Brown University Minicourse May 21, 2009

Embedding Grammar in a Quantitative Framework: Case Studies from Phonology and Metrics

Class 4: Inductive Learning by Minimal Generalization

(1) Today

- Some somewhat-old work on how to learn alternations inductively
- Problems involving generalizations of different sizes and overlap: can maxent help?

(2) Readings

- Albright and Hayes (2002) (changed)
- Software for this paper, in user-friendly version, is available if you want to try it: course website

(3) What follows

The next part of this handout is a modified version of a handout for a talk given seven years ago at the Workshop on Morphological and Phonological Learning, ACL 2002, Philadelphia.

(4) Overall Goal

- This is about phonotactics, complementing last time's work on alternations.
- A shared theme is experimentation with low-UG models:
 - > Can intensive scrutiny of the data yield accurate grammars using less UG?

(5) Specific goals

- Develop a system that apprehends the regularities in morphological paradigms, and uses them to generate novel forms.
- Goal is to model people; i.e. an adequate system should mimic human judgments and behavior.
- For example, when given a **wug test** (Berko 1958):
 - ➢ "John like to *plim*; yesterday he ___."

the model should give the same answers as are given by native speakers of English.

• Modeling people implies a number of criteria of adequacy.

(6) We're not the first

• The creation of similar models (Rumelhart-McClelland 1986, Seidenberg, Plunkett) was a striking achievement of the connectionists, and launched the famous "past tense debate."

• Work by Mark Johnson (1984), which I wish we had read...

CRITERIA OF ADEQUACY

(7) Generate Complete Output Forms

rather than just grouping the outputs into (possibly arbitrary) categories such as "regular," "irregular," "vowel change."

(8) Make Multiple Guesses for Each Word

in cases where people feel this is appropriate > spling: splinged, splung, splang

(9) Rate Each Output on a Scale

- Human judgments are characteristically gradient (Class 1)
 - → Human ratings for *plim*, from our own Wug test:

plimmed	6.1	(scale:	1 worst, 7 best)
plum	4.2		
plam	3.6		

• Since people can rate forms on a numerical scale, the model should be able to as well.

WHAT A MODEL MUST DO TO SATISFY THESE CRITERIA

(10) Locate Detailed Generalizations

- Example: here are all the $I \rightarrow \Lambda$ verbs of English (one dialect only; you may differ):
 - fling-flung, cling-clung, sting-stung, wring-wring, sling-slung, string-strung, swingswung, spring-sprung
 - ➢ slink-slunk, shrink-shrunk, stink-stunk
 - ▶ spin-spun, win-won
 - ➢ dig-dug, stick-stuck
- There is a specific phonological context that strongly favors $I \rightarrow \Lambda$, namely / ____ η
- Experimental work (Bybee and Moder 1983, Prasada and Pinker 1993) shows that human speakers have a stronger preference for $I \rightarrow \Lambda$ for wug verb stems that match this context.
- Hence this context must be learned by the model.

(11) Locate Detailed Generalizations II: Regulars

• All verbs in English ending in voiceless fricatives ([f, θ, s, ∫]) are regular (e.g. *laughed*, *missed*, *wished*).

- Our experiments show that human speakers have a stronger preference for the regular outcome when the wug verb matches the / [voiceless] ____] context.
 Hence the model must be able to learn this context.

(12) Defn. island of reliability

- An *island of reliability* is a environment where a particular change applies with greaterthan-average consistency.
 - \blacktriangleright / ____ η is an island of reliability for $I \rightarrow \Lambda$. ➤ $/ \begin{bmatrix} \text{voiceless} \\ \text{fricative} \end{bmatrix}$] is an island of reliability for $\emptyset \rightarrow -ed$.

(13) Locate Broad Generalizations

- Sometimes the model must derive outputs for which no close analogues are present in the training data.
- Example: in Pinker's (1999) "Handel out-Bached Bach," [autbaxt] must be derived, even though there may be no stems in the training data ending in the (non-English) sound [x].
- This can be done only if the model discovers broad generalizations (using ordinary data) that will encompass the unusual novel forms.

DESCRIPTION OF THE MODEL

(14) Training Data

• Pairs of morphologically related forms, e.g. verb stems + past tenses

([mis] _{pres.} , [mist] _{past})	'miss(ed)'
([pres] _{pres.} , [prest] _{past})	'press(ed)'
$([læf]_{pres.}, [læft]_{past})$	'laugh(ed)'
$([h\Lambda g]_{pres.}, [h\Lambda gd]_{past})$	'hug(ged)'
$([r\Lambda b]_{pres.}, [r\Lambda bd]_{past})$	'rub(bed)'
([nid] _{pres.} , [nidəd] _{past})	`need(ed)'
([d3Amp] _{pres.} , [d3Ampt] _{past})	ʻjump(ed)'
([plæn] _{pres.} , [plænd] _{past})	'plan(ned)'

• Goal is to create a grammar that generates the second form from the first.

(15) Situating the task

• We conjecture that children start out memorizing present-past pairs, then use that database to produce a grammar, upon which they can synthesize.

This gets us what seems to be right about the "U-shaped curve" (Marcus et al. 1992)¹

(16) Overall Strategy (Pinker and Prince 1988: 130-136)

- Parse each input pair into a changing portion and a context, yielding word-specific rules.
- Compare rules with one another to construct more general rules.
- Iterate.

(17) Parsing Pairs into Changing Portion and Context

- Assuming rule format A \rightarrow B / C ____ D, maximize C, D. ²
- For *miss/missed*:

This has intriguing complications in ambiguous cases, e.g.
 ▶ pita ~ *p*-*um*-*ita*, *muma* ~ *m*-*um*-*uma* (prefix?) infix?)

These will generally will be fixed by our preference for generality (below)

(18) Generalizing by Comparing Word-Specific Rules

$\varnothing ightarrow$ t / m	Ι	s #	(from <i>miss-missed</i>)
$+ \varnothing \rightarrow t$ / pr	ε	s #	(from <i>press-pressed</i>)
$= \varnothing \rightarrow t / X$	+syllabic -low -back -tense -round	s #	
(19) Formula for Rule	e Generali	zation	
$A \rightarrow B$ /	C ₁ _	_ D ₁	word-specific rule
$+ A \rightarrow B /$	\mathbf{C}_2	D_2	word-specific rule

$+ A \rightarrow B / C_{2} - D_{2} $ word-specific rule $= A \rightarrow B / X C'_{feat}C' - D' D'_{feat} Y $ generalized rule		$A \rightarrow D$	/	C_1	D_1		word-specific fule
$= A \rightarrow B / X C'_{feat}C' - D' D'_{feat}Y$ generalized rule	+	$A \rightarrow B$	/	C ₂	D_2		word-specific rule
	=	$A \rightarrow B$	/	$X C'_{feat}C'$	$D' D'_{feat}$	Y	generalized rule
					Tout		e

¹ Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T., Xu, F. & Clahsen, H. (1992) Overregularization in language acquisition. Monographs of the Society for Research in Child Development, 57, i+iii+v+vi+1-178.

² Details: where more than one parse is available, prefer suffixation over prefixation, and prefixation over infixation: hence (*ta*, *tata*) yields $\emptyset \rightarrow ta / \#ta__\#$; (*tapa*, *tatapa*) yields $\emptyset \rightarrow ta / \#__tapa\#$.

- Going leftward from the change location,
 - \triangleright Locate the maximal shared segmental string (C');
 - > Then, if the material in the two words is not yet exhausted, form a feature matrix containing all features shared by the next adjacent segments (C'_{feat}).
 - Then, if the material in the two words is still not exhausted, form a free variable (X).
- Repeat going rightward from the change location, to find D', D'_{feat} , and Y as necessary.

(20) Example

(21) General Philosophy

• Form the tightest rule that covers both of original rules; hence the name *minimal generalization*.

(22) Traffic Control

- Grammar is constructed incrementally by considering one input pair at a time.
- For each input pair, a word-specific rule is formed ((17)), which is then compared with all existing rules, generalizing wherever possible.³

(23) Virtues of Minimal Generalization

• Minimal generalization yields rules for every change, so that the resulting grammar can generate multiple outputs for the same input.

³ We believe, but have not proven, that no additional rules are discovered by comparing generalized rules against generalized rules.

- Minimal generalization discovers detailed generalizations. In particular, as applied to English it discovers
 - ▶ the / _ ŋ context for $I \rightarrow \Lambda$
 - ➤ the voiceless-fricative context for regulars
- With sufficient iteration (usually, just a few dozen pairs), minimal generalization also discovers highly general rules, by generalizing over a diverse set of cases.
 - With phonology (see below), the system discovers the standard, very simple English past tense rule Ø → d / # X ____#.

EVALUATING RULES AND OUTPUTS

(24) Gradient Well-Formedness

- Goal: assign gradient well-formedness scores to each output.
- Method: evaluate the reliability of rules, then evaluate outputs on the basis of the rules that derive them.

(25) Reliability of Rules

- How well does a rule perform in the existing lexicon? To determine this:
 - ≻ Let **scope** be the number of forms in the training data that meet the structural description of the rule (for A \rightarrow B / C_D, these are the forms that contain CAD).
 - > Let **hits** be the number of forms that a rule derives correctly
 - > The **reliability** of a rule is *hits/scope*.

(26) Why should be trust a rule? I

- Pinker and Prince (1989) suggest **scope** is all that matters.
- This can't work: we find that tiny rules compete well with huge ones, if they are accurate enough: *spling*:
 - ➤ splung average rating 5.45
 - ➤ splinged average rating 4.36

(27) Why should be trust a rule? II

- Pure accuracy is another candidate.
- Here is a rule that is perfect:

 $I \rightarrow \Lambda \,/\, [\, [-voice] \, l ___ \, \mathfrak{n} \,]$

- It works for *cling*, fling, and sling, 3/3.
- Yet it is not much stronger than the regular past rule (*spling*, above)

(28) Adjusting for the Quantity of Evidence

- Intuition: reliability based on high scope (for example, 990 correct predictions out of 1000) is better than reliability based on low scope (for example, 5 out of 5).
- Implementation (Mikheev 1997): adjust reliability using lower confidence limit statistics.⁴
- The amount of the adjustment is a parameter (α), which ranges from .5 < α < 1; the higher the value of α , the more drastic the adjustment.
- Adjusted reliability is termed **confidence**.

(29) Deriving Outputs for a Novel Form

- Use all the applicable rules in the grammar to generate a set of outputs.
- Each output gets a well-formedness score, which is defined as the confidence score of the **best rule that derives it**. Scale is 0-1.
- We propose such scores as a model for human well-formedness intuitions. Thus, for *plim* ((9) above):

	Humans (1-7 scale)	Model (0-1 scale)	Rule Used
plimmed	6.1	.97	$\varnothing \to d / X \begin{bmatrix} +voice \\ +labial \\ -contin \end{bmatrix} = #$
plum	4.2	.41	$\mathbf{I} \rightarrow \Lambda / \mathbf{X} \begin{bmatrix} -\text{syllabic} \\ +\text{voice} \end{bmatrix} \underbrace{\qquad \qquad } \begin{bmatrix} -\text{syllabic} \\ +\text{nasal} \end{bmatrix}$
plam	3.6	.19	$I \rightarrow a / X \begin{bmatrix} -syllabic \\ +sonorant \\ -nasal \end{bmatrix} = \begin{bmatrix} -syllabic \\ +nasal \end{bmatrix}$

(30) Qualms, 7 years later

• This is an algorithm made up for the purpose; there ought to be an algorithm that is reliable on principled grounds...

$$\hat{p}^* = \frac{Hits + 0.5}{Scope + 1.0}$$

This adjusted reliability value is then used to estimate the true variance of the sample:

estimate of true variance =
$$\sqrt{\frac{\hat{p}^*(1-\hat{p}^*)}{n}}$$

Finally, this variance is used to calculate the lower confidence limit (π_L), at the confidence level *a*:

$$\pi_{\rm L} = \hat{p}^* - z_{(1-\alpha)/2} \times \sqrt{\frac{\hat{p}^*(1-\hat{p}^*)}{n}}$$

(The value *z* for confidence level *a* is found by look-up table.)

⁴ Following Mikheev, we use the following formula to calculate lower confidence limits: first, a particular reliability value (\hat{p}) is smoothed to avoid zeros in the numerator or denominator, yielding an adjusted value \hat{p}^* :

DISCOVERING PHONOLOGY

(31) The Traditional Generative Model

- Morphological rules concatenate morphemes in their underlying forms, creating phonological underlying representations.
 - ▶ for *jumped*: $/d3\Lambda mp/ + /d/$
- These are submitted to the phonology, which derives surface representations.
 - \rightarrow /dʒʌmp+d/ \rightarrow [dʒʌmpt], by Progressive Voicing Assimilation
- Result: by making use of the phonological regularities, the morphology of the language is simplified and generalized: a single [-d] suffixation rule now suffices.
- How can this system be learned by a model like ours?

(32) Approach

- We assume that before human language learners take on morphology they have a fairly good idea of the phonotactics of their language (i.e. what is phonotactically legal/illegal).
 - Experimental support for this view: work by Jusczyk and colleagues with 8-10 month old infants (see Jusczyk et al., 1993; Friederici and Wessels, 1993)
 - Also, last time, using a quick application of the phonotactic algorithm, we discovered the voicing-agreement constraint. (Don't know about the alveolar cluster constraint...)
- Moreover, the wrong guesses of preliminary rules can be used to discover phonology.

(33) Example

• Example: generalizing over ([hAg], [hAgd]), ([rAb], [rAbd]), ([juz], [juzd]), we get

 $\emptyset \to d$ / X $\begin{bmatrix} -\text{sonorant} \\ +\text{voice} \end{bmatrix}$ # = "attach [d] after any voiced obstruent"

- Applied to *need* [nid], this derives the useful error *[nidd].
- Given *[nidd], ✓[nidəd], and prior knowledge that *[dd] is illegal, the system posits phonology:

/nid+d/	underlying form	
ə	Schwa Epenthesis: $\emptyset \rightarrow \mathfrak{d} / \mathfrak{d}$	d
[nidəd]	output	

• Proceeding similarly, the system is able to learn the "Linguistics 101" English past tense rule: suffixation of /-d/ across the board, followed by phonological rules of epenthesis and devoicing.

(34) A Further Challenge

- Minimal generalization is characteristically conservative, and often fails to generate the informative errors needed to learn phonology.
- We generate these errors by forming "doppelgängers"—constraint that attach alternative allomorphs in the same context.
- We don't really use underlying forms, but this is our "poor man's underlying form".
- For underlying forms of stems, see Adam Albright's work, http://web.mit.edu/albright/www/.

(35) General Prediction

- The base form of affix (used for attachment) must be one of the allomorphs present in the paradigm; hence no abstract segments, etc.
- For defense of this view see Albright (2002).

THE DISTRIBUTIONAL ENCROACHMENT PROBLEM

(36) The Core of the Minimal Generalization Approach

- Learn the distribution of allomorphs by generalizing over the contexts in which they occur.
- But some broad generalizations are quite misleading.

(37) Example: *burnt*-class Verbs in English

Question: "Where is /-t/ used in forming past tenses?"

• Answer I: after voiceless obstruents

[mɪs]-[mɪst]	'miss(ed)'
[læf]-[læft]	'laugh(ed)'
[dʒʌmp]-[dʒʌmpt]	'jump(ed)'

• Answer II: assuming a (perfectly workable) phonological rule

	–syllabic	
$t \rightarrow d$ /	-sonorant	_
	+voice	

we can cover voiced obstruent examples like

[hʌg]-[hʌgd]	'hug(ged)'
[rʌb]-[rʌbd]	'rub(bed)'
[juz]-[juzd]	'use(d)'

Now the answer is: "after any obstruent."

- Answer III: Suppose the learning set includes at least one of the following dialectal irregular forms, where [-t] occurs after a sonorant:
 - $\begin{array}{ll} ([b \mathfrak{P}^{\circ} n]_{\text{pres.}}, [b \mathfrak{P}^{\circ} nt]_{\text{past}}) & `burn(t)' \\ ([l \mathfrak{P}^{\circ} n]_{\text{pres.}}, [l \mathfrak{P}^{\circ} nt]_{\text{past}}) & `learn(t)' \\ ([d \mathfrak{w} \epsilon l]_{\text{pres.}}, [d \mathfrak{w} \epsilon lt]_{\text{past}}) & `d \mathfrak{w} e ll(t)' \\ ([s \mathfrak{p} \epsilon l]_{\text{pres.}}, [s \mathfrak{p} \epsilon lt]_{\text{past}}) & `s pell(t)' \\ ([s \mathfrak{m} \epsilon l]_{\text{pres.}}, [s \mathfrak{m} \epsilon lt]_{\text{past}}) & `s mell(t)' \end{array}$

Then there will be further generalization, and the answer becomes "after any consonant."

• This is not a good idea! *burnt* etc. are irregular forms, and should not be determining a high-level generalization—especially because the confidence score for this generalization would be rather high (.7).

(38) The Problem Stated More Generally

- Occasionally, an affix has multiple allomorphs, and there are a few irregular forms in which one allomorph "encroaches" on the context of another.
 - ➢ In *burnt*, [-t] encroaches on [-d]'s territory.
- Distribution encroachment shows that one should pay attention to the *internal homogeneity* of generalizations.

(39) Our Solution (in outline)

- Force all rules to outperform the rules that cover a subset of their cases; if a rule fails to outperform its subsets, it incurs a penalty.
- This penalizes the overly-general rule Ø → t / # X [consonant] ____ #; the penalty is enough that this rule is never used in deriving output forms.

(40) Looking ahead

This looks like a "credit assignment" problem that maxent might be able to solve for us.

TESTING THE MODEL

(41) Training

- Training corpus: 4253 verbs = all verbs of frequency ≥ 10 in the English portion of the CELEX database (Burnage 1991)
- We trained the model to predict the past tense form from the present stem.

(42) Corpus testing

- When you have just a few constraints, overlearning is probably not a peril, but it definitely is here, so we took a standard precaution:
- Divide training data randomly into ten parts.
- Predict past tenses for the verbs of each tenth based on the remaining nine tenths.
- Results:
 - > For virtually every verb, the first choice of our model was the regular past tense.
 - Past suffix took the phonologically correct form: [-t], [-d], or [-əd], depending on the last segment of the stem.
- This mimics a general preference English speakers have for regular pasts.
- When humans speakers output irregular pasts for existing verbs, this is best attributed to their having memorized them (see Pinker 1999).

(43) Generalization Beyond the Training Data

• Examining the inflection of novel forms is the best way to compare a model with human performance, because it forces both humans and model to create new forms productively (Ling and Marinov 1993).

(44) Some Simple Examples

- Because it learns general rules, the model assigns correct past tenses to unusual words of a type not occurring in the training data.
 - e.g. Prasada and Pinker's (1993) forms *ploamph* and *smairg* were assigned the correct pasts [plomft] and [smergd].
- This extends to sounds that don't occur in English: *out-Bach* is derived correctly as [autbaxt].

(45) Modeling Native Speaker Judgments in a Wug Test (Albright and Hayes 2003⁵)

• Stimulus:

"The chance to *rife* would be very exciting. My friend Sam ______ once, and he loved it."

- Tasks:
 - \succ Fill in the blank.
 - > Rate different possibilities on a numerical scale.

⁵ Linked from course web page

5

6

3

7

rofe: _____2

• 41 subjects volunteered forms; of these, 21 also provided ratings.

(46) Verbs Tested

- Four kinds, classified according to the model's predictions:
 - I. should sound especially good as regular, but not as irregular Example: *blafe* [ends in a voiceless-fricative; cf. (11)]
 - II. should sound especially good as (some kind of) irregular, but not as regular Example: *spling* [falls in the / ____ ŋ island for $I \rightarrow \Lambda$; cf. (10)]
 - III. should sound good both as regular and as some kind of irregular Example: bize [fricative stems typically regular, at \rightarrow o frequent before coronals]
 - IV. should not sound especially good either as regular or as any kind of irregular Example: *gude*

(47) Results: Mean Ratings

(a) IOR Effect on Ratings (adjusted)

(b) IOR Effect on Production Probabilities

• See Albright and Hayes (2003, *Cognition*) for full details.

(48) Discussion

As our model predicts, English speakers

- Have gradient intuitions.
- Show a strong general preference for regulars.
- Give relatively higher scores to irregulars when they fall within an island of reliability for an irregular change, e.g. $I \rightarrow \Lambda / ___ \eta$ (columns II/III higher than I/IV)

• Give relatively higher scores to regulars when they fall within an island of reliability for

the regular change, e.g. $\emptyset \to -ed / X \begin{bmatrix} \text{voiceless} \\ \text{fricative} \end{bmatrix} = \# \text{ (columns I/III higher than II/IV)}$

• Do not in general (Albright and Hayes 2003) produce responses supported by one single model (*gezz - gozz, zay - zed*). That would not be minimal.

(49) Word-by-Word Correlations

• Ratings Data (n = 41)

 regulars
 r = .745, p < .0001

 irregulars
 r = .570, p < .0001

• Volunteered Data (% volunteered, n = 41)

 regulars
 r = .695, p < .0001

 irregulars
 r = .333, p < .05

(50) The Level of Detail in Human Linguistic Knowledge

- Applying our model to other languages, we have consistently found that it locates generalizations that were missed in earlier paper-and-pencil analyses.
- To some extent, we have also been able to show that these generalizations are internalized by human speakers.
 - Italian conjugation classes are partially predictable from the phonological form of the stem (Albright, 2002, *Language*)
 - Spanish diphthongization is partially predictable from segmental context of the changing vowel (Albright, Andrade, and Hayes 2001)
 - The location of subject marking in Lakhota (infix vs. prefix) is partially predictable from the phonological form of the stem (Albright, 2000⁶)
 - It is partially predictable (postdictable) which stems underwent the "honor" analogy of Latin (Albright, 2002)

SOME WAYS THE MODEL COULD BE IMPROVED

(51) Phonological Representations and Rules

- > Representations are from Chomsky and Halle (1968) (sequences of feature matrices).
- Rules follow the very simple schema $A \rightarrow B / X C_{feat}C_D D_{feat} Y$.
- Phonology is richer than this, and in a number of areas, generalization will not be possible until the model incorporates more elaborate rules and representations.
- Both of the areas to be mentioned got addressed in Hayes and Wilson (2008), but not yet i this learner.

⁶⁶ http://web.mit.edu/albright/www/papers/Albright-LakhotaInfixation.pdf

(52) Example 1: Nonlocal Rules

• The concept of "closest vowel" is needed for e.g. Hungarian vowel harmony:

 $\begin{array}{c|c} k\ddot{o} & \underline{n^{y}v} \cdot \underline{n} & \underline{A}k \to k\ddot{o}n^{y}v \cdot \underline{n}\underline{e}k & \text{`book-dative'} \\ & & \\ &$

Our model cannot ignore the consonants that intervene between vowels, so it could not learn this kind of rule.

(53) Example 2: Prosody

- Prosodic structure often plays a role in defining morphological rules.
 - Syllables: all polysyllabic English verb stems are regular (Pinker and Prince 1988)
 - Syllable weight (e.g. Latin abstract nouns in [-ia]/[-ie:s]; Mester 1994)
 - Metrical feet (e.g. foot-based allomorphy in Yidin; Dixon 1977)

(54) ... or maybe not

- See
- Hayes, Bruce and Adam Albright) (2006) "Modeling productivity with the Gradual Learning Algorithm: the problem of accidentally exceptionless generalizations". In *Gradience in Grammar: Generative Perspectives*, ed. Gisbert Fanselow, Caroline Fery, Matthias Schlesewsky and Ralf Vogel. Oxford: Oxford University Press.

for a later attempt to find non-local stuff by string-alignment procedures.

(55) Multiple changes

• Recall from (17) that we sought to locate the "changing portion" by maximizing the context terms:

"Assuming rule format A \rightarrow B / C ____ D, maximize C, D."

• But in many cases, this fails to locate a generalizable change, because there are two changing portions. Ilokano:

пwaŋ	'water buffalo'	#				n	W	a	ŋ			#
pag-nwaŋ-an	'place for water buffalo'	#	р	a	g	n	W	a	ŋ	a	n	#

> The rule obtained by our method is nwaŋ \rightarrow pagnwaŋan / # ____ #.

- We need something like the two-rule solution Ø → pag / # ____ X #, Ø → an / # X ____ #.
- What might help:
 - Use some form of string-edit distance (Kruskal 1983), weighted by phonetic similarity, to determine that -*nway* is the string shared by the two forms;
 - Adopt some method of morpheme discovery (e.g. Baroni 2000; Goldsmith 2001; Neuvel, to appear; Schone and Jurafsky 2001; Baroni et al. 2002; Snover, Jarosz and Brent 2002) and use its results to favor rules that prefix *pag-* and suffix *-an*.

WEIGHING CONFLICTING EVIDENCE: WHAT IS THE RIGHT WAY?

(56) OT's method is (probably) not right

- OT (e.g., in the form of Boersma's GLA) ranks constraints solely on the basis of when they conflict.
- This wrongly lets perfect low-scope constraints totally outrank extremely general constraints.
- See Vsevolod Kapatsinski (forthcoming, linked from course web site) for elegant experimental work suggesting the same conclusion.

(57) Five phenomena we must consider

- Straightforward ranking of large-scale generalizations, with full override.
- Small perfect generalizations making *some* headway against big imperfect ones.
- Distributional encroachment (above)
- Islands of reliability
- Pseudo-islands of reliability

(58) Straightforward ranking of large-scale generalizations, with full override

			ADD D	ADD T AFTER VOICELESS
Input: Xm	Xmd	1000		
	Xmt	0	1	
Input: Xp	Xpd	0		1
	Xpt	1000	1	

ADD D13.98ADD T AFTER VOICELESS28.36

Input:	Candidate:	Observed:	Predicted:
Xm	Xmd	1000	0.999999
Xm	Xmt	0	8E-7
Хр	Xpd	0	5.6E-7

Xp Xpt 1000 0.999999				
	Хр	Xpt	1000	0.999999

(59) Small perfect generalization making (only) some headway against big imperfect ones

			TAKE D	TAKE T	ING
				AFTER	UNG
				VOICELESS	
Xing	Xung	4	1		
	Xingd				1
	Xingt		1		1
Xvoiceless	XvoicelessT	1000	1		
	XvoicelessD			1	
Χ	Xd	2000			
	Xt		1		

- This one yields near-perfect matching if you don't hobble ING-UNG
- So you need to hobble—the second reason (after unnaturalness, perhaps) for hobbling.
- I tried, purely ad hoc: sigma = 100000 for the general constraints, 10 for ING-UNG
- This yields 62% Xung, 38% regular.
- As noted earlier, we need a principled basis for hobble-size, not an ad hoc adjustment.

(60) Distributional encroachment

- Here, the allomorph for one environment occurs just a few times in the environment of the other.
- Many dialects of English have this in verbs like *burnt*, *spelt*, *spoilt*.
- Presumably, these are irregular and should get little credence.
- Albright/Hayes added a whole extra provision "Impugnment" to their system to handle this—since they create the unwanted constraint "Add t to any stem".
- Maxent treats the marginal cases straightforwardly as irregulars.

			TAKE D	TAKE T AFTER VOICELESS	TAKE T ANYWHERE
Xvoiced	Xd	1000			1
	Xt		1		
Xvoiceless	Xd			1	1
	Xt	1000	1		
X-ODDn	X-ODDnd				1
	X-ODDnt	4	1		

TAKE D5.52TAKE T AFTER VOICELESS20.24TAKE T ANYWHERE1.73

Xvoiced0.996 d — i.e. frequency matchingXvoiceless1.000 t

(61) Islands of reliability

- These work fine in maxent, with the island constraint ganging with its regular partner to produce the required boost.
- This is hard to simulate, but here is a rough approximation:

			TAKE D	TAKE T	TAKE T AFTER	TAKE IRREG (VARIOUS
			AFTER	AFTER	VOICELESS	CONSTRAINTS)
			VOICED	VOICELESS	FRICATIVE	
Xvoiced	Xd	1425				1
	Xt		1			1
	IRREG	75	1			
Xvoiceless	Xd			1		1
	Xt	950				1
	IRREG	50		1		
Xf	Xfd			1	1	1
	Xft	300				1
	IRREG			1	1	

Weights:	
TAKE D AFTER VOICED	14.9
TAKE T AFTER VOICELESS	14.9
TAKE T AFTER VOICELESS FRICATIVE	11.2
TAKE IRREG (VARIOUS CONSTRAINTS)	11.9

This produces what we would hope for: Frequency matching (95/5) for the regulars. 100% regular for the island.

(62) Pseudo-islands of reliability

• Imagine a dialect of English in which the only verbs that start with [dʒ] are:

judge, gerrymander, jabber, gel, jumble

• Imagine a learner that infers:

TAKE D AFTER d3X

- One imagines that a Wug test with e.g. *joke* will yield voiceless -t, since hundreds of words support this choice.
- This is a dangerous situation in the Albright/Hayes system of constraint evaluation—a small but perfect generalization ought to have some say.
- Maxent utterly rejects this spurious environment:

			TAKE D	TAKE T AFTER	TAKE D AFTER JX
				VOICELESS	
Xvoiced	Xd	400			
	Xt		1		
Xvoiceless	Xd			1	
	Xt	200	1		
JXVoiced	JXVoicedD	5			
	JXVoicedT		1		1
JXVoiceless	JXVoicelessD			1	
	JXVoicelessT		1		1

Take d13.1Take T after voiceless26.0Take d after JX0.3

with virtually 100% regulars derived.

- Why? My guess is that the algorithm "sees" that promoting Take d helps accuracy with 400 words, and promoted Take D after JX only helps a subset of 4 of them.
- The weak prior \hat{I} used (sigma = 100000) perhaps exaggerated this effect.
- But notice that for independent reasons, Take D after JX would be hobbled.
- Such hobbling is perhaps needed when there are whole hordes of pseudo-IOR's; Albright and Hayes (2006.

(63) Upshot

• Everything seems to be going swimmingly but for one case; i.e. the need to hobble low-scope perfect constraints.