if it assigns violations
to vowel sequences that are separated only by a (possibly null) consonant
string. A constraint is DISTAL if it assigns violations without regard to
intervening material.!’ In formalising the constraints, we assume that
phonology makes available a vowel projection (Vergnaud & Halle 1979)
or tier (Archangeli & Pulleyblank 1987, Clements & Hume 1995) which
expresses just the vowels of the string, so that consonants can be ignored
in the structural description of constraints. Thus the constraints we will
call LocaL[B] and DisTAL[B] are stated below:

(11) a. LocaL[B]

*[+back][—back]
Assess a violation when the closest vowel following a [+back] vowel
is [—back].

b. DistaL[B]
*[+back]X[—back]
Assess a violation when a [+back] vowel is followed somewhere in
the word by a [-back] vowel.

For example, in the candidate form in (12), DisTAL[B] incurs four
violations, as shown by the arrows.

"' For earlier analyses that also assume non-local mechanisms, see Kiparsky &
Pajusalu (2003), which uses constraints, and Esztergar (1971: 29) and Vago (1976:
252), which use rules.
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(12) mutagénnek

— |

mutogennek

In contrast, LocAL[B] assesses violations only for vowel pairs separated by
(at most) a consonant string, e.g. just one violation for [mutogem-nek]:

13y mu t o gennek
L4

We assume additional agreement constraints defined on particular
vowels or natural classes of vowels, formalised analogously to (11). In the
present analysis the following constraints will be employed:

(14) a. Locar[F], where F =[—back, +round]
b. Distar[F]
c. LocaL[i]
d. LocaL[e:]
e. LocaL[e]

In principle, LocaL[i:] should also be included, but we will ignore it here
since we have no wug-test data for this vowel (in the Google data, it
matches /i/ fairly closely).

We also need a constraint to enforce the more frequent appearance
of front suffixes in BNN stems. Walker (2001) has noted that it is possible
for harmony processes to have ‘double triggers’; i.e. harmony occurs
only when two in a row of the relevant triggering class are present.
Walker analyses the phenomenon in depth; for present purposes we
will just stipulate a constraint LocAL[INN], violated when NN is followed
by B.

(15) LocaL[NN]
*[—back][—back][+back]

In the suffixed forms of BN stems, DisTAL[B] conflicts with one or more
of the three constraints LocaL[i], LocaL[e:] and LocaL[e]; in BNN stems,
it additionally conflicts with LocaL[NN].!?

12 An alternative to LocaL[NN] is to fragment DisTaL[B], splitting it into constraints
requiring agreement with B two syllables away (governing BN forms) vs. three
(governing BNN). We have explored this kind of analysis and find it works about as
well as the one presented in the text. For reasons of space we will not present both
analyses here.
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5.4 Faithfulness constraints

Following Ringen & Vago (1998), we assume two faithfulness constraints
governing backness; one is limited to root vowels, while the other is
simply the general IDENT constraint for this feature:

(16) a. IpExT-IO[back]
Assess a violation if a vowel belonging to a morphological root
differs in surface representation from its underlying correspondent
in its value for the feature [back].

b. IpExT-1O[back]

Assess a violation if a vowel differs in surface representation from
its underlying correspondent in its value for the feature [back].

root

As we will see, IDENT-1O[back],,., must be ranked higher than IDENT-
IO[back], reflecting the greater immutability of root vowels relative to
suffix vowels in Hungarian. The pattern of greater faithfulness in roots is
often observed cross-linguistically; see for example McCarthy & Prince
(1995), Beckman (1997) and Casali (1997).

5.5 Constraint rankings: strict

We can now consider how the constraints given above can be ranked to
characterise the data. We begin with some straightforward rankings that
are non-stochastic (in the theory assumed, they are associated with the
probability value 1).

To begin, IDENT-1O[back],,,, must be ranked strictly over LocaL[B]
and DisTAL[B]. This is because Hungarian stems, unlike suffixes, are not
in general required to respect harmony: there are many BN and NB stems,
and also a number of borrowings like [glyko:z] gliikéz ‘glucose’, with FB,
and [fJofeir] sofér ‘chauffeur’, with BF. The need for a strict ranking is
shown below in tableau (17): /[former/ farmer ‘blue jeans’ survives intact,
despite its violations of the two harmony constraints.'®

(17) [former/ |IDENT-IO[bK],, LocaL[B]|DisTaL[B]

1z a. former * *

b. formor *|

There are also strict rankings among the Markedness constraints.
Thus, LocaL[B] must strictly dominate DI1sTAL[F], because in all stems in

3 There is more to the problem than this, in that B combines with N freely in stems,
but far less often with F; the BF and FB stems are all borrowings and are sometimes
felt to be foreign. While we will not try to integrate this fact into the analysis, we
believe the necessary apparatus is at hand. Kiparsky & Pajusalu (2003) propose
constraints that penalise BF/FB but not BN/NB; and [t6 & Mester (1995), among
others, have suggested rankings particular to vocabulary strata such as foreign
words.
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which the last vowel is B and some other vowel is F, the suffix must
surface as back — the LocAaL[B] vowel wins out as trigger over the distal F
vowel. This can be seen in the following tableau for [glyko:z-nok]
‘glucose-DAT’.

(18) | Jglykoz-nAk/ |IpEnT-TIO[bK],, LocaL[B]|DistaL[F]
= a. glykoiz-nok!* *%
b. glykoiz-nek * | *
c. glykeiz-nek *|
d. gluko:z-nok * |

For the same reason, LocAL[F] must strictly dominate DisTAL[B], for
example to obtain [[ofeir-nek] ‘chauffeur-pDaT’, not *[Jofeir-nok].

(19) | Jfoferr-nAk/ |IpexT-1O[bK], | LocaL[F]| DistaL[B]
= a. [ofoir-nek sk
b. fofeir-nok * | *
c. [ofoir-nok *|
d. [eferr-nek *|

5.6 Constraint rankings: stochastic

In the model of stochastic OT' adopted here, the probabilistic rankings
of the constraints are expressed by assigning them values along a
numerical scale of ‘ranking strength’; from this scale the relative
ranking probabilities can be deduced with a standard mathematical for-
mula, given in Boersma (1997: 45). In the discussion that follows, we
will present the pairwise probabilities, since these are more readily inter-
pretable."

Three crucial probabilistic rankings in the analysis are those of
DisTaL[B] against its competitors among the weak front-harmony trig-
gers, namely LocaL[e], LocaL[e:] and LocaL[i]. We propose that these
ranking probabilities should be as shown in (20):

* The rounding of the low back short vowel [5] is non-contrastive (Vago 1980a: 3),
and is straightforwardly derived by ranking a ban on short low back unrounded
vowels over the faithfulness constraint IDENT[round]. We omit this detail from our
tableaux.

One set of ranking values that yields the probabilities proposed in this section is:
Locar[e]=104-154, LocaL [NN]=101-802, LocaL[e:]=100-894, DistaL[B]=
100-000, LocaL[i] = 95-263. Strict rankings, such as those from the previous section,
can be implemented with any difference in ranking value (e.g. 20) that translates
into something very close to 1.
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(20) LocaL[g] LocaL[e:]
0-929 0-624
DistaL[B]
0-953
Locav[i]

The 0-624 probability proposed for the ranking of LocaL[e:] over
DisTaL[B] means that given an input like /ha:de:l-nAk/ ([ha:de:l] is the wug
stem appearing in (10)), there is a probability of 0-624 that the grammar
will output [ha:de:l-nek]. This is shown in tableaux (21) and (22).

(21) T0'624—¢

/haide:l-nAk/| IpExT- |LocaL LocaL! LocaL! DistaL! LocaL
10[bk],,| [B] | [e] | [e] | [B] : [i]

0:624 = a. haide:l-nek * 1 1 |
b. ha:de:l-nok * : *| : * :

c. ha:da:l-nok * |

* %

In (21), the probability of 0-624 that LLocaL[e:] will dominate DisTAL[B]
implies the same probability that [haide:l-nek] will be output by the
grammar. The opposite ranking, generating [ha:de:l-nok] with a prob-
ability of 0-376, is given in (22):

(22) F0~376—¢
/harde:l-nAk/ | IpENT- Locat! Locar. DistaL, Locar Locar,
10[bk],,| [B] | [e] | [B] | [e] 1 [i]
a. ha:de:l-nek * A |
0-376 = b. haide:l-nok % ook %

c. ha:da:l-nok * |

Thus, over a large number of trials, we would expect [ha:de:l-nek] to be
the winner in about 62-4 % of the trials, and [ha:de:l-nok] to be the winner
in about 37:6 %. In fact, in our wug test, with stems of the Be: type, this
was the percentage obtained from the participants as a whole; our hy-
pothesised ranking values were set up with the express purpose of
mimicking this frequency.!® The remaining values in (20) can similarly be
used to derive the correct wug-test percentages for Bi and Be stems: the

16 This practice seems to have resulted in some misunderstanding, so we attempt to
clarify. In the research methodology of generative grammar, the analyst seeks to
devise a set of rules or other principles that generates the pattern of the language.
Our purpose, at this stage, is simply to develop an analysis of this sort, taking our
wug test to be our data for what the Hungarian pattern is. No essential difference
arises from the fact that the system generates quantitative outcomes.
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probability of 0-953 that DisTAL[B]> LocaL[i] predicts 95-3 % back suf-
fixes for Bi stems, and the probability of 0-929 that LocaL[e] > DisTAL[B]
predicts 92:9 % front suffixes for Be stems.

The results so far merely indicate that the constraint set is sufficiently
rich to discriminate between the Bi, Be: and Be categories — we have set
three ranking probabilities, and have derived three relative frequencies.
More interesting is the task of extending the analysis to the BNN stems,
specifically BNi, BNe: and BNe. In the wug-test data, these stems
exhibited both the height effect and the count effect; the two effects
are additive in the sense that the stems that are most likely to take front
endings are the BNN stems with low final vowels. We propose that this
can be modelled simply by assigning an appropriate probability to the
ranking LocAL[NN]> DisTaAL[B]: this will shift the percentages of back
suffixes downward in BNN stems relative to analogous BN stems, because
two constraints rather than one are working against LocaL[B].

We have calculated that a probability of 0-738 for LocaL[NN]>
DisTaL[B] best fits the wug-test data. The crucial part of the grammar is
thus as in (23):

(23) Locar[e] LocarL[NN] LocaL[e:]
JO-738

0-929 0-624
Distar[B]

0-953
LocaL[i]

Tableau (24) illustrates how the constraints interact in the case of a rep-
resentative BNe: stem.

(24) 0738
F0-624J

Japive:d-nAk/ |Locar: LocaL Locar Distar: LocaL
[e] [NN] [e] o [B] @ [i]
0-836 1= a. apiveil-nek : : k(1) |

0-164 &= b. a;pive:l-nok ‘ #(1) ‘ %(1) ‘ *% |

In effect, (24) abbreviates six tableaux, one for each of the six possible
rankings of LocaL[NN], LocaL[e:] and DisTaL[B]. From a series of cal-
culations, we have determined that, assuming the probabilities shown in
(24), a back suffix outcome for a BNe: stem will win in 83-6 % of trials and
a front suffix outcome in 16-4 %.!” We performed similar calculations for
the remaining cases, BNi and BNe, where three constraints interact.

17 We use OTSoft 2.1 (Hayes et al. 2003) to perform all calculations for stochastic O'T
reported here. For the present task, the software takes a large number of samples,
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Summarising, our hand-ranked model generates the frequencies
given in (25), along with the wug-test frequencies we were attempting to
mimic.

(25) wug test model wug test model
Bi 0-953 0-953 BNi 0-287 0-257
Be: 0-376 0-376 BNe: 0-073 0-164
Be 0-071 0-071 BNe 0-015 0-045

The grammar does not achieve an exact quantitative match for the BNN
forms, but it is not far off, and moreover it captures the correct qualitative
generalisations: there is a count effect, a height effect and also an inter-
action — the size of the height effect is reduced in BNN forms, and the size
of the count effect is reduced for lower vowels. This illustrates the ability
of the stochastic OT framework to capture such quantitative interactions.

The grammar also accomplishes the two instances of ‘smoothing’ we
noted in §4.3. Although in the Hungarian lexicon, BNe: unexpectedly
takes [-nok] more often than BNi, our model in fact gives BNei-nok a
lower frequency than BNi-nok —just as our wug-test subjects did.
Moreover, the wug testees unexpectedly volunteered a small number of
BNe-nok forms, despite their absence in real Hungarian. Our model
likewise generates a small number of these forms. In both cases, the cause
of the smoothing is the same: the constraints responsible for the height
effect are ranked on the basis of all of the data, not just the BNN
forms. The statistical patterns found in the (more numerous) BN cases are
carried over to some extent to BNIN.

5.7 The basis of the height effect

It can be observed that in (23), the constraints LocaL[e], LocaL[e:] and
LocAL[i] are stochastically ranked so as to make lower vowels ‘stronger
triggers’ for front harmony; that is, better able to compete with LocaL[B].
We suggest that this ranking is not accidental.

Kaun (1995, 2004), in a study of the typology of rounding harmony,
proposes that the differences in the strength of vowels as harmony triggers
depend on the phonetic salience with which they manifest the harmonic
feature: harmony is triggered preferentially by perceptually inferior
vowels, i.e. the ones that lack an extreme phonetic realisation of their
category. In the case of rounding harmony, these are the low rounded
vowels, which (relative to their high counterparts) are phonetically less
rounded and acoustically less distinct from unrounded vowels. In her

using Gaussian distributions centred about the ranking values given in note 15, and
calculates the probability by summing over the samples. We performed ten trials,
each with 100,000 samples per form. Although this calculation method is not exact,
the random fluctuations are quite small: the greatest standard deviation across the
ten trials for the proportion of back suffixes derived was never greater than 0-0014
for any input form.
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survey, Kaun found that low rounded vowels often trigger harmony in
contexts where high rounded vowels do not. Her functional explanation
for this tendency is that the low rounded vowels, which most need help
in identification, are more likely to obtain this help by spreading their
rounding feature across the word.'®

Pursuing the same approach for backness harmony, we note that of
the front vowels of Hungarian discussed here, it is the lower front vowels
that have the lowest second formant frequencies, and thus are perceptually
inferior relative to the higher front vowels. Following Kaun’s approach,
we expect the strength of the front triggers to be determined by their
height, with [e] the best trigger, [e:] the second best and [i] the worst.
In grammatical terms, this is manifested in an a priori ranking preference:

(26) Locar[e] > Locat[e:] > LocaL[i]

As we have just seen, this ranking, in a looser stochastic form, is what is
needed for the analysis of the Hungarian data."’

For suggestions that the height effect may not be unique to Hungarian
(and thus deserves a general explanation), see Esztergar (1971) and
Anderson (1980); for a different phonetic account, see Benus (2005) and
Benus & Gafos (2005).

5.8 Treatment of existing stems: the role of faithfulness

Recall that the Hungarian variation is primarily stem-by-stem variation
and not token-by-token variation; only the vacillators actually permit
the two outcomes generated by the grammar thus far, while most stems
impose an invariant suffix choice. This information must be encoded in
the lexicon: part of the task of learning Hungarian is to memorise the
harmonic behaviour (front, back or vacillating) of the stems that fall into
the unpredictable categories (cf. (7) above).

There are various forms of representation that could be used by speakers
to memorise whether a stem takes front or back suffixes. These include
diacritics, floating backness autosegments (Goldsmith 1979, Lieber 1987,
Wolf, in press) and (following Zuraw 2000) simply the full lexical listing of
the inflected forms. These possibilities are shown for the stems in (7) in (27).

18 Kaun also demonstrates a tendency for harmony to apply only to vowels of matched
heights. Readers have asked us: might the reason that [-nek/-nok] harmonises pref-
erentially after low vowels be that its own vowel is low? The answer is no: as a
Google check confirms, lower vowels are stronger harmony triggers in Hungarian
even when the suffix vowel is high.

Constraint families based on phonetic scales like (26) have been implemented in
various ways. The approach in (26) affiliates one constraint with each member of the
scale, and ranks the constraints so as to match the scale. Another approach (Prince
1997, de Lacy 2004) implements the scale by stating the constraints with cut-off
points, e.g. ‘Agree in backness if the trigger is mid or lower’. We have implemented
our analysis under both approaches and achieved equally good matches to the data.
For brevity we only report the first approach here.
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(27) a. Dracritic
i. takes front suffixes  |/mutogemn/
[-back harmony]
ii. vacillator [orzem/
[0back harmony]
iii. takes back suffixes  [polleir/
[+back harmony]

b. Floating autosegment
i. takes front suffixes |[mutogen/
.
+b+b-b —b
ii. vacillator /orzemn| [orzen|
| |
+b -b -b +b -b +b

iii. takes back suffixes |[poller/

+b -b +b

c. Full lexical listing
i. takes front suffixes  /mutogem-nek/
. wacillator [orzeimn-nek/, [orzem-nok/
iii. takes back suffixes  [polleir-nok/

With each of these options, the faithfulness constraints of the grammar
must be stated to enforce the particular form(s) listed in the lexicon. This
could be done by requiring a proper match between diacritic specification
and suffix allomorph (27a), by requiring surface realisation of the floating
autosegment (27b) or simply by requiring the maintenance of underlying
suffix vowel backness (27c¢).

Here, we adopt the full-listing proposal (27¢), and give some tentative
evidence in its favour below. The vowels in listed suffix allomorphs
are protected by the general faithfulness constraint IDENT-IO[back],
stated in (16).

Here is an example of how this works. The stem [otse:l] acél steel’ falls
into the Be: class, which in the grammar developed so far permits variation
in suffix choice. In fact, it is a lexical property of [otse:l] that it takes only
back suffixes. Thus, there is a listed entry [otseil-nok/ that emerges as the
winner, as shown in tableau (28):

(28) FO~624ﬁv
Jotse:l-nok/ | IDENT- |LocaL[B]|IDENT- LOCAL[eZ]%DISTAL[B]
IO[bk],, I10[bk] !
15 a. otseil-nok * * : *
b. otsedl-nek * *| : *%
c. otsa:l-nok * | *
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The crucial ranking is IDENT-IO[back] > LocaL[e:], which cancels the
possibility that LocaL[e:] could force the outcome *[otseil-nek]. Were it
not for IDENT-IO[back], this candidate would win 62-4 % of the time. The
candidate with stem-internal harmony, *[otsa:l-nok], is ruled out by un-
dominated IpENT-IO[back],,.*"

The outcome for [otseil] should be compared to the phonologically
similar wug stem [hatde:l]. Wug stems lack lexical entries for their suffixed
forms, because the subjects heard only the unsuffixed stems. Thus,
they cannot specify whether they take [-nok] or [-nek]. Because of this,
neither [ha:ide:l-nek] nor [haide:l-nok] violates IDENT-1O[back], and this
constraint therefore would not affect the outcome in such cases.

(29) 0624
/haide:l-nAk/| IpExT- |LocaL[B]|IpENT- LOCAL[e:]iDIS'l‘AL[B]
IO[bk],, 10[bk] !

0:624 = a. ha:de:l-nek !
0:376 == b. haide:l-nok * %1 : *

c. ha:da:l-nok *| *

* %

It can be seen that this grammar respects a memorised suffix choice
when there is one, but performs stochastically (i.e. like a Hungarian
speaker) when given a wug stem. To cover the full range of cases, the
rankings needed are as in (30):

(30) IpenT-10[back] >
{DistaL[B], LocaL[i], LocaL[e:], Locar[e], LocaL[NNT]}

That is to say, the bloc of stochastically ranked AGREE constraints in (23) is
generally subordinated to IDENT-IO[back].?"*?

20 Zuraw’s theory further assumes a constraint USeLISTED, which requires a listed
entry to be employed, thus blocking the possibility of a winning candidate *[otse:l-
nek], created afresh by the morphology. In the present analysis, USELISTED may be
assumed to be undominated.

Hungarian speakers often feel that ‘wrong’ choices among BN and BNN words (say
[otseil-nek]) are not crashingly bad, and that they might accept them if heard from
other speakers. This suggests that the main ranking in (30) might actually not be
completely strict; and therefore lets through the ‘wrong’ choice as a weak (im-
probable) alternative. We lack the data that would be needed to establish this
stochastic ranking precisely, and will for the remainder of the article assume strict
ranking for purposes of exposition.

A reviewer notes that full lexical listing cannot be a complete theory of exceptions in
phonology: we need to cover phonology that is exceptionally triggered, or not
triggered, or not undergone, by particular affixes. For discussion, see Pater (in
press). In our view, even the morpheme-specific constraints of the type Pater pro-
poses would often have to be ranked stochastically, to cover cases like Tagalog Nasal
Substitution (Zuraw 2000: § 2.2.2) or Spanish diphthongisation (Eddington 1996,
1998, 2004).
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5.9 The representation of vacillators

For vacillating stems, we assume that there are two rival underlying
representations, as for example (27.11) (/orzein-nok, orzein-nek/). This is in
principle no different from cases like English envelope, where ['envo loup/
and ['‘anvaloup/ often compete even within single idiolects. It is likely
that the rival underlying forms are represented in a way that assigns
them a quantitative ‘strength’, which is reflected by their frequencies in
actual usage. The observed Google frequencies of such doublets are
seldom actually 50-50 (as the simplest double-listing approach would
predict), but vary over the full range of values.

This provides an argument for Zuraw’s pure lexical-listing theory for
idiosyncratic forms (27c¢). Unlike the diacritic and floating-autosegment
theories, Zuraw’s account implies the possibility there could be stems that
favour a different mix of front and back allomorphs for (say) the dative than
for some other suffix. Some supporting cases are given in Kontra &
Ringen (1986: 10); a particularly dramatic case is the common NN
stem [feirfi] férfi ‘man’, which is a vacillator in the dative ([-nok]/[-nek]),
but allows only back [-9k] -ak in the plural. In Zuraw’s theory, such
differences would follow from particular suffixed lexical entries for indi-
vidual inflected forms. The overall tendency for a stem to take the
same backness of suffixes throughout its paradigm would best be at-
tributed to output-to-output correspondence constraints (Benua 1997)
governing suffix backness, though we will not attempt to flesh out this
proposal here.

5.10 Keeping lexical entries in check

The constraint IDENT-IO[back] permits individual stems to force par-
ticular suffix choices, even in the face of the phonological agreement
constraints. Yet such suffix preferences should not be allowed unchecked,
because the resulting grammar would overgenerate. In Hungarian, there
are absolutely no stems of the following types:

(31) Impossible forms
a. F stems that take back suffixes (e.g. *[jylyt-nok])
b. B stems that take front suffixes (e.g. *[bortog-nek])
c. F(N)* stems that take back suffixes (e.g. *[yylit-nok])

Native speakers vigorously reject such forms, and (other than the oc-
casional random error) do not volunteer them on a wug test.

The normal approach for excluding impossible forms in Optimality
Theory follows the principle of the Rich Base (Prince & Smolensky 1993):
we show that if such an item occurred as a lexical entry, then the grammar
would derive from it an unfaithful well-formed output. For example, if
there were a lexical entry like [jylyt-nok/, the grammar would output
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[syvlyt-nek] instead. This approach to constraining idiosyncrasy has been
applied earlier in the theories of exceptions developed by Kager (in press)
and Pater (in press).”

In the grammar under discussion, the crucial restraint can be achieved
by ranking the strongest vowel-harmony constraints above IDENT-
IO[back], with a probability of 1:

(32) LocaL[F] LocaL[B]

1 1 DistaL[F]
1
IpENT-IO[bK]

Under this ranking, for the hypothetical lexical entry /yylyt-nok/ the
winning candidate would be well-formed [jylyt-nek], in which the
underlying /o] of the suffix surfaces as front:

(33) | Jvlyt-nok/ |LocaL[F]|Ipent-10[bk]

5 a. yylyt-nek *

b. yylyt-nok * |

Similar impossible forms are ruled out analogously: because LLocaL[B]
strictly dominates IDENT-1O[back], there could be no forms like *[bortog-
nek] even if the lexicon ‘asked for’ them ([bortog-nok] wins); and
because Di1sTAL[F] strictly dominates IDENT-1O[back], there could be no
*[gylit-nok] ([zylit-nek] wins). However, for all markedness constraints
ranked below IDENT-IO[back] (see (30)), an invariant listed form violating
that constraint can assert itself in the output.

5.11 Summary and assessment

The complete set of constraints and rankings in our analysis is
summarised in the following Hasse diagram:

3 Like Zuraw, Kager uses full lexical listing to encode exceptions, but lists the allo-
morphs of morphemes, rather than full words. Kager’s theory does not aspire to
account for statistical patterning of exceptions, and thus could not be used to ad-
dress our wug-test data.
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(34) IpENT-1O[bK],,

A

Locar[F] Locar[B]

K 1 Distar[F]
1 Y-

. IpENT-TO[bK]
LocarL[e] LocarL[NN] LocaL[el]

O'QN 0-738 0-624

DistarL[B]

Ny

o

LocaL[i]

We claim that the analysis meets the goals set out at the beginning of
this section. For novel BN and BNN stems, it generates outputs in pro-
portions that fairly closely match those produced by native speakers, as a
result of stochastic rankings among the lowest-ranked constraints (§ 5.6).
Further, it permits lexical entries of stems of these types to specify par-
ticular suffix choices, as a result of IDENT-1O[back] (§ 5.8). Lexical entries
are not permitted to specify impossible forms, due to the ranking of
LocaL[F], LocaL[B] and DisTaAL[F] above IDENT-IO[back] (§5.10).
Lastly, because IDENT-1O[back],,,, is at the top of the grammar, harmony
cannot alter stems (§5.5). The model achieves a fairly close match to the
wug-test data, diverging slightly in the BNN forms, as shown in Fig. 6.

To characterise the match quantitatively, we took each of the 26 wug
stems for which the model makes a prediction®* and paired the wug-test
score of the stem with the prediction made by the model for stems in its
class. The two sets of values thus obtained are highly correlated; r=0-991.
This is not surprising, given the fairly rich constraint set used. More
important, we claim that the constraints themselves are not arbitrary, but
follow general principles of phonological theory — that is, they are all
either markedness constraints of the AGREE family or faithfulness con-
straints for backness.

?* The model includes no constraints for N or NN stems; see § 5.12 below.
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Figure 6

Match-up of model to wug-test data.

5.12 Further issues

A number of issues surrounding the analysis remain for future research.

First, the use of constraints like D1sTAL[F] and DisTAL[B] glosses over a
problem in the analysis of non-local harmony in the AGREE framework: as
stated, they fail to distinguish forms like BFN from FBN, which incur the
same violations. Such forms are rare in Hungarian, but it seems fairly clear
that BFN stems take front harmony and FBN stems behave like the cor-
responding BN stems. In other words, the principle ‘closest trigger wins’
is not predicted by our analysis in the general case.

In the older autosegmental approach, the ‘closest trigger wins’ principle
was the automatic consequence of the ban on crossed association lines
(Clements 1977). However, in light of recent research (Hansson 2001,
Frisch et al. 2004, Rose & Walker 2004) it appears that the ‘closest trigger
wins’ principle is not exceptionless; and it is entirely incompatible with the
view taken here, in which variation in Hungarian is attributed to con-
flicting harmony triggers. What is needed, we think, is a more articulated
theory of non-local AGREE constraints in which the principle becomes
negotiable, subject to constraint ranking.

One possibility for such a theory is to suppose that a constraint like
DisTaL[B] is actually an intrinsically ranked infinite schema, along these
lines:

(35) AGreg[B]__ >
AcGree[BX] >
Acree[BXX] >
AcGree[BXXX] >

What needs to be worked out is a constrained system for ranking the
members of this schema which would appropriately implement the general
idea of ‘closest trigger wins’. For instance, we expect the default ranking
of the D1sTAL[B] schema and the DisTAL[F] schema to be as in (36):
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(36) AcGree[B] AGree[F]
AcGree[BX] AcGreg[FX]
AGreg[BXX] AGree[FXX]
AGRrRee[BXXX] AGRee[FXXX]

Since developing such a system explicitly would lead us rather far from
present concerns, we will not attempt it here.

We also have not dealt with N or NN stems. In our overall approach,
the occasional volunteering of back suffixes for N stems in our wug test
(as in [himp-nok]; see § 4.2) cannot be the result of IDENT-IO[back], since
wug stems are assumed to lack lexical entries. Rather, they must reflect
constraints, perhaps language-particular, that require dissimilation
(cf. Ringen 1980: 139). Most likely, the principal dissimilation constraint
singles out monosyllables in i/, since most of the Aid stems of Hungarian
take this form. Given the relative rarity of hid stems, the dissimilation
constraints must be stochastically ranked rather low (lower than the con-
straints of the LocaL[N] family), so that wug forms attaching [-nok] to
neutral stems are output only occasionally.

6 Learning the grammar

Thus far, we have followed the classical procedure of generative linguistics,
inventing a formal hypothesis intended to describe the native speaker’s
tacit knowledge. But the goal of explanatory adequacy (Chomsky 1965,
Chomsky & Halle 1965) implies that linguistic theory should not just
provide an accurate and principled account of language-particular gram-
mars, but offer a mechanism for how a child exposed to learning data could
arrive at the correct grammar. Recent work on learnability in Optimality
Theory (Boersma 1997, Boersma & Hayes 2001, Hayes 2004, Prince &
Tesar 2004) makes possible a sketch of how the Hungarian vowel-harmony
system as outlined here could be learned. The discussion will be confined
to the learning of the rankings shown in (34); we assume that the con-
straint inventory itself is either innate ('T'esar & Smolensky 2000) or else is
accessible to the child through some form of inductive learning (Hayes
1999).

6.1 Factoring the learning task

The learning task at hand can be divided into three parts.
(1) The child must discover WHAT IS POSSIBLE; that is, she learns to dis-
tinguish harmonically possible words from harmonically impossible ones.
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For instance, she must ultimately come to know that forms such as *[jylyt-
nok], *[bortog-nek], *[yylit-nok] (all from (31)), *[glyko:z-nek] (18) and
*[Joferr-nok] (19) are all impossible in Hungarian, and must also learn that
forms like [ha:deil-nok] and [ha:de:l-nek] are both, in principle, possible
Hungarian forms.

(11) Another aspect of the learning task involves the LEXiCcON: the child
must learn which particular stems take which kinds of suffixes, inter-
nalising lexical entries along the lines of § 5.8. We take no stance on how
lexical learning takes place, since nothing in our model bears on this
question.?

(iii) Lastly, it is evident from our experimental results that Hungarian-
learning children ultimately develop a STATISTICAL MODEL of the lexicon,
hence the ability to project novel forms stochastically in proportions
matching their lexical frequencies. In our model, this is done by assigning
a stochastic ranking to the constraints at the bottom of the grammar
in (34).

We will ignore here the (non-trivial) task of learning thousands of lexi-
cal entries and focus instead on tasks (i) and (iii). In principle, they could
be accomplished by a single algorithm, but here we find it necessary to use
two.%® The scheme invoked here is to use one algorithm to learn what is
possible, by establishing a set of ranked constraint strata, plus a second
algorithm to fine-tune these strata with statistical information. The two
algorithms could in principle run simultaneously; what is crucial is that
the statistical fine-tuning must respect the overall stratal structure.

6.2 Learning what is legal

The task of learning what is possible in Hungarian vowel harmony
confronts a classical conundrum: no negative evidence is available. The
child is never informed that words like *[jylyt-nok], *[bortog-nek], etc.,
are ill-formed, but rather comes to know it through some combination
of Universal Grammar and data processing capable of detecting the sys-
tematic gaps in the learning data.

For Optimality Theory, this kind of problem has been addressed with
two proposed constraint ranking algorithms: Low Faithfulness Constraint

% Plainly, lexical entries must be learned and maintained for unpredictable cases like
[otse:l-nok] acélnak (cf. (28)). Further, at the stage before harmony is learned, we
assume that the child also memorises even completely predictable cases like [oblok-
nok] ablaknak ‘window-DAT’, in order to have a data set to learn from. Once the
child knows that B stems always take back suffixes, it is safe for her to delete such
entries from her lexicon, since their form is predictable. However, our guess is that
children do not carry out this deletion: the experimental literature (see Baayen et al.
2002 and work cited there) includes ample evidence that speakers memorise large
numbers of high-frequency regular forms. These plausibly represent the regulars
that were memorised while the grammar was being learned.

Zuraw (2000), which inspired our study, uses only one algorithm to rank con-
straints, but this is because her work did not extend to the task of excluding logically
possible but non-occurring patterns of alternation.

26
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Demotion (Hayes 2004) and Biased Constraint Demotion (Prince &
Tesar 2004). These algorithms were invented to cover purely phonotactic
distributions, but nothing precludes using them on a ‘morphotactic’
problem such as the distribution of affix allomorphs. In both, the funda-
mental goal is to rank faithfulness constraints as low as possible, since it is
high-ranking faithfulness that leads to overgeneration. In our simulations
we tried both algorithms.

We fed the algorithms data that specified the kinds of forms that exist
in Hungarian, but without any frequency information. The data were
schematic forms like ‘B-nok’, intended to express whole classes of real
Hungarian stems that share the same constraint violations. The learning
data were as follows:

a. B-nok?? c. Bi-nok f. BNi-nok i. FB-nok 1. BF
Bi-nek BNi-nek FB
FNB
b. d. Be:-nok g. BNei-nok | | j. BNF
F-nek Be:-nek BNe:-nek BF-nek
e. Be-nok h. k.
Be-nek BNe-nek Fi-nek,
Fe:-nek,
Fe-nek
Table IV

Forms used in first stage of learning.

The presence of both Bi-nok and Bi-nek in the learning data (see cell ¢)
meant that a ranking permitting both types had to be found; this turns
out to be IDENT-1IO[back]> {DisTaL[B], LocaL[i]}, which can be seen
in (34) above. The fact that B-nek is not in the learning data (cell a) means
that a ranking must be found that excludes it; this turns out to be LocAaL
[B] > IDENT-IO [back]. Cells b and i—k similarly support the rankings in
(34) that result in these gaps. The fact that FB is in the learning data (cell 1)
means that a ranking must be discovered that permits it; this turns out to
be IDENT-1O[back] .. >LocAaL F; and similarly for the other forms in the
same cell.

The form BNe-nok is not in the learning data (see cell h); as noted
above, such forms do not occur in Hungarian. However, if we are to
account for our wug-test data, where forms like BNe-nok actually were
volunteered by native speakers, the learned grammar must be able to
generate it, even though it is not part of the learning data.

root

¥ B and F are meant to subsume, among other forms, NB and NF. We included no
NB or NF forms in the simulation, because our constraint set includes no
DisTAL[N], which would be the only constraint that would ‘care’ about the non-
final N. We have verified that in a full simulation DisTAL[N] would be ranked, as
expected, in the bottom stratum (the ranking is needed to derive back harmony in

disyllabic hid words).
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Both of our algorithms, Low Faithfulness Constraint Demotion and
Biased Constraint Demotion, require a set of losing candidates for learning
(the rankings are learned by comparing these losers with winning candi-
dates). We obtained our losing candidates using the method given in Tesar
& Smolensky (2000) and Prince & Tesar (2004): they are simply the wrong
guesses made by preliminary versions of the grammar.

We will not review the specific courses followed by the algorithms, but
simply give the results they obtained. The two algorithms learned iden-
tical, correct grammars,”® in the form of the strictly ranked constraint strata
given below:

(37) IpenT-1O[bk],, >
{LocaL[B], LocaL[F]} >
DistarL[F] >
IpENT-IO[bK] >
{DistaL[B], LocaL[i], LocaL[e:], LocaL[e], LocaL[NNT}

From (37), all the non-stochastic rankings (probability = 1) of Hasse dia-
gram (34) can be deduced. As already shown, these rankings guarantee
that none of the impossible forms mentioned above can be generated, and
all of the possible forms can.”’

6.3 Learning statistical distributions

The other part of learning consisted of fine-tuning this overall ranking so
as to match the frequencies of the lexicon. For this purpose, we used the
Gradual Learning Algorithm (Boersma 1997, Boersma & Hayes 2001),
operating under the constraint that it had to respect all of the pairwise
rankings defined by the strata in (37). Under this regimen, most stem
types cannot influence ranking, so we (harmlessly) restricted the learning
set to the stem types that matter, namely Bi, Be:, Be, BNi, BNe: and BNe.
As a means of approximating the experience of real Hungarian learners,
we chose as frequencies the type frequencies found in the Google survey
reported in §3.1, dividing the frequency share of each vacillator in
proportion to the token counts. Thus the learning data assumed were as
follows:

2 A detail: Biased Constraint Demotion was run in the modified version devised by
Hayes (2004), which adds a provision favouring specific over general faithfulness
constraints. Without this modification, the algorithm wrongly puts IDENT-IO[back]
at the top of the grammar. Preference for general faithfulness constraints is a
problem with the original version of Biased Constraint Demotion, discussed in
Hayes (2004: 192-194) and Prince & Tesar (2004: 288).

¥ For the reason just given, we consider BNe-nok to be a possible form.
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(38) harmony  frequency harmony  frequency

pattern pattern

Bi Bi-nok 469-8 BNi BNi-nok 67
Bi-nek 52 BNi-nek 233

Be: Be:-nok 101-4 BNe: BNe:-nok 5-1
Bei-nek 186 BNe:-nek 69

Be Be-nok 12-1 BNe BNe-nok 0-0
Be-nek 103-9 BNe-nek 21-0

We further assumed that this part of learning is uninfluenced by
faithfulness, in particular faithfulness to listed suffixed forms like (27c)
[pollerr-nok/. This assumption was needed to keep faithfulness from de-
termining the outcome, which would have kept the Gradual Learning
Algorithm from learning the aggregate statistical pattern of the lexicon.
We therefore excluded the faithfulness constraints from this phase of the
ranking; they are all ranked correctly in any event in the non-stochastic
phase just described.*

We ran the Gradual Learning Algorithm for ten trials on these learning
data in the way just described. All trials yielded similar outcomes; we
report the least accurate one here.’!

For the stochastic lower region of the grammar, which is what is at issue
here, the algorithm learned the stochastic rankings given below. We give
pairwise ranking probabilities for the four crucial cases, where DisTAL[B],
which favours back suffixes, conflicts with some other constraint favour-
ing front suffixes:

39) ranking probability
a. LocaL[e] > DistaL[B] 0-903
b. LocaL[NN]> DistaL[B] 0-739
c. DistaL[B] > LocaL[e:] 0-871
d. DistaL[B] > LocaL[i] 0-988

39 A more nuanced approach would suppose that the irrelevance of IDENT-IO[back]
arises not from simply turning faithfulness off, but rather from the fact that it takes
time for lexical entries like /polleir-nok/ to get established — it would take multiple
hearings for a learner to become confident that [polleir] is not a vacillator. During
this period, when the learner hears [polleir-nok], she can only interpret it as a rep-
resentative Be: stem. In this capacity, it would play a role in incrementally re-
ranking the markedness constraints to favour back suffixes for such stems.

The learning parameters were: 250,000 trials at each of the plasticity values 1, 0-1,
0-01 and 0-001; noise set at 2-0 for all trials; results tested for 100,000 trials. Strict
rankings were enforced by maintaining a minimum distance of 20 along the ranking
scale. The ranking values output by the Gradual Learning Algorithm were
LocarL[e]=105-176, LocarL[NN]=103-313, DisTaL[B]=101-430, LocaL[e]=
98-315, LocaL[i] =95-079.

31
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Figure 7
Match-up of machine-ranked model to Google data.

6.4 Evaluating the simulation

The learned grammar can be evaluated in two ways. First, we can ask the
purely mechanical question of whether the algorithm was able to rank the
constraints in a way that mimicked the frequencies (that is, the Google
frequencies) in the learning data. From a more scientific viewpoint, we can
ask if it mimicked a real Hungarian speaker: ideally, the learning system
should be trained with real data, then behave like a native speaker when it
is wug-tested — including any divergences from the pattern in the learning
data.

The results for the criterion of corpus-mimicry were reasonably good
(correlation for the eight values given: r=0-988) and are given in Fig. 7
and Table V.

stem wug test hand machine Google
type ranking ranking frequencies
B 0-988 1-000 1-000 0-997
Bi 0-953 0-953 0-988 0-989
Be: 0-376 0-376 0-871 0-845
Be 0-071 0-071 0-098 0-104
BNi 0-287 0-257 0-262 0-223
BNe: 0-073 0-164 0-255 0-421
BNe 0-015 0-045 0-059 0-000
F 0-006 0-000 0-000 0-000
Table V

Source data for Figs 7 and 8.

It is clear that the B and F forms were unproblematic, and that the
algorithm was driven primarily by the frequencies of the BN forms, which
were closely mimicked. The frequencies of BNN forms were not so
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Match-up of hand-ranked and machine-ranked models to
wug-test and Google data.

accurately reflected; however, we would claim that this is all to the good:
like native speakers, the algorithm smoothed these forms (§§ 4.3, 5.6). The
peak in BNe: forms is diminished in the learned grammar, and the fraction
of BNe-nok forms is raised from zero to a modest level. These smoothings
are the result of the algorithm carrying over patterns from the statistically
preponderant BN forms.

Next, we compare the results of the learning model to the wug-test data.
The match-up achieved by our model is in Fig. 8. For comparison we
include as well the predictions made by the handcrafted grammar of (34).

The following observations seem pertinent:

(1) The machine-learned grammar did somewhat worse than the hand-
crafted grammar at matching the wug-test data (correlations: r=0-908 vs.
r=0-990). This is to be expected, since the handcrafted grammar was
deliberately made to match the wug-test data, whereas the machine-
learned grammar was trained on the Google data.*?

(11) The greatest source of discrepancy between the machine-learned
model and the wug-test data was in the Be: forms: for these, a best-fit
ranking would have assigned a probability of 0-624 to the ranking
LocaL[e:] > DisTAL[B], whereas the machine-learned grammar had a
probability of just 0-129. This discrepancy arises primarily from the dif-
ference between the Google data and the wug-test data, which we dis-
cussed above in § 4.4. The mismatch is aggravated further by the presence
of the aberrant BNe: forms, discussed in § 4.3.%

32 Note that running a learning simulation in which the learning data are wug-test
intuitions would lack scientific legitimacy; it would presuppose that language
learners could directly access the intuitions of those around them rather than just
their speech output.

A reviewer asks if a simple ‘bias’ constraint, favouring front suffixes, might help
here. We have tried this and it does not help; the predicted values in fact are very
close to those given by the Gradual Learning Algorithm simulation described in the
main text.

33
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(111) As noted, the machine-learned grammar smoothed the frequencies
of BNN forms. As a result, the correlation of the wug-test data (30 forms)
with the predictions of the machine-learned grammar (r=0-908) was ac-
tually slightly higher than the correlation of the wug-test data with the
Google data from which the machine grammar was learned (among the
forms covered by the grammar, this is r=0-896). In other words,
the machine-learned grammar’s failures in mimicking its learning data
actually made it a marginally better mimic of the wug-test data, a desirable
outcome given our goal of modelling real language learners.

(iv) However, the machine-learned grammar evidently did not smooth
as much as it should have. The handcrafted grammar, which was set up to
match the wug-test data rather than the Google data, achieves a better
degree of smoothing for BNe: (a lower value) than the machine-learned
grammar.

Overall, we are encouraged by the degree of match between the learning
model and the wug-test data, and by the ability of the model to smooth in a
qualitatively appropriate way.

6.5 Why two algorithms?

In conclusion, we confess a sense of dissatisfaction that our simulation
needs two algorithms to work; one to delimit the range of possible forms,
the other to fine-tune the distribution. Our reviewers asked in particular
why the Gradual Learning Algorithm alone would not suffice. The answer
is that, in the absence of negative evidence, the algorithm has no way of
ensuring restrictiveness (non-overgeneration). T'o be sure, it is possible
to give it a crude bias for restrictiveness by starting out the faithful-
ness constraints ranked much lower than the markedness constraints.
However, there is no reason why a head start—no matter how large —
would guarantee a correct final grammar. We find, in fact, that if we use
the Gradual Learning Algorithm alone, then in all but the most over-
simplified, stripped-down simulations, IDENT-IO[back] inevitably rises
too high in the grammar.

We gave our two-algorithm simulation to show that at least one form of
automated learning can handle the Hungarian facts. However, we judge
that our study also shows the need for more theoretical work, particularly
to find an algorithm that is both stochastic and restrictive in the absence of
negative evidence.

7 Other models

We emphasise that our model represents only one way to use the data of
the Hungarian lexicon to make predictions about the harmony behaviour
of novel stems. Our particular interest in this model is that it is grounded
in a well-developed approach to phonological analysis, Optimality Theory.
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Match-up of Maximum Entropy model to wug-test and Google data.

This is a reasonable research strategy, because O'T' has been successfully
used in the description and analysis of a great deal of other phonological
data. There are, however, other important contenders, which certainly
should not be ruled out at this stage of research. We will mention a few
here.

Fairly closely related to OT is the Maximum Entropy model described
by Goldwater & Johnson (2003). Instead of the stochastic O'T ranking we
used here, this model assigns penalty weights to constraints. To evaluate a
candidate, its violations for each constraint are counted, and the count is
multiplied by the weight of the constraint. The score assigned to a can-
didate is the sum of these values for all of the constraints. There is also a
learning algorithm for Maximum Entropy models, described in
Goldwater & Johnson’s work, which finds the set of weights that best fits
the data. Applying this model** to the Stage 11 learning data given above,
we found that the correlation of the Maximum Entropy model with the
wug-test data was r = 0-904. This is marginally better than the 0-902 value
for our learned stochastic O'T model, but not as good as the 0-991 for the
hand-ranked O'T' model. More strikingly, the Maximum Entropy model
proved completely successful in predicting the ‘smoothing’ effect for
BNe: forms described above. The predictions of the Maximum Entropy
model are given in Fig. 9.

Both constraint-based models mentioned so far use constraints pro-
vided a priori under the theory. An alternative is for the model to induce
the constraints from the learning data, as in the non-OT models of
Ellison (1994) and Albright & Hayes (2002, 2003, in press). The ability to
incorporate learned constraints into the model employed here may be
crucial in extending it to highly irregular paradigmatic patterns, such as
those found in English past tenses, where the constraints would likely have
to be partly language-specific.

3 We have used an implementation devised by Colin Wilson of UCLA, to whom
many thanks. Multiple runs yielded identical outcomes.
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The above models use constraints that are violated discretely; thus, for
example, for any given vowel pair, LocAL[B] is either violated or obeyed.
An alternative would be to unify LocaL[B] and DisTAL[B] into a single,
gradiently violated constraint, as Frisch et al. (2004) do for the similarity-
based phonotactics of Arabic roots. We find this prospect intriguing,
but at present we do not see how to integrate gradient constraints into a
general phonological theory; nor have we yet seen algorithms that could
be used for learning and properly weighting such constraints. We view the
exploration and theoretical integration of gradient constraints as a task for
further research.

Still further afield are models that do not use constraints at all, but
rather attempt to predict novel forms on the basis of analogy with existing
forms. Important models in this area include the Tilburg Memory-Based
Learner (TiMBL; Daelemans et al. 2004), Analogical Modelling of
Language (AML; Skousen 1989, 2002), and connectionist models, such as
the one implemented in Ernestus & Baayen (2003). We judge that the
greatest challenge for such models is to derive regular forms with complete
reliability; for discussion see Albright & Hayes (2003: 149-152). However,
we have not determined whether the regular forms of Hungarian, such as
B or F stems, would cause trouble for these models.

It is clear that future research should involve comparisons between rival
models. For Hungarian, this comparison will be more effective once we
have been able to increase the number of wug forms that have been sub-
mitted to native speakers for judgment. For now, we have posted our
corpus data and experimental findings on the Internet (http://www.
linguistics.ucla.edu/people/hayes/hungarianvh/), and hope that modellers
of all persuasions will obtain them and use them to test their proposals.

8 Conclusions

Our main empirical result, from the wug test, is that Hungarian speakers
know not just the legal patterns of harmony, but also the frequency of
these patterns, and they actively use this knowledge in guessing the
harmonic behaviour of novel stems. This is linguistic knowledge that
most previous models of phonology and morphology (see § 1) have not
captured.

It is not implausible to suppose that this knowledge is in fact useful to
speakers and thus worth acquiring. It permits them to guess more accu-
rately when they must produce an inflected form for a stem they have
never heard with a suffix — probably a common experience for children. It
may also serve them in speech perception, by providing rational top-down
biases for recognising suffixes uttered by other speakers.

On the theoretical side, we have suggested that the way Hungarian
speakers internalise the frequencies is not through some kind of raw data
table, but instead in their grammars. We have found that by ranking some
of the constraints stochastically in a ‘subterranean’ grammar of the kind
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proposed by Zuraw (2000), we can model the native speaker’s intuition
fairly accurately. The constraints that are needed are ordinary constraints
of Optimality Theory; all that is different is the possibility of stochastic
ranking. The fact that stochastic O'T also allows rankings that are essen-
tially non-stochastic (probability vanishingly close to 1) means that our
model can also rule out impossible forms.

Lastly, we have made an initial attack on the problem of learning such
grammars. Our conjecture is that the full set of rankings can be learned
through a combination of algorithms, one of which learns the basic range
of possibilities, while the other fine-tunes the grammar to match lexical
frequencies.

A theme of our work has been to show that tools now exist to permit
study of phonological systems in greater detail than would otherwise be
possible. Our web-corpus study, experimentation and stochastic theo-
retical modelling show that the native speaker of Hungarian possesses a
richer knowledge of the harmony system than can be adequately described
under the older rules-and-exceptions approach.

This said, we believe that a great deal of further progress is needed.
In particular, while we have demonstrated the considerable detail with
which the native speaker of Hungarian learns the harmony pattern of the
lexicon, our study was not designed to find out any upper limit on what is
learned: are there statistically reliable patterns in the lexicon that cannot
be detected by the human phonological capacity ?** A positive answer to
this question would be very informative concerning the nature of that
capacity. We think the methods laid out here might serve to address this
question, notably by expanding greatly (perhaps by use of the Web) the
scope of wug testing. We also anticipate that further progress will follow
from improvements in the underlying phonological theory and in the
theory of phonological learning.
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