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1. Introduction 

Many cases of gradient intuitions reflect conflicting patterns in the data to which the child is 
exposed during language acquisition.   An area in which the learner almost always faces 
conflicting data is inflectional morphology, where different words in the lexicon often follow 
different patterns.  Thus, for English past tenses, we have wing ~ winged (the most common 
pattern in the language) wring ~ wrung (a widespread [] ~ [] pattern), and sing ~ sang (a less 
common [] ~ [æ] pattern).  The irreconcilable conflict between these patterns leads English 
speakers to have ambivalent, gradient intuitions when asked to provide the past tense of a novel 
verb that fits all of them, such as spling (Bybee and Moder 1983; Prasada and Pinker 1993; 
Albright and Hayes 2003). 

 
In order to get a more precise means of investigating this kind of gradience, we have over 

the past few years developed an implemented formal model for the acquisition of inflectional 
paradigms.  An earlier version of our model is described in Albright and Hayes (2002), and its 
application to various empirical problems is laid out in Albright, Andrade, and Hayes (2001), 
Albright (2002), and Albright and Hayes (2003).  Our model abstracts morphological and 
phonological generalizations from representative learning data and uses them to construct a 
stochastic grammar that can generate multiple forms for novel stems like spling.  The model is 
tested by comparing its “intuitions,” which are usually gradient, against human judgments for the 
same forms. 

 
In modeling gradient productivity of morphological processes, we have focused on the 

reliability of the generalizations: how much of the input data do they cover, and how many 
exceptions do they involve?  In general, greater productivity is found to be correlated with 
greater reliability, while generalizations covering few forms or entailing many exceptions are 
relatively unproductive. In this article, we address a puzzling challenge to this way of evaluating 
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generalizations:  the existence of generalizations that are exceptionless and well-instantiated, but 
are nonetheless either completely invalid, or else not nearly as valid as exceptionlessness would 
imply (i.e. they give rise to gradient intuitions).  We offer a solution for one class of these 
problems, based on the Gradual Learning Algorithm (Boersma 1997, Boersma and Hayes 2001).  
We then discuss other cases in which this solution does not work satisfactorily, and we present 
some of our tentative efforts to find a more general solution. 

 
2. Navajo Sibilant Harmony 

The problem of exceptionless but unproductive generalizations arose in our efforts to extend 
our model to learn non-local rule environments.  The first example we discuss comes from 
Sibilant Harmony in Navajo, a gradient process described in Sapir and Hoijer (1967).   

 
Sibilant harmony can be illustrated by examining the allomorphs of the s-perfective prefix.  

This prefix is realized as shown in (1) (examples from Sapir and Hoijer): 
 

(1) a.  [šì-]  if the first segment of the stem to which it is attached is a [–anterior] 
sibilant ([č, č', čH, š, ž]), for example in [šì-čìd] ‘he is stooping over’ 

 b. [šì-] or [sì-]  if somewhere later in the stem is a [–anterior] sibilant, as in [šì-tééž] ~ 
[sì-tééž] ‘they two are lying’ (free variation)   

 c. [sì-] otherwise, as in [sì-tí)] ‘he is lying’ 
 

A fully realistic simulation of the acquisition of Navajo sibilant harmony would require a 
large corpus of Navajo verb stems along with their s-perfectives.  Lacking such a corpus, we 
performed idealized simulations using an artificial language modeled on Navajo:  we selected 
whole Navajo words (rather than stems) at random from the electronic version of Young, 
Morgan, and Midgette’s dictionary (1992), and constructed s-perfective forms for them by 
attaching [šì-] or [sì-] according to the pattern described in (1).   
 
3. How Our Learning Model Works 

Our learning system employs some basic assumptions about representations and rule 
schemata.  We assume that words are represented as sequences of phonemes, each consisting of 
a bundle of distinctive feature specifications, as in Chomsky and Halle (1968).  Rules and 
constraints employ feature matrices that describe natural classes, as well as variables permitting 
the expression of non-local environments:  ([+F]) designates a single skippable segment of the 
type [+F], while ([+F])* designates any number of skippable [+F] segments.  Thus, the 
environment in (2): 

 
(2) / ___ ([+seg])* [–anterior]  
 
can be read “where a non-anterior segment follows somewhere later in the word”  ([+seg] 
denotes the entire class of segments). 

 
Our learner is given a list of pairs, consisting of bases and inflected forms.   For the 

synthetic version of Navajo we used, such a list would be partially represented by (3):   
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(3) a. [bà˘/] [sì-bà˘/]    
 b. [č’ì¬] [šì-č’ì¬] 
 c. [čHò˘jìn] [šì-čHò˘jìn] 
 d. [gàn] [sì-gàn] 
 e. [k’àz] [sì-k’àz] 
 f. [kéšgã ò̆ ] [šì-kéšgãò̆ ], [sì-kéšgãò̆ ] 
 g. [sí˘/] [sì-sí˘/] 
 h. [tã òš] [šì-tãòš], [sì-tã òš] 
 i. [tĩ ] [sì-tĩ]   
 j. [t É¬é˘ž] [šì-tÉ¬é˘ž], [sì-tÉ¬é˘ž] 
  
Where free variation occurs, the learner is provided with one copy of each variant; thus, for (3f) 
both [kéšgã ò̆ ] ~ [šì-kéšgã ò̆ ] and [kéšgã ò̆ ] ~ [sì-kéšgã ò̆ ] are provided. 

 
The goal of learning is to determine which environments require [sì-], which require [šì-], 

and which allow both.  The learning process involves generalizing bottom-up from the lexicon, 
using a procedure described below.  Generalization creates a large number of candidate 
environments; an evaluation metric is later employed to select which environments to keep in the 
final grammar. 

 
Learning begins by parsing the forms into their component morphemes and grouping them 

by the morphological change they involve.  The data in (3) exhibit two changes, as shown in (4); 
the box surrounds cases of free variation.  

 
(4) I. Prefix [sì-]  II. Prefix [šì-] 

 a. [bà˘/] [sì-bà˘/]  a. [čHò˘jìn] [šì-čHò˘jìn]
 b. [gàn] [sì-gàn]  b. [č’ì¬] [šì-č’ì¬] 
 c. [kéšgã ò̆ ] [sì-kéšgãò̆ ]  c. [kéšgã ò̆ ] [šì-kéšgãò̆ ] 
 d. [t É¬é˘ž] [sì-tÉ¬é˘ž]   d. [t É¬é˘ž] [šì-tÉ¬é˘ž]  
 e. [tã òš] [sì-tãòš]  e. [tã òš] [šì-tãòš] 
 f. [k’àz] [sì-k’àz]    
 g. [sí˘/] [sì-sí˘/]    
 h. [tĩ ] [sì-tĩ]    
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For each change, the system creates hypotheses about which elements in the environment are 
necessary to condition the change.  To do this, it begins by treating each pair as a “word-specific 
rule,” by separating out the changing part from the invariant part.  Thus, the first three [šì-] forms 
in (4) would be construed as in (5): 

 
(5) a. ∅ → šì / [ ___ čHò˘jìn] 
 b. ∅ → šì / [ ___ č’ì¬] 
 c. ∅ → šì / [ ___ kéšgã ò̆ ] 

 
Next, the system compares pairs of rules that have the same change (e.g., both attach [šì-]), 

and extracts what their environments have in common to form a generalized rule.  Thus, given 
the two word-specific rules in (6a), the system collapses them together using features, as in (6b). 

 
(6)a. ∅ → šì / [ ___ tã òš]  

 ∅ → šì / [ ___ t É¬é˘ž] 
 

b.  ∅ → šì / [ ___ t ãò š ] 
 + ∅  →  šì  /  [  ___  t É¬ é˘ ž ] 

 = ∅  →  šì  /  [  ___  






–sonorant

–continuant
–spread gl.
+anterior

   








+syllabic

–high
–round

  






–sonorant

+continuant
–anterior
+strident

  ] 

 
In this particular case, the two forms being compared are quite similar, so determining 

which segment should be compared with which is unproblematic.  But for forms of different 
lengths, such as [čHò˘jìn] and [č’ì¬] above, this is a harder question.1  We adopt an approach that 
lines up the segments that are most similar to each another.  For instance, (7) gives an intuitively 
good alignment for [čHò˘jìn] and [č’ì¬] 

 
(7) čH ò˘ j ì n  

 |   | |    
 č’   ì ¬    

Good alignments have two properties:  they match phonetically similar segments like [čH] 
and [č’], and they avoid leaving too many segments unmatched.   To evaluate the similarity of 
segments, we employ the similarity metric from Frisch, Pierrehumbert and Broe (2004).  To 
guarantee an optimal pairing, we use a cost-minimizing string alignment algorithm (described in 
Kruskal 1999) that efficiently searches all possible alignments for best total similarity.   

 

                                                 
1 The issue did not arise in an earlier version of our model (Albright and Hayes 2002), which did not aspire to 

learn non-local environments, and thus could use simple edge-in alignment. 
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The rationale for using similarity-based alignment is that phonological environments are 
based on natural classes, and the members of a natural class are phonetically similar.   

 
Seen in detail, the process of collapsing two rules into one is based on three principles, 

illustrated in (8) with the collapsing of the rules ∅ → šì / [ ___ kéšgã ò̆  ] and ∅ → šì / [ ___ tã òš ]. 
 

(8) 1. Shared material is 
collapsed using the 
feature system. 

 2. Unmatched material is 
designated as optional, 
notated with parentheses. 

 
 

  ∅ → šì / [ ___ k é š gãò̆  ] 
 + ∅  →  šì  /  [  ___  t ã ò š   ] 

 = ∅  →  šì  /  [  ___ 






–sonorant

–contin
–spread gl.
–constr. gl.

 








+syllabic

–high
–round

  š (g)(ãò̆ ) ] 

3. Sequential optional elements are collapsed 
into a single variable, encompassing all of 
their shared features (e.g. ([+F])*).  

 

  ∅  →  šì  /  [  ___ 






–sonorant

–contin
–spread gl.
–constr. gl.

  








+syllabic

–high
–round

  š ([+seg])* ] 

 
Paired feature matrices are collapsed by constructing a new matrix that contains all of their 

shared features (see step 1).  Next, any material in one rule that is unmatched to the other is 
designated as optional, represented by parentheses (step 2).  Finally, sequences of consecutive 
optional elements are collapsed together into a single expression of the form (F)*; that is, any 
number of feature matrices F , where F  is the smallest natural class containing all of the 
collapsed optional elements (step 3). 

 
The process is iterated, generalizing the new rule with the other words in the learning data; 

the resulting rules are further generalized, and so on.  Due to memory limitations, it is necessary 
periodically to trim back the hypothesis set, keeping only those rules that perform best.2  
Generalization terminates when no new “keeper” rules are found. 

 

                                                 
2 Specifically:  (a) for each word in the training set, we keep the most reliable rule (in the sense of Albright 

and Hayes 2002) that derives it; (b) for each change, we keep the rule that derives more forms than any other. 
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We find that this procedure, applied to a representative set of words, discovers the 
environment of non-local sibilant harmony after only a few steps.  One path to the correct 
environment is shown in (9): 

 
(9)  [čH ò˘ j ì n]    [č’ ì ¬] 
 
 
 

 



–continuant

–anterior   (








+son

–cons
–nasal

 )* i 



–syllabic

+anterior    [čH ì t í]  

 
 
 

   



–continuant

–anterior   ([+seg])*   [ž ì˘ ]  
  
 
 
     [–anterior]([+seg])*  [d í w ó ž ì˘ ¬ p á h í]   
 
 
 
    ∅ → šì- / [ ___  ([+seg])* [–anterior] ([+seg])* ] 
 
The result can be read:  “Prefix [šì-] to any stem that consists of any number of segments 
followed by a nonanterior segment, followed by any number of segments”.  (Note that in our 
feature system, [–anterior] segments in Navajo are necessarily sibilant.)  In more standard 
notation, one could replace ([+seg])* with a free variable X, and follow the standard assumption 
that non-adjacency to the distal word edge need not be specified; thus the rule would appear as in 
(10): 
 
(10)   ∅ → šì- / ___  X  [–anterior] 
 

We emphasize that at this stage, the system is only generating hypotheses; the task of using 
these hypotheses to construct the final grammar taken up in section 5.  

 
4. Testing the Approach:  A Simulation 

We will now show that, given representative learning data, the system just described can 
discover the rule environments needed for Navajo sibilant harmony.  As noted above, our 
learning simulation involved artificial Navajo s-perfectives, created by attaching appropriate 
prefix allomorphs to whole Navajo words (as opposed to stems).  Selecting 200 words at 
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random,3 we followed Sapir and Hoijer’s characterization of the harmony pattern, attaching 
prefixes to the bases as follows:  (a) if the base began with a nonanterior sibilant, we prefixed  
[šì-] (there were 19 of these in the learning set); (b) if the base contained but did not begin with a 
nonanterior sibilant, we made two copies, one prefixed with [šì-], the other with [sì-] (37 of 
each); (c) the remaining 144 bases contained no nonanterior sibilant, and we prefixed [sì-] to 
each. 

 
Running the algorithm just described, we found that among the 92 environments it learned 

were three of particular interest: the environment for obligatory local harmony ((11a)); the 
environment that licenses distal harmony ((11b); note that this includes local harmony as a 
special case); and the vacuous “environment” specifying the default allomorph [sì-] ((11c)).  

 
(11) a. Obligatory local harmony 

  ∅ → [šì-] /  ___ [–anterior] 

 b.  Optional distal harmony (= (10)) 

  ∅ → [šì-] / ___  X  [–anterior] 

 c.  Default [sì-] 

  ∅ → [sì-] /  ___ X 
 

The remaining 89 environments are discussed below. 
 

5. Forming a Grammar 

These environments can be incorporated into an effective grammar by treating them not as 
rules, as just given, but rather as Optimality-theoretic constraints of morphology (Boersma 1998, 
Russell 1999, Burzio 2002, MacBride 2004).  In this approach, rule (11a) is reconstrued as a 
constraint “Use [šì-] /  ___ [–anterior] to form the s-perfective”.  This constraint is violated by 
forms that begin with a [–anterior] segment, but use something other than [šì-] to form the s-
perfective.  The basic idea is illustrated below: 

 

(12) Morphological 
Base 

Candidates that obey 
USE [šì-] / ___ [–anterior] 

Candidates that violate 
USE [šì-] / ___ [–anterior] 

 [šáp] [šì-šáp] *[sì-šáp], *[mù-šáp], etc. 
 [táp] all none 

 
It is straightforward to rank these constraints in a way that yields the target pattern, as (13) 

and (14) show:   
 

                                                 
3 We repeated our simulation, obtaining similar results, with ten 200-word samples, but report only one of 

them here. 
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(13) USE [šì-] / ___ [–ant] >> { USE [sì-] / ___ X , USE [šì-] / ___ X [–ant] } >> all others 
 
 
         ranked in free variation 
 

 
(14)a. / sì-čìd / USE [šì-] / ___ [–ant] USE [šì-] / ___ X [–ant] USE [sì-] / ___ X 
  šì-čìd   * 
 * sì-čìd *! *  
 
      b. / sì-té˘ž/  USE [šì-] / ___ [–ant] USE [šì-] / ___ X [–ant] USE [sì-] / ___ X 
  šì-té˘ž   * 
  sì-té˘ž   *!  

 
For (14b), the free ranking of USE [šì-] / ___ X [–ant] and USE [sì-] / ___ X will result in multiple 
winners generated in free variation (Anttila 1997). 
 
6. Unwanted Constraints 

The 89 constraints not discussed so far consist largely of complicated generalizations that 
happen to hold true of the learning data.  One example is the constraint in (15): 

 

(15) USE sì- / ___ ([–round])* 



+anterior

+continuant   ([–consonantal])*] 
 

As it happens, this constraint works for all 37 forms in the learning data to which it applies.   
 

Such constraints make profoundly incorrect predictions for forms outside the learning data, 
such as hypothetical /čálá/: 

 

(16) USE sì- / ___ ([–round])* 



+anterior

+continuant   ([–consonantal])*] 
 
 sì- č á  l á    
 

If ranked high enough, this constraint will have the detrimental effect of preventing [šì-čálá] 
from being generated consistently.  We will refer to such inappropriate generalizations as “junk” 
constraints. 

 
One possible response to the problem is to say that the learning method is simply being too 

liberal, allowing too many generalizations to be projected from the learning data.  We 
acknowledge this as a possibility, and we have experimented with various ways to force the 
algorithm to stick to more sensible generalizations.  Yet we are attracted to the idea that 
constraint learning could be simplified—and rely on fewer a priori assumptions—by letting 
constraints be generated rather freely and excluding the bad ones by having an effective 
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evaluation metric.   Below, we lay out such a metric, which makes use of the Gradual Learning 
Algorithm. 

 
7. The Gradual Learning Algorithm 

The Gradual Learning Algorithm (GLA; Boersma 1997, Boersma and Hayes 2001) can rank 
constraints in a way that derives free variation and matches the frequencies of the learning data; 
thus it is suited to an attack on the present problem.  The GLA assumes a stochastic version of 
Optimality Theory, whereby each pair of constraints {A, B} is assigned not a strict ranking, but 
rather a probability: “A dominates B with probability P”.  Thus, the free ranking given in (13) 
above would involve assigning to the constraints USE [sì-] / ___ X  and  
USE [šì-] / ___ X [–ant] a 50-50 ranking probability. 

 
Any such theory needs a method to ensure that the pairwise probabilities assigned to the 

constraints are mutually consistent.  In the GLA, this is done by arranging the constraints along a 
numerical scale, each constraint taking a ranking value.  On any particular occasion that the 
grammar is used, a selection point is adopted for each constraint, taken from a Gaussian 
probability distribution with a standard deviation fixed for all constraints.  The constraints are 
sorted by their selection points, and the winning candidate is then determined on the basis of this 
ranking.  In this scheme, pairwise ranking probabilities are determined by the ranking values,4 
and are guaranteed to be mutually consistent. 

 
8. The Need for Generality 

Let us now consider the application of the GLA to Navajo.  Naively, one might hope that 
when the constraints are submitted to the GLA for ranking, the junk will settle to the bottom.  
However, what one actually finds is that the junk constraints get ranked high.  Although 
USE [šì-] /  ___ [–ant] does indeed get ranked on top, the crucial constraints  
USE [šì-] /  ___ X [–ant] and USE [sì-] /  ___ X end up swamped by higher-ranking junk 
constraints, and thus rendered largely ineffective.  The result is a grammar that performs quite 
well on the data that trained it (generally producing something close to the right output 
frequencies for every stem), but fails grossly in generating novel forms.   The frequencies 
generated for novel forms are determined by the number of high ranking junk constraints that 
happen to fit them, and do not respect the distribution in (11). 

 
The problem at hand is a classic one in inductive learning theory.  If a learning algorithm 

excessively tailors its behavior to the particular forms to which it is exposed, it will learn a 
patchwork of small generalizations that collectively cover the learning data.  This does not 
suffice to cover new forms, which, after all, is the main purpose of having a grammar in the first 
place! 

 
Why did the GLA fail here?  The reason is that it demotes constraints only when they prefer 

losing candidates.  But within the learning data, our junk constraints generally prefer only 

                                                 
4 A spreadsheet giving the function that maps ranking value differences to pairwise probabilities is posted at 

http://www.linguistics.ucla.edu/people/hayes/GLA/. 
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winners—that is precisely why they emerged from the inductive generalization phase of 
learning.  Accidentally true generalizations thus defeat the GLA as it currently stands.  It would 
seem, then, that what is needed is a way for the GLA to distinguish accidentally true 
generalizations from linguistically significant generalizations. 

 
9. Initial Rankings Based on Generality 

Boersma (1998) suggested that for morphology, initial rankings should be based on 
generality—the more general the constraint, the higher it is ranked before learning takes place.  It 
turns out that this insight is the key to solving the Navajo problem.  What is needed, though, is a 
way to characterize generality in numerical terms.  There are various approaches that could be 
taken; for example, using the symbol-counting evaluation metric in Chomsky and Halle (1968) 
(fewer symbols = greater generality).  Here, we adopt an empirical criterion:  a rule or 
morphological constraint is maximally general if it can be held responsible for all of the forms 
that exhibit its structural change.  We use the fraction in (17): 

 

(17)   
number of forms that a constraint applies to

total number of forms exhibiting the change that the constraint requires 

 
In the 200-word Navajo simulation discussed above, some representative generality values 

are given below: 
 

(18) Constraint Relevant 
forms 

Forms with this 
change 

Generality
 

 USE [šì-] / ___ [–anterior] 19 .339 

 USE [šì-] /  ___ X [–anterior] 56 

56 [šì-] forms 

1 

 USE [sì-] /  ___ X 181 1 

 Constraint (15) (“junk” constraint) 37 

 
181 [sì-] forms 

.204 

 
The idea, then, is to assign the constraints initial ranking values that reflect their generality, 

with more general constraints on top.  If the scheme works, we should find that all the data will 
be explained by the most general applicable constraints, and the others will remain low in the 
grammar and hence never play a role in deriving output forms. 

 
In order to ensure that differences in initial rankings are large enough to make a difference, 

the generality values from (17) were rescaled to cover a huge probability range, using the 
formula in (19): 

 

(19) For each constraint c, initial ranking valuec =  500  x   
Generalityc - Generalitymin

Generalitymax – Generalitymin
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 where Generalitymin is the generality of the least general constraint in the system, and 
Generalitymax is the generality of the most general constraint. 

 
10. Employing Generality in a Learning Simulation 

We implemented the scheme just described and ran it (multiple times, to check for 
consistency) on the Navajo pseudodata described above.   For one representative run, it caused 
the relevant constraints (including here just one representative “junk” constraint (15)), to be 
ranked as follows: 

 
 

Generality        Initial Ranking        Final Ranking 

   550  

1, 1 1 500, 500 500 500  

 .9 450 450  

 .8 400 400  

 .7 350 350  

 .6 300 300  

 .5 250 250  

 .4 200 200  

.339 .3 150.9 150 150  

.204 .2 79.7 100 100  

 .1 50 50  

 0 0 0  

 
The grammar thus learned can be depicted schematically as in (21), where the arrows show 

the probabilities that one constraint will outrank the other. When the difference in ranking value 
exceeds about 10, the probability that the ranking will hold is essentially 1 (strict ranking).  

USE [šì-] / __ X [–ant]

USE [sì-] / __ X

USE [šì-] / __ [–ant] 

“Junk” constraint (15)

(20) 

100,000 
training 
cycles 

514.9 
499.9, 500.1 

19.2
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 (21) USE [šì-] /  ___ [–ant]  

 514.9 
    

  
     

 USE [sì-] /  ___ X USE [šì-] / ___ X [–anterior] 
 500.1  499.9 
   

  
 

USE sì- / ___ ([–round])* 



+anterior

+continuant   ([–consonantal])*]  
 19.2 Potentially harmful constraints like (15) safely outranked 
 

This approach yields the desired grammar:  all of the junk constraints (not just (15)) are 
ranked safely below the top three. 

 
The procedure works because the GLA is error-driven.  Thus, junk constraints not only start 

low, but they stay there, since the general constraint that does the same work has a head start and 
averts any errors that would promote the junk constraints. Good constraints with specific 
contexts, on the other hand, like “USE [šì-] / ___ [–ant]”, are also nongeneral—but appropriately 
so.  They start low, but they are crucial in averting errors like *[sì-šáp], and thus they are soon 
promoted by the GLA to the top of the grammar. 

 
We find, then, that a preference for more general statements in grammar induction is not 

merely an aesthetic bias; it is, in fact, a necessary criterion in distinguishing plausible hypotheses 
from those which are implausible, but coincidentally hold true in the learning sample. 

 
11. The Realism of the Simulation 

In this section we address two possible objections to our model. 
 

11.1 Phonological Rules vs. Allomorph Distribution 

Navajo sibilant harmony is typically described as a phonological process, spreading a  
[–anterior] feature value from right to left within a certain domain.  The grammar learned by our 
model, on the other hand, treats harmony as allomorphy ([sì-] vs. [šì-]), and cannot capture the 
effect of harmony root-internally.  Thus, it may be objected that the model has missed the 
essential nature of harmony. 

 
In this connection, we note first that harmony processes are often observed primarily 

through affix allomorphy—either because there is no corresponding root-internal restriction, or 
because harmony effects are weaker within roots, admitting greater exceptionality.  For these 
cases, an allomorphy analysis may be the only appropriate analysis.  For arguments that root-
internal and affixal harmony often require separate analyses, see Kiparsky (1968). 

 

1 

1 

.5

Undominated local harmony 

Free variation for non-local harmony 
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More generally, however, the question remains as to how to unify knowledge about 

allomorphy with knowledge about root-internal phonotactics.  Even when affixes and roots show 
exactly the same harmony patterns, we believe that understanding the distribution of affix 
allomorphs could constitute an important first step in learning the more general harmony process.  
Allomorphic alternations provide positive evidence that is frequently lacking for “static” (root-
internal) restrictions.  What is needed, therefore, is some way of bootstrapping from the 
constraints on particular morphemes to more general constraints on the distribution of speech 
sounds.  We leave this as a problem for future work.  

 
11.2 Should arbitrary constraints be generated at all? 

 
Another possible objection is that if we had had a more constrained method for 

hypothesizing constraints, it would never have posited constraints like (15) in the first place. 
Indeed, if all constraints come from Universal Grammar (that is, are innate), the need to trim 
back absurd ones would never arise.  Against this objection can be cited work from the 
phonological literature suggesting that environments sometimes really are complex and arbitrary 
from a synchronic point of view (Bach and Harms 1972; Hale and Reiss 1998; Hayes 1999; 
Blevins, in press).  For instance, in examining patterns of English past tenses, we found that all 
English verbs ending in voiceless fricatives are regular, and that native speakers are tacitly aware 
of this generalization (Albright and Hayes 2003).  It seems likely that any model powerful 
enough to handle the full range of attested phonological patterns will need some mechanism to 
sift through large numbers of possibly irrelevant hypotheses.     

 
12. Analytic Discussion 

While the Navajo simulation offers a degree of realism in the complexity of the constraints 
learned, hand analysis of simpler cases helps in understanding why the simulation came out as it 
did, and gives greater confidence that the result is a general one. 

 
To this end, we reduce Navajo to three constraints, renamed more generally as follows:  (1) 

USE [sì-], which we will call DEFAULT, (2) the special-context USE [šì-] / ___ X [–ant], which we 
will call CONTEXTUAL [šì-], and (3) the accidentally-exceptionless (15), which we will call 
ACCIDENTAL [sì-]. ACCIDENTAL [sì-] is exceptionless because the relevant forms in the training 
data happen not to contain non-anterior sibilants.   

 
Suppose first that all harmony is optional (50/50 variation) and that the ranking algorithm is 

the normal GLA.  Here, all constraints start out with an equal ranking value, set conventionally 
at 100.  The constraints CONTEXTUAL [šì-] and DEFAULT should be ranked in a tie to match the 
50/50 variation. During learning (see Boersma and Hayes 2001, 51-54), these two constraints 
vacillate slightly as the GLA seeks a frequency match, but end up very close to their original 
value of 100.  ACCIDENTAL [sì-] will remain at exactly 100: this is because the GLA is error 
driven and none of the three constraints favors an incorrect output for the training data that match 
ACCIDENTAL [sì-] (DEFAULT and ACCIDENTAL [sì-] both prefer [sì-], which is correct; and 
CONTEXTUAL [šì-] never matches these forms).  Thus, all three constraints end up ranked at or 
near 100.  This grammar is incorrect; when faced with novel forms like (16) that match all three 
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constraints, CONTEXTUAL [šì-] must compete against two, not one, equally ranked antagonists, 
deriving [šì-] only a third of the time instead of half. 

 
Initial rankings based on generality (section 9) correct this problem. Given that DEFAULT 

and CONTEXTUAL [šì-] cover all [sì-] and [šì-] forms respectively, they will be assigned initial 
ranking values of 500.  Define the critical distance C as the minimum difference in ranking 
between two constraints that is needed to model strict ranking (informal trials suggest that a 
value for C of about 10.5, which creates a ranking probability of .9999, is sufficient).  It is 
virtually certain that the initial ranking value for ACCIDENTAL [sì-] will be far below 500 – C, 
because accidentally true constraints cannot have high generality, other than through a freak 
accident of the learning data.   Ranking will proceed as before, with DEFAULT and CONTEXTUAL 
[šì-] staying close to 500 and ACCIDENTAL [sì-] staying where it began.   The resulting grammar 
correctly derives 50/50 variation, because ACCIDENTAL [sì-] is too low to be active.  

 
Now consider what happens when the data involve no free variation; i.e. [šì-] is the outcome 

wherever CONTEXTUAL [šì-] is applicable.   When initial rankings are all equal, the [šì-] forms 
will cause CONTEXTUAL [šì-] to rise and DEFAULT to fall, with their difference ultimately 
reaching C (CONTEXTUAL [šì-]: 500 + C/2; DEFAULT: 500 – C/2).  Just as before, ACCIDENTAL 
[sì-] will remain ranked where it started, at 500.  The difference of C/2 between CONTEXTUAL 
[šì-] and ACCIDENTAL [sì-], assuming C = 10.5, will be 5.25, which means that when the 
grammar is applied to novel forms matching both constraints, [sì-] forms will be derived about 
3% of the time.  This seems unacceptable, given that the target language has no free variation.  
Again, the incorrect result is avoided under the initial-ranking scheme of section 9, provided that 
ACCIDENTAL [sì-] is initially ranked at or lower than 500 – C/2, which is almost certain to be the 
case. 

 
In summary, schematized simulations suggest that the patterns seen in our main Navajo 

simulation are not peculiar to this case.  The effect of accidentally true generalizations is seen 
most strongly when free variation is involved, but they pose a threat even in the absence of 
optionality.  Initial rankings based on generality avoid the problem by keeping such constraints a 
critical distance lower than the default, so they can never have any effect on the outcome. 

 
13. Small-Scale Exceptionless Generalizations for Irregulars 

We conclude by presenting a problem that also involves exceptionless small-scale 
generalizations, for which we have only a sketchy answer.  Since the problem strikes us as a 
general and important one, we include it here. 

 
The phenomenon is the existence of small-scale patterns for irregulars.  As Pinker and 

Prince (1988) point out, when a system includes irregular forms, they characteristically are not 
arbitrary exceptions, but fall into patterns, e.g. English cling-clung, fling-flung, swing-swung.  
These patterns have some degree of productivity, as shown by historical change (Pinker 1999) 
and “wug” (nonce-word) testing (Prasada and Pinker 1993, Albright and Hayes 2003). 

 
The problem at hand is that our algorithm can find environments for these minor changes 

that are exceptionless.  For example, the exceptionless minor change shown in (22) covers the 
four verbs dig, cling, fling, and sling. 
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(22)  →  / X 








+cor

+ant
+voice

 ___ 



+dorsal

+voice  ][+past] 

 
The unmodified GLA, when it encounters an exceptionless constraint that conflicts with a more 
general constraint, inevitably ranks the exceptionless constraint categorically above the general 
one. For cases like Navajo, where the special constraint was (11a) and the general constraint was 
(11c), the default constraint for [sì-], this ranking is entirely correct, and corresponds to one of 
the fundamental purposes of constraint ranking—i.e. to instantiate the concept of default 
allomorph. 
 

But when exceptionless (22) is ranked categorically above the constraints specifying the 
regular ending for English (such as USE [-d]), the following prediction is made:  novel verbs 
matching the context of (22) should be exclusively irregular (i.e., blig → blug, not *bligged).  
There is evidence that this prediction is wrong, from wug tests on forms that match (22).  For 
instance, the wug test reported in Albright and Hayes (2003) yielded the following judgments 
(scale:  1 worst, 7 best): 

 
(23)  Present stem Choice for Past Rating 

a. blig [blg] blug [blg] 4.17 
   bligged [blgd] 5.67 
b. spling [spl] splung [spl] 5.45 
   splinged [spld] 4.36 
 

The regular forms are almost as good, or better, than the forms derived by the exceptionless rule. 
 

We infer that numbers matter: a poorly attested perfect generalization like (22) is not 
necessarily taken more seriously than a broadly attested imperfect generalization like USE [-d].  
In the Navajo case, strict ranking is appropriate, since the special-environment constraint (11a) 
that must outrank the default (11c) is robustly attested in the language.  In the English case, the 
special-environment constraint is also exceptionless, but is attested in only four verbs.  The GLA 
—in either version—ranks it on top of the grammar, just as in Navajo, but in this case with 
incorrect results. 

 
We faced this problem in our earlier work on English past tenses (Albright and Hayes 2003).  

At the time, we avoided it by simply not using Optimality Theory.  Instead, we let each rule have 
a score corresponding to its overall reliability, and let the predicted well formedness of each 
candidate output be the score of the best rule that derives it.  This worked well for English, 
permitting both splung and splinged to be assigned appropriately high scores.  However, the cost 
of abandoning OT was (as we now see) unacceptably high, since it would fail for cases of 
“special context + default”, like Navajo.  The Navajo default pattern above has a good overall 
reliability score (181/237), but that does not means it is appropriate to use it in the special 
context for [šì-]; that would wrongly derive *[sì-č’ì¬] and a host of similar forms, as near-perfect 
options.  From the present vantage point, we would judge that right approach should involve 
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constraint ranking (that is, OT) but have some mechanism to downgrade constraints supported by 
just a few forms. 

 
The basic principles of the GLA can be supplemented with biases that exert a downward 

force on morphological constraints that are supported by few data, using statistical smoothing or 
discounting.  As of this writing we do not have a complete solution, but we have experimented 
with a form of “absolute discounting” (Ney, Essen and Kneser 1994), implemented as follows: 
for each constraint C, we add to the learning data one artificial datum that violates C and obeys 
every other constraint with which C is in conflict.  

 
Under this scheme, if C (say, (22) above) is supported by just four forms, then the one 

artificially-added candidate would have a major effect in downgrading its ranking.   But if C is 
supported by thousands of forms (for example, the constraint for a regular mapping), then the 
artificially added candidate would be negligible in its effect. 

 
We found that when we implemented this approach, it yielded reasonable results for the 

English scenario just outlined:  in a limited simulated system consisting of the regulars in 
Albright and Hayes (2003) plus just the four irregulars covered by (22), regular splinged was a 
viable competitor with splung, and the relationships among the competing regular allomorphs 
remained essentially unchanged. 

 
There are of course many ways that small-scale generalizations could be downgraded.  We 

emphasize that the development of a well-motivated algorithm for this problem involves not just 
issues of computation, but an empirical question about productivity: when real language learners 
confront the data, what are the relative values that they place on freedom from exceptions vs. 
size of generalization, and how do they implement these relative values?  Both experimental and 
modeling work will be needed to answer these questions. 

14. Conclusion 

We have focused on the perils for language learning of the accidentally true, and what the 
theory of morphological learning might do to cope with these perils.   

 
In the main part of the paper, we argued that accidentally true environments pose a danger to 

learning, raising the risk of a grammar that forms outputs largely according to which accidentally 
true environments an input happens to meet.  Our remedy for this was to use the Gradual 
Learning Algorithm to rank the constraints, biasing it with an initial preference for generality. 

 
An unresolved question that we cannot address here is whether a bias for generality can be 

applied to all types of phonological constraints, or just those that govern allomorph distribution.  
It is worth noting that for certain other types of constraints, such as faithfulness constraints, it has 
been argued that specific constraints must have higher initial rankings than more general ones 
(Smith 2000).  At present, we restrict our claim to morphological constraints of the form “USE 
X”. 

 
The second kind of perilous accidentally true generalization is the kind that covers only a 

few forms, the problem being not to let perfection on such a small scale outweigh the more 
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significant larger generalizations.  Here, our suggestion was that further biases must also be 
added to constraint ranking that would penalize constraints based on very few forms.    The 
details, and viability, of this proposal remain to be worked out in future research. 
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