
OTSoft: Constraint Ranking Software

Version 2.3.2

Bruce Hayes
UCLA

January 11, 2013

Contents

[if you’re reading this on a computer screen, page numbers are clickable]

1. PURPOSE OF OTSOFT...4

2. INSTALLING OTSOFT ON YOUR PC...4

2.1 INSTALLING THE PROGRAM ..4
2.2 SETTING UP A FOLDER FOR YOUR FILES ..4
2.3 UNINSTALLING ...5
2.4 FILES AND SUFFIXES ...5

3. OPERATING OTSOFT: BARE-BONES GUIDE ..5

3.1 PREPARING AN INPUT FILE..5
3.2 RUNNING THE PROGRAM...7
3.3 VIEWING THE RESULT...8
3.4 PRINTING ..8
3.5 EXITING ..9

4. INPUT FILES ..9

4.1 EXCEL FILES ...9
4.2 TAB-DELIMITED TEXT ..9
4.3 RECOVERY FROM LOST FILES ...9
4.4 SIMPLE TRICKS WITH EXCEL...9
4.5 EXCEL AND SIL PHONETIC FONTS ..10
4.6 ENTERING CONSTRAINTS AS STRUCTURAL DESCRIPTIONS ...10

5. MORE ON STARTING UP OTSOFT ..12

5.1 MAKING A SHORTCUT TO OTSOFT ...12
5.2 OPEN WITH...12
5.3 MORE ON PICKING A FILE TO WORK WITH...12
5.4 BACK AND FORTH BETWEEN OTSOFT AND EXCEL...13
5.5 INTERACTING SMOOTHLY WITH OTHER PROGRAMS ...13

6. MORE ON CONSTRAINT RANKING: ALGORITHMS..13

7. DISPLAYING YOUR RESULTS: OPTIONS...14

7.1 VIEWING FROM WITHIN OTSOFT ..14
7.2 VIEWING WITH YOUR WORD PROCESSOR ...14
7.3 VIEWING AS A WEB PAGE ..14

Manual: OTSoft 2.3.2 p. 2

7.4 HIGH-QUALITY PRINTED OUTPUT ..14

8. DIAGNOSING YOUR RESULTS...15

8.1 WHAT IF RANKING FAILS?...15
8.2 RANKING ARGUMENTATION ...15

8.2.1 OTSoft and exposition of your analysis ..16
8.3 CHECKING FOR UNNECESSARY CONSTRAINTS ...16

9. HASSE DIAGRAMS...16

9.1 HASSE DIAGRAMS - “DISJUNCTIVE” ARGUMENTS ..18
9.2 HASSE DIAGRAMS - GRADUAL LEARNING ALGORITHM..18
9.3 FINE-TUNING A HASSE DIAGRAM...19
9.4 HASSE DIAGRAMS IN HIGH-QUALITY OUTPUT FILES..19

10. FACTORIAL TYPOLOGY ...20

10.1 BACKGROUND ON FACTORIAL TYPOLOGY..20
10.2 FACTORIAL TYPOLOGY AND T-ORDER...21

11. THE GRADUAL LEARNING ALGORITHM ..21

11.1 THE INPUT TO THE GLA ...21
11.2 THE OUTPUT OF THE GLA ..21
11.3 DIAGNOSING WHAT THE GRADUAL LEARNING ALGORITHM DID ..22

11.3.1 Graphing the History of Ranking Values..22
11.3.2 Showing Every Step the GLA Took ...22

11.4 INITIAL RANKING VALUES..23
11.5 SPECIFYING A CUSTOM LEARNING SCHEDULE..23
11.6 MAGRI UPDATE RULE..24

12. MAXENT ...24

13. A PRIORI RANKINGS ..24

13.1 A PRIORI RANKINGS AND THE GRADUAL LEARNING ALGORITHM..26
13.2 AUTOCHECKING OF A PRIORI RANKINGS..26
13.3 USING A GRAMMAR TO ESTABLISH A PRIORI RANKINGS ..26

14. PRINTING...26

14.1 RESOURCES NEEDED ..27
14.2 THE WORD MACRO AND ITS FUNCTION..27

14.2.1 Installing the Word Macro..28
14.2.2 Using the Macro ...29

14.3 PHONETIC SYMBOLS ...29
14.4 OPTIONS FOR CROWDED TABLEAUX...31
14.5 OPTIONS MENU...31
14.6 OTHER WORD PROCESSORS..31

15. LARGE INPUT FILES AND RUN TIME..32

16. FILE CONVERSION..32

16.1 PRAAT ..32
16.2 SORTED INPUT FILES ...32

17. ABOUT OTSOFT..33

17.1 COMPLETE LIST AND DESCRIPTION OF FILES ..33
17.2 SOURCE CODE AND OPEN-SOURCING..33
17.3 REPORTING BUGS ...33

Manual: OTSoft 2.3.2 p. 3

17.4 ACKNOWLEDGEMENTS ...34

Manual: OTSoft 2.3.2 p. 4

1. Purpose of OTSoft

To provide reliability and convenience in Optimality-theoretic analysis (Prince and
Smolensky 1993)1 by automating various tasks that are performable by algorithm. Relevant
tasks:

 Given a set of inputs, surface forms, incorrect rival candidates, and violations, find a

ranking of the constraints that generates the correct surface forms.
 In the event that the constraints cannot be ranked in a way that generates the correct

surface forms, determine this and provide diagnostics for what is going wrong.
 Assist the analyst in eliminating unnecessary constraints where appropriate.
 Determine the ranking arguments and illustrate them with mini-tableaux.
 Calculate the factorial typology of a given set of constraints and candidates.
 Run algorithms for stochastic grammar.
 Prepare pretty tableaux for Microsoft Word.

This manual first provides the basics needed to get OTSoft up and running, then covers the

details.

I. OUTLINE GUIDE TO OTSOFT

2. Installing OTSoft on Your PC

OTSoft runs on only on Windows. There is no Mac version.

2.1 Installing the Program

OTSoft is packed up in a single downloadable file (about 5 meg), called OTSoft.zip. This
is downloadable from the OTSoft Web site
(http://www.linguistics.ucla.edu/people/hayes/otsoft/.) Put OTSoft.zip in a suitable empty
folder (e.g., Downloads) and click on it. This will unpack the files it contains. Among the
unpacked files will be a file called setup.exe. Click on this one, and it will conduct an ordinary
Windows installation procedure.

2.2 Setting Up A Folder for Your Files

You should also set up a folder, or set of folders, where you keep your OTSoft input and
output files. OTSoft has a standard Windows File Open procedure that permits you to access
any of these folders in the normal way.

1 I’m assuming you wouldn’t be reading this manual if you didn’t already know something about Optimality

Theory. If you don’t, but your curiosity impels you to continue, I recommend that you first read Optimality Theory
by René Kager (Cambridge University Press, 1999) and/or A Thematic Guide to Optimality Theory by John
McCarthy (Cambridge University Press, 2001).

http://www.linguistics.ucla.edu/people/hayes/otsoft/

Manual: OTSoft 2.3.2 p. 5

2.3 Uninstalling

To uninstall OTSoft, click on the sequence Start Settings Control Panel
Add/Remove Programs OTSoft Remove. This will get rid of most or all of it. If Windows
tells you there’s stuff that it was unable to delete, go into the folder Program Files and delete the
OTSoft directory. (This can be done as follows: click on My Computer C: Program Files,
then drag OTSoft to the Recycle Bin.)

2.4 Files and Suffixes

OTSoft takes an input file, which includes candidates, constraints, and violations. It
produces a number of output files, which contain the results of its calculations.

To keep these files straight, you will find it helpful to look at the suffixes that are attached to

files. Some sample suffixes are:

.xls for Excel spreadsheets
.doc for Word documents

In the discussion below, I will refer to filenames complete with their suffixes.

A remarkable aspect of Windows is that it normally suppresses the user’s access to these

suffixes. To avoid the problems that can result from this, you should (at least when using
OTSoft, and probably in general) I recommend you first restore your access to the suffixes. To
do this, click as follows: Start Settings Control Panel Folder Options View. 2 Then
click to uncheck the box marked Hide file extensions for known types. This will restore your
view of the file suffixes.

3. Operating OTSoft: Bare-Bones Guide

3.1 Preparing an Input File

First, prepare a file in a spreadsheet program, such as Excel, with your constraints, inputs,
candidates, and violations. (For alternatives to Excel, see 4.1 below). You can see the required
file format below; the actual file depicted is downloadable in Excel format from
http://www.linguistics.ucla.edu/people/hayes/otsoft/TinyIllustrativeFile.xls and in plain text
format from http://www.linguistics.ucla.edu/people/hayes/otsoft/TinyIllustrativeFile.txt. These
files can also be extracted out of the program folder for OTSoft, if your computer permits you to
get access to this folder.

The file depicts a hypothetical language in which codas are avoided by deletion, while

onsetless syllables are avoided by epenthesizing [].

2 In Windows XP: Start, Control Panel, View,

http://www.linguistics.ucla.edu/people/hayes/otsoft/TinyIllustrativeFile.xls
http://www.linguistics.ucla.edu/people/hayes/otsoft/TinyIllustrativeFile.txt

Manual: OTSoft 2.3.2 p. 6

 *No Onset *Coda Max(t) Dep(?)

 *NoOns *Coda Max Dep

a a 1 1

 a 1

tat ta 1 1

 tat 1

at a 1 1 1

 at 1 1

 a 1 1

 at 1 1

The first column of the chart is for inputs, here /a/, /tat/, and /at/.

The second column is for candidates; thus the candidates provided for underlying /a/ are

[a] and [a].

The third column is to give relative frequency of the candidates. In the above file,

frequencies are either 1 or zero, the latter indicated with a blank. The 1’s indicate that [a] is the

winning candidate for /a/, [ta] is the winning candidate for /tat/, and [a] is the winning candidate
for /at/. An advantage of this system is you can experiment with changing the winner simply by
moving the 1, rather than by moving whole rows of the spreadsheet. Also, for some algorithms,
(see sections 11 and 12 below), you can let there be multiple winners, listing the frequency of
each.

The first row of the spreadsheet is for full constraint names, which appear in listings.

The second row is for abbreviated constraint names, which appear in tableaux and other

contexts where space is at a premium. If you omit this row, OTSoft will usually be able to guess
that you did so and will not crash.

The remaining part of the chart is constraint violations, entered as whole numbers. Each

cell specifies the number of times the candidate in its row header violates the constraint in its
column header. Note that for convenience, blanks may be used instead of 0.

To do an OTSoft run, prepare a file of this type, and then save it. You don’t have to actually

close the program you made it with, but you do have to save your file to disk (click the floppy
disk icon, or Ctrl s).

Manual: OTSoft 2.3.2 p. 7

3.2 Running the program

Start up OTSoft in the usual way you start a Windows program.3 The main OTSoft
window will pop up:

The program will pop up ready to work with the last file it examined. If you want to work with a
different one, click on Work with different file. This will pop up a standard Windows menu
that permits you to search through the folders on your computer until you’ve found your input
file (see section 3.1 above for how to make or download one). Open the file.

You can now do constraint ranking: select any of the five algorithms shown (select
Constraint Demotion if you’re not sure what these are), and click on the Rank button. You can
also compute a factorial typology with the Factorial Typology button on the upper right.

OTSoft will tell you when it’s done with its computations by displaying “Done” in the

window in the upper central region of the interface. For simple constraint ranking, this usually
happens very fast; factorial typology and ranking argumentation can take longer.

3 Windows neophytes: Click the Start button on the lower left of the screen, select Programs, locate OTSoft,

and click on it.

Manual: OTSoft 2.3.2 p. 8

3.3 Viewing the Result

The simplest way to see what OTSoft discovered is to go to the View menu and select View
result here. For the input file described in 3.1 above, assuming you selected Constraint
Demotion, OTSoft gives you (among other things) the following:

A ranking was found which generates the correct outputs.

 Stratum #1
 *No Onset [= *NoOns]
 *Coda [= *Coda]
 Stratum #2
 Max(t) [= Max]
 Dep(?) [= Dep]

Tableaux

/a/:
 *NoOns¦*Coda|Max¦Dep
>?a ¦ | ¦1
 a 1! ¦ | ¦

/tat/:
 *NoOns¦*Coda|Max¦Dep
>ta ¦ |1 ¦
 tat ¦ 1! | ¦

/at/:
 *NoOns¦*Coda|Max¦Dep
>?a ¦ |1 ¦1
 ?at ¦ 1! | ¦1
 a 1! ¦ |1 ¦
 at 1! ¦ 1 | ¦

The constraints are arranged into strata, such that any constraint in a higher stratum is

assumed to outrank any constraint in a lower stratum. OTSoft also produces tableaux, showing
that the ranking really does work for the data given.

There are other ways to view your results; see section 7 for details.

3.4 Printing

A quick, rough version of your output can be printed by going to the Print menu and
clicking on Draft print. You can also simply highlight material you need from the OTSoft
screen with the mouse, hit Ctrl c for “copy”, then paste it into another document.4 High quality
printed output can be obtained if your computer has Word installed; see section 14. HTML
output also available; see below.

4 Be sure to format it with a equal-spaced font such as Courier.

Manual: OTSoft 2.3.2 p. 9

3.5 Exiting

You can exit the OTSoft program by:

 clicking on the Exit button;
 click the little X in the upper right corner of the window; or
 selecting Exit from the File menu.

II. OTSOFT IN DETAIL

4. Input Files

4.1 Excel files

You can use Excel to edit your input file. You have to save it in .xls, not the newer .xlsx
format.

4.2 Tab-Delimited Text

Alternatively, you can use any spreadsheet and save a “tab-delimited text,” meaning that
each row is a row and column entries are separated from each other by tabs (ASCII character 9).
If you give your tab-delimited text file the suffix .txt, OTSoft can read it for you. OTSoft can
also save input files in this way; see the File menu.

4.3 Recovery from Lost Files

Whenever OTSoft runs a file, it prints a backup copy of the file to the folder called
FilesForFileName. To find this, go to the folder with your input file, then go into the folder
Files for FileName. The name of the backup file is FileNameBackup.txt. To open it, start
OTSoft, click on Work with a different file. You should be able to find your backup file and
proceed from there.

To turn your backup file back into an Excel file, open it from Excel, then click on File, Save

As, then in the Save As Type window, pick Microsoft Excel Workbook.

4.4 Simple Tricks with Excel

At the level needed here, using Excel is pretty straightforward. You just put things into
cells, move around with the mouse or arrow keys, and use items from the File menu5 to open and
save files. Some nice things you can do that are useful here:

5 Oops … our friends at Microsoft have abolished menus, so you may have to hunt around a bit to

find these commends if you have a newer version of Excel. Advice to me on how to give software
directions under the new regime is most welcome (bhayes@humnet.ucla.edu).

Manual: OTSoft 2.3.2 p. 10

 Auto-adjust column widths. Use the mouse to select all the columns in the chart (drag
across the gray letters at the top of the chart to select all columns). Then Format
Column Autofit Selection.

 “Verticalize” the constraint names. Format Cells Alignment, then drag the “clock
hand” to six o’clock. Then, in conjunction with the minimization described in the
preceding bullet, the whole chart will become compact, so you can see a lot at once. You
may have to resize rows 1 and 2 to get this to work; do this by “grabbing” the edges of
gray cells 1 and 2 (left side of screen) and dragging them up or down.

 Split the screen. Click on cell D3, then Window Split. Then you can scroll through
the violations and still keep the inputs/candidates visible, no matter where you scroll.

 Center the contents of cells. Click on gray cell C, at top of the spreadsheet, and drag
through all gray header cells for all the columns that have material in them. Then click
on the centering icon (little horizontal lines) on the tool bar. This often makes the cells
easier to read.

 Delete/Copy/Paste. These are Ctr x, Ctr c, Ctr v. Conveniently, these are all typeable
with the left hand alone. Note that these keys manipulate the contents of the cells, not the
cells themselves.

 Delete a Row/Column. Highlight the row or column by clicking on the little gray cell
that heads it. Then Alt e, d.

4.5 Excel and SIL Phonetic Fonts

The phonetic fonts distributed by the Summer Institute of Linguistics, discussed in section
4.5, work for OTSoft. Please note, however, that the fonts coexist somewhat uneasily with Excel,
causing it to crash from time to time. Save your work frequently (Ctr s, or hit the little floppy
icon.)

4.6 Entering Constraints as Structural Descriptions

You can enter markedness violations using a structural description. Simply list the strings
that violate the constraint in the constraint’s column of the Excel spreadsheet, and OTSoft will
search each candidate for each of these strings, and assign violations accordingly. For example,
if the only codas in your language are [p], [t], and [k], and your candidates use [.] to show a
syllable boundary, then your spreadsheet could show *CODA as follows:

 *Coda
 *Coda
mapitiki .ma.pi.ti.ki 1 p.
 .map.ti.ki t.
 .ma.pit.ki. k.
 .ma.pi.tik.
 .map.tik.
 .ma.pit.ki

Manual: OTSoft 2.3.2 p. 11

When OTSoft is run on this file, it detects the codas and assigns violations accordingly:

/mapitiki/ *CODA
 [.ma.pi.ti.ki]
*[.map.ti.ki] *!
*[.ma.pit.ki.] *!
*[.ma.pi.tik.] *!
*[.ma.pit.ki.] *!
*[.map.tik.] *!*

You can also do Faithfulness constraints this way. For one-way constraints such as Max

and Dep, place lists of the relevant strings under the headings Input and Output, as in the sample
file below. For two-way constraints such as Ident, place the relevant strings under the headings
Group1 and Group2. If any of your candidates are of different length than your input, place the
symbols “<” in appropriate locations so that the alignment of symbols is as intended. Here is a
sample file illustrating hiatus resolution in Ilokano; “E” represents a front glide of mid height.

 *No

Onset
*Nonhigh
glide

Max(V) Dep(?) Dep(t) Ident(syl) Ident(high) Ident(low)

 *No
Onset

*Nonhigh
glide

Max(V) Dep(?) Dep(t) Id(syl) Id(hi) Id(lo)

babawi<en babawj<en 1 ie E Input Input Input Group1 Group1 Group1
 babawi<en ae i < < i a a
 babawi?en ea e Output Output e e Group2
 babawi<<n a ? t a E e
 babaw<<en Output Group2 Group2 i
basa<en basa?en 1 < j i j
 basa<en E j w
 basE<en E
 bas<<en
 basaten
 basw<en
masahe<an masahj<an 1
 masahE<an
 masahe<an
 masahe?an
 masahe<<n
 masah<<an

To see how your file was interpreted as actual constraint violations, you can either run it and
look at the standard output, or (especially if ranking failed) open the file FileNameBackup.txt in
the output folder. The file above translates to violations as follows:

Manual: OTSoft 2.3.2 p. 12

 *No
Onset

*Nonhigh
glide

Max(V) Dep(?) Dep(t) Ident(syl) Ident(high) Ident(low)

 *No
Onset

*Nonhigh
glide

Max(V) Dep(?) Dep(t) Id(syl) Id(hi) Id(lo)

babawi<en babawj<en
1

 1

 babawi<en 1
 babawi?en 1
 babawi<<n 1
 babaw<<en 1

basa<en basa?en
1

 1

 basa<en 1
 basE<en 1 1 1
 bas<<en 1
 basaten 1
 basw<en 1

masahe<an masahj<an
1

 1 1

 masahE<an 1 1
 masahe<an 1
 masahe?an 1
 masahe<<n 1
 masah<<an 1

5. More on Starting Up OTSoft

5.1 Making a Shortcut to OTSoft

Navigate through your files as follows: My Computer C: Program Files OTSoft
Otsoft.exe. Then right-click on Otsoft.exe. When the menu pops up, click on Create Shortcut.
Drag the new shortcut to the desktop. Then you can just click on this shortcut and the program
will run.

5.2 Open With

In Windows, you can right-click on an Excel or tab-delimited-text file, then specify Open
With. You will then be prompted to find OTSoft in a list of programs. Find it and click on it.
Henceforth, when you right-click on an Excel file, then pick Open With, the option of opening
the Excel file with OTSoft will be given to you. (Regular left-clicking will still open the file
with Excel.)

5.3 More on Picking a File to Work With

OTSoft remembers the last file you were working with and posts it on the Rank and
Factorial Typology buttons. If you want to change files, click the Work with a different file
button and search for the file you want.

The File menu offers the same function; select Open from it.

Manual: OTSoft 2.3.2 p. 13

5.4 Back and Forth Between OTSoft and Excel

When developing an analysis, it is useful to keep both OTSoft and Excel (or some other
alternative spreadsheet program) open at the same time, going back and forth between the two
programs as you gradually build up the analysis.

If you are in OTSoft, you can click on the Edit menu, and OTSoft will call up your copy of

Excel, opening the file whose name appears on the Rank and Factorial Typology buttons.

In Excel, once you’re done making changes, type Ctr s or click on the floppy icon to save

without exiting. Then switch to the OTSoft window and click on the option Reload altered
FileName, from the File menu. This causes OTSoft to purge its memory of the old version of
your working input file and reload the newly altered version. For clarity, the Reload menu
option becomes visible only after you’ve run the input file in OTSoft at least once.

5.5 Interacting Smoothly with Other Programs

Although OTSoft will work with only the assistance of some very simple program for
making input files, better performance is obtained by letting OTSoft cooperate with other
Windows programs. In particular, it helps to have

 A word processor, ideally MS Word, for viewing and editing output files.
 A spreadsheet program, for creating input files and viewing certain output files.
 A graphics editing program. One simple option is MS Paint, which comes free with

every copy of Windows.
 The free GraphViz software originally created at ATT Research. Download the file from

http://www.graphviz.org/, put it in a free folder, and click on it; GraphViz will then
install itself on your computer.

All of these programs can be autostarted by OTSoft, making overall operation more

convenient. However, a tricky bit is telling OTSoft where to find these programs. You can do
this by opening the file OTSoftAuxiliarySoftwareLocations.txt, which is in the same folder as
OTSoft, and typing in the complete path and program names. You will probably only have to
slightly modify the version of OTSoftAuxiliarySoftwareLocations.txt that comes with OTSoft.

6. More on Constraint Ranking: Algorithms

The Rank button in the upper left hand corner finds a ranking of your constraints (if one
exists) that will generate the winners. Below the Rank button is a menu of ranking algorithms;
select one by clicking. The available ranking algorithms are:

 The classical Constraint Demotion algorithm (in its “batch” version), invented by Tesar
and Smolensky (1993). This is a good choice for solving classical phonology problem
sets with paradigms of data.

Manual: OTSoft 2.3.2 p. 14

 The Gradual Learning Algorithm, invented by Boersma (1997). This algorithm is
good for analyzing free variation and gradient preferences among outputs. See section 11
for description of the OTSoft implementation of the Gradual Learning Algorithm.

 A Low Faithfulness Constraint Demotion, invented by Hayes (1999), resembles
Classical Constraint Demotion but attempts to place all Faithfulness constraints
(constraint name begins with = id, max, dep, or fai) as low as possible.

 Biased Constraint Demotion, invented by Prince and Tesar (1999), likewise attempts to
place all Faithfulness constraints (constraint name begins with = id, max, dep, or fai,) as
low as possible. See section 14.5 below, for discussion of a variant of this algorithm.

 MaxEnt weighting, an approach whose mathematics is venerable, but was first (I think)
used in linguistics by Goldwater and Johnson (2003). OTSoft has a very simple version
of this, with no “Gaussian prior” and a user-specified weight maximum. For more
sophisticated applications, I recommend the Maxent Grammar Tool (click to download),
which reads OTSoft-style input files (tab-delimited text only). The Maxent Grammar
Tool is also platform-independent.

7. Displaying your Results: Options

The View menu gives you three options for viewing on screen what the program did.

7.1 Viewing from within OTSoft

If you click on View result here, you get a display that is inside the OTSoft program. This
is cruder graphically, in that it substitute approximations for IPA symbols, lacks shading, etc.
Also, this option can’t display really long outputs, but is fast and easy. To get out, look up at the
menus and click on the (temporary) menu item Return to Main Menu. Or, you can select the
File menu and pick Exit to leave OTSoft.

7.2 Viewing with your Word Processor

You can also view the results (again, in somewhat crude form) using whatever word
processor you like. To specify, use a word processor to open the little file
OTSoftAuxiliarySoftwareLocations.txt, which lives in the same folder as OTSoft. On the line
that immediately follows Path and name for custom word processor:, type the full path and
file name for your word processor.

7.3 Viewing as a web page

From the View menu, select View result as web page. This will launch your web browser
and open the file ResultsForFileName.htm.

7.4 High-Quality Printed Output

You can open a file that will (ultimately) be printed, with glossy tableaux. See section 14
for how this works.

http://www.linguistics.ucla.edu/people/hayes/otsoft/pdf/goldwaterjohnson03.pdf
http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/

Manual: OTSoft 2.3.2 p. 15

7.5 How tableaux are sorted

By default, OTSoft sorts the candidates harmonically; i.e. the winning candidate is on top,
the candidate that would have won but for the inclusion of the winner is placed second, and so
on. You can override this and have the tableaux respect the order given in your input file. To do
this, go to the main interface window, click on the menu item Options then Sort candidates in
tableaux by harmony.

I find it much easier to read tableaux that are sort harmonically. But if I am comparing the

performance of multiple models or constraint sets, it is much easier if they all have a consistent
output order.

8. Diagnosing your Results

There are couple of utilities in OTSoft that help you to understand what happened in the
ranking process.

8.1 What if ranking fails?

Even experienced OT-users sometimes produce constraint sets that cannot be used to derive
the observed outputs. OTSoft tries to be helpful when this happens. For instance, it will flag
harmonically bounded winners or rival candidates that have the same violations as the winner.
Sometimes, however, ranking will fail for more subtle reasons. Probably the best thing to do in
such cases is to click on the View menu, then Show how ranking was done. Particularly if you
understand how the constraint demotion algorithm works, this can be helpful in improving your
constraint set. (For the latter, click on the What is it? button next to Constraint Demotion on the
main interface.)

8.2 Ranking Argumentation

OT-users often want to know more than just a list of strata guaranteed to derived correct
outputs—we wish to understand as closely as possible which constraints must be ranked above
which. To do this, look in the middle of the interface and click the radio button Include ranking
arguments before you click on the Ranking button.

The ranking arguments are obtained with an implementation of Brasoveanu and Prince’s

Fusional Reduction algorithm, which you can read about in their paper “Ranking and Necessity”,
here: http://roa.rutgers.edu/files/794-1205/794-BRASOVEANU-0-0.PDF. This algorithm
reduces the often-tangled web of initial ranking arguments to the simplest possible pattern. (To
get this simplest pattern you should also select Prefer few, bundled arguments.)

A caution: for larger input files, it may take quite a while for the Fusional Reduction

Algorithm to complete its work. If you look at the output window in the upper center of the
main interface, you should be able to get an idea how long the algorithm is likely to take.

http://roa.rutgers.edu/files/794-1205/794-BRASOVEANU-0-0.PDF

Manual: OTSoft 2.3.2 p. 16

8.2.1 OTSoft and exposition of your analysis

The ranking argumentation facility can, if your request, produce tiny illustrative tableaux,
intended to illustrate a ranking argument. This are highly recommended—good expository
practice in OT typically relies on very small tableaux, not the huge ones that OTSoft can produce
given a big input file. These large tableaux are best employed as an overall check of the
analysis, provided perhaps as an appendix, following your main written presentation.

8.3 Checking For Unnecessary Constraints

When OTSoft finds a ranking that works, it checks each constraint in the grammar to see if
the correct outputs could still be obtained without it (keeping the original ranking). If so, it lets
you know about it, with a list of “Necessary” vs. “Not Necessary” constraints.

This information is sometimes useful and sometimes not. A conscientious analyst often will

include constraints that play no role in generating the right outcomes. This is particularly true
for Faithfulness constraints that are violated by a winning candidate. Putting in such constraints
forces the analyst to find the Markedness constraints and the rankings that cause a nonfaithful
candidate to win. These winner-violated Faithfulness constraints are identified as such by
OTSoft. Note that OTSoft will know if a constraint is a Faithfulness constraint if it begins with
any of the sequences id, max, dep, or fai, so you may want to name your constraints accordingly.

OTSoft what constraints are necessary simply by taking each constraint, temporarily

removing it from the grammar, and checking if there is a ranking of the remaining constraints
that yields the correct outputs. It then outputs this information on the screen and in the output
files.

In some cases, it is possible to remove all the redundant constraints from an analysis at

once, with no harmful empirical effects. If this is so, OTSoft will tell you. In other cases,
certain individually redundant constraints may be removed, but if all such constraints are deleted
at once, the analysis will no longer work. OTSoft also notifies you of this situation. In such
cases, the proper response (if one wishes to remove constraints at all) is to remove them one at a
time, checking with OTSoft at each stage.

9. Hasse diagrams

A useful overview of an analysis is a “Hasse diagram,” which uses arrows to show which
constraints are ranked with respect to which. For example, here is a Hasse diagram for an
analysis devised by Abigail Kaun of USC, which covers rounding of epenthetic vowels in
Turkish:

Manual: OTSoft 2.3.2 p. 17

This Hasse diagram was obtained with OTSoft, which deduced the necessary rankings. The

actual graphic was created when OTSoft called up a program called “dot.exe”, which is part of a
free software package from ATT Labs called “GraphViz.”

If you would like OTSoft to produce Hasse diagrams, download the GraphViz software

from this address: http://www.graphviz.org/. When you download, you will get a file called (as
of 1/10/12) graphziv-2.28.0.msi. Click on this file, and it will install GraphViz on your
computer.6 Also, modify the file OTSoftAuxiliarySoftwareLocations.txt, which sits in your
OTSoft program folder, so that it will tell OTSoft where GraphViz is. Now, when you run any
of the ranking algorithms, OTSoft can call up GraphViz and tell it what to do to make a Hasse
diagram. You can view it either by click on the menu for this, or by looking in the Files folder
created for your input file. Both .gif and .ps formats get created; the latter is prettier and can be
converted to pdf.

When running OTSoft, you will not get a Hasse diagram for any of the three “discrete”

ranking algorithms (Constraint Demotion, Low Faithfulness Constraint Demotion, Biased
Constraint Demotion) unless you first click on the box Include Ranking Arguments—because

6 I suggest you put the GraphViz software in the location suggested by the installation program. If you pick a

different location, you must let OTSoft know about it, or OTSoft and GraphViz won’t be able to communicate.
You can do this by opening the OTSoft folder in Program Files, opening the file SoftwareLocations.ini with a word
processor or text editor, and typing in the location where you installed GraphViz (in particular, the dot.exe program
that is part of GraphViz).

Manual: OTSoft 2.3.2 p. 18

the Hasse diagram is a graphic representation of what the ranking argument algorithm finds. If
you use the gradient Gradual Learning Algorithm (see section 11) you will automatically get a
Hasse diagram. No Hasse diagram is created for maxent.

9.1 Hasse Diagrams - “Disjunctive” Arguments

Sometimes it is not possible to reduce the data to a simple set of ranking arguments. In such
cases, one ends up with “disjunctive” arguments: “either Constraint A or Constraint B (or
Constraint C, etc.) must outrank Constraint X”. OTSoft displays such cases in the Hasse diagram
with dotted lines, labeled “or”, with a separate integer index for each such disjunction when
there is more than one.

9.2 Hasse Diagrams - Gradual Learning Algorithm

In the Gradual Learning Algorithm, ranking is stochastic, so the Hasse diagram gives
labeled arcs indicating the probability that one constraint will outrank another on any given
speaking occasion. Where this probability is less than .95, OTSoft make the line dotted, to
indicate that the opposite ranking is reasonably common. Thus, for example, the following
diagram:

indicates two near-categorial domination relations (*NO ONSET >> DEP(C), *NO ONSET >>
ID(syllabic)) and one stochastic domination relation (DEP(C) >> IDENT(syllabic) with a
probability of .516). This could occur, for instance, in a language that resolved the *NO ONSET

violation of underlying /pi.a/ as either [pi.a] or [pja], in free variation.

Where one constraint dominates another with a probability of more than .999999, OTSoft
does not draw an arc between the two unless there is no constraint ranked between them on the
numerical scale; it’s assumed that the reader will be able to infer the essentially-strict domination

Manual: OTSoft 2.3.2 p. 19

relation from the principle of transitivity. The purpose of this is to keep the Hasse diagram from
getting too tangled.

9.3 Fine-Tuning a Hasse Diagram

Your Hasse diagram is stored as a .gif graphics file in the folder that OTSoft makes for
output files. The Hasse diagram file is named FileNameHasse.gif.

You can touch up your Hasse diagram in various ways.

First, you can edit FileNameHasse.gif in whatever way you like with your own software.

Second, from the Hasse diagram window, you can select from the View menu the item View

Image with MS Paint. OTSoft will look for the little graphics program called Paint (which
comes free with every copy of Windows) and use it to open your Hasse diagram file. This lets
you edit the file, and is also useful (since it can scroll and zoom) in handling Hasse diagrams of
unwieldy size.7

Third, you can use the resources of the ATT GraphViz software. GraphViz constructs the

graphics file FileNameHasse.gif on the basis of a source file called FileNameHasse.txt, which
is created by OTSoft and resides in the same folder as FileNameHasse.gif. FileNameHasse.txt
can be edited by any text editor. You can invoke the full power of the “dot.exe” program by
studying the documentation, available from http://www.graphviz.org/Documentation.php.

For convenience, OTSoft automates two tasks. If you click on the Hasse menu and select

Edit the source file underlying Hasse diagram, then the source file will automatically be
brought up in whatever word processor you’ve specified in the file
OTSoftAuxiliarySoftwareLocations.txt. If you click on the Hasse menu and select Replot
Hasse diagram from altered source file, OTSoft will call up the GraphViz software and have it
reconstruct the Hasse diagram on the basis of the changes you’ve made to the source file.8

9.4 Hasse Diagrams in High-Quality Output Files

The Word macro of OTSoft that produces high-quality printed output (see section 14 below)
is set up to insert a copy of the Hasse diagram automatically.

7 Your copy of Paint may not be in the location that OTSoft expects. OTSoft will tell you if this is so. To fix

the problem: (1) Find Paint using the search capacity of Windows (Start Search For Files or Folders, Search
for Files or Folders Named, mspaint.exe). (2) Open the little file SoftwareLocations.ini, in the OTSoft folder of
Program Files, and correct the address given for Paint.

8 Of course, you can operate GraphViz outside of OTSoft as well. Using OTSoft is a bit more convenient,
since GraphViz normally operates with a command-line interface in a “DOS window”. In effect, OTSoft “types”
the long file names for you.

Manual: OTSoft 2.3.2 p. 20

10. Factorial Typology

To compute the factorial typology of your constraints and candidate set, click the upper right
hand button of the main interface, labeled Factorial Typology for FileName

To control what happens more closely, use the Factorial Typology menu at the top of the

screen. Click on these items to select them; a check mark shows what is selected. You can use
this menu to include tableaux for each member of the typology (hence, often a very long output
file), and also to generate compact summary files. The latter include a brief file that just lists in
columns the inputs with their outputs (FileNameCompactSum.txt), and an even more compact
file (FileNameCompactSum.txt) that simply lists outputs, ignoring cases where two inputs gave
the same output. These files get put in the folder that OTSoft creates for output files:
FilesForFileName, which is itself located in the folder where your input file was located.

10.1 Background on Factorial Typology

The factorial typology of a constraint set is the set of output patterns that can be derived by
varying the constraint rankings in all possible ways. As Prince and Smolensky (1993) point out,
factorial typology constitutes the acid test for a constraint set (that is, if the constraint set is taken
as a serious proposal in linguistic theory, rather than just an ad hoc response to particular data).
In principle, the constraints, when freely ranked, should generate all and only the phenomena in
the relevant domain that are observed cross-linguistically, modulo accidental gaps.

There are at least two ways to get at the factorial typology of a constraint set. One is to rank

the constraints in all possible ways, and see what outcome patterns emerge. The computation
time needed for this process is on the order of n! (“n factorial”), where n is the number of
constraints. This can get very slow with more than about a dozen constraints.

Another method is to examine every output pattern that is logically possible under the

candidate set, and for each one, run the Constraint Demotion ranking algorithm to see if the
constraints can generate it. The computation time needed for this process is in principle the
order of the number of candidates for all inputs, multiplied together (that is, the number of
candidates provided for the first input, times the number of candidates provided for the second
input, times the number of candidates provided for the third input, and so on.)

One can proceed much faster in the following way: compute the factorial typology for just

the first input, then expand this typology by including the second input, then the third, and so on.
It is this method that is used in OTSoft.

Note that the reliability of your factorial typology depends on your having located all of the

generable output candidates, within some well-defined domain. It helps to think in
combinatorial terms.

Manual: OTSoft 2.3.2 p. 21

10.2 Factorial typology and t-order

A valuable tool for understanding the factorial typology that OTSoft has created is the
concept of the t-order, developed by Arto Anttila. This is the set of logical implications on the
factorial typology, of the form, “If this input derives this, then this input must derive this.” (For
background on t-orders, see http://www.stanford.edu/~anttila/research/torders/t-order-
manual.pdf.) OTSoft automatically calculates a t-order when it calculates a factorial typology
and includes it in the output file. You can inspect the t-order in tabular form by going to the
folder of output files for your input file, and use a spreadsheet program to open
FileNameTOrder.txt.

11. The Gradual Learning Algorithm

This algorithm, selected with a option button from the main interface, can do things that the
others aren’t designed for: (a) learning rankings for free variation, and (b) matching frequencies
in the learning data. It depends on a quantitative conception of constraint ranking and a
stochastic conception of OT grammars. For extended discussion, see Boersma and Hayes
(2001).

When you hit the “Rank” button with the Gradual Learning Algorithm selected, a special

menu for the Gradual Learning Algorithm will pop up. You can use the algorithm at various
levels of sophistication. Just hitting “Run GLA” will get you some sort of result, possibly quite
accurate. If your grammar doesn’t match the input data very well, you should try increasing the
number of learning trials (“Number of Times to Go Through Forms”). If you’re trying to match
input frequencies in particularly refined way, try adopting a very low value (e.g. .001) for “Final
Plasticity.”

11.1 The Input to the GLA

Input files for the GLA in OTSoft look just like input files for the other algorithms.
However, unlike for the other algorithms, you can specify multiple winners for any input. If you
have frequency data (e.g. Winner 1 occurred 300 times, and Winner 2 700 times, in some data
corpus), you can simply enter the raw frequency values in the third column of the input
spreadsheet, and the GLA will attempt to match these frequencies on a relative basis. If all you
are trying to do is derive some sort of free variation, without any commitment to actual numbers,
you can simply enter a 1 for every winning candidate and see if all and only winners are derived
by the resulting grammar with nonzero frequency.

11.2 The Output of the GLA

When the GLA code of OTSoft has finished its work, the GLA window will disappear,
returning you to the main OTSoft window. Click View Result or select an item from the View
menu, and you will see the stochastic ranking values for each constraint that the GLA arrived at.
In addition, the output file will give you an estimate of how empirically successful the learned
grammar is: it will tell you what frequencies of the rival outputs the GLA was trying to learn,
and also the estimated frequencies generated by the grammar that the GLA did learn. When a

http://www.stanford.edu/%7Eanttila/research/torders/t-order-manual.pdf
http://www.stanford.edu/%7Eanttila/research/torders/t-order-manual.pdf

Manual: OTSoft 2.3.2 p. 22

learning run goes well, these values will be close, but they will virtually never be identical; this
is natural in a stochastic grammar.

What makes a learning run “go well”? There are basically two factors:

(a) The constraint set be must adequate to the task at hand. For example, if in your input

file, there is a sometimes-winning candidate that is harmonically bounded by an always-losing
candidate (winner has superset of loser’s violations), then there will be no possible ranking that
will generate the winner (in OT, harmonically-bounded candidates never win).

If you’re curious, try an OTSoft simulation in which a winner is harmonically bounded.

You will find that the constraints violated by the harmonically-bounded winner will keep sinking
towards negative infinity, as long as you run the GLA. To “repair” such an analysis, you must
figure out if there is justification for adopting some additional constraint that the winner obeys
and the loser violates.

(b) There must be enough learning time for the GLA to find the right ranking. In practical

terms, this is seldom a problem; just set the value for Number of Times to Go Through Forms
fairly high (say, 1000000). I have yet to see a GLA run that needed more than couple minutes to
complete on a 21st-century computer.

11.3 Diagnosing what the Gradual Learning Algorithm Did

The Options menu on the GLA screen provides ways to understand what the GLA is doing
when it ranks.

11.3.1 Graphing the history of ranking values

If you click on Print file with history of ranking values, the program will create (as it
ranks) a file called FileNameHistory.xls, where FileName is the name of your original input
file. This is a tab-delimited text file, residing in the folder FilesForFileName, which you can
open with a spreadsheet program like Excel. You can use the spreadsheet program to make a
graph that shows the history of the ranking values as learning proceeds. This is often quite
useful for understanding what happened during learning.

11.3.2 Showing every step the GLA took

If you click on Print file with history of all actions, the program will create (as it ranks) a
file called FileNameFullHistory.xls, where FileName is the name of your original input file.
This is a tab-delimited text file, which you can open with Excel or other spreadsheet program. It
is useful to sort this file by constraint, since this tells you which data tended to make a constraint
be ranked high, and which made it tend to be ranked lower.

A convenience option: from the main OTSoft window, you can click on View, Show How

Ranking Was Done, and (if you have a spreadsheet program that can open the file), OTSoft will
automatically use your spreadsheet program to view FileNameFullHistory.xls.

Manual: OTSoft 2.3.2 p. 23

11.4 Initial Ranking Values

The result that the GLA gets depends, in some cases, on the ranking values for the
constraints that you start out with. OTSoft permits you to customize these, by using the Initial
Ranking Values menu. The choices are:

 Simply giving every constraint the same ranking value at the start; by convention this is

set at 100, a value that normally permits you to avoid negative numbers in the output.
This is the default choice, which you get without having to specify anything.

 Selecting a different initial ranking value for Markedness vs. Faithfulness constraints
(for example: Markedness far above Faithfulness, a commonly adopted assumption). A
small menu pops up for this purpose.

 Assigning a customized initial ranking value to every constraint. OTSoft lets you do this
by opening a little file containing the constraint names and their ranking values. If Excel
or some other spreadsheet is available (edit the file
OTSoftAuxiliarySoftwareLocations.txt to tell OTSoft where your spreadsheet program
is installed), OTSoft will use that, otherwise whatever program on your machine is set up
to handle .txt files.

 Using the ranking values from the most recent run, if any, of the same file. This could
be useful if you just want to run more learning iterations on a file, without having to start
over from scratch.

11.5 Specifying a Custom Learning Schedule

Using the Learning schedule menu on the GLA screen, you can create and edit a small file
(format: tab-delimited text) to produce a schedule of your own choice for learning. I don’t think
this is really necessary for ordinary analysis, but it could be useful for particular research
purposes.

A custom learning schedule consists of a sequence of stages, each of which specifies three

parameters:

 Number of trials is the number of times for each stage that a datum is selected for

presentation to the GLA. In making your choice, the tradeoff is between computational
time versus accuracy.

 Plasticity is the size of the change in the grammar that the GLA makes every time its
own guess doesn’t match the learning datum it encounters. Plasticity is normally set high
early in the learning process, to permit rapid learning, and low late in the learning
process, to obtain maximally refined results.

 Noise expresses the degree to which the GLA is willing to diverge from its basic ranking
values in making the guesses that guide its learning. Using a high level of noise early
(but not late) in the learning process can help the GLA quickly discover those constraint
rankings that are essentially obligatory.

Manual: OTSoft 2.3.2 p. 24

For both plasticity and noise, you specify separate values for Markedness and Faithfulness

constraints. These can be identical if you like.

The editing of the learning schedule file, which resides in the FilesForFileName folder, is

done automatically with your spreadsheet program if you’ve listed in
OTSoftAuxiliarySoftwareLocations.txt where this program is; otherwise with whatever
program your copy of Windows is set up to employ for .txt files.

11.6 Magri update rule

You can also change the basic rule that GLA-OTSoft uses to change the weights. In default
mode, it will respond to local errors by adjusting equally all the constraints that differ on the
erroneous-winner vs. the correct candidate. You can also use the Magri update rule, described in
Magri (2012); this makes smaller adjustments of winner-preferring constraints depending on
how many there are. To do this, in the GLA window, select the Learning schedule menu and
then Magri update rule. The Magri update rule solves the (rather bad) conundrum for the
standard GLA noted by Pater (2008). However, I have noticed informally that in some
applications the classical GLA seems to yield more accurate results.

12. Maxent

Maxent grammars are described by Goldwater and Johnson (2003) and are used in a variety
of constraint-based work. OTSoft includes a very simple implementation of maxent, which
includes no Gaussian prior (see Goldwater and Johnson) and instead simply uses a user-specific
maximum on constraint weights. For uses that require a Gaussian prior (and also, for greater
speed), it recommended that you use instead the Maxent Grammar Tool software, available like
OTSoft from the Hayes web site. It reads tab-delimited text files in OTSoft format.

The parameters for running maxent (number of training trials, plasticity, number of testing

trials) are similar to those for the GLA, given above.

13. A Priori Rankings

Sometimes it is important to find a ranking or factorial typology that respects rankings
established a priori. For example, one might want to presuppose that a Faithfulness constraint
limited to stem segments always outranks the general Faithfulness constraint. Alternatively, you
might want to set up a complete grammar, then test novel forms on it; here, the a priori rankings
consist of all the rankings.

OTSoft permits a priori rankings. They are entered in a separate file, with the file name

FileNameApriori.txt. To create such a file, first start OTSoft and load the input file you want to
work with. Then click on the menu item A priori rankings and select Make a new file
formatted for entering a priori rankings. This will construct a file that you can use to enter a
priori rankings.

http://www.linguistics.ucla.edu/people/hayes/otsoft/pdf/goldwaterjohnson03.pdf
http://www.linguistics.ucla.edu/people/hayes/MaxentGrammarTool/

Manual: OTSoft 2.3.2 p. 25

For example, suppose your input file, “Sample.xls” looks like this:

 CONST1 CONST2 CONST3
 CONST1 CONST2 CONST3

MyInpu
t Cand1 1 1
 Cand2 1
 Cand3 1

If you follow the instructions on the preceding paragraph, OTSoft will create a file called

SampleAprioriRanking.txt, and tell you it has done so. If you open up this file in a spreadsheet
program (OTSoft will prompt you if you would like it to do this automatically), it will look like
this:

 CONST1 CONST2 CONST3

CONST1

CONST2

CONST3

Now, suppose you want to specify that CONST2 always outranks CONST3. To do this, enter

an “x” (or any other symbol other than blank) in the row for CONST2 and column for CONST3:

 CONST1 CONST2 CONST3
CONST1

CONST2 x
CONST3

Here, I’ve inserted just one x, but you can include as many as you like (but see below, 13.2, on
inconsistency detection).

Save this file with your changes, then run OTSoft. Before you rank (any algorithm)9 or
compute a factorial typology, go to the A priori rankings menu, and click on Rank constraints
constrained by a priori rankings. Now, when you rank, the algorithms of OTSoft will respect
the ranking of CONST2 over CONST3.

For example, if you were computing the factorial typology of the system of constraints and

candidates given above, you would find that all three of Cand1, Cand2, and Cand3 were
included as possible outcomes. But if you include the a priori ranking CONST2 >> CONST3, as
above, you would find that the factorial typology shrinks to just Cand1 and Cand3, since Cand2
wins only when CONST3 outranks CONST2.

9 Sorry, not quite: any algorithm except Biased Constraint Demotion. I hope to implement this in future work.

Manual: OTSoft 2.3.2 p. 26

13.1 A Priori Rankings and the Gradual Learning Algorithm

A priori rankings for the Gradual Learning Algorithm (section 11) can be chosen as a menu
choice either from the Main window or from the GLA window.

OTSoft implements a priori rankings for the Gradual Learning Algorithm as follows: it

minimally adjusts the initial ranking values so that any two constraints that are ranked a priori
are at least x units apart, for some value of x. Then, as it incrementally adjusts the ranking values
of the constraints, it monitors the a priori rankings so that they continue to be enforced by at least
a distance of x ranking values or greater.

The default setting of x is 20, which is very close probabilistically to being an obligatory

ranking. You can change this setting before you rank by typing a different value in the little
labeled window on the GLA interface given for this purpose. (This window is visible only if you
have selected a priori rankings.

13.2 Autochecking of a priori rankings

OTSoft prechecks your a priori rankings file to detect situations that would make ranking
impossible. For example, if you enter into an a priori rankings file the information that a
constraint dominates itself, or that A dominates B and B dominates A, OTSoft will detect the
error and notify you with a screen message. If your a priori rankings file contains a “domination
loop” (A dominates B dominates C dominates … A), OTSoft will detect the loop and give you
information that may help you to disentangle it.

13.3 Using a grammar to establish a priori rankings

Sometimes it is useful to learn a grammar based on just a few data, then test it on a larger
data set—this is not unlike the child language learner’s own experience. To do this in OTSoft,
make an input file containing the smaller data set. Open OTSoft, go to the A Priori Rankings
menu and select Use strata obtained in ranking to construct a priori rankings file. Then
choose one of the three discrete ranking algorithms (not the GLA) to rank.10 This will produce a
version of the FileNameAprioriRanking.txt file described above (§13) which has lots of a
priori rankings: every constraint that is in a higher stratum is ranked a priori above every
constraint in a lower stratum. You can then rename FileNameAprioriRanking.txt to fit the file
name of your larger file, and compute the factorial typology of the larger file. This will tell you
all of the outcomes of the larger set that are compatible with the rankings learned from the
smaller set.

14. Printing

There are four ways to print from OTSoft.

10 For the GLA, this is not necessary. Simply eliminate any frequency values from the third column for any

data that are supposed to be tested but not learned from.

Manual: OTSoft 2.3.2 p. 27

(1) A crude but trustworthy way to print is to select Draft print from the Print menu. The
result will not be great, but it doesn’t require any software.

(2) You can get slightly less crude results by picking View with your word processor from
the View menu, then printing the result on the word processor. Be sure to format the file in
Courier or some other constant-width font.

(3) You can examine your results using your web browser. Go to the View menu and select
View result as web page.

(4) Nicer output, suitable for incorporating into papers and handouts, requires the most
elaborated strategy, which is described in the following sections.

14.1 Resources Needed

To do high-quality printing from OTSoft, you need two things:

(a) Microsoft Word 6 or later.
(b) A macro file included with OTSoft and explained below.

14.2 The Word Macro and its Function

After you run any of the options of OTSoft, you will find a file name called
FileNameQualityOutput.txt. This file is located in a folder that is a daughter of the folder of
your input file, specifically FilesForFileName. Open FileNameQualityOutput.txt with some
version of Word. This can be conveniently done from within OTSoft by selecting the Print
menu, then Prepare for Printing (MS Word).11

What you’ll see is a text file, strewn with little diacritics that permit it to be converted into a

Word document. But to do this conversion, you have to run a “macro”, which is a little program
that works inside Word. In the next section are the details on this macro.

The basic idea is that first you install the macro, thus slightly modifying your copy of Word.

Then, you use this modified Word to edit FileNameQualityOutput.txt. The first step of editing
consists of completing the conversion that began within the ranking software, by running the
newly-installed macro.

The macro saves the new Word document as FileNameQualityOutput.doc, in the

FilesForFileName folder.

11 This will work provided your copy of Word is in the normal location, namely C:\Program Files\Microsoft

Office\Office11\winword.exe. If not, open the little file ots OTSoftAuxiliarySoftwareLocations.txt, and, on the
line that immediately follows Path and name for custom word processor:, type the full path and file name for
your copy of Word.

Manual: OTSoft 2.3.2 p. 28

14.2.1 Installing the Word Macro

The macro is included with the basic set of files. There exist versions for Word 6, Word 97,
and Word 2000, with the following names:

 OTSoftFileConversionForWord6.dot
 OTSoftFileConversionForWord97.dot
 OTSoftFileConversionForWord2000.dot

You must select the right one for your version of Word. The Word 2000 version works fine for
Word 2003, but it may or may not work with later versions of Word, which I have not seen.
Please let me know (bhayes@humnet.ucla.edu) if it doesn’t.

Each one of these files is a little bundled package that has the macro inside it. In order to get

nice tableaux, you have to pry the macro out of its .dot file and install it in your own copy of
Word.

To do this, execute the following procedure exactly:

1. In Word 97 or 2000: Click on Tools • Templates and Add-ins.
 In Word 6: pull down the File menu, and select Templates.
2. Click the Organizer button.
3. Click the left button that says Close File.
4. Click the same button, which now reads Open File.
5. This will pull up Word’s file-opening apparatus. Find c:\Program Files\otsoft. To

switch directories, you have to double-click.
6. Under “List Files of Type:” select “Document Templates.”
7. If all has gone well, you will see a listing for the following files:

 OTS_W6.dot (Word 6)
 OTSoftFileConversion.dot (Word 97 and 2000)

 Double-click on whichever one is your version of Word.
8. On the little “file tabs” you see near the top of the screen, click on “Macros”.
9. You should now see a macro available in the left window, labeled

OTSoftFileConversion (Word 97, 2000) or hithere
 RankerFileConversion (Word 6).
10. You should see the “Copy” box in the middle of the window with its arrows pointing

rightward.
11. The right side window will probably already say normal.dot. If it doesn’t, mess around

with the menu saying “Macros Available In” until it says “Normal.dot (Global
Template)”.

12. Now you can click on the Copy box to copy the crucial macro into your copy of Word.
Respond “yes” to the prompt.

13. Click on “Close” to complete the process.

Manual: OTSoft 2.3.2 p. 29

14.2.2 Using the Macro

Using the macro is easier than installing it.

First, start up Word, and using File • Open, load the file you will be working on. You will

find it in the FilesForFileName folder, itself a daughter of the folder in which you placed your
original input file. The file is call FileNameQualityOutput.txt.

Depending on the settings of your copy of Word, it may ask you whether it should convert

the file from text. Tell it, “ok”. Note that this is Word’s own form of conversion; your own
conversion, specific to OTSoft, comes next.

From the Tools menu, select Macros, and then double-click on OTSoftFileConversion

(Word 97, 2000), or RankerFileConversion (Word 6). Once you’ve done this, the macro when
executed will turn the raw FileNameQualityOutput.txt into fairly respectable looking Word
output. If you want really nice output you have to do a certain amount of cleaning up the output
by hand. (You drag lines rightward and leftward, change font size on constraint labels, etc.) It
will save the result as FileNameQualityOutput.doc.

14.3 Phonetic Symbols

It is possible to get phonetic symbols. To get symbols, you need to do the following:

 Enter the symbols in Excel in the font called SILDoulosIPA93. This font is obtainable

for free from http://www.sil.org/computing/fonts/encore-ipa.html. You will want to mark
the columns for inputs and rival candidates by clicking and dragging over grey cells A
and B. Then select SILDoulosIPA93 from the Font menu.

 The simplest, though not the most convenient, way to enter phonetic symbols is through
their numerical codes. The codes are listed below. To enter a symbol, hold down Alt,

then, on the keypad at the right side of your keyboard hit zero first, then hit the code
given below for various phonetic symbols. If this doesn’t work, hit the NumLock key
and try again.

http://www.sil.org/computing/fonts/encore-ipa.html

Manual: OTSoft 2.3.2 p. 30

p 112 t 116 255 c 99 k 107 q 113

b 98 d 100 234 239 103 71

 186 235 215 169 253

 184 f 102 84 s 115 83 167 254 67 x 120 88 240 75 h 104 238

 66 v 118 68 z 122 90 189 252 198 196 210 192 251 250

m 109 77 n 110 247 248 78 178

l 108 241 180 ; 59

 194

 76

 82 228 125

 245 r 114 123

 190

 227 j 106

w 119 86 168 211 j 106 229 231

 135 156 | 150 146

i 105 y 121 246 172 181 u 117

 73 89 85

e 101 ø 79 171 80 70 o 111

 69 œ 191 140 195 141

æ 81 175 a 97 65 129

 130

" 34 128 154 206

' 39 132 155 207

, 44 133 158 212

. 46 134 159 213

/ 47 136 174 - 214

 72 137 179 232

 74 138 199 236

 87 139 200 237

[91 142 201 216

\ 92 145 203 217

] 93 149 204 249

 124 ! 151 205

Manual: OTSoft 2.3.2 p. 31

 A more convenient way to enter symbols, though with more work up front, is to use

Keyman, also downloadable from http://www.sil.org/computing/fonts/encore-ipa.html.
Note: somewhat confusingly, the guide to keyboard layout (a .hlp file) is included as part
of the SIL IPA font package, rather than being part of Keyman itself.

 When you run OTSoft, go to the Font menu and select the IPA font if it is not already
selected (the choice of font is remembered from the last time you used the program).

 The phonetic symbols will appear only as very gross approximations when they appear
on the screen output of OTSoft. But they will print correctly when you open
FileNameQualityOutput.txt with Word and run the conversion macro.

14.4 Options for Crowded Tableaux

This is a set of option buttons on the right mid part of the screen. Often, if there are few
inputs and many constraints, it pays to put the constraints in rows and the candidates in columns.
You can do this throughout, only where needed, or not at all, according to what button you click
on.

14.5 Options Menu

This is a miscellaneous menu. It lets you do these things:

 Decide whether you want constraint names to be printed in all caps. OTSoft can only

make the entire name all caps, or none of it; thus it can’t handle a constraint name like,
say, IDENT(round). By checking or unchecking Print constraint names in small caps,
you can choose whether you want your later hand editing to add or remove the small
caps.

 When OTSoft is exited, get rid of little temporary files that were there only for purposes
of displaying results on the screen. Uncheck Delete temporary files on exit if you’d like
to look at any of these files (for example, as a last-ditch measure when you’re having
trouble printing the main output files). The files show up in the folder
FilesForFileName, which is itself in the same folder as your original input file.

 The Biased Constraint Demotion algorithm can be slightly modified so as to favoring the
high ranking of specific Faithfulness constraints over their more general counterparts.
This seems to help its performance (see Tesar and Prince’s discussion of this). To use
this option, first select Biased Constraint Demotion from the Chose Algorithm box. Then
from the menus, select Options, then check BCD favors specific Faithfulness
Constraints.

14.6 Other Word Processors

The only hope I have to offer here is that it should not be monstrously hard for you to write
a macro that runs on your own word processor, suitable for converting the output of this software
to your word processor’s native format. Advice on how to do this may be obtained by
downloading the document “Preparation of File Conversion Macros on Other Word Processors”

http://www.sil.org/computing/fonts/encore-ipa.html
http://roa.rutgers.edu/view.php3?id=1103

Manual: OTSoft 2.3.2 p. 32

from http://www.linguistics.ucla.edu/people/hayes/otsoft/wrimacro.doc. Naturally, if you’d like
to share any successful results in this area with others via my Web page, I would be pleased to
post them, properly attributed to you.

[Update January 2013: I have found Microsoft Word post-2003 to be pretty dreadful and

haven’t used it. Information about whether my macro is still workable in more recent versions of
Word would be appreciated (bhayes@humnet.ucla.edu).]

15. Large input files and run time

OTSoft will normally generate the output you want rather quickly. However, occasionally
people have used it for extremely large input files. In such cases, execution may slow down.
There are a few things you can do to speed the program.

 OTSoft reads plain text files faster than Excel files, so if you are working with Excel,

save your file as a plain text file and run that instead.
 For simple ranking algorithms like Constraint Demotion, most of the run time in large

files consists of sorting the candidates of the output tableaux in harmonic order. You
can turn off this part of OTSoft by de-checking the relevant entry on the Options menu.

 Ranking argumentation is normally fast, but will slow markedly if there are a large
number of constraints. You can turn off ranking argumentation on the main interface.

16. File conversion

OTSoft can convert your input file to another format in two ways.

16.1 Praat

Praat, the well-known phonetics software package by Boersma and Weenink
(http://www.fon.hum.uva.nl/praat/), has a fair number of computational routines for doing
constraint-based phonology, including some missing from OTSoft. The input file format for
Praat can be a bit unforgiving; formatting mistakes cause crashes which tend to be hard to
diagnose. To produce legal Praat input files, first enter your data as an OTSoft file as above,
open your file in OTSoft, then click File, then Save as Praat File. OTSoft will convert your
input to the two files needed by Praat and save them in the regular output file
FileNameForPraat.OTGrammar.txt and FileNameForPraat.PairDistribution.txt.

16.2 Sorted input files

If you are solving a phonological problem, building it up gradually by adding constraints,
inputs and candidates, you may find it useful to work with input files in which the constraints are
sorted by the rankings you’ve discovered so far. To do this, go to the Options menu of the home
interface, and check On ranking, save copy of input file, sorted by rank. Then rank the file by
clicking the Rank button. In the output folder, you will find a file entitled FileNameSorted.txt.
You can use this as your input file. I find that looking at such files in Excel helps in thinking
about the next analytic step.

http://www.linguistics.ucla.edu/people/hayes/otsoft/wrimacro.doc
mailto:bhayes@humnet.ucla.edu

Manual: OTSoft 2.3.2 p. 33

17. About OTSoft

17.1 Complete List and Description of Files

x.x.x is the version number.

OTSoftx.x.x.exe the program itself
OTSoftManual_x.x.x.doc this manual
OTSoftManual_x.x.x.pdf same, but in pdf format
OTSoftFileConversionForWord6.dot contains file conversion macro for pretty output in

Word 6
OTSoftFileConversionForWord97.dot contains file conversion macro for pretty output in

Word 97
OTSoftFileConversionForWord2000.dot contains file conversion macro for pretty output in

Word 2000; apparently works for later Word’s
OTSoftRememberUserChoices.txt remembers settings from one use of the program to the

next. Can be edited with any word processor that
opens plain text files

OTSoftAuxiliarySoftwareLocations.txt Type in where your word processor, etc., are to be
found

TinyIllustrativeFile.xls a sample input file in Excel format
TinyIllustrativeFile.txt same, as tab-delimited text
TinyIllustrativeFile.in same, in the format used by an old version of this
 program

plus a million files required by Microsoft Visual Basic…

17.2 Source Code and Open-sourcing

I would love to make OTSoft open source, so anyone who wanted to could add to its
capacities. Unfortunately, the programming language that I started writing it in (in about 1994)
was abolished by Microsoft a few years ago. This lost Microsoft many customers, so in hopes of
reawakening interest they took the (incompatible) successor language and posted a version of it
on the web for free. The logical step would be for someone to convert OTSoft into this new
language. Let me know if you are interested. Also, if you would like to see the code as a guide
to writing new software feel free to ask. My email is bhayes@humnet.ucla.

17.3 Reporting Bugs

If you find that OTSoft or its file conversion macros crash or derive defective outputs,
please contact me at bhayes@humnet.ucla.edu. To provide a clear diagnosis of the problem, you
should attach to your email a copy of the input file that caused the problem.

http://www.microsoft.com/express/Downloads/#2010-Visual-Basic
mailto:bhayes@humnet.ucla.edu)

Manual: OTSoft 2.3.2 p. 34

17.4 Acknowledgements

Thanks to Bruce Tesar for programming Biased Constraint Demotion, Kie Zuraw for
improvements to the GLA code and elsewhere, Paul Boersma for GLA advice, Lukas Pietsch for
useful ideas and improvements, Taesun Moon for some very clever debugging, and to all the
users who have reported bugs or made suggestions concerning previous versions of this program.

Manual: OTSoft 2.3.2 p. 35

References

Boersma, Paul (1997) “How we learn variation, optionality, and probability,” IFA Proceedings
21: 43-58. http://www.fon.hum.uva.nl/paul/

Boersma, Paul and Bruce Hayes (2001) “Empirical Tests of the Gradual Learning Algorithm,”
Linguistic Inquiry 32:45-86. Available at
http://www.humnet.ucla.edu/humnet/linguistics/people/hayes/GLA.

Hayes, Bruce (1998) “Four rules of inference for ranking argumentation,” posted at
http://www.linguistics.ucla.edu/people/hayes/otsoft/argument.doc.

Hayes, Bruce (in press) “Phonological acquisition in Optimality Theory: the early stages.” To
appear in René Kager and Wim Zonneveld, eds., Fixing Priorities: Constraints in
Phonological Acquisition, Cambridge University Press. Available for download at
http://www.linguistics.ucla.edu/people/hayes/Acquisition/.

Magri, Giorgio (2012) Convergence of error-driven ranking algorithms. Phonology 29: 213-269.

Pater, Joe (2008) Gradual learning and convergence. Linguistic Inquiry 39/2, 334-345.

Prince, Alan and Bruce Tesar (in press) “Learning Phonotactic Distributions,” To appear in René
Kager and Wim Zonneveld, eds., Fixing Priorities: Constraints in Phonological
Acquisition, Cambridge University Press. Available as Rutgers Optimality Archive 352,
http://ruccs.rutgers.edu/roa.html.

Prince, Alan and Paul Smolensky (1993) Optimality Theory: Constraint Interaction in
Generative Grammar, Rutgers Optimality Archive.
http://roa.rutgers.edu/view.php3?roa=537

Tesar, Bruce, and Paul Smolensky (1993) “The learnability of Optimality Theory: An algorithm
and some basic complexity results,” Ms. Department of Computer Science and Institute of
Cognitive Science, University of Colorado at Boulder. Rutgers Optimality Archive ROA-2,
http://ruccs.rutgers.edu/roa.html.

Tesar, Bruce, and Paul Smolensky (2000). Learnability in Optimality Theory, MIT Press,
Cambridge, MA.

http://www.fon.hum.uva.nl/paul/
http://www.humnet.ucla.edu/humnet/linguistics/people/hayes/GLA
http://www.linguistics.ucla.edu/people/hayes/otsoft/argument.doc
http://www.linguistics.ucla.edu/people/hayes/Acquisition/
http://ruccs.rutgers.edu/roa.html
http://roa.rutgers.edu/view.php3?roa=537
http://ruccs.rutgers.edu/roa.html

	1. Purpose of OTSoft
	2. Installing OTSoft on Your PC
	2.1 Installing the Program
	2.2 Setting Up A Folder for Your Files
	2.3 Uninstalling
	Files and Suffixes

	3. Operating OTSoft: Bare-Bones Guide
	3.1 Preparing an Input File
	3.2 Running the program
	3.3 Viewing the Result
	3.4 Printing
	3.5 Exiting

	4. Input Files
	4.1 Excel files
	4.2 Tab-Delimited Text
	4.3 Recovery from Lost Files
	4.4 Simple Tricks with Excel
	4.5 Excel and SIL Phonetic Fonts
	4.6 Entering Constraints as Structural Descriptions

	5. More on Starting Up OTSoft
	5.1 Making a Shortcut to OTSoft
	5.2 Open With
	5.3 More on Picking a File to Work With
	5.4 Back and Forth Between OTSoft and Excel
	5.5 Interacting Smoothly with Other Programs

	6. More on Constraint Ranking: Algorithms
	7. Displaying your Results: Options
	7.1 Viewing from within OTSoft
	7.2 Viewing with your Word Processor
	7.3 Viewing as a web page
	7.4 High-Quality Printed Output
	7.5 How tableaux are sorted

	8. Diagnosing your Results
	8.1 What if ranking fails?
	8.2 Ranking Argumentation
	8.2.1 OTSoft and exposition of your analysis

	8.3 Checking For Unnecessary Constraints

	9. Hasse diagrams
	9.1 Hasse Diagrams - “Disjunctive” Arguments
	9.2 Hasse Diagrams - Gradual Learning Algorithm
	9.3 Fine-Tuning a Hasse Diagram
	9.4 Hasse Diagrams in High-Quality Output Files

	10. Factorial Typology
	10.1 Background on Factorial Typology
	10.2 Factorial typology and t-order

	11. The Gradual Learning Algorithm
	11.1 The Input to the GLA
	11.2 The Output of the GLA
	11.3 Diagnosing what the Gradual Learning Algorithm Did
	11.3.1 Graphing the history of ranking values
	11.3.2 Showing every step the GLA took

	11.4 Initial Ranking Values
	11.5 Specifying a Custom Learning Schedule
	11.6 Magri update rule

	12. Maxent
	13. A Priori Rankings
	13.1 A Priori Rankings and the Gradual Learning Algorithm
	13.2 Autochecking of a priori rankings
	13.3 Using a grammar to establish a priori rankings

	14. Printing
	14.1 Resources Needed
	14.2 The Word Macro and its Function
	14.2.1 Installing the Word Macro
	14.2.2 Using the Macro

	14.3 Phonetic Symbols
	14.4 Options for Crowded Tableaux
	14.5 Options Menu
	14.6 Other Word Processors

	15. Large input files and run time
	16. File conversion
	16.1 Praat
	16.2 Sorted input files

	17. About OTSoft
	17.1 Complete List and Description of Files
	17.2 Source Code and Open-sourcing
	17.3 Reporting Bugs
	17.4 Acknowledgements

