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The Gradual Learning Algorithm (Boersma 1997) is a constraint-rank­
ing algorithm for learning optimality-theoretic grammars. The purpose 
of this article is to assess the capabilities of the Gradual Learning 
Algorithm, particularly in comparison with the Constraint Demotion 
algorithm of Tesar and Smolensky (1993, 1996, 1998,2000), which 
initiated the learnability research program for Optimality Theory. We 
argue that the Gradual Learning Algorithm has a number of special 
advantages: it can learn free variation, deal effectively with noisy 
learning data, and account for gradient well-formedness judgments. 
The case studies we examine involve Ilokano reduplication and me­
tathesis, Finnish genitive plurals, and the distribution of English light 
and dark /1/. 
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Optimality Theory (Prince and Smolensky 1993) has made possible a new and fruitful approach 
to the problem of phonological learning. If the language learner has access to an appropriate 
inventory of constraints, then a complete grammar can be derived, provided an algorithm is 
available that can rank the constraints on the basis of the input data. This possibility has led to 
a line of research on ranking algorithms, originating with the work of Tesar and Smolensky (1993, 
1996, 1998, 2000; Tesar 1995), who propose an algorithm called Constraint Demotion, reviewed 
below. Other work on ranking algorithms includes Pulleyblank and Turkel 1995, 1996, 1998, to 
appear, Broihier 1995, Hayes 1999, and Prince and Tesar 1999. 

Our focus here is the Gradual Learning Algorithm, as developed by Boersma (1997, 1998, 
to appear). This algorithm is in some respects a development of Tesar and Smolensky's proposal: 
it directly perturbs constraint rankings in response to language data, and, like most previously 
proposed algorithms, it is error driven, in that it alters rankings only when the input data conflict 
with its current ranking hypothesis. What is different about the Gradual Learning Algorithm is 
the type of optimality-theoretic grammar it presupposes: rather than a set of discrete rankings, it 
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assumes a continuous scale of constraint strictness. Also, the grammar is regarded as stochastic: 
at every evaluation of the candidate set, a small noise component is temporarily added to the 
ranking value of each constraint, so that the grammar can produce variable outputs if some 
constraint rankings are close to each other. 

The continuous ranking scale implies a different response to input data: rather than a whole­
sale reranking, the Gradual Learning Algorithm executes only small perturbations to the con­
straints' locations along the scale. We argue that this more conservative approach yields important 
advantages in three areas. First, the Gradual Learning Algorithm can fluently handle optionality; 
it readily forms grammars that can generate multiple outputs. Second, the algorithm is robust, in 
the sense that speech errors occurring in the input data do not lead it off course. Third, the 
algorithm is capable of developing formal analyses of linguistic phenomena in which speakers' 
judgments involve intermediate well-formedness. 

A paradoxical aspect of the Gradual Learning Algorithm is that, even though it is statistical 
and gradient in character, most of the constraint rankings it learns are (for all practical purposes) 
categorical. These categorical rankings emerge as the limit of gradual learning. Categorical rank­
ings are of course crucial for learning data patterns where there is no optionality. 

Learning algorithms can be assessed on both theoretical and empirical grounds. At the purely 
theoretical level, we want to know if an algorithm can be guaranteed to learn all grammars that 
possess the formal properties it presupposes. Research results on this question as it concerns the 
Gradual Learning Algorithm are reported in Boersma 1997, 1998, to appear. On the empirical 
side, we need to show that natural languages are indeed appropriately analyzed with grammars 
of the formal type the algorithm can learn. 

This article focuses on the second of these tasks. We confront the Gradual Learning Algorithm 
with a variety of representative phonological phenomena, in order to assess its capabilities in 
various ways. This approach reflects our belief that learning algorithms can be tested just like 
other proposals in linguistic theory, by checking them out against language data. 

A number of our data examples are taken from the work of the second author, who arrived 
independently at the notion of a continuous ranking scale, and has with colleagues developed a 
number of hand-crafted grammars that work on this basis (Hayes and MacEachern 1998; Hayes, 
to appear). 

We begin by reviewing how the Gradual Learning Algorithm works, then present several 
empirical applications. A study of Ilokano phonology shows how the algorithm copes with data 
involving systematic optionality. We also use a restricted subset of the I1okano data to simulate 
the response of the algorithm to speech errors. In both cases, we make comparisons with the 
behavior of Constraint Demotion. Next, we tum to the study of output frequencies, posed as an 
additional, stringent empirical test of the Gradual Learning Algorithm. We use the algorithm to 
replicate the study of Anttila (l997a,b) on Finnish genitive plurals. Finally, we consider gradient 
well-formedness, showing that the algorithm can replicate the results on English /1/ derived with 
a hand-crafted grammar by Hayes (to appear). 
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2 How the Gradual Learning Algorithm Works 

Two concepts crucial to the Gradual Learning Algorithm are the continuous ranking scale and 
stochastic candidate evaluation. We cover these first, then tum to the internal workings of the 

algorithm. 

2.1 The Continuous Ranking Scale 

The Gradual Learning Algorithm presupposes a linear scale of constraint strictness, in which 
higher values correspond to higher-ranked constraints. The scale is arranged in arbitrary units 
and in principle has no upper or lower bound. Other work that has suggested or adopted a 
continuous scale includes that of Liberman (1993:21, cited in Reynolds '1994), Zubritskaya (1997: 
142-144), Hayes and MacEachern (1998), and Hayes (to appear). 

Continuous scales include strict constraint ranking as a special case. For instance, the scale 
depicted graphically in (1) illustrates the straightforward nonvariable ranking C, » C2 » C3 . 

(1) Categorical ranking of constraints ( C) along a continuous scale 

strict 
(high-ranked) 

C, C2 C3 

~ ~! 

2.2 How Stochastic Evaluation Generates Variation 

lax 
(low-ranked) 

The continuous scale becomes more meaningful when differences in distance have observable 
consequences-for example, if the short distance between C2 and C3 in (1) tells us that the relative 
ranking of this constraint pair is less fixed than that of C, and C2 • We suggest that in the process 
of speaking (Le., at evaluation time. when the candidates in a tableau have to be evaluated in 
order to determine a winner), the position of each constraint is temporarily perturbed by a random 
positive or negative value. In this way, the constraints act as if they are associated with ranges 
of values, instead of single points. We will call the value used at evaluation time a selection 
point. The value more permanently associated with the constraint (Le., the center of the range) 
will be called the ranking value. 

Here there are two main possibilities. If the ranges covered by the selection points do not 
overlap, the ranking scale again merely recapitulates ordinary categorical ranking. 

(2) Categorical ranking with ranges 

C, 
I 

strict lax 

But if the ranges overlap, ranking will be free (variable). 
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(3) Free ranking 

strict lax 

The reason is that, at evaluation time, it is possible to choose the selection points from anywhere 
within the ranges of the two constraints. In (3), this would most often result in C2 outranking C3 , 

but if the selection points are taken from the upper part of C3 ' s range, and the lower part of C2' s, 
then C3 would outrank C2. The two possibilities are shown in (4); /-2/ and /-3/ depict the selection 

points for C2 and C3 . 

(4) a. Common result: C2 » C3 

-2 C2 
C3 -3 

I I 
I I 

strict lax 

b. Rare result: C3 » C2 

C2 
-3 -2 C3 

I 
I I I 

1 

strict lax 

When one sorts all the constraints in the grammar by their selection points, one obtains a 
total ranking to be employed for a particular evaluation time. With this total ranking, the ordinary 
competition of candidates (supplied by the Gen function of Optimality Theory) takes place and 
determines the winning output candidate. I 

The above description covers how the system in (4) behaves at one single evaluation time. 
Over a longer sequence of evaluations, the overlapping ranges often yield an important observable 
effect: for forms in which C2 » C3 yields a different output than C3 » C2 , one observes free 
variation, that is, multiple outputs for a single underlying form. 

To implement these ideas more precisely, we interpret the constraint ranges as probability 

distributions (Boersma 1997, 1998, Hayes and MacEachern 1998). For each constraint, we assume 
a function that specifies the probability that the selection point will occur at any given distance 
above or below the constraint's ranking value at evaluation time. By using probability distributions, 
one can not only enumerate the set of outputs generated by a grammar, but also make predictions 
about their relative frequencies, a matter that will tum out to be important below. 

Many noisy events in the real world occur with probabilities that are appropriately described 
with a normal (= Gaussian) distribution. A normal distribution has a single peak in the center, 
which means that values around the center are most probable, and declines gently but swiftly 

I The mechanism for determining the winning output in Optimality Theory, with Gen and a ranked constraint set, 
will not be reviewed here. For background, see Prince and Smo1ensky's original work (1993) or textbooks such as 
Archangeli and Langendoen 1997 and Kager 1999a. 
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toward zero on each side. Values become less probable the farther they are from the center, 

without ever actually reaching zero probability. 

(5) The normal distribution 

(1 (1 

A normal distribution is described by its mean fL, which occurs at its center, and its standard 
deviation a, which describes the "breadth" of the curve. Approximately 68% of the values drawn 
from a normal distribution lie within one standard deviation from the mean (i.e., between fL - a 

and fL + a). The Gradual Learning Algorithm makes the assumption that selection points for 
natural language constraints are distributed normally, with the mean of the distribution occurring 
at the ronking value. The normal distributions are assumed to have the same standard deviation 
for every constraint, for which we typically adopt the arbitrary value of 2.0.2 In this approach, the 
behavior of a constraint set depends on its ronking values alone; constraints cannot be individually 
assigned standard deviations. The process of learning an appropriate constraint ranking therefore 
consists solely of finding a workable set of ranking values. 

When discussing the derivation of forms using a set of constraints, we will use the term 
evaluation noise to designate the standard deviation of the distribution (a); the term is intended 
to suggest that this value resides in the evaluation process itself, not in the constraints. 

We illustrate these concepts with two hypothetical constraints and their associated normal 
distributions on an arbitrary scale. 

(6) Overlapping ranking distributions 

C1 C2 

~i 
strict 90 88 86 84 82 80 lax 

In (6), the ranking values for C1 and C2 are at the hypothetical values 87.7 and 83.1. Since the 
evaluation noise is 2.0, the normal distributions assigned to C1 and C2 overlap substantially. While 
the selection points for C1 and C2 will most often occur somewhere in the centrol "hump" of 
their distributions, they will on occasion be found quite a bit further away. Thus, C 1 will outrank 
C2 at evaluation time in most cases, but the opposite ranking will occasionally hold. Simple 
calculations show that the percentages for these outcomes will tend toward the values 94.8% 
(C 1 » C2 ) and 5.2% (C2 » Cd. 

2 Since the units of the ranking scale are themselves arbitrary, it does not matter what standard deviation is used, 
so long as it is the same for all constraints. 
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2.3 How Can There Not Be Variation? 

At this point, the reader may wonder how this scheme can depict obligatory constraint ranking, 
if the values of the normal distribution never actually reach zero. The answer is that when two 
constraints have distributions that are dramatically far apart, the odds of a deviant ranking become 
vanishingly low. Thus, if two distributions are 5 standard deviations apart, the odds that a "re­
versed" ranking could emerge are about 1 in 5,000. This frequency would be hard to distinguish 
empirically, we think, from the background noise of speech errors. If the distributions are 9 
standard deviations apart, the chances of a "reversed" ranking are 1 in 10 billion, implying that 
one would not expect to observe a form derived by this ranking even if one monitored a speaker 
for an entire lifetime. 

In applying the Gradual Learning Algorithm, we often find that it places constraints at 
distances of tens or even hundreds of standard deviations apart, giving what is to all intents and 
purposes non variable ranking. 

Often, constraints occur ranked in long transitive chains. The ranking scheme depicted here 
can treat such cases, since the strictness continuum is assumed to have no upper or lower bounds, 
and the learning algorithm is allowed to take up as much space as it needs to represent all the 
necessary rankings. 

2.4 Predictions about Ranking 

This concludes our discussion of the model of ranking presupposed by the Gradual Learning 
Algorithm. Before we move on, it is worth noting that this model is quite restrictive: there are 
various cases of logically possible free rankings that it excludes. Thus, for example, it would be 
impossible to have a scheme in which A "strictly" outranks B (Le., the opposite ranking is 
vanishingly rare), B "strictly" outranks C, and D is ranked freely with respect to both A and C. 
This scheme would require a much larger standard deviation for D than for the other constraints. 
The model does not permit this, since the noise is regarded as a property of evaluation, not of 
each separate constraint. 

(7) A less restrictive grammar model with different distributions for each constraint 

A B D C 

Ad\' ~ 
strict lax 

Thus, while the empirical tests given below are meant primarily to assess the Gradual Learning 
Algorithm, they also test a general hypothesis about possible free rankings.3 

3 Reynolds (1994) and Nagy and Reynolds (1997) adopt a "floating constraint" model, in which a given constraint 
may be freely ranked against a whole hierarchy of categorically ranked constraints, which is exactly what we just claimed 
to be impossible. We have reanalyzed a number of Reynolds's and Nagy's cases and have found that it is possible to 
account for their data within the model we assume, though never with the same constraint inventory. Some reanalyses 
are posted at http://www.fon.hum.uva.nVpauVglal. 



EMPIRICAL TESTS OF THE GRADUAL LEARNING ALGORITHM 51 

2.5 The Gradual Learning Algorithm 

The Gradual Learning Algorithm tries to locate an empirically appropriate ranking value for every 

constraint. 
The initial state. The constraints begin with ranking values according to the initial state that 

is hypothesized by the linguist. In principle, one could give every constraint the same ranking 
value at the start, or one could incorporate various proposals from the literature for less trivial 
initial rankings (e.g., Faithfulness low: Gnanadesikan 1995, Smolensky 1996, Boersma 1998, 
Hayes 1999; or Faithfulness high: Hale and Reiss 1998). In the cases considered here, such 
decisions affect the amount of input data and computation needed, but do not materially affect 
the final outcome.4 In our implementations of the algorithm, every constraint starts at the same 
value, selected arbitrarily to be 100. 

Step 1: A datum. The algorithm is presented with a learning datum, that is, an adult surface 
form that the language learner hears and assumes to be correct. Adopting Tesar and Smolensky's 
idealization, we assume that the algorithm is also able to access the underlying form for each 
learning datum. 

The idea that the learner obtains access to underlying forms naturally raises questions, since 
underlying forms are not audible, nor are structures like syllables or feet. We refer the reader to 
Tesar and Smolensky 1996, 2000, for discussion of how the problem of covert structure might 
be overcome by embedding the ranking algorithm within a larger learning system. 

Step 2: Generation. Since the algorithm is error driven, the next step is to see what the 
current grammar generates for the assumed underlying form. Where this yields a mismatch, the 
grammar must then be adjusted. 

Generation works as follows. For each constraint, a noise value is taken at random from the 
normal probability distribution and is added to the constraint's current ranking value to obtain the 
selection point. Once a selection point has been chosen for every constraint, generation proceeds by 
sorting the constraints in descending order of their selection points. This yields a strict constraint 
ranking, of the traditional kind, which is used only for this particular evaluation. The remainder 
of the generation process follows the standard mechanisms of Optimality Theory.5 

Step 3: Comparison. If the form just generated by the grammar is identical to the learning 
datum, nothing further is done. But if there is a mismatch, the algorithm notices this and takes 
action. Specifically, it compares the constraint violations of the learning datum with what is 
currently generated by the grammar. This comparison is illustrated in tableau (8), which depicts 
a representative grammar with eight schematic constraints. 

4 In contrast, for the problem of learning phonotactic distributions from positive evidence only (Smolensky 19%, 
Hayes 1999, Prince and Tesar 1999), for which no fully adequate algorithm yet exists, the issue of initial rankings may 
well be crucial. The cases we consider here are more tractable, since the goal is simply to project surface forms from 
known underlying forms. 

5 It follows that the set of possible outputs that can be generated by a constraint set remains the same under our 
approach. As noted in section 2.4, the theory makes additional predictions about what outputs can occur together in free 
variation. 
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(8) A mismatch between the leamer's form and the adult form 

lunderlying form! C1 C2 C3 C4 C5 C6 C7 Cg 

./ Candidate 1 (learning datum) *! ** * * * 

*ow* Candidate 2 (learner's output) * * * * * 

As can be seen, candidate 1, which is the surface fonn the algorithm has just "heard," failed to 
emerge as the winner in the overall competition among candidates. That winner happens to be 
candidate 2. The algorithm, being error driven, takes this mismatch as a signal to alter the grammar 
so that in the future the grammar will be more likely to generate candidate 1, and not candidate 
2. The alteration will take the fonn of changes in the ranking values of the schematic constraints 
C1-Cg .6 

The next step is just the same as in Constraint Demotion (Tesar and Smolensky 1998:239): 
mark cancellation. Violations that match in the two rival candidates are ignored, as they make 
no difference to the outcome. 

(9) Mark cancellation 

lunderlying form! C1 C2 C3 C4 C5 C6 C7 Cg 

./ Candidate 1 (learning datum) *! *,. ,. * ,. 
*~* Candidate 2 (learner's output) ,. ,. * * ,. 

Step 4: Adjustment. In the situation being considered, candidate 1 (the candidate embodied 
by the learning datum) should have won, but candidate 2 was the actual winner. This constitutes 
evidence for two things. First, it is likely that those constraints for which the learning-datum 
candidate suffers uncanceled marks are ranked too high. Second, it is likely that those constraints 
for which the learner's output suffers uncanceled marks are ranked too low. Neither of these 
conclusions can be taken as a certainty. However, this uncertainty is not crucial, since the ultimate 
shape of the grammar will be detennined by the ranking values that the constraints will take on 
in the long tenn, with exposure to a full range of representative fonns. The hypothesis behind 
the Gradual Learning Algorithm is that moderate adjustments of ranking values will ultimately 
achieve the right grammar. Therefore, the algorithm is set up so as to make a small adjustment 
to all constraints that involve uncanceled marks. 

We define plasticity as the numerical quantity by which the algorithm adjusts the constraints' 
ranking values at any given time. Appropriate values for plasticity are discussed below; for now, 
the reader should simply assume that the plasticity is reasonably small. 

6 Note that in cases of free variation, candidate 2 might actually be well formed. This case is discussed in section 
2.6. 
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The response of the Gradual Learning Algorithm to data, as processed in the way just de­

scribed, is as follows: 

• For any constraint for which the learning-datum candidate suffers uncanceled marks, de­

crease that constraint's ranking value by an amount equal to the current plasticity. 
• For any constraint for which the learner's own output candidate suffers uncanceled marks, 

increase that constraint's ranking value by an amount equal to the current plasticity. 

For the schematic case under discussion, these adjustments are shown in tableau (10) as small 
arrows. Canceled marks are omitted for clarity. 

(10) The learning step: adjusting the ranking values 

lunderlying form! C, C2 C3 C4 Cs C6 C7 Cg 

./ Candidate 1 (learning datum) *~ *~ *~ 

*~* Candidate 2 (learner's output) f-* f-* 

The adjustments ensure that candidate 1 becomes somewhat more likely to be generated on any 
future occasion, and candidate 2 somewhat less likely. 

The final state. With further exposure to learning data, the algorithm cycles repeatedly through 
steps 1 to 4. If for the underlying form under discussion, the adult output is always candidate I, 
then C4 or C6 (or both; it depends on the violations of all the other learning pairs) will eventually 
be ranked at a safe distance above C" C2 , and Cs. This distance will be enough that the probability 
of generating candidate 2 will become essentially nil, and the resulting grammar will generate 
candidate 1 essentially 100% of the time. 

2.6 The Algorithm's Response to Free Variation 

Now consider cases of free variation, where the same underlying form yields more than one 
possible output. In such cases, it can happen that the grammar's current guess fails to match the 
learning datum, yet is well formed in the target language. 

The activity of the Gradual Learning Algorithm in such cases might at first glance seem 
pointless: as free variants are processed, they induce apparently random small fluctuations in the 
ranking values of the constraints. However, closer inspection shows that the algorithm's response 
is in the long run systematic and useful: with sufficient data, the algorithm will produce a grammar 
that mimics the relative frequency of free variants in the learning set. As will be seen in section 
5, the frequency-matching behavior of the Gradual Learning Algorithm has important linguistic 
consequences. 

Intuitively, frequency matching works as follows: a given free variant F that is more common 
than a cooccurring variant F' will have more "say" than F' in determining the ranking values. 
However, adjustments induced by F will only occur up to the point where the grammar assigns 
to F its fair share of the set of forms derivable from the underlying form in question. Should 
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learning accidentally move the ranking values beyond this point, then tokens of F' will come to 
have a stronger effect in subsequent learning, resulting in adjustments in the opposite direction. 
The system eventually stabilizes with ranking values that yield a distribution of generated outputs 
that mimics the distribution of forms in the learning data. The same mechanism will mimic 
learning-set frequencies for three (or in principle any number of) free variants. 

This concludes the main discussion of the algorithm. In implementing the algorithm, one 
must select a learning schedule for plasticity and other parameters, ideally in a way that maximizes 
the speed and accuracy of learning. For now we suppress these details, deferring discussion to 
appendix A. 

2.7 Some Alternatives That Don't Work 

We would not want the view attributed to us that use of statistical methods is a panacea in 
learnability; plainly, it is not. First, the Gradual Learning Algorithm relies on the theory of grammar 
to which it is coupled (Optimality Theory), along with a specific constraint inventory. If that 
inventory does not permit the linguistically significant generalizations to be captured, then the 
grammar learned by the Gradual Learning Algorithm will not capture them.7 Second, not just 
any statistically driven ranking algorithm suffices. We have tried quite a few alternatives and 
found that they failed on data for which the Gradual Learning Algorithm succeeded. These alterna­
tives include: 

• Decrementing only those constraints that directly cause a wrong guess to win (e.g., just 
C1 and C2 in tableau (10». 

• Decrementing only the highest uncanceled constraint of the learning datum (just C1 in 
tableau (10». This approach is called the Minimal Gradual Learning Algorithm in Boersma 
1997. 

• Decrementing only the highest uncanceled constraint of the learning datum, and promoting 
only the highest uncanceled constraint of the incorrect winner. This symmetrized version 
of the previous algorithm was shown to be incorrect in Boersma 1997. 

All these learning schemes work correctly for non variable data, but crash to various degrees for 
data involving optionality. 

2.8 Assessing a Learned Grammar 

After the algorithm has learned a grammar, we must assess the validity of that grammar, particu­
larly in cases where the input data exhibit free variation. This can be done straightforwardly 
simply by repeating the process of stochastic evaluation many times, without further learning. It 
is quite feasible to run thousands of trials, thereby obtaining accurate estimates both of what 
forms the grammar generates and of the frequencies with which the forms are generated. 

We tum now to empirical applications of the Gradual Learning Algorithm. 

7 We have checked this claim by creating pathological versions of our learning files in which the constraint violations 
are replaced with random values. We find that even with lengthy exposure, the Gradual Learning Algorithm cannot learn 
the data pattern when the constraints are rendered nonsensical in this way. 
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3 Free Variation in llokano 

Hayes and Abad (1989) present and analyze a variety of phonological phenomena of Ilokano, an 
Austronesian language of the northern Philippines. The Ilokano data exhibit phonological free 
variation on a fairly extensive scale. The following is nothing more than an extract from the 
language, but we believe it to be representative and faithful enough for the results to be meaningful. 

3.1 The llokano Data 

Our interest lies in two areas of free variation: an optional process of metathesis, and variation 

in the form of reduplicants. 

3.1.1 Metathesis Ilokano metathesis permutes precisely one segmental sequence: /?wl option­
ally becomes [w?]. In all cases, the [w] is itself not an underlying segment, but is derived from 

10/. Thus, Ilokano exhibits forms like those in (11). 

(11) da?o 'kind of Ipag-da?o-anl -+ pagda?wan, 'place where 

tree' pagdaw?an da?o's are planted' 

ba?o 'rat' Ipag-ba?o-anl -+ pagba?wan, 'place where 

pagbaw?an rats live' 

ta?o 'person' lta?o-enl -+ ta?wen, 'to repopulate' 
taw?en 

?agga?o 'to dish up Ipag-ga?o-anl -+ pagga?wan, 'place where 

rice' paggaw?an rice is served' 

?agsa?o 'to speak' Ipag-sa?o-enl -+ pagsa?wen, 'to cause to speak' 
pagsaw?en 

The motivation for metathesis is not hard to find: glottal stop is not generally permitted in Ilokano 
syllable codas. For example, there are no stems like *pa?lak; and special reduplication patterns 
arise where needed to avoid coda [?] (Hayes and Abad 1989:358). Indeed, the only coda glottal 
stops of Ilokano are those that arise when glide formation strands a glottal stop, as in the optional 

variants just given.s 

The glide formation seen in metathetic forms is general in the language, taking place when­
ever a vowel-initial suffix is added to a stem ending in a nonlow vowel; thus, for example, ?ajQ 

'to cheer up' - ?ajJf.en 'cheer Up-GOAL FOCUS'. See Hayes and Abad 1989:337-338 and Hayes 
1989:271 for additional examples. 

8 There are sounds in coda position that Hayes and Abad (1989:340) transcribe as [1]; these are casual-speech lenited 
forms of Itl. Native speakers tend to hear these as Itl, and sometimes they sound rather intermediate between [t] and [1]. 
In light of phonetic research on the nonneutralizing character of many phonetic processes (see, e.g., Dinnsen 1985), it 
seems unlikely that these are true glottal stops; rather, they probably contain residual tongue-blade gestures, much as was 
documented for English by Barry (1985) and Nolan (1992). Thus, a constraint banning glottal stops in coda position, if 
restricted to "pure" glottal stops, would not apply to them. Should future phonetic work prove that the glottal stops 
from Itl really are straightforward glottal stops (an event we regard as unlikely), then this part of Ilokano phonology must 
be considered opaque, in the sense of Kiparsky 1973, and the analysis would have to be recast making use of one of the 
various theoretical devices proposed for treating opacity in Optimality Theory (McCarthy 1996, 1999, Kirchner 1996, 
Kiparsky 1998). 
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3.1.2 Reduplication There are two types of reduplication in Ilokano: one in which the reduplica­
tive prefix forms a heavy syllable, and one in which it forms a light syllable. The two reduplication 
processes are not generally in free variation; rather, each is recruited in the formation of a variety 

of morphological categories. 
The main interest here is a pattern found for heavy reduplication when the stem begins with 

a consonant + glide cluster. Here, one option is to form the reduplicated syllable by vocalizing 
the glide. This vowel is lengthened in order to provide weight. 

(12) rwa·lJan 
pja.no 
bwa.ja 

'door' 
'piano' 
'crocodile' 

ru:.rwa·lJan 
pi:.pja.no 
na.ka.bu:.bwa.ja 

'doors' 
'pianos' 
'act like a crocodile' 

A second option is to copy the entire C + glide + VC sequence, as in (13). 

(13) rwalJ·rwa·lJan 
pjan.pja.no 
na.ka.bwaj.bwa.ja 

'doors' 
'pianos' 
'act like a crocodile' 

The final option is to copy the glide as a vowel, as before, but with the heavy syllable created 
by resyllabifying the first consonant of the stem leftward. The vocalized glide surfaces as short. 

(14) rur. wa.lJan 
pip.ja.no 
na.ka.bub.wa.ja 

'doors' 
'pianos' 
'act like a crocodile' 

The evidence that resyllabification has actually taken place is found in stems that begin with 
Irw/: here, just in case the vowel of the reduplicant is short, the Irl appears in its voiceless 
allophone; thus, in detailed transcription, rur. wa.yan is [ruf.wa.lJan]. [f] is the surface form of 
Irl that is generally found in coda position (Hayes and Abad 1989:355). 

Variation in Ilokano reduplicants appears to be fairly systematic, though there are individual 
forms where a particular variant is lexicalized and used more or less obligatorily. We model here 
the cases of productive formation. 

In the following sections, we sketch analyses for Ilokano metathesis and reduplication. For 
both, we adhere to the general scheme for correspondence constraints given in McCarthy and 
Prince 1995, as well as to McCarthy and Prince's account of the mechanisms of reduplication. 

3.2 Analysis of Metathesis 

The basic analysis of metathesis seems fairly straightforward: it reflects a dynamic competition 
between a constraint that bans glottal stop in coda position (*?]"') and a constraint that requires 
faithfulness to underlying linear order (LINEARITY). An Ilokano form like taw.?en avoids coda 
[?], whereas a form like ta?wen preserves the order of !?I and 101 (- [w]), as seen in the underlying 
form Ita?o-en/. Both candidates alter the syllabicity of 10/, thus violating IDENTIO([syllabicD. The 
basic idea is summarized in the tableaux in (15), which derive the two alternative outcomes. 
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(15) a. Glide formatioll 

lta?o-cnJ LI EARITY *?lo IOENT1o([syllabic]) 

t ta?wcn * • 
taw.?cn *! * 

b. Glide formatioll Cllld metathesis 

Ita?o-enl *?1" LI. EARITY IOE Tlo([yllabic1l 

ta?wcn *' * 

taw.?cn • • 
One must also show why underlying /ta?o-enl should require its 101 to appear as [w] in any 

event. The fully faithful outcome, *ta.?o.en, is ruled out by ONSET (Prince and Smolen sky 1993: 
25), which militates against vowel-initial syllables and is undominated in Ilokano. Vowel deletion, 
as in *ta?en or *ta?on, is ruled out by undominated MAXIO(V) , 

Resolution of hiatus by epenthetic [?] (*ta?o?en) is excluded for stems ending in 10/. This fact 
indicates a fairly high ranking for DEPIO(l), which forbids glottal epenthesis. However, DEPJO(?) is 
not undominated, because glottal epenthesis is the normal outcome for Ia! stems, as in Ibasa-enl 
-+ basa?en 'read-GOAL FOCUS' . In such stems, glide formation is not a possibility, because of 
(a) an undominated ban on low glides (*Low-GLlDE, thus *bas.qen), and (b) the undominated 
faithfulness constraint IDENTIO([low D, which requires low segments to remain so (lbasa-enl -+ 

*baswen). 
Another hypothetical way to avoid [?] in coda position would be to resyllabify it, forming 

a [?w] onset (*ta.?wen) . This cannot happen, because Ilokano never permits ?C onsets in any 
context. For present purposes, we will simply posit a *[(J'?C constraint, noting that other complex 
onsets (such as stop + liquid or oral consonant + glide) are possible. 

The full tableaux in (16) give these additional possibilities, along with the constraints that 
rule them out. 

Note that metathesis is never of any help in the absence of glide formation. A metathesized 
but unglided [0], as in ta.o.?en, will incur a violation of ONSET in its new location. Since ta.o.?en 
is additionally burdened with a LINEARITY violation, it can never win out over simpler candidates 
that avoid metathesis in the first place. 

One further constraint is needed to account for the fact that [?] can occur in codas in forms 
derived by glide formation, but never in underived forms. We find that it is not possible to derive 
this pattern with a simple ranking of markedness and faithfulness constraints. But the variety of 
constraints sometimes called "output-to-output correspondence" (Benua 1995, 1997, Burzio 
1996, Kager 1999a,b, Kenstowicz 1997, Steriade 2000), which forces uniformity of phonological 
properties through the paradigm, suffices. The idea is that the ban on glottal stop in coda position 
is outranked by MAXoo(?), but outranks MAXIO(?). What this means is that if [?] occurs on the 
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(16) a. Glidejormation with optional metatlle i 

* Low- IDENTIO *[o?C MAX IO 0 ET DEPIO LI EA· *?10 ID 10 
Ita?o-enl GLIDE ([low]) (V) (?) RITY ([ yllabic]) 

ta?wen i 1 * .. 
! 

taw.?en 
, , 

! * * 

ta.?o.?en . *! 
i 

ta.?o.en 
; 

*! 
i 

! 

ta?en. ta?on *1 , 
ta.?wen 1 *! * , 

b. Glottal top insertion 

Ibasa-en/ * Low- ID· 10 *lo?C MAX IO 0 IT DEPIO LI EA- *?10 IDENTIO 
GLi D ([low]) (V) (?) RITY ([ , yllabic]) 

c ba. a.?en .. 
i 

ba.a.en *! ; 

ba.sen. ba.an ; *! 

ba .wen i *! * 
! 

bas.!!en *! ; * 

surface of some morphological base form,9 a corresponding rn must also occur in forms that are 
morphologically related to that base. Thus, the [?l of the surface form ta?o serves to protect the 
corresponding [?l of ta? wen. In contrast, in a hypothetical underived form like pa?lak, [?l cannot 
be protected by MAXoo(?). Therefore, if there were an underlying representation /pa?lak/ that 
included a basic coda [?l , a [?]-Iess form created by Gen would win the competition. 1O The 
analysis is summarized in the tableaux in (17). 

9 In I1okano. it suffices to assume that the morphological base is the bare stem. which is always a legal isolation 
form. 

10 In most versions of Optimality Theory. illegal forms are ruled out by the constraint system. rather than by limitations 
on underlying representations (Prince and Smolensky 1993. Smolensky 1996). 
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(17) a. Paradigm uniformity force glottal stop ill coda 

/ta?o-enJ MAX(XP) *?10 MAX1O(?) 
paradigm include ta70 

la?wen * 
ta.wen *1 * 

b. Glottal stop deleted from coda 

/pa?lakJ MAXOO(?) *?10 MAX1O(?) 

pa?lak *1 

pa.lak * 

3.3 Analysis of Variable Reduplication 

We posit that reduplicated forms like bu:.bwa.ja can win out over bwaj.bwa.ja some of the time, 
because the reduplicant bu: is a simpler syllable than bwaj. More precisely, bu:.bwa.ja conforms 
better (one violation instead of two) to the constraint *COMPLEX-ONSET. Although this constraint 
does not hold true in general of I1okano vocabulary, it can be ranked high enough to make 
bu:.bwa.ja an option. II The possibility of bu:.bwa.ja is thus an instance of the "emergence of 
the unmarked" effect (McCarthy and Prince 1994). 

In return, bwaj.bwa.ja can defeat bu:.bwa.ja some of the time, because it incurs fewer viola­
tions of constraints requiring that the reduplicant be a good copy of the base. In particular, 
it retains the length of the copied vowel, thus obeying the base-reduplicant identity constraint 
IDENTBR([longD. 12 Moreover, it retains the syllabicity of the glide Iwl, respecting IDENTBR([syl­
labicD, and it copies more segments of the base, incurring fewer violations of MAXBR. 

The remaining variant bub.wa.ja avoids *COMPLEX-ONSET violations completely and can 
therefore on some occasions beat out its two rivals. It loses, sometimes, because unlike its rivals 
it fails to display the crosslinguistically favored alignment of syllable and stem boundaries. In 
terms of the theory of McCarthy and Prince (1993), bub. wa.ja violates ALIGN(Stem,L,Syll,L), 
whereas bwaj.bwa.ja and bu:.bwa.ja obey this constraint. 

Assuming suitable rankings elsewhere, the three-way optionality reduces to variable ranking 
of just three constraints, as shown in tableaux (18a-c) . In the underlying forms, HRED stands 
for the abstract morpheme that is phonologically realized with heavy reduplication. 

II bu:.bwa.ja also avoids a *CODA violation, but *CODA turns out to reside so low in the constraint hierarchy that 
it cannot be the responsible factor. 

12 The feature [long) stands here for whatever formal account of length, such as multiple linking, turns out to be 
appropriate. 
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(18) Triple \'ariatioll ill heal'Y reduplication 

a. IHRED-bwajal AUG IOENTBR([(ongJ) *COMPLEX-O SET 

bwaj.bwa.ja ** 
bu:.bwa.ja *! * 

bub.wa.ja *' 

b. IHRED-bwajal UG *CO~1PLEX-ONSET IOENTBR([(ong]) 

c bu: .bwa.ja * * 

bwaj.bwa.ja **! 

bub.wa.ja *' 

c. IHRED-bwajal *COMPLEX-O SET IOENTBR([(ong]) AUG 

bub.wa.ja * 

bu: .bwa.ja *' * 

bwaj.bwa.ja *'* 

Here are a few additional details of the analysis. 

• For brevity, we omit the (undominated) constraints that force the reduplicant to be a heavy 
syllable. 

• A further candidate *ba:.bwa.ja manages to avoid a complex onset, just like bu:.bwa.ja. 
and moreover avoids miscopying syllabicity (i.e., copying /w/ as [u]). This candidate is 
completely ill formed, however-a fact we attribute to its violating CONTIGUITY, the con­
straint that requires that a contiguous sequence be copied (McCarthy and Prince 1995: 
371 ). 

• Both *[,,?C and *COMPLEX-ONSET are necessary in Ilokano. [?C] onsets are completely 
impossible, whereas the more general class of complex onsets (including, e.g., [bw] or 
[tr]) are well attested. The role of *COMPLEX-ONSET lies only in the derivation of correct 
intervocalic syllabification (e.g., kwat.ro 'four') and in producing reduplicated forms like 
bu:.bwa.ja. 

3.4 Constraint Ranking 

To provide a check on what the Gradual Learning Algorithm does with the Ilokano data, we 
carried out a hand ranking of the 18 constraints discussed above. The ranking proceeded on the 
basis of the following representative forms, with the illegal rival candidates shown on the right: 
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(19) Legal and illegal forms in Ilokano 
a. /ta?o-en/: taw.?en, ta?wen 

b. IHRED-bwa.ja/: bwaj.bwa.ja, 
bu:.bwa.ja, bub.wa.ja 

c. /pa?lak/: pa.lak 
d. /lab?aj/: lab.?aj 
e. /trabaho/: tra.ba.ho 
f. najo-en!: ?aj.wen 

g. Ibasa-en/: ba.sa.?en 

*ta.wen, *ta.?en, *ta.?o.en, 
*ta.?o.?en, *ta.?wen 
*bwa:.bwa.ja, *ba:.bwa.ja 

*pa?.lak, *pa.?lak 
*Ia.baj 
*tar.ba.ho 
*?a.jen, *?a.jo.en, *?a.jo. ?en, 
*?a.jwen 
*ba.sen, *ba.sa.en, *bas.~en, 
*bas.wen 

A few forms not yet presented need some annotation here. The fact that lab.?aj 'bland' is well 
formed shows that MAXlo(?) is active in the grammar; otherwise, *la.baj would be derived. 13 

Illegal *tar.ba.ho from /trabaho/ 'work' shows that metathesis is not called for merely to avoid a 
*COMPLEX-ONSET violation. najo-en/ and Ibasa-en/, given earlier, illustrate straightforward hiatus 
resolution where no metathesis configuration arises. 

The hand ranking of the constraints was done as follows. We first computed the factorial 
typology of the constraint set over the candidates given. We then gradually added pairwise con­
straint rankings, recomputing the factorial typology as constrained a priori by these rankings, 
until the output set had shrunk to include only the attested cases of free variation. The ranking 
that emerged is shown in (20). 

(20) Hand ranking for Ilokano 

/'00(1) 
711l CO~TIG"ITY 

\.IGN( tcm.L. yll.L_I __ I_D1_ T BR(..c.(I_o_n=g'-.II ____ O_, 1_"1><"0(1) 
CODA IDLNT BR<lsy llabic]) 

13 Actually, postconsonantal!?1 is optionally deleted in certain fonns, but the deletion happens on a sporadic, stem­
by-stem basis. We idealize, hannlessly we think, to general nondeletion. 
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It can be seen that some of the constraints are undominated and sit at the top of the grammar. 
Somewhere in the "middle" ofthe grammar are two sets of constraints that must be freely ranked, 
in order to derive free variation. These are shown boxed in different shades of gray. Neither of 
these freely ranked sets is at the bottom of the grammar, as each includes constraints that dominate 
still others further down. We will show (section 3.7) that the task of learning freely ranked sets 
in "medial position" is of particular interest in comparing different ranking algorithms. 

3.5 Application of the Gradual Learning Algorithm 

We started with all constraints at a ranking value (selected arbitrarily) of 100. The algorithm was 
provided with 21,000 underlying/surface pairs. The underlying form for each pair was chosen 
randomly from the seven forms in (19) with equal probability, so that each underlying form 
occurred approximately 3,000 times in the data. Where a given underlying form corresponded to 
more than one legal surface form, we assigned each surface form an equal probability (i.e., 50% 
each for taw.?en and ta?'wen, and 33.3% each for bu:.bwa.ja, bwaj.bwa.ja, and bub.wa.ja). 

It should be noted that each of the forms in (19) is representative of a substantial lexical 
class, whose members share the same crucial constraint violations. Since it is these violations 
that drive learning, it suffices to use multiple copies of the forms in (19) to stand in for the full 
Ilokano lexicon. 

The schedules that we employed for plasticity and other crucial values are given in appendix 
A. 

After 21,000 data, the Gradual Learning Algorithm had assigned the ranking values in (21) 
to the constraints. 

(21) Machine ranking for llokano 

Ranking Ranking 
Con,lrainl valuc Con. trainl valuc 

O"iET 164.00 CmrnGLITY 10 . 
* Low-GuD[ 164.00 AIIG. ( Icm.L. ylI.L) 7.96 
IDL'lT10<llow» 164.00 Co lPll ,<-0 'SFT 86.64 
M-\x1o(V) 162.00 101 iTBR([longJ) 5.64 
* [o?C 142.00 MAX1O(?) 0.00 
M '<oo(?) 13 .00 M XBR 67.60 
DLP1O(?) 130.00 I DENTBR([~yllabic Il 55.60 
?]o 111.0 * CODA 40.36 

LI"'CARITY 110.92 IDIoNT1o([syllabic» -56.00 

Comparing these with the hand ranking of (20), the reader will see that there is a close resemblance. 
Where the hand ranking posits strict domination, the machine ranking places the constraints a 
considerable distance apart (e.g., MAXIO(?»> *CODA, needed so that lab.?aj will defeat *la.baj). 
Where the hand ranking posits free variation, the algorithmic ranking assigns close or near-
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identical values (e.g., free ranking of *1]" and LINEARITY, needed for optional metathesis). In 

cases where the ranking makes no difference to the empirical outcome, the machine ranking will 

harmlessly assign unpredictable values. Thus, IDENTlo([lOW]) and *[,,1C are placed 22 units apart, 

although the hand ranking showed that both are in fact undominated. 
The truest test of the algorithm, however, is not the form of the resulting grammar, but what 

this grammar generates. To determine this, we computed the output probabilities for grammar 
(21) by running each of the seven underlying forms through the grammar 1 million times. The 

results are shown in the final column of table (22). 

(22) Accuracy of predictions made by machine-ranked grammar 

Underlying Surface Target Simulation 
form form language (%) result (%) 

Ita?o-enl taw.?en 50 52.2 
ta?wen 50 47.9 
ta.wen 0 0 
ta.?en 0 0 
ta.?o.en 0 0 
ta.?o.?en 0 0 
ta.?wen 0 0 

IHRED-bwajal bU:.bwa.ja 33.33 36.7 
bwaj.bwa.ja 33.33 31.2 
bub.wa.ja 33.33 32.1 
bwa:.bwa.ja 0 0 
ba:.bwa.ja 0 0 

Ipa?lak/ paJak 100 100 
pa?Jak 0 0 
pa.?lak 0 0 

/lab?ajl lab.?aj 100 100 
la.baj 0 0 

Itrababol tra.ba.ho 100 100 
tar.ba.ho 0 0 

/?ajo-enl ?aj.wen 100 100 
?a.jen 0 0 
?a.jo.en 0 0 
?a.jo.?en 0 0 
?a.jwen 0 0 

Ibasa-enl ba.sa.?en 100 100 
ba.sen 0 0 
ba.sa.en 0 0 
bas.~en 0 0 
bas.wen 0 0 

It can be seen that the grammar generates all and only the correct forms of the language. Moreover, 
where there is free variation, the grammar does a reasonably good job of matching the frequencies 
found in the learning data. 
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Values describing the intermediate stages oflearning for this simulation are given in appendix 

A. 
The grammar described in (21) is the result of just one run of the algorithm. Since the 

algorithm encounters the data in random order, and itself includes a stochastic component, other 
runs can produce different results. Therefore, a fully legitimate test must carry out learning many 
times, checking to see that learning is successful each time. We therefore repeated the entire 
learning process 1,000 times, testing the resulting 1,000 grammars with 100,000 trials for each 
form, and collected statistics on the result. 

First, in the entire set of 1,000 runs (700 million trials), only seven illegal forms were 
generated, all of them *ta.?o.?en. Second, frequency matching was generally good: the mean 
absolute error in frequency matching had an average value of 0.46% (standard deviation 0.20%). 
The run in (22) had a fairly typical mean absolute error of 0.39%. 

We conclude that the algorithm's attempt to learn the patterns of free variation in Ilokano 
was successful. 

3.6 The Ubiquity of Free Variation 

Are the Ilokano data, with such abundant free variation, an empirical aberration? We tend to 
think not. For instance, our experience in working with native-speaker consultants is that one 
virtually always finds more free variation than is given in reference sources. On a less casual 
basis, the research literature in sociolinguistics (e.g., Labov 1974, 1994) strongly supports the 
view that free variation is quite normal and characteristic of language. Therefore, in passing a 
representative test involving free variation, the Gradual Learning Algorithm gives evidence that 

it possesses a capacity that is crucial to any learning algorithm that seeks to model human abilities. 

3.7 A Comparison with the Constraint Demotion Algorithm 

In this light, we compare the performance of the Gradual Learning Algorithm with that of Tesar 
and Smolensky's Constraint Demotion. The reader should note at the outset that Constraint Demo­
tion was not designed to treat free variation; Tesar and Smolensky are quite explicit on this 
point (Tesar 1995:98-101, Tesar and Smolensky 1996:28-29, 1998:249-251). Taking Constraint 
Demotion as a starting point, there could in principle be a number of ways that new algorithms 
inspired by it, or incorporating it, could handle variation. Our goal is to show that the Gradual 
Learning Algorithm is a workable solution to the research problem that Tesar and Smolensky 
have posed. 

Constraint Demotion comes in several versions. For simplicity, we focus first on the "Batch" 
version (Tesar and Smolensky 1993:15), so called because it processes the entire data set repeat­

edly. We fed to a software implementation ofthis algorithm the same body of Ilokano underlying 
forms, candidates, constraints, and violations that we had given to the Gradual Learning Algorithm. 
Free variation was treated by making multiple copies of the relevant underlying forms, assigning 
each a different output. 

Constraint Demotion ranks constraints by forming a hierarchy of strata, such that any con-
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straint in a higher stratum outranks any constraint in a lower stratum. In the Batch version of the 
algorithm, the strata are discovered one by one in decreasing order of strictness. In our simulation, 
we found that Constraint Demotion began by locating the following three strata: 

(23) Strata found by Constraint Demotion 
Stratum 1: ONSET, *[a?C, MAXIO(V), MAXoo(?), *LoW-GLIDE, IDENTIO([low]), 

CONTIGUITY 
Stratum 2: DEPIO(?) 
Stratum 3: IDENTIO([syllabic]) 

These strata are in agreement with what we found in our hand ranking (20). 
Constraint Demotion then attempted to select constraints from among the remaining nine 

for placement in the fourth stratum; it found none. The cause of this was free variation: the 
multiple outputs derived from the same underlying form led the algorithm to conclude that every 
one of the as yet unranked constraints was dominated. Thus, no new stratum could be formed. 

The proper interpretation of this situation is partly a matter of choice. One view is that the 
algorithm simply fails to yield an answer in such a case. Indeed, one good property of Constraint 
Demotion is that it permits a rigorous determination that it has reached this state (Tesar and 
Smolensky 1993:20). 

Another solution would be to suppose that the residue of unrankable constraints constitutes, 
en masse, the lowest stratum in the grammar, with stratum-internal free ranking (for a definition 
of this, see section 4). In this approach, the result of Constraint Demotion as applied to the 
Ilokano case would be a four-stratum grammar, with the nine unrankable constraints construed 
as occupying a single fourth stratum, placed below the strata of (23). The outputs generated by 
such a grammar are listed in (24). 

(24) Forms with a freely ranked lowest stratum 

Underlying form 

Ita?o-enl 
Ipa?lak/ 
/lab?aj/ 
Itrabahol 
J?ajo-en! 
IHRED-bwajaJ 

/basa-en! 

Acceptable outputs 

taw.?en, ta?wen 
pa.lak 
lab.?aj 
tra.ba.ho 
?aj.wen 
bu:.bwa.ja, bwaj.bwa.ja, 
bub.wa.ja 
ba.sa.?en 

Ill-formed outputs 

(none) 
*pa?.lak 
*la.baj 
*tar.ba.ho 
*?a.jwen 
*bwa:.bwa.ja 

(none) 

As can be seen, the forms generated include several that are ill formed in Ilokano. In other words, 
depending on interpretation, Constraint Demotion either fails to return a grammar for Ilokano, 
or it returns an incorrect one. 

The above discussion holds for the Batch version of Constraint Demotion. We have also 
submitted the Ilokano data to other versions: On-Line (Tesar and Smolensky 1993:16) and Error­
Driven (Tesar and Smolensky 1998:247). These versions of Constraint Demotion behave slightly 
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differently from the Batch version when given free variation data: they vacillate eternally in the 
rankings they develop, the current state being determined by whatever was heard last. 

The forms generated under the vacillating sequence of rankings include all the free variants 
in the learning data. But they also include a substantial fraction of incorrect outputs as well, 
including all the ill-formed cases in (24). We conjecture that this results from a fundamental 
property of Constraint Demotion: it responds to input data with a radical change, namely, whole­
sale reranking. In contrast, the Gradual Learning Algorithm responds conservatively to data, 
especially when plasticity is low. As a result, it avoids trouble that "reckless" Constraint Demo­
tion cannot. 

We conclude (as Tesar and Smolensky had anticipated) that none ofthe versions of Constraint 
Demotion is suited to the analysis of free variation. 14 

3.8 Gradience as a Means to an End 

A point worth making in this connection is that in the Ilokano simulation, the Gradual Learning 
Algorithm emerges with a grammar that is quite conventional in character: it designates the well­
formed outcomes as well formed and the ill-formed outcomes as ill formed, insofar as vanishing 
rarity is considered as essentially equivalent to ill-formedness. Thus, in a certain sense, the end 
product of the gradient ranking process is not gradient at all. The near-crystalline structure of the 
finished grammar is created as the limit of a series of ever less gradient grammars, when the 
rankings that have to be firm settle into widely separated positions while the crucially free rankings 
remain free. 

It would appear that a statistical learning procedure may indeed be the right approach to 
learning optionality. As Dell (1981) pointed out, free variation poses very serious learnability 
problems, because one cannot know in principle whether a particular type of form might not at 
some point show the free variation seen in other, similar forms. The answer we offer is that a 
gradual algorithm, given enough time and exposure to the data, has the capacity to distinguish 
the accidentally missing from the systematically missing. 

3.9 Robustness in the Face of Erroneous Input Data 

It has been argued (Gibson and Wexler 1994:410, Frank and Kapur 1996:625) that learning 
algorithms should be robust against occasional errors in the input data. Any error that was taken 
too seriously by a learner might result in permanent "damage" to the grammar, placing it in a 
lasting state of overgeneration. 

We have tested the Gradual Learning Algorithm for this possibility, with a fictional (but 
plausible) version of Ilokano that abstracts away from free variation, allowing only taw.?en for 
Ita'lo-enJ and bwaj.bwa.ja for IHRED-bwa.ja/. We confronted the Gradual Learning Algorithm 

14 In examining the ability of On-Line Constraint Demotion to learn freely ranked strata, we are preceded by Broihier 
(1995). Broihier's conclusions are similar to our own. 
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with this pseudolanguage, using the same training regimen we had used for real Ilokano. After 

it had learned a grammar, we gave it a single additional learning token, ta'l. wen, which is ill 

formed in this hypothetical variety. 
This token had an extremely small influence on what the grammar generated, increasing the 

probability of a *ta'l. wen outcome from 1.4·10 - 33 to 1.6·10 - 33 and decreasing the probability 
of a *tar.ba.ho outcome from 1.1.10- 17 to 1.0.10- 17• The ranking values had already been set 

far apart by a long series of earlier data, so that no single token could change them enough to 
induce any detectable change in the output pattern. 

A stricter test is to include error forms throughout the learning regimen. We tried this by 
including *ta'l.wen at random intervals at 0.1% of the frequency of taw.'len. The algorithm's 
response to these errors was modest at all stages and culminated in "frequency matching" (section 
4): the grammar that was eventually learned generated *ta'l. wen at a 0.1 % rate. 

We administered an error test to the other algorithms as well. For the Batch version of 
Constraint Demotion, hearing a single speech error is, of course, instantly fatal: since all data are 
treated equally, the error causes the algorithm to crash in exactly the way discussed in section 
3.7. Error-Driven Constraint Demotion is less fragile, but nevertheless responds to errors in rather 
drastic ways. When this algorithm is given *ta'l. wen, it carries out a major constraint demotion 
in order that *ta'l.wen will emerge as more harmonic than taw. 'len. Merely hearing another token 
of taw. 'len does not suffice to repair this damage to the grammar, because Error-Driven Constraint 
Demotion does not reverse its prior action; instead, it carries out a new constraint demotion that 
generates *tar.ba.ho. *tar.ba.ho is repaired once tra.ba.ho is heard, but at the cost of generating 
* 'la.jwen (which is repaired once 'laj. wen is heard, ending the chain). Moreover, the grammar 
that arose from hearing *ta'l.wen in the first place also generated *pa'l.lak, whose repair (by 
pa.lak) sometimes leads to * lao baj, depending on the order in which the forms are encountered. The 
upshot is that a single error can initiate a cascade of damage that is only repaired by reconstructing a 
large proportion of the original rankings from scratch. 

The Gradual Learning Algorithm avoids such cascades by responding modestly to novel 
forms, merely changing its propensity to generate them, instead of giving them full credence at 
once. As a result, during recovery time, while the algorithm is readjusting the ranking values 
back to the optimum, it continues to generate acceptable outputs. 

As a final comparison, we fed pseudo-Ilokano forms of the type just described, with randomly 
selected error forms included at a total rate of I %, to both the Gradual Learning Algorithm and 
Error-Driven Constraint Demotion. The Gradual Learning Algorithm yielded a stable grammar 
whose error rate was 0.94% after 21,000 learning data and 1.09% after 100,000 learning data 
(averaged over 100 replications). In other words, the error rate of the Gradual Learning Algorithm 
was about equal to the rate of error forms in the learning data. Error-Driven Constraint Demotion 
produced a sequence of rapidly changing grammars, so we tested its output after every 1,000 
learning data and averaged the result over a total of 10 million learning data. The average error 
rate came out to 2.6%, roughly 2.5 times that of the Gradual Learning Algorithm. For 16% of 
the total duration of the simulation, the grammar learned by Error-Driven Constraint Demotion 
was in a state for which there was at least one correct form that it could not generate. 
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4 Textual Frequencies: Finnish Genitive Plurals 

Anttila (1997a,b) has developed and tested an optimality-theoretic model intended to predict the 
relative frequency of forms. His theory and data are of interest here, since as we have already 
mentioned, it is a property of grammars learned by the Gradual Learning Algorithm to mimic 
the frequencies of the learning set. In this section, we deploy the Gradual Learning Algorithm 
against Anttila's data and compare results. We also consider which of the two models is more 
likely to be generalizable across languages. 

Anttila's model is strikingly simple. As a basis for generating free variation, Anttila assumes 
stratum-internal free ranking. That is, he adopts strata of the type employed by Tesar and Smolen­
sky, but with a different interpretation: a candidate is considered to be a legal output if it emerges 
as the winner under any possible total ranking that respects the domination relations imposed by 
the strataY To make predictions about frequency, Anttila (foIIowing Reynolds 1994) sums the 
number of rankings that can generate each outcome and posits that this is proportional to the 
relative frequency with which the outcomes will be observed. 

Anttila tests his model against a large corpus consisting of Finnish genitive plurals. The 
match between the model's predictions and the data is remarkably accurate. We attempt to model 
the same data here. 

The Finnish genitive plural can be formed in either of two ways: with a weak ending, 
typically I-jen/, or with a strong ending, typically I-ideo!. For instance, the stem naapuri 'neighbor' 
allows both endings (naa.pu.ri.en and naa.pu.rei.den), but many other stems allow only one of 
the two endings or have a clear preference for one of the two. Since stems ending in a heavy 
syllable (CVC or CVV) invariably take the strong ending (puu 'tree' -+ pui.den, potilas 'patient' 
-+ p6.ti.lai.den), we will follow Anttila in considering only stems with light final syIIables. 
According to Anttila, the choice between the weak and the strong ending is made on purely 
phonological grounds. 

4.1 The Constraint Inventory 

We refer the reader to Anttila's work for full discussion of the constraints assumed. We found 
that we could derive the corpus frequencies accurately using only a subset of his constraints. 
Most of the constraints we omitted were constraints that have little support from phonological 
typology. These include, for example, requirements that low vowels occur in heavy syllables and 
that heavy syIIables be stressless. This is not an objection to Anttila's analysis, but merely reflects 
a difference of approach: Anttila emphasizes constraint inventories that include all the logical 
possibilities for the structures under consideration. 

15 For other interpretations of "tied" constraints in Optimality Theory, see Clements 1997:315, Pesetsky 1998:372. 
and Tesar and Smolensky 1998:241. 
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The constraints we did include in our replication were as follows. First, there is a correlation 

between weight and stress, given in (25). 

(25) *WEIGHT-TO-STRESS: "no unstressed heavy syllables" (Prince and Smolensky 1993: 
59) 

Second, Anttila posits that, as in a number of languages, there is a connection between vowel 
height and stress. Following the method laid out in Prince and Smolensky 1993:67-68, this is 
implemented by two families of three constraints, each respecting an inherent internal ranking. 

(26) *f » *6 » *A: "no stressed syllables with underlying high (mid, low) vowels" 
* A » *0 » *1: "no unstressed syllables with underlying low (mid, high) vowels" 16 

In principle, we could have had the algorithm actively maintain these inherent rankings (by 
demoting a lower-ranked constraint as soon as its sister threatens to overtake it), but in fact they 
emerged from the data in any event. 

Third, Anttila adopts some relatively standard constraints from the analysis of stress (Prince 
1983, Selkirk 1984). 

(27) *CLASH: "no consecutive stressed syllables" 
*LAPSE: "no consecutive unstressed syllables" 

Since according to Anttila, *CLASH is undominated, we did not include any candidates that violate 
it. We likewise followed Anttila in tacitly assuming constraints that ensure the invariant initial 
main stress of Finnish. 

Finally, Anttila posits constraints that directly regulate the weight sequence, banning consecu­
tive syllables of the same weight. 

(28) *H.H: "no consecutive heavy syllables" 
*L.L: "no consecutive light syllables" 

4.2 Anttila's Account of Variation 

Anttila arranges his constraints (including nine we left out) into five strata. He assumes strict 
ranking for constraints in separate strata and free ranking within strata. For each underlying form, 
there are two candidate outputs, one for each allomorph of the genitive plural. The frequency of 
the two rival outputs is posited to be proportional to the number of rankings (within the free 
strata) that generate them. 

For instance, the stem korjaamo 'repair shop' has the candidates kor.jaa.mo.jen and kor.jaa.-

16 These constraints must be interpreted in a particular fashion. In the sense Anttila intends, they refer to vowel 
height in the stem. This height is often altered phonologically in the genitive plural, as in Ikamera-idenl -+ klimeroiden 
'camera-GEN.PL'. Anttila's assumption is that in this example *A, not *6, is violated. - -
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moi.den, which have equal numbers of violations for all constraints in the top three strata. There­
fore, the outcome will be determined by the constraints in the fourth stratum. Now, k6r.jaa.mo.jen 
has more *LAPsE violations, and k6r.jaa.moi.den has more violations of *H.H, *H, and two other 
constraints specific to Anttila's analysis. When *LAPsE is on top, k6r.jaa.moi.den emerges; if any 
of the other four constraints is on top, k6r.jaa.mo.jen wins. With random ordering within strata, 
Anttila thus predicts k6r.jaa.moi.den in 20% of the cases and k6r.jaa.mo.jen in 80%. These values 
match well with the attested values in Anttila's corpus, which are 17.8% and 82.2%, respectively. 
Similar cases in the data work in similar ways. 

4.3 Modeling the Finnish Data with the Gradual Learning Algorithm 

We assembled as many structurally distinct examples as we could find from Anttila's work. For 
every underlying form type, we considered two output candidates, one with the weak and one 
with the strong genitive plural allomorph, and assessed both of these for their violations of the 
constraints given above. We also arranged to present the algorithm with appropriate tokens of 
each type, in the relative frequencies with which they occur in Anttila's corpus. It should be noted 
that these frequencies often differ greatly; for example, stems of the type 1(1' (1' H H [1].,.1 occur 
only twice in Anttila's data corpus, while stems of the type 1(1' L [A].,.I occur 720 times. 

We ran the Gradual Learning Algorithm on the data. Given the goal of maximally accurate 
frequency matching, we felt it appropriate to use a larger number of learning data than for Ilokano. 
We presented a total of 388,000 data to the algorithm, expecting it to match frequencies in a 
fairly refined way (see appendix A for further details of the simulation). In a representative run, 
the algorithm obtained the ranking values in (29). 

(29) Ranking values from the Finnish simulation 

Ranking Ranking 
Constraint value Constraint value 

WEIGHT-TO-STRESS 288.000 *0 196.754 
*f 207.892 *LAPSE 188.726 
*L.L 206.428 *0 3.246 
*A 199.864 *A 0.136 
*H.H 199.274 *1 -7.892 

We then tested the algorithm for accuracy in mimicking the input frequencies. As before, 
we did mUltiple runs to make sure that individual runs were not yielding idiosyncratic outcomes. 
The numbers in table (30) reflect an average taken from 100 separate applications of the algorithm, 
each starting from an initial state with all constraints ranked at 100. After each run, every underly­
ing form was submitted to the resulting grammar 100,000 times to obtain output frequency esti­
mates. Table (30) gives the average predicted frequencies of all the various types, both as they 
are derived in Anttila's proposal and as they emerge from the 100 grammars learned by the 
Gradual Learning Algorithm. Variation across runs of the algorithm is indicated by the standard 
deviations shown in the final column. 



EMPIRICAL TESTS OF THE GRADUAL LEARNING ALGORITHM 71 

(30) Results of learning Finnish genitive plurals 

Anttila GLA GLA 
Stem Data predicted mean SD 
type Example Candidates Data (%) (%) (%) (%) 

XA kala ka.lo.jen 500 100 100 100 0 
'fish' ka.loi.den 0 0 0 0 0 

XI lasi la.si.en 500 100 100 100 0 
'glass' la.sei.den 0 0 0 0 0 

XLA kamera ka.me.roi.den 720 100 100 99.48 0.16 
'camera' ka.me.ro.jen 0 0 0 0.52 0.16 

XLO hetero M.te.roi.den 389 99.5 100 99.43 0.19 
'hetero' M.te.ro.jen 2 0.5 0 0.57 0.19 

XLI naapuri naa.pu.ri.en 368 63.1 67 69.51 1.16 
'neighbor' naa.pu.rei.den 215 36.9 33 30.49 1.16 

XHA maailma maa.il.mo.jen 45 49.5 50 42.03 2.22 
'world' maa.il.moLden 46 50.5 50 57.97 2.22 

XHO kOljaamo kor.jaa.mo.jen 350 82.2 80 81.61 0.92 
'repair shop' kor.jaa.moLden 76 17.8 20 18.39 0.92 

XHI poliisi po.lii.si.en 806 98.4 100 100 0 
'police' po.lii.seLden 13 1.6 0 0 0 

XXLA taiteilija tru.tei.li.joi.den 276 100 100 99.48 0.17 
'artist' tai.tei.li.jo.jen 0 0 0 0.52 0.17 

XXLO luettelo lu.ette.loi.den 25 100 100 99.44 0.19 
'catalogue' lu.ette.lo.jen 0 0 0 0.56 0.19 

XXLI ministeri mLnis.te.ri.en 234 85.7 67 69.49 1.16 
'minister' mLnis.te.rei.den 39 14.3 33 30.51 1.16 

XXHA luonnehdinta luon.neh.din.to.jen I 100 100 100 0 
'characterization' luon.neh.din.toi.den 0 0 0 0 0 

XXHO edustusto e.dus.tus.to.jen 84 100 100 100 0 
'representation' e.dus.tus.toi.den 0 0 0 0 0 

XXHI margariini mar.ga.rii.ni.en 736 100 100 100 0 
'margarine' mar.ga.rii.nei.den 0 0 0 0 0 

XXXLA ajattelija a.jatte.li.joi.den 101 100 100 99.48 0.17 
'thinker' a.jat. te.li.jo.jen 0 0 0 0.52 0.17 

XXXLO televisio te.le. vi.si.oi.den 41 100 100 99.43 0.19 
'television' te.le. vi.si.o.jen 0 0 0 0.57 0.19 

XXXLI Aleksanteri A.lek.sim.te.ri.en 15 88.2 67 69.51 1.13 
, Alexander' A.lek.san.te.rei.den 2 11.8 33 30.49 1.13 

XXLHA evankelista e. van.ke.lis.to.jen 2 100 100 100 0 
'evangelist' e. van.ke.lis.toi.den 0 0 0 0 0 

XXLHO italiaano Lta.li.aa.no.jen I 100 100 100 0 
'Italian' Lta.li.aa.noi.den 0 0 0 0 0 

XXLHI sosialisti so.si.a.lis.ti.en 99 100 100 100 0 
'socialist' so.si.a.lis.tei.den 0 0 0 0 0 

XXHHO koordinaatisto koor.di.naa.tis.to.jen 8 80 80 81.61 0.91 
'coordinate grid' koor.di.naa.tis.toi.den 2 20 20 18.39 0.91 

XXHHI avantgardisti a. vant.gar.dis.ti.en 2 100 100 100 0 
'avant-gardist' a. vant.gar.dis.tei.den 0 0 0 0 0 
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It can be seen that both models predict the empirical frequencies fairly well. The mean 
absolute error for the percentage predictions of Anttila's model is 2.2%, whereas that for the 
Gradual Learning Algorithm, averaged over 100 runs, is 2.53% (SD = 0.16%). The models share 
similar problems, most notably in predicting a zero percentage for po.lii.seLden. Anttila has 
suggested (personal communication) that the constraint system may need amplification to achieve 
further accuracy. At this stage of research, we think that the performance of our machine-learned 
grammars may be considered to be roughly at the same level as that of Anttila's hand-crafted 
analysis. 

4.4 Theories of Frequency 

In more general terms, we wish to consider the types of frequency distributions that the two 
theories (stratal grammars vs. continuous ranking) can treat. We lack firm data to decide this 
point, but we think we can identify the kind of data that should be considered. 

We have in mind cases of free variation in which one free variant is far more common than 
the other. In our own speech, we have identified possible cases of this sort: 

• Dutch words that normally end with final schwa are sometimes pronounced with final [n]: 
for example, Nijmegen ['m:ime:y;), 'm:ime:y;)n]. In prepausal position, [n]-less forms are 
far more frequent than forms with [n]. 

• English words ending in phonemic I . . . {t,d};)nl are usually realized with the schwa elided 
and the In! syllabic: for example, Sweden ['swi:d~]. Forms in which the schwa surfaces, 
like ['swi:d;)n], are quite unusual. 

• English pronunciations in which It,d! are eligible for realization as flaps, but show up 
unaltered (e.g., hitting ['hltII]]), are possible, but quite infrequent. 

Let us assume for purposes of argument that the relative frequencies in these cases are 99 to 1. 
Now, in the grammatical model assumed by the Gradual Learning Algorithm, it is quite straightfor­
ward to model such frequencies. For instance, if each of the two rival outcomes violates just one 
constraint not violated by the other, a 99-to-l ratio will be obtained whenever the ranking values 
of the two constraints differ by 6.58 on the ranking scale (where noise = 2.0). On the other 
hand, in the model Anttila assumes, such frequencies can be obtained only under very special 
circumstances. For instance, they would be obtained if within a single stratum 99 constraints 
favor one outcome and 1 favors the other, or if within a stratum of five constraints only 1 of the 
120 possible total rankings gives rise to the rare outcome. 

We think that for cases of the kind we have mentioned, the analysis is likely to be rather 
simple, with just a few constraints that do not interact in elaborate ways. Thus, in general we 
anticipate difficulty for Anttila's model in covering cases that involve large disparities among 
output frequencies. In assessing the empirical adequacy of the two grammar models, careful study 
of cases like those we have mentioned will be necessary. 

5 Intermediate WeU-Formedness: Light and Dark /1/ 

It is a very common experience for linguists gathering intuitions about well-formedness to find 
that certain forms are felt to be neither impossible nor perfect, but somewhere in between. Dealing 
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with such cases is often a theoretical challenge. When the matter is addressed, it is usually covered 
in terms specific to the analysis in question. We consider here a much more general explanation. 

As we have both noted in earlier work (Boersma 1997; Hayes, to appear), it is likely that 
many intermediate well-formedness judgments originate in patterns of frequency in the learning 
data.17 Here is our reasoning: 

• In the limiting case, a language learner encounters certain forms only as speech errors. 
It is clear that such forms ultimately fail to have any real influence on the grammar that 
emerges, even though the learner often has no way of identifying them as errors when 
they are encountered. 

• At the opposite extreme, forms that are abundantly attested in the learning data will virtually 
always lead to a grammar that classifies them as well formed. 

• Thus, the interesting cases are the ones that are definitely rare, but not as rare as speech 
errors. These are likely candidates to emerge in the adult grammar as intermediately well 
formed. The language learner lacks the information needed to assign them with confidence 
to either of the above categories and thus rationally adopts an intermediate view. 

At this point, we wish to acknowledge a commonplace, namely, that speakers frequently produce 
forms they have never heard before. In the model assumed here, this is because frequencies in 
the learning data have their influence at the level of grammar construction, rather than in some 
naive procedure that simply records the frequencies of forms in memory. 

Our basic premise, then, is that intermediate well-formedness judgments often result from 
grammatically encodable patterns in the learning data that are rare, but not vanishingly so, the 
degree of ill-formedness being related monotonically to the rarity of the pattern. Therefore, with 
a suitable linkup one can in principle have the Gradual Learning Algorithm learn intermediate 
well-formedness judgments by having it learn frequencies. 

To explore this possibility, we reexamine data concerning the distribution of light and dark 
/1/ in English from Hayes, to appear. Hayes analyzed these data in the framework of Hayes and 
MacEachern 1998, which, like the one assumed here, posits a continuous scale of ranking strict­
ness. Hayes and MacEachern's model, however, is considerably less restrictive than the one 
adopted here: it permits individual constraints to be affiliated with "bands," each with its own 
width, that specify the range of selection points. Moreover, this model permits parts of each band 
to be designated as "fringes," which lead to intermediate well-formedness if a selection point 
falls within them. Plainly, if the less powerful theory employed here can account for the same 
data, this would constitute an advance, particularly since this theory (unlike Hayes and MacEach­
ern's theory) comes with its own learning algorithm. 

5.1 The /1/ Data 

The data we model are a set of consultant judgments regarding light versus dark III in various 
English words. We model the means of the judgments of 10 consultants, on a scale in which 1 

17 See also Frisch, Broe, and Pierrehumbert 1997 for a rather different approach to relating frequency and well­
formedness. 
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is best and 7 is worst. The fonns presented for judgment and the constraints used in modeling 
the data are presented in detail in Hayes, to appear, and we will only review them briefly here. 

In various American English dialects, III is obligatorily light in two positions: initial (Lou­

anne, light) and pretonic (allow, and again light). It is obligatorily dark in final and preconsonantal 
position (bell, help). In medial, pre-atonic position, free variation occurs: fonns like Greeley can 
have light or dark Ill. 

There are also effects of morphology. Where a vowel-initial stressless suffix is added to an 
Ill-final stem, as in (touchy- )feel-y, a fairly strong preference emerges for dark [fl. This, we 
assume, is a gradient effect of output-to-output correspondence: touchy-feely strongly prefers 
the dark [f] inherited from feel. Stronger output-to-output effects occur at higher levels of the 
phonological hierarchy: thus, the fonn mail it, with a word break, favors dark [t] even more 
strongly than feel-yo Finally, there is a paradigmatic effect that goes in the opposite direction: 
Ill-initial suffixes attached to vowel-final stems rather strongly prefer light [I]. Examples are 
grayling, gaily, and freely. 

To test these claimed judgments, Hayes asked 10 native-speaker consultants to rate both the 
light and dark versions (as Hayes pronounced them) of several representative fonns. The ratings 
that emerged are shown in (31). 

(31) Acceptability judgments on light and dark III in English 

Mean rating 
as light 

Mean rating 
as dark 

a. light 1.30 6.10 
b. Louanne 1.l0 5.55 
C. gray-ling, gai-Iy, free-Iy 1.57 3.34 
d. Mailer, Hayley, Greeley, Daley 1.90 2.64 
e. mail-er, hail-y, gale-y, feel-y 3.01 2.01 
f. mail it 4.40 1.10 
g. bell, help 6.60 1.12 

It can be seen that the general tendencies outlined above do indeed appear in the judgments: initial 
(31a,b), final (31g), pretonic (31a), and preconsonantal (31g) positions involve near-categorical 
judgments; medial, pre-atonic position in monomorphemes (31d) yields essentially free variation; 
and gradient preferences, in both directions, are indeed reported where fonns are morphologically 
(31c,e) or syntactically (31t) derived. 

5.2 The III Simulation: Constraints 

The constraints adopted by Hayes (to appear) largely follow current proposals for reference to 
phonetic principles in Optimality Theory (e.g., Steriade 1997, Boersma 1998, Kirchner 1998). 

Dark [f] is assumed to be a lenited fonn, with a diminished alveolar gesture. It appears as 
the result of a context-free lenitional constraint, stated infonnally as III IS DARK. However, dark 
[t], being identifiable to a large degree from its effect on a preceding vowel, is required to occur 
postvocalically, by a constraint tenned DARK [f] IS POSTVOCALIC. 
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Two other perceptually driven constraints govern light [1]. They hold in contexts where the 

acoustic cues that render [I] identifiable are salient, thus repaying the greater articulatory effort 

needed. Particular salience is found pretonically, reflected in the constraint PRETONIC III IS LIGHT. 

Note that in general, it is pretonic position in English that demands fortis allophones, such as 
aspirated stops, unflapped alveolars, and so on. Failing the optimal pretonic context, the second­
best context is prevocalic position, which is the most favored licensing position for articulatorily 
effortful segments crosslinguistically. This principle is reflected in the constraint PREVOCALIC III 
IS LIGHT. As one would expect, it emerges empirically that PRETONIC III IS LIGHT is ranked higher 

than PREVOCALIC III IS LIGHT. 
The constraints just given dictate the distribution of the allophones of III in monomorphemic 

forms. PRETONIC III IS LIGHT is undominated, forcing light [1] in light. DARK [f] IS POSTVOCALIC 
is likewise undominated, forcing light [I] in Louanne. For intervocalic, pre-atonic Ill, free ranking 
of III IS DARK and PREVOCALIC III IS LIGHT results in free variation. 

To model the effects of morphology, Hayes posits output-to-output correspondence con­
straints. Paradoxically, these constraints cannot be stated on III per se. This is because in grayling 
and similar forms, the crucial light [1] does not actually occur in the base form gray. Hayes's 
approach is to base the system on the salient vowel allophones that precede a dark [f] (e.g., [e:l] 
in bail vs. the normal [el] in bay). Since the matchup of vowel allophones to III allophones is 
quite obligatory (* [bell] , *[be:l]), it is possible to impose output-to-output correspondence on 

vowel quality rather than on III darkness. Thus, the diphthong [el] in gray [grel] is normally 

required to appear in derived forms like grayling [greIlIIj], and because of allophone matching, 
the following III must therefore be light. Likewise, the [i:l] in feel [h:lf] is normally required to 
appear in derived forms like feely [h:lti]. The output-to-output correspondence constraints that 

are needed are IDENToo(vowel features, morphological), to cover cases like gray-ling, mail-er, 
and feel-y, and IDENToo(vowel features, phrasal), to cover mail it. As appears to be the norm 
cross linguistically, phrasal output-to-output correspondence is ranked higher. 

To account for the observed judgments, Hayes (to appear:sec. 3.7) arranges the fringes of 
the constraints so that dark-[t] gray-ling and light-[l] mailer (both taken to be rated as "?") can 
only be derived by making use of a "?" -class fringe, while light-[l] mail it (assumed to be "??") 

can only be derived by making use of a "??" -class fringe. Intuitively, the various cases result 
from the following constraint interactions: In monomorphemic forms, competition between an 
articulatorily driven lenitional constraint and various contextual, perceptually driven constraints 

derives the basic patterns of obligatory and optional [1] or [fl. In paradigms, the strong (but not 
invariant) effects of output-to-output correspondence make themselves felt as the result of semi­
or near-obligatory constraint rankings, enforced with fringes. 

5.3 Learning the III Pattern with the Gradual Learning Algorithm 

As noted above, our interest is in determining whether the tighter theoretical approach we adopt 
here, with uniform constraint strictness distributions, can provide an adequate account of the data 
modeled by Hayes (to appear) with stipulated strictness bands and fringes. We also hope to make 
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use of the hypothesis stated above: that many intermediate well-formedness judgments are the 

result of frequency effects in the learning data. 
To form a bridge between conjectured frequencies and well-formednessjudgments, we adopt 

a fully explicit hypothesis in the form of equations that relate the two. These equations are 
presented in appendix B. We use one equation to convert empirically gathered gradient well­
formedness judgments into conjectured frequencies, for all seven forms. These frequencies are 
then fed to the Gradual Learning Algorithm, which will produce (if all goes well) a grammar that 
closely mimics them. Then, by feeding the predicted frequencies into the mathematical inverse 
of the first equation, we get predicted judgments, which can then be compared with the original 
data. Summarizing, our simulation takes the form shown in (32). 

(32) Observed --->. Conjectured Learning Predicted Predicted 
-" ~ ~ ~ 

judgments frequencies algorithm frequencies judgments 

.................................................. ~ (comparison) ................................................................. , 

One further complication must be dealt with before we present the results of the simulation. 
The frequency percentages of competing forms always sum to 100, but the sum of the light and 

dark judgments is not constant. This gives rise to difficulties in setting the equations, difficulties 
we resolved by modeling the differences in judgment for light versus dark N rather than the raw 

judgments. This is, of course, a procedure that linguists often follow when presenting delicate 
cases to real consultants. 

We began our simulation by converting the averaged subject data into judgment differences, 
then converting the differences into conjectured frequencies with equation (40) of appendix B. 
The results are shown in table (33). 

(33) Converting well-formedness judgments to conjectured probability of occurrence 

Conjectured 
frequency 

Judged Judged Judgment of light 
Word type as light as dark difference variant (%) 

a. light 1.30 6.10 4.80 99.956 
b. Louanne 1.10 5.55 4.45 99.923 
c. gray-ling, gai-Iy, free-Iy 1.57 3.34 1.77 94.53 
d. Mailer, Hayley, Greeley, Daley 1.90 2.64 0.74 76.69 
e. mail-er, hail-y, gale-y, feel-y 3.01 2.01 -1.00 16.67 
f. mail it 4.40 1.10 -3.30 0.49 
g. bell, help 6.60 1.12 -5.48 0.0011 

We then submitted seven representative forms from (33), with relative output frequencies as given 
in the last column, to the Gradual Learning Algorithm. The details of the training schedule are 
given in appendix A. The ranking values that emerged are given in (34). 
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(34) Ranking values after English simulation 

Constraint 

IDENToo(vowel features, phrasal) 
DARK [t] IS POSTVOCALIC 

PRETONIC Ilf IS LIGHT 

1DENToo(vowel features, morphological) 
PREVOCALIC III IS LIGHT 

III IS DARK 

Ranking 
value 

108.146 
107.760 
103.422 
103.394 
100.786 
99.084 

77 

Running the grammar for 1 million trials, we obtained its predicted frequencies. Finally, we used 
equation (41) of appendix B to convert the predicted frequencies back into predicted judgment 
differences. 18 Table (35) gives the outcomes; repeated runs of the whole simulation gave very 
similar results. 

(35) Results of English simulation 

Projected Modeled 
Observed frequency frequency Predicted 
judgment of light of light judgment 

Word type difference variant (%) variant(%) difference 

a. light 4.80 99.956 99.938 4.59 
b. Louanne 4.45 99.923 99.904 4.31 
c. gray-ling, gai-Iy, free-Iy 1.77 94.53 95.76 1.94 
d. Mailer, Hayley, Greeley, Daley 0.74 76.69 72.62 0.61 
e. mail-er, hail-y, gale-y, feel-y -1.00 16.67 16.63 -1.00 
f. mail it -3.30 0.49 0.47 -3.33 
g. bell, help -5.48 0.0011 0 -6.00 

From a comparison of the italicized columns, it emerges that the algorithm was able to model 
the well-formedness judgments with considerable accuracy. The values derived for the judgment 
differences differ from the human originals by an average of only 0.17. 

It is also interesting to compare the pattern of ranking values obtained by the algorithm with 
the pattern of "fringes" posited in Hayes's hand-crafted grammar. In (36), the crucial forms are 
given along with their well-formedness value as assigned by Hayes's grammar. In the same cells 
is also given the distance in ranking value between the two constraints that must be ranked in 
"reversed" fashion, as in (4b), in order for the depicted form to be derived. 

18 This raises the question of whether real speakers likewise obtain their judgments by a process of repeated sampling. 
We are neutral on this point. Our crucial claim is that speakers internalize a grammar that relates well-formedness to 
frequency, because this is a rational learning strategy. In using their grammar to make judgments, speakers may well use 
mechanisms other than the Monte Carlo method. 
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(36) Comparison oj ranking distances with fringe labels 

PREVOCALIC nt 
IS LIGHT 

nt IS DARK 

IDENT oo( vowel 
features, phrasal) 

7.360 
??mai[l] it 

IDENTOO(vowei features, 
morphological) 

2.608 
?fee[l]y 

4.310 
?gray[t]ing 

PREVOCALIC nt 
IS LIGHT 

1.702 
jGree[t]ey 

For Greeley, Hayes allows the strictness bands of PREVOCALIC /1/ IS LIGHT and /1/ IS DARK to 
overlap entirely, predicting two perfect outcomes. The present system essentially repeats this 
claim, but imposes a rather small difference in the ranking values of these two constraints, namely, 
1.702. This difference indeed corresponds to a slight preference in the consultants' judgments 
for light [I] in Greeley. The forms ?Jee[l]y and ?gray[t]ing are both derivable in Hayes's system 
by using a "?" fringe; here, they are derivable from the less-likely ranking of constraint pairs 
whose ranking values are 2.608 and 4.310 units apart, respectively. Again, this matches an actual 
difference, in the predicted direction, in the consultants' judgments: ?Jee[l]y indeed was felt to 
be better (both absolutely and relative to its counterpart) than ?gray[t]ing. Finally, ??mai[l] it is 
derived in Hayes's system by use of a "??" strictness band; here, it is derived using the rather 
unlikely ranking reversal of two constraints whose ranking values stand 7.360 units apart. 

What emerges from these comparisons is that the grammar learned by the Gradual Learning 
Algorithm is fairly close in form to Hayes's hand-crafted grammar. But it is subtler and captures 
refined distinctions of judgment that elude the too-coarse categories provided by the fringe system. 

The tentative conclusion we draw from this simulation is that, at least for this particular 
case, the theory of grammar assumed by the Gradual Learning Algorithm slices a Gordian knot. 
The language-specific arrangement of strictness bands and fringes posited by Hayes in his hand­
crafted grammar are unnecessary. Instead, an entirely general system of gradient constraint rank­
ing-all constraints have continuous "fringes," identical for all-suffices to handle the facts. 

6 Conclusion 

The Gradual Learning Algorithm has here successfully dealt with representative cases chosen to 
embody important challenges in the theory of learnability: free variation (section 3), robustness 
against speech errors (section 3.9), matching corpus frequencies (section 4), and gradient well­
formedness (section 5). 

Phonological learning is a difficult area, and many of its problems have yet to be fully solved. 
Among these are phonotactic learning (footnote 4), discovering hidden structure, relating variation 
to speaking style (appendix C), and discovering language-specific constraints, if such exist. An 
effective constraint-ranking algorithm is likely to be only a part of the theory that ultimately 
emerges. We think that as it stands, however, the Gradual Learning Algorithm has some potential 
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as a research tool, helping linguists take on new problems, especially cases involving intricate 
patterns of free variation and intermediate well-formedness. 19 

Appendix A: Training Schedules 

We have little secure knowledge of how schedules for plasticity and other values affect the speed 
and accuracy of learning. We find that quite a few regimes lead to accurate final results, though 
they may differ greatly in speed. 

A.I Plasticity 

A small plasticity value does a better job of matching learning data frequencies in the end, but 
a large plasticity value nears its goal faster. The virtues of the two approaches can be combined 
by adopting a learning schedule that decreases the plasticity as learning proceeds. This seems in 
principle realistic: in humans, grammar apparently stabilizes in adulthood, as nonlexicallearning 
slows or halts. 

A.2 Evaluation Noise 

We also find that letting the evaluation noise (CT in (5)) diminish during the course of learning 
improves accuracy, particularly in establishing large differences in ranking values between con­
straints that ultimately must be ranked categorically. At any given stage of learning, however, 
the evaluation noise is kept the same for all constraints. 

A.3 Details of Individual Simulations 

All learning schemes involved a sequence of stages, in which the number of forms digested per 
stage was usually set at 1,000 times the number of underlying forms. The scheme for the Ilokano 
simulation is shown in (37). 

(37) . Training schedule for Ilokano 

Data Plasticity Noise 

First 7,000 2.0 10.0 
Second 7,000 0.2 2.0 
Last 7,000 0.02 2.0 

19 The Gradual Learning Algorithm is available as part of the Praat speech analysis system, obtainable from http:// 
www.fon.hum.uva.nllpraatl, and also as part of the OTSoft constraint-ranking software package available at http:// 
www.humnet.ucla.edullinguistics/peopleJhayes/. 
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The final noise level of 2.0 was considered to be the permanent value characteristic of the adult 
system and was accordingly used (here as elsewhere) to measure the output distribution of the 
final grammar. 

The training regimes for Finnish genitive plurals and English light and dark III were as in 
(38). 

(38) a. Training schedule for Finnish 

Data Plasticity Noise 

First 22,000 2.0 10.0 
Second 22,000 2.0 2.0 
Third 22,000 0.2 2.0 
Fourth 22,000 0.02 2.0 
Last 300,000 0.002 2.0 

b. Training schedule for English 

Data Plasticity Noise 

First 6,000 0.2 2.0 
Second 300,000 0.02 2.0 
Last 300,000 0.002 2.0 

In these simulations, we used more extended training regimens, since we had a different purpose 
in mind. For Ilokano, we had been curious to see how few forms it would take for the grammar 
to achieve a state of high accuracy. For Finnish and English, we sought to model the mature adult 
state, which occurs after extensive learning has provided sufficient exposure even to very rare 
forms. 

We found that training schedules different from the above produce results that may be less 
accurate, but only slightly so. For example, when we used the Finnish regimen for Ilokano, the 
number of illegal forms generated went up from 1 per 100 million (section 3.5) to 1 per 2 million, 
though frequency matching improved from 0.46% to 0.10%. When we submitted the English 
forms to the Finnish regimen, we found that the average error in predicting judgment differences 
went up from 0.17 to 0.89. The increased error resulted mainly from assigning categorically bad 
judgments to dark [t] in light and Louanne, and sometimes to light [I] in mail it; that is, many 
of the forms that were rated "??" by humans are learned as "*,, judgments instead. 

A.4 Time to Convergence 

One can ask whether the amount of data that must be fed to the algorithm to obtain accurate 
results is excessive in comparison with what real learners are likely to encounter during the 
acquisition period. We feel that the numbers we used are probably acceptable. It should be recalled 
that most constraints are quite general and are instantiated by large numbers of words. Given the 
many thousands of words heard by a child in an average day, there is reason to believe that real­
life learning data are copious enough to support learning with the Gradual Learning Algorithm. 
For some estimation of convergence times in general, see Boersma 1998:328. 
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A.5 The Course of Learning 

It is also worth considering the route that the Gradual Learning Algorithm takes in arriving at 
the final set of ranking values. In chart (39), we give the output distributions for the intermediate 
grammar~ obtained during the course of the Ilokano simulation. Each output distribution was 
calculated by running every underlying form through the grammar I million times, using the 
value for noise that was in effect at the relevant stage of learning. 

(39) The stages of learning Ilokano (all statistics given as percentages) 

After After After After After After 
1,000 7,000 7,000 14,000 21,000 121,000 

Surface Target Initial data data data data data data 
form language state (noise 10.0) (noise 10.0) (noise 2.0) (noise 2.0) (noise 2.0) (noise 2.0) 

taw.?en 50 2.7 38.0 53.8 76.0 50.0 52.2 48.9 
ta'?wen 50 2.7 38.2 42.9 24.0 50.0 47.8 51.1 
ta.wen 0 3.2 5.4 0.5 0 0 0 0 
ta.'?en 0 29.4 1.3 0.0002 0 0 0 0 
ta.'?o.en 0 29.4 0.8 0.0001 0 0 0 0 
ta.'?o.'?en 0 29.4 12.4 2.7 0 0 0 0 
ta.'?wen 0 3.2 3.8 0.2 0 0 0 0 

bu:.bwa.ja 33.3 6.7 29.9 13.6 0.02 26.6 36.7 32.9 
bwaj.bwa.ja 33.3 47.1 28.0 77.6 99.98 44.8 31.2 33.7 
bub.wa.ja 33.3 20.8 41.3 8.7 0 28.6 32.1 33.4 
bwa:.bwa.ja 0 16.3 0.7 0.004 0 0 0 0 
ba:.bwa.ja 0 9.1 0.1 0.005 0 0 0 0 

pa.lak 100 53.3 79.2 98.8 100 100 100 100 
pa?.lak 0 23.3 19.2 1.2 0 0 0 0 
pa.?lak 0 23.3 1.5 0.0005 0 0 0 0 

lab.?aj 100 50.0 95.5 99.8 100 100 100 100 
la.baj 0 50.0 4.5 0.2 0 0 0 0 

tra.ba.ho 100 66.7 80.3 99.2 100 100 100 100 
tar.ba.ho 0 33.3 19.7 0.8 0 0 0 0 

?aj.wen 100 7.5 95.5 99.5 100 100 100 100 
?a.jen 0 28.4 0.001 0 0 0 0 0 
?a.jo.en 0 28.4 0.001 0 0 0 0 0 
?a.jo.?en 0 28.4 0.05 0 0 0 0 0 
?a.jwen 0 7.5 4.4 0.5 0 0 0 0 

ba.sa.?en 100 31.0 58.0 96.9 100 100 100 100 
ba.sen 0 31.0 11.7 1.0 0 0 0 0 
ba.sa.en 0 31.0 8.5 0.7 0 0 0 0 
bas.Slen 0 3.5 6.0 0.7 0 0 0 0 
bas.wen 0 3.5 15.9 0.7 0 0 0 0 

Mean absolute 
error 36.5 8.6 3.9 6.3 0.79 0.39 0.11 
Outliers 58.8 16.5 1.3 0 0 0 0 
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The chart illustrates the strategy that was used to obtain quick and accurate learning for Ilokano: 
the initial stage of high noise (see column 5) created ranking values that, after noise was reduced 
to 2.0 (column 6), eliminated the possibility of generating illegal forms. Frequency matching at 
this stage was poor, but it improved after further learning (columns 7 and 8). Learning trials going 
well beyond what is reported in the main text (column 9) led to further improvement in modeling 
frequency. 

The point of this exercise is to show that, even near the beginning of its efforts, the algorithm 
generates languages that are already coming to resemble the target language. The data also show 
that an early "boost period" with high noise can be helpful in excluding outliers; it remains to 
be seen if evidence will ever be found that humans behave analogously. 

Appendix B: Equations Relating Well-Formedness and Frequency 

We seek a concrete implementation of the general idea laid out in (32). 
First, we need an equation that maps an observed judgment difference to a conjectured 

fraction of light [I] forms (the conjectured fraction of dark [I] forms is simply one minus this 
value). Let tJ be the observed judgment for dark forms minus the observed judgment for light 
forms. Average values for tJ were shown in column 4 of table (33). To convert this into a 
conjectured fraction of light forms, we perform a sigmoid transformation, shown in (40). 

1 
(40) conjectured fraction of light forms = 1 + 0.2£J 

Values obtained from this equation appear in the last column of table (33). 
Second, we need an equation that maps the frequency F;, of light forms predicted by the 

Gradual Learning Algorithm (table (35), column 4) to a predicted judgment difference. For this, 
we carry out the mathematical inverse of the sigmoid transformation (40), given in (41). 

log (-!- - 1) 
(41) predicted judgment difference = 10; 0.2 

The values obtained from this equation appear in the last column of table (35). 
Here are examples illustrating what the equations claim. If the judgment of light [I] in some 

context is a perfect 1, and dark [I] is the opposite extreme of 7, then it is hypothesized that in 
the learning data that gave rise to these judgments, light [l],s outnumber dark by a factor of 
15,625 to 1, a ratio that would likely permit the learner to consider any dark [I] as a speech error. 
If light and dark III are judged rather closely (say, 2 vs. 3), the equations claim that in the learning 
data they occurred at a conjectured ratio of 5 to 1. Note that this arrangement attributes some 
reasonable sagacity to language learners: it would be a rash learner who concluded that there is 
anything seriously wrong with a form that occurs in a sixth of all cases. 

Appendix C: Stylistic Variation 

The research literature in sociolinguistics clearly shows that variation in language reflects distinc­
tions between casual and formal style. A full model of variation would have to reflect this, and 
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in this appendix we speculate briefly on how the model given here could be extended in an 
appropriate way. 

We assume that utterances occur in contexts that can be characterized along a casual-to­
formal continuum. We quantify this continuum with a variable Style, such that Style equals 0 in 
maximally casual speech and 1 in maximally formal speech. The selection point for a given 
constraint C; is determined by equation (42). 

(42) selectionPoint; = ranking Value; + styleSensitivity; . Style + noise 

This is the same equation as before, augmented by the term styleSensitivity; . Style, in which 
styleSensitivity; is a constraint-specific value. Constraints with positive values for styleSensitivity 
take on higher ranking values in formal speech; constraints with negative values for styleSensitivity 

take on higher ranking values in casual speech, and constraints with zero values for styleSensitivity 

are style insensitive. 
We conjecture that the initial stages of acquisition are insensitive to style. Under this condi­

tion, all values of styleSensitivity; are zero, and acquisition can proceed with the Gradual Learning 
Algorithm as described in the main text. Later, as the language learner becomes aware of the 
stylistic context of utterances, he or she learns to associate variation in selection points with style. 
In this view, the appropriate research strategy is to develop a learning algorithm that can learn 
both the ranking values and the values of styleSensitivity for each constraint, given a set of 
utterances and their affiliated values for Style. We defer discussion of such an algorithm to later 
work. 
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