Bruce Hayes UCLA

# The Textsetting Problem: the Intersection of Phonology, Music Cognition, and Computation

## I. STATING THE PROBLEM

#### 1. First verse of folk song; first line

|    |     | Х    |   |    |     | Х    |     |      |     | Х    |     |     |   | Х   |   |   |    |
|----|-----|------|---|----|-----|------|-----|------|-----|------|-----|-----|---|-----|---|---|----|
| Х  |     | Х    |   | Х  |     | Х    |     | Х    |     | Х    |     | Х   |   | Х   |   | = | 64 |
| Х  | Х   | Х    | Х | Х  | Х   | х    | Х   | х    | Х   | Х    | Х   | Х   | Х | Х   | Х |   |    |
|    |     |      |   |    |     |      |     |      |     |      |     |     |   |     |   |   |    |
| It | was | late |   | in | the | nigh | t v | vhen | the | squi | ire | cam | e | hom | e |   |    |

("The Gypsy Laddie", recorded in the Appalachian Mountains ca. 1917 by Cecil Sharp)

#### 2. Note on grids

- Height of column = strength of beat
- Rows = theoretically isochronous levels of periodicity

#### 3. A later verse, first line

"Oh saddle to me my milk-white steed"

Х Х Х Х Х Х Х Х Х Х Х Х X X X X X X X X X Х X X X Х Х Х Oh, sad-dle to milk- white me my steed



#### 4. An ill-formed setting

|            | Х   |   |   |   | Х  |    |    |   | Х    |   |   |       | Х |       |   |    |
|------------|-----|---|---|---|----|----|----|---|------|---|---|-------|---|-------|---|----|
| Х          | Х   |   | Х |   | Х  |    | Х  |   | Х    |   | Х |       | Х |       | = |    |
| X X        | Х   | Х | Х | Х | Х  | Х  | Х  | Х | Х    | Х | Х | Х     | Х | Х     |   | 64 |
|            |     |   |   |   |    |    |    |   |      |   |   |       |   |       |   | ●  |
| Oh, sad- o | dle |   |   |   | to | me | my | 1 | nilk | - | , | white | e | steed | l |    |

#### 5. Shared intuitions

• Native speakers generally agree with one another on what settings should be preferred (Hayes and Kaun 1995—10 speakers, average of 2.2 settings per line).

### 6. Intuitions are sometimes gradient

• Example:



is perhaps not quite as good as the setting in (3), but surely not bad.

- Hayes-Kaun 1995 speakers show a modest preference for the type given in (3).
- This is typical, so we need to be able to predict such gradient intuitions as well.

## 7. The textsetting problem is a long established one

• Some references: Dell (1975, 2004), Stein and Gill (1980), Oehrle (1989), Halle and Lerdahl (1993), Halle (1999, 2004), Hayes and Kaun (1996), Hayes (in press), Keshet (2006 ms.)

## 8. Goals

- The analytical problem: find and state the principles that tacitly guide people when they set text in their language.
- We can and should do this explicitly—a machine implemented model that is trained from data and arrives at its own "intuitions" about textsetting.
  - $\succ$  a sort of micro-Turing test.
- Why address this problem?
  - > We might learn more about musical and phonological structure.
  - > We can test computational theories proposed as models of mental operations.

## 9. Overview of talk

- Theory of musical rhythm
- Phonological theory: phrasing, stress patterns
- Probabilistic, constraint-based grammars, and computational systems for learning them.

## MUSICAL RHYTHM

## **10. Metrical grids**

- as above
- introducers: Lerdahl and Jackendoff (1983) A Generative theory of Tonal Music ; Liberman and Prince (1977) "On Stress and Linguistic Rhythm," Linguistic Inquiry

## 11. Purely-rhythmic principle (structural preferences)

- (These would hold true even in music without words.)
- From Lerdahl and Jackendoff (1983):
  - > If a position is to be empty, then the weaker it is (few x's in grid), the better.
  - Accented elements (e.g. stressed syllables) should be placed in strong positions.
  - Strong elements are long. E.g. we mentally parse the notes below as on the left, not on the right:



## PHONOLOGY

## 12. Word stress

- English is a language with basically phonemic (unpredictable) stress (cf. *thórough/Thoreáux*), and in general, the stressed syllables of words must fall in strong positions.
  - See (4), where mismatching *sáddle* produces a bad setting.
- Special strictness of word stress:
  - In poetry (Kiparsky 1975) and song (Hayes and Kaun 1995), it has been found that stress + stressless or stressless + stress tend to match the rhythm more strictly when the two syllables involved are in the same word.

## 13. Stress in phrases

- English has rules determining the stress pattern when words are combined into phrases.
  - Example: verb + particle, like *went on*, has rising stress; hence

|   |   | х  |   |     |   | Х  |   |      |    | Х   |    |    |     | Х   |   |
|---|---|----|---|-----|---|----|---|------|----|-----|----|----|-----|-----|---|
| х |   | Х  |   | Х   |   | Х  |   | Х    |    | Х   |    | Х  |     | Х   |   |
| Х | Х | Х  | Х | Х   | Х | Х  | х | Х    | Х  | Х   | Х  | Х  | Х   | Х   | Х |
|   |   |    |   |     |   |    |   |      |    |     |    |    |     |     |   |
|   |   | He | Ţ | wen | t | on |   | till | he | cam | ne | to | his | den |   |

is slightly preferred to

|    |   | Х   |   |    |   | Х    |   |    |   | Х   |   |    |     | Х   |   |
|----|---|-----|---|----|---|------|---|----|---|-----|---|----|-----|-----|---|
| Х  |   | Х   |   | Х  |   | Х    |   | Х  |   | Х   |   | Х  |     | Х   |   |
| Х  | Х | Х   | Х | Х  | Х | Х    | Х | Х  | Х | х   | Х | Х  | х   | Х   | Х |
|    |   |     |   |    |   |      |   |    |   |     |   |    |     |     |   |
| He | 1 | wen | t | on |   | till |   | he | C | cam | e | to | his | den |   |

despite the defect of leaving the first two positions empty.

### 14. Phrasing

- Stressed syllables at the *ends* of phrases strongly prefer to be in strong rhythmic positions (Kiparsky 1977, Hayes and Kaun 1995)
- Line endings must coincides with phrase endings "run-ons" are disfavored (See Hayes and MacEachern (1996) "Are there lines in folk poetry?")

## CONSTRAINT-BASED GRAMMARS

### 15. How to turn lists of constraints into explicit grammars?

- This is a major topic research in linguistics and related fields.
- One approach with a strong track record is Optimality Theory (Prince and Smolensky 1993 et seq.), the basis for much work in phonology.
- I here use a slightly different constraint-based approach, namely **maxent grammars** (Goldwater and Johnson 2003, Wilson 2006) Why?
  - We need to capture gradient intuitions (see (3) vs. (6) above).
  - Current Optimality-theoretic approaches don't converge (GLA: Pater 2008) or haven't been proven to converge.
  - > The math of maxent has been completely worked out and is fully trustable.

## 16. Overall approach

- We find every logically possible setting
  - ➢ With the grids used here, this is never more than about 14,000, so with a bit of fairly elementary computer use we can check them all.
  - > Checking all possibilities: essentially the "GEN" function of Optimality Theory.
- We set up a batch of constraints, and assess the number of constraint violations of each setting.
- Every constraint has a weight, a non-negative number that intuitively expresses its strength.
  The higher the weight, the worse a setting that violates it is likely to be sound.
- From this, a standard formula (below) predicts for each setting a **probability**—claimed to match up with its degree of well-formedness.

#### 17. Some sample probabilities

• I haven't yet explained how these are obtained, but these illustrate the ability of the system to match intuition at a rough level.

He rode through woods and copses, too

• Top 6, plus two samples from the lunatic fringe. Probability is given in the right column.

|    |    | Х       |     |         |      | Х       |   |     |     | Х    |     |     |   | Х   |   |                      |
|----|----|---------|-----|---------|------|---------|---|-----|-----|------|-----|-----|---|-----|---|----------------------|
| Х  |    | Х       |     | Х       |      | Х       |   | Х   |     | Х    |     | Х   |   | Х   |   |                      |
| Х  | Х  | Х       | Х   | Х       | Х    | Х       | Х | Х   | Х   | Х    | Х   | Х   | Х | Х   | Х |                      |
| He |    | rode    |     | through |      | woods   |   | and |     | cop- |     | ses |   | too |   | 0.817                |
|    | He | rode    |     | through |      | woods   |   | and |     | cop- |     | ses |   | too |   | 0.090                |
| He |    | rode    |     | through |      | woods   |   |     | and | cop- |     | ses |   | too |   | 0.027                |
| He |    | rode    |     | thi     | ougl | n woods |   | and |     | cop- |     | ses |   | too |   | 0.027                |
| He |    | rode    |     | through |      | woods   |   | and |     | cop- | ses |     |   | too |   | 0.020                |
|    |    | he      |     | rode th | roug | h woods |   | and |     | cop- | ses |     |   | too |   | 5 x 10 <sup>-7</sup> |
|    | He | rode th | rou | ghwoods | and  | cops-   |   |     |     | ses  |     |     |   | too | 1 | .2 10 <sup>-12</sup> |

#### 18. How the math of maxent works

• For each candidate, Compute the **harmony**, <sup>1</sup> which in notation is:

$$\mathbf{h}(x) = \sum_{i=1}^{N} w_i C_i(x)$$

where

 $w_i$  is the weight of the *i*th constraint,  $C_i(x)$  is the number of times that *x* violates the *i*th constraint, and  $\sum_{i=1}^{N}$  denotes summation over all constraints ( $C_1, C_2, ..., C_N$ ).

• Compute the "**Maxent value**":

Given a phonological representation x and its score h(x) under a grammar, the *maxent value* of x, denoted  $P^*(x)$ , is:

$$P^*(x) = \exp(-h(x))$$

<sup>&</sup>lt;sup>1</sup> The concept of *harmony* is developed in Smolensky (1986) and subsequent work (Smolensky and Legendre 2006).

#### Hayes

## • Compute the **probability**

Given a phonological representation x and its maxent value  $P^*(x)$ , the *probability* of x, denoted P(x), is:

$$P(x) = P^*(x) / Z$$
 where  $Z = \sum_{y \in \Omega} P^*(y)$ 

That is, its share of maxent values among all candidates.

## 19. Where do the weights come from?

- This is a long standing problem.
- The approach taken here assumes that they are *learned*—you attend to data from the musical idiom around you, and this gives you the information you need.
- The relevant algorithm (e.g. Della Pietra et al. 1997) attempts to **maximize the predicted probability of the observed data**, a standard criterion in computer science.
- For an attempted clear layman's explanation of how the algorithm works, see Hayes and Wilson (2008).
- I would be happy to share with you the maxent software (work of Colin Wilson/Benjamin George) I used to do the simulations; bhayes@humnet.ucla.edu.

## THE SPECIFICS OF THE PRESENT ANALYSIS AND SIMULATION

## 20. Data corpus

- Hayes and Kaun (1996): 10 consultants each chanted the text of 670 lines of traditional English folk song, in rhythm.
- Goal is to model the share of the vote that each setting got—this can serve as an approximation for gradient intuition.

## 21. Linguistic annotation of the lines

- Hayes and Kaun independently transcribed the data:
  - Stress values for each syllable (as in Chomsky and Halle 1968)
  - Phonological phrasing, using rules from Hayes (1989)'s synthesis of earlier literature (Selkirk 1980, Nespor and Vogel 1982)
- They achieved reasonably good intersubjective agreement.

#### Hayes

## 22. Grid — with labels of convenience for columns

|   |   | Х |   |   |   | Х |   |   |   | Х |   |   |   | Х |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Х |   | Х |   | Х |   | Х |   | Х |   | Х |   | Х |   | Х |   |
| х | х | Х | х | Х | х | Х | х | Х | х | Х | х | Х | Х | Х | Х |
| М | W | S | W | М | W | S | W | Μ | W | S | W | Μ | W | S | W |

where W = Weak, M = Medium, S = Strong

## 23. Constraints used

- No time to do these in detail, but a quick outline.
- I would like to try trimming, adding; i.e. this is preliminary.
- The numbers are the weights that were learned for each constraint in the simulation.
- The ups and downs of stress must match the rhythm:

| 5.00 | REGULATE SW                       | "regulated" = stronger stress,<br>or overt syllable vs. null |
|------|-----------------------------------|--------------------------------------------------------------|
| 0.00 | REGULATE MW                       | (turned out to be useless)                                   |
| 1.11 | REGULATE SM                       |                                                              |
| 0.32 | *Phrase-Final Rise                | special phonological context                                 |
| 1.19 | *WORD-INTERNAL MISMATCH OF STRESS | special phonological context                                 |
| 0.89 | *Stress In M                      |                                                              |
| 2.53 | *Stress In W                      |                                                              |
|      |                                   |                                                              |

• Use of null vs. overt syllable must reinforce the rhythm:

| 5.00 | FILL STRONG  | S positions can't be empty  |
|------|--------------|-----------------------------|
| 2.40 | FILL MEDIUM  | M positions can't be empty  |
| 2.40 | DON'T FILL W | W positions can't be filled |

• Prefer to demarcate the lines with long pauses, by making their terminal positions empty:

| 2.59 | DON'T FILL 1  |
|------|---------------|
| 4.60 | DON'T FILL 16 |

• The durations of syllables as set in song must match their natural phonetic durations:

2.46 NON-WORD FINAL SYLLABLES ARE SHORT

• Inherent connections between metrical strength and duration:

| 1.37 | STRONG IS LONG | Penalize gradiently when the S positions don't    |
|------|----------------|---------------------------------------------------|
|      |                | initiate a syllable linked to multiple positions. |

• Avoid rhythmic obscurity: 4.75 AVOID LAPSE

\*3 empties in a row

• Other:

1.40 WEAK RESOLUTION

stressless in S wants to be short — dunno why...

## 24. The simulation

- 425 Lines in the corpus (I removed lines found only in some stanza types)
- 8.4 Average # valid "votes" per line / 9 subjects
- 2.2 Average # of distinct settings among the votes
- Goal: find weights that predict the distribution of votes as accurately as possible
- I also did "cross-training" runs: train on one half, test on other; this yielded similar results.
- I used maxent software created by Colin Wilson.

## 25. Results I: sample output

This was shown above in (17).

## 26. Statistical report of results

- For the entire set of candidates, the correlation r of predicted probability vs. "vote share" is r = 0.883.
- This is only a rough measure, since most values for both voting and prediction are at or close to zero.

## 27. Results II: Data and predictions in bins

Predicted probability

|        | 01    | .12 | .23 | .34 | .45 | .56 | .67 | .78 | .89 | .9 - 1 |
|--------|-------|-----|-----|-----|-----|-----|-----|-----|-----|--------|
| 01     | 48462 | 191 | 41  | 10  | 7   | 3   | 1   |     |     |        |
| .12    | 259   | 34  | 19  | 4   | 3   | 3   | 2   | 1   | 1   |        |
| .23    | 67    | 13  | 10  | 4   | 2   | 2   | 5   |     | 1   | 1      |
| .34    | 26    | 12  | 11  | 1   | 4   | 2   | 4   | 3   | 3   |        |
| .45    | 12    | 13  | 6   | 3   | 6   | 3   | 2   | 4   | 4   |        |
| .56    | 6     | 6   | 8   | 4   | 8   | 3   | 7   | 3   | 7   |        |
| .67    | 3     | 1   | 5   | 5   | 3   | 6   | 17  | 6   | 14  | 1      |
| .78    | 4     | 5   | 2   | 4   | 4   | 6   | 12  | 6   | 18  | 1      |
| .89    | 2     | 4   |     | 4   | 3   | 12  | 20  | 13  | 33  | 5      |
| .9 - 1 |       | 2   | 1   | 2   | 4   | 9   | 28  | 24  | 27  | 12     |

## 28. Improvements possible?

% volunteered by consultants

- The constraints could be improved, I think.
- Keshet (2006), working non-gradiently, has discovered some new and interesting rules, but I've not had time yet to implement them.

### 29. Differences between consultants

- Hypothesis: the set of constraints embodies the general theory, part of the competence of all participants.
- Individual idiosyncrasies must be due to consultant-specific weighting.
- We can detect this by training the weights on the data specific to each consultant.
- Example: RH vs. DS's weights for two constraints, which often conflict.

|    | NON-WORD FINAL      | STRONG IS LONG |
|----|---------------------|----------------|
|    | Syllables are Short |                |
| RH | 1.472               | 3.418          |
| DS | 2.480               | 0.879          |

"The remarkable day that I was wed"

Consultant DS's setting satisfies NON-WORD FINAL SYLLABLES ARE SHORT:

|     |      | х   |      |     |   | Х   |   |      |   | х |   |     |   | Х   |   |
|-----|------|-----|------|-----|---|-----|---|------|---|---|---|-----|---|-----|---|
| х   |      | Х   |      | х   |   | х   |   | х    |   | Х |   | Х   |   | Х   |   |
| Х   | Х    | Х   | Х    | х   | х | х   | Х | Х    | х | Х | х | Х   | Х | Х   | х |
|     |      |     |      |     |   |     |   |      |   |   |   |     |   |     |   |
| The | re-1 | mar | -ka- | ble |   | day |   | that |   | İ |   | was |   | wed |   |

Consultant RH's setting satisfies STRONG IS LONG:

|     |      | Х   |   |     |     | Х   |   |      |   | Х |   |     |   | Х   |   |
|-----|------|-----|---|-----|-----|-----|---|------|---|---|---|-----|---|-----|---|
| Х   |      | Х   |   | Х   |     | Х   |   | Х    |   | Х |   | Х   |   | Х   |   |
| Х   | Х    | X   | X | Х   | Х   | Х   | х | Х    | Х | Х | Х | Х   | Х | Х   | Х |
|     |      |     |   |     |     |     |   |      |   |   |   |     |   |     |   |
| The | re-1 | mar | - | ka- | ble | day |   | that |   | Ι |   | was |   | wed |   |

## 30. DS and RH's own grammars predict these settings as favorites

Probabilities:

|              | RH's choice | DS's choice |
|--------------|-------------|-------------|
| RH's grammar | 0.689       | 0.065       |
| DS's grammar | 0.251       | 0.819       |

## 31. Upshot

• The maxent approach not only characterizes the data as a whole fairly well, but gives us a means of characterizing individual differences in style.

## 32. Caveat: do RH and DS really have different grammars?

• Maybe, but my guess is that they are construing the experimental situation differently:

- > Each commands a variety of idioms.
- > They accessed different ones in performing the experimental task.

## **33. Summary: Situating the approach**

- The textsetting problem has traits seen elsewhere in cognitive science.
  - An identifiable structural basis, with a need for theoretical ideas taken from generative linguistics and formal music cognition.
  - Extensive gradience of native speaker intuitions and behavior, long a barrier to the use of structural approaches.
  - An "apples and oranges" problem, in which we have to weight the relative importance of constraints that have quite different teleologies.
- I think the right approach to such problems is a kind of "statistical generativism" (e.g., Boersma and Hayes (2001), Yang (2002)
  - > Traditional structural constraints are used, but
  - $\succ$  ...embedded in a quantitative system that predicts gradience, and
  - $\succ$  ... fine-tunes the grammar in response to learning data
- This kind of research implies we need corpora, experiments, easy-to-apply computational models. This is more work but I think the work can be fun and gets us more accurate and insightful results.

### References

- Dell, François (1975). Concordances rythmiques entre la musique et les paroles dans le chant: l'accent de l'e muet dans la chanson française. In Le soucie des apparences, Marc Dominicy (ed.), 121-136. Brussels: Editions de l'Université de Bruxelles.
- Dell, François (2004) Singing as counting syllables: text-to-tune alignment in traditional French songs. Ms.
- Della Pietra, Stephen, Vincent J. Della Pietra, and John D. Lafferty. 1997. Inducing features of random fields. *IEEE Transactions on Pattern Analysis and Machine Intelligence* 19:380–393.
- Halle, John and Fred Lerdahl (1993) "A generative textsetting model," Current Musicology 55:3-23.
- Halle, John (1999) A Grammar of Improvised Textsetting. Ph.D. dissertation, Columbia University.
- Halle, John (2003) Constituency matching in metrical texts. Submitted for publication in the proceedings of the conference Words and Music, University of Missouri-Columbia, March 14, 2003.
- Halle, Morris and S. Jay Keyser (1966) "Chaucer and the theory of prosody," College English 28: 187-219.
- Halle, Morris and S. Jay Keyser (1971) English stress: Its form, its growth, and its role in verse. New York: Harper and Row.
- Hanson, Kristin (1990) Resolution in Modern Meters, Ph.D. dissertation, University of California, Berkeley.
- Hayes, Bruce (1983) "A grid-based theory of English meter," Linguistic Inquiry 14, 357-393.
- Hayes, Bruce (1989) "The prosodic hierarchy in meter," in Paul Kiparsky and Gilbert Youmans, eds., Rhythm and Meter, Academic Press, Orlando, FL, pp. 201-260.

- Hayes, Bruce and Margaret MacEachern (1998) "Quatrain form in English folk verse," Language 74, 473-507.
- Hayes, Bruce and Abigail Kaun (1996) "The role of phonological phrasing in sung and chanted verse," The Linguistic Review 13, 243-303.
- Keshet, Erza (ms., 2006) "Relatively Optimal Textsetting," http://web.mit.edu/ekeshet/www/ Kiparsky, Paul (1975) "Stress, Syntax, and Meter," Language 51:576-616
- Kiparsky, Paul (1977) "The rhythmic structure of English verse," Linguistic Inquiry 8.189-247.
- Lerdahl, Fred and Ray Jackendoff (1983) A Generative Theory of Tonal Music. Cambridge, MA: MIT Press.
- Marr David (1983) Vision: A Computational Investigation into the Human Representation and Processing of Visual Information. W. H. Freeman.
- Oehrle, Richard (1989). Temporal structures in verse design. In Paul Kiparsky and Gilbert Youmans, eds., Rhythm and Meter, Academic Press, Orlando, FL, pp. 87-119.
- Stein, David, and David Gil (1980) Prosodic structures and prosodic markers. Theoretical Linguistics 7. 173-240
- Temperley, David (2001) The Cognition of Basic Musical Structures. MIT Press, Cambridge.
- Temperley, David (2006) Music and Probability, MIT Press, Cambridge.

Yang, Charles (2002) Knowledge and learning in natural language. Oxford University Press

Bruce Hayes http://www.linguistics.ucla.edu/people/hayes/ bhayes@humnet.ucla.edu