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Embedding Grammar in a Quantitative Framework:
Case Studies from Phonology and Metrics

Class 4:  Inductive Learning by Minimal Generalization

(1) Today

• Some somewhat-old work on how to learn alternations inductively
• Problems involving generalizations of different sizes and overlap:  can maxent help?

(2) Readings

• Albright and Hayes (2002) (changed)
• Software for this paper, in user-friendly version, is available if you want to try it:  course

website

(3) What follows

The next part of this handout is a modified version of a handout for a talk given seven years
ago at the Workshop on Morphological and Phonological Learning, ACL 2002, Philadelphia.

(4) Overall Goal

• This is about phonotactics, complementing last time’s work on alternations.
• A shared theme is experimentation with low-UG models:

Ø Can intensive scrutiny of the data yield accurate grammars using less UG?

(5) Specific goals

• Develop a system that apprehends the regularities in morphological paradigms, and uses
them to generate novel forms.

• Goal is to model people; i.e. an adequate system should mimic human judgments and
behavior.

• For example, when given a wug test (Berko 1958):

Ø  “John like to plim; yesterday he ___.”

the model should give the same answers as are given by native speakers of English.
• Modeling people implies a number of criteria of adequacy.

(6) We’re not the first

• The creation of similar models (Rumelhart-McClelland 1986, Seidenberg, Plunkett) was a
striking achievement of the connectionists, and launched the famous “past tense debate.”
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• Work by Mark Johnson (1984), which I wish we had read…

CRITERIA OF ADEQUACY

(7) Generate Complete Output Forms

rather than just grouping the outputs into (possibly arbitrary) categories such as “regular,”
“irregular,” “vowel change.”

(8) Make Multiple Guesses for Each Word

in cases where people feel this is appropriate
Ø spling:   splinged, splung, splang

(9) Rate Each Output on a Scale

• Human judgments are characteristically gradient (Class 1)

Ø Human ratings for plim, from our own Wug test:

plimmed 6.1 (scale:  1 worst, 7 best)
plum 4.2
plam 3.6

• Since people can rate forms on a numerical scale, the model should be able to as well.

WHAT A MODEL MUST DO TO SATISFY THESE CRITERIA

(10) Locate Detailed Generalizations

• Example:   here are all the I → Ã verbs of English (one dialect only; you may differ):

Ø fling-flung, cling-clung, sting-stung, wring-wring, sling-slung, string-strung, swing-
swung, spring-sprung

Ø slink-slunk, shrink-shrunk, stink-stunk
Ø spin-spun, win-won
Ø dig-dug, stick-stuck

• There is a specific phonological context that strongly favors I → Ã, namely / ___ N
• Experimental work (Bybee and Moder 1983, Prasada and Pinker 1993) shows that human

speakers have a stronger preference for I → Ã for wug verb stems that match this context.
• Hence this context must be learned by the model.

(11) Locate Detailed Generalizations II:  Regulars

• All verbs in English ending in voiceless fricatives ([f, T, s, S]) are regular (e.g. laughed,
missed, wished).
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• Our experiments show that human speakers have a stronger preference for the regular

outcome when the wug verb matches the /  






voiceless

fricative  ___ ] context.
• Hence the model must be able to learn this context.

(12) Defn. island of reliability

• An island of reliability is a environment where a particular change applies with greater-
than-average consistency.

Ø / ___ N is an island of reliability for I → Ã.

Ø / 






voiceless

fricative  ___ ] is an island of reliability for ∅ → -ed.

(13) Locate Broad Generalizations

• Sometimes the model must derive outputs for which no close analogues are present in the
training data.

• Example:  in Pinker’s (1999) “Handel out-Bached Bach,”  [aUtbaxt] must be derived, even
though there may be no stems in the training data ending in the (non-English) sound [x].

• This can be done only if the model discovers broad generalizations (using ordinary data) that
will encompass the unusual novel forms.

DESCRIPTION OF THE MODEL

(14) Training Data

• Pairs of morphologically related forms, e.g. verb stems + past tenses

([mIs]pres., [mIst]past) ‘miss(ed)’
([prEs]pres., [prEst]past) ‘press(ed)’
([læf]pres., [læft]past) ‘laugh(ed)’
([hÃg]pres., [hÃgd]past) ‘hug(ged)’
([rÃb]pres., [rÃbd]past) ‘rub(bed)’
([nid]pres., [nid«d]past) ‘need(ed)’
([dZÃmp]pres., [dZÃmpt]past) ‘jump(ed)’
([plæn]pres., [plænd]past) ‘plan(ned)’

• Goal is to create a grammar that generates the second form from the first.

(15)  Situating the task

• We conjecture that children start out memorizing present-past pairs, then use that database
to produce a grammar, upon which they can synthesize.
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Ø This gets us what seems to be right about the “U-shaped curve” (Marcus et al.
1992)1

(16)  Overall Strategy (Pinker and Prince 1988: 130-136)

• Parse each input pair into a changing portion and a context, yielding word-specific rules.
• Compare rules with one another to construct more general rules.
• Iterate.

(17)  Parsing Pairs into Changing Portion and Context

• Assuming rule format A → B / C ___ D, maximize C, D. 2

• For miss/missed:

A B

# mIs ∅ # # mIs t # yields ∅ → t / # mIs ___ #

C D

• This has intriguing complications in ambiguous cases, e.g.
Ø pita ~ p-um-ita, muma ~ m-um-uma (prefix?  infix?)

These will generally will be fixed by our preference for generality (below)

(18)  Generalizing by Comparing Word-Specific Rules

∅ → t / m I s __ # (from miss-missed)
+ ∅ → t / pr E s __ # (from press-pressed)

= ∅ → t / X









+syllabic

–low
–back
–tense
–round

s __ #

(19)  Formula for Rule Generalization

A→ B / C1 __ D1 word-specific rule
+ A→ B / C2 __ D2 word-specific rule

= A→ B / X C′featC′ __ D′ D′feat Y generalized rule

                                                
1 Marcus, G., Pinker, S., Ullman, M., Hollander, M., Rosen, T., Xu, F. & Clahsen, H. (1992)

Overregularization in language acquisition. Monographs of the Society for Research in Child Development, 57,
i+iii+v+vi+1-178.

2 Details:  where more than one parse is available, prefer suffixation over prefixation, and prefixation over
infixation:  hence (ta, tata) yields ∅ → ta / #ta___#; (tapa, tatapa) yields ∅ → ta / #___tapa#.
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• Going leftward from the change location,

Ø Locate the maximal shared segmental string (C′);
Ø Then, if the material in the two words is not yet exhausted, form a feature matrix

containing all features shared by the next adjacent segments (C′feat).
Ø Then, if the material in the two words is still not exhausted, form a free variable

(X).

• Repeat going rightward from the change location, to find D′, D′feat, and Y as necessary.

(20)  Example

∅ → t / # m I s __ #

A B C1 D1

+ ∅ → t / # pr E s __ #

A B C2 D2

= ∅ → t / X









+syllabic

–low
–back
–tense
–round

s __ #

A B / X C′feat C′ __ D′

(21)  General Philosophy

• Form the tightest rule that covers both of original rules; hence the name minimal
generalization.

(22)  Traffic Control

• Grammar is constructed incrementally by considering one input pair at a time.
• For each input pair, a word-specific rule is formed ((17)), which is then compared with all

existing rules, generalizing wherever possible.3

(23)  Virtues of Minimal Generalization

• Minimal generalization yields rules for every change, so that the resulting grammar can
generate multiple outputs for the same input.

                                                
3 We believe, but have not proven, that no additional rules are discovered by comparing generalized rules

against generalized rules.
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• Minimal generalization discovers detailed generalizations.  In particular, as applied to
English it discovers

Ø the / __ N context for I → Ã
Ø the voiceless-fricative context for regulars

• With sufficient iteration (usually, just a few dozen pairs), minimal generalization also
discovers highly general rules, by generalizing over a diverse set of cases.

Ø With phonology (see below), the system discovers the standard, very simple
English past tense rule ∅ → d / # X ___#.

EVALUATING RULES AND OUTPUTS

(24)  Gradient Well-Formedness

• Goal:  assign gradient well-formedness scores to each output.
• Method:  evaluate the reliability of rules, then evaluate outputs on the basis of the rules that

derive them.

(25)  Reliability of Rules

• How well does a rule perform in the existing lexicon?  To determine this:

Ø Let scope be the number of forms in the training data that meet the structural
description of the rule (for A → B / C__D, these are the forms that contain CAD).

Ø Let hits be the number of forms that a rule derives correctly
Ø The reliability of a rule is hits/scope.

(26) Why should be trust a rule? I

• Pinker and Prince (1989) suggest scope is all that matters.
• This can’t work:  we find that tiny rules compete well with huge ones, if they are accurate

enough:  spling:
Ø splung average rating 5.45
Ø splinged average rating 4.36

(27) Why should be trust a rule?  II

• Pure accuracy is another candidate.
• Here is a rule that is perfect:

I → Ã / [ [–voice] l ___ N ]

• It works for cling, fling, and sling, 3/3.
• Yet it is not much stronger than the regular past rule (spling, above)
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(28)  Adjusting for the Quantity of Evidence

• Intuition:  reliability based on high scope (for example, 990 correct predictions out of
1000) is better than reliability based on low scope (for example, 5 out of 5).

• Implementation (Mikheev 1997):  adjust reliability using lower confidence limit statistics.4

• The amount of the adjustment is a parameter (α), which ranges from .5 < α < 1; the higher
the value of α, the more drastic the adjustment.

• Adjusted reliability is termed confidence.

(29)  Deriving Outputs for a Novel Form

• Use all the applicable rules in the grammar to generate a set of outputs.
• Each output gets a well-formedness score, which is defined as the confidence score of the

best rule that derives it.  Scale is 0-1.
• We propose such scores as a model for human well-formedness intuitions.  Thus, for plim

((9) above):

Humans Model Rule Used
(1-7 scale) (0-1 scale)

plimmed 6.1 .97 ∅ → d / X 






+voice

+labial
–contin

 ___#

plum 4.2 .41 I → Ã / X 



–syllabic

+voice  ___ 



–syllabic

+nasal  

plam 3.6 .19 I → æ / X 






–syllabic

+sonorant
–nasal

 ___ 



–syllabic

+nasal  

(30) Qualms, 7 years later

• This is an algorithm made up for the purpose; there ought to be an algorithm that is reliable
on principled grounds…

                                                
4 Following Mikheev, we use the following formula to calcu late lower confidence limits: first, a particular

reliability value (p̂) is smoothed to avoid zeros in the numerator or denominator, yielding an adjusted value p̂*:

p̂* = 
Hits + 0.5

Scope + 1.0

This adjusted reliability value is then used to estimate the true variance of the sample:

estimate of true variance = 
p̂*(1 – p̂*)

n

Finally, this variance is used to calculate the lower confidence limit (πL), at the confidence level α:

πL = p̂* – z(1-α)/2 × 
p̂*(1 – p̂*)

n

(The value z for confidence level α is found by look-up table.)
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DISCOVERING PHONOLOGY

(31)  The Traditional Generative Model

• Morphological rules concatenate morphemes in their underlying forms, creating
phonological underlying representations.

Ø for jumped:  /dZÃmp/ + /d/
• These are submitted to the phonology, which derives surface representations.

Ø /dZÃmp+d/ → [dZÃmpt], by Progressive Voicing Assimilation

• Result:  by making use of the phonological regularities, the morphology of the language is
simplified and generalized:   a single [-d] suffixation rule now suffices.

• How can this system be learned by a model like ours?

(32)  Approach

• We assume that before human language learners take on morphology they have a fairly
good idea of the phonotactics of their language (i.e. what is phonotactically legal/illegal).

Ø Experimental support for this view:  work by Jusczyk and colleagues with 8-10
month old infants (see Jusczyk et al., 1993; Friederici and Wessels, 1993)

Ø Also, last time, using a quick application of the phonotactic algorithm, we
discovered the voicing-agreement constraint.  (Don’t know about the alveolar
cluster constraint…)

• Moreover, the wrong guesses of preliminary rules can be used to discover phonology.

(33)  Example

• Example: generalizing over ([hÃg], [hÃgd]), ([rÃb], [rÃbd]), ([juz], [juzd]), we get

∅ → d / X 



–sonorant

+voice __#    = “attach [d] after any voiced obstruent”

• Applied to need [nid], this derives the useful error *[nidd].

• Given *[nidd], ü[nid«d], and prior knowledge that *[dd] is illegal, the system posits
phonology:

/nid+d/ underlying form
      « Schwa Epenthesis:  ∅ → « / d ___ d
[nid«d] output
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• Proceeding similarly, the system is able to learn the “Linguistics 101” English past tense
rule:  suffixation of /-d/ across the board, followed by phonological rules of epenthesis and
devoicing.

(34)  A Further Challenge

• Minimal generalization is characteristically conservative, and often fails to generate the
informative errors needed to learn phonology.

• We generate these errors by forming “doppelgängers”—constraint that attach alternative
allomorphs in the same context.

• We don’t really use underlying forms, but this is our “poor man’s underlying form”.
• For underlying forms of stems, see Adam Albright’s work,

http://web.mit.edu/albright/www/.

(35)  General Prediction

• The base form of affix (used for attachment) must be one of the allomorphs present in the
paradigm; hence no abstract segments, etc.

• For defense of this view see Albright (2002).

THE DISTRIBUTIONAL ENCROACHMENT PROBLEM

(36)  The Core of the Minimal Generalization Approach

• Learn the distribution of allomorphs by generalizing over the contexts in which they occur.
• But some broad generalizations are quite misleading.

(37)  Example:  burnt-class Verbs in English

 Question:  “Where is /-t/ used in forming past tenses?”

• Answer I:  after voiceless obstruents

[mIs]-[mIst] ‘miss(ed)’
[læf]-[læft] ‘laugh(ed)’
[dZÃmp]-[dZÃmpt] ‘jump(ed)’

• Answer II:  assuming a (perfectly workable) phonological rule

t → d / 








–syllabic

–sonorant
+voice

 ___

we can cover voiced obstruent examples like

[hÃg]-[hÃgd] ‘hug(ged)’
[rÃb]-[rÃbd] ‘rub(bed)’
[juz]-[juzd] ‘use(d)’



y Class 4                                            Inductive Learning with Minimal Generalization                                                    p. 10

Now the answer is:  “after any obstruent.”

• Answer III:   Suppose the learning set includes at least one of the following dialectal
irregular forms, where [-t] occurs after a sonorant:

([b«Õn]pres., [b«Õnt]past) ‘burn(t)’
([l«Õn]pres., [l«Õnt]past) ‘learn(t)’
([dwEl]pres., [dwElt]past) ‘dwell(t)’
([spEl]pres., [spElt]past) ‘spell(t)’
([smEl]pres., [smElt]past) ‘smell(t)’

Then there will be further generalization, and the answer becomes “after any consonant.”

• This is not a good idea!  burnt etc. are irregular forms, and should not be determining a
high-level generalization—especially because the confidence score for this generalization
would be rather high (.7).

(38)  The Problem Stated More Generally

• Occasionally, an affix has multiple allomorphs, and there are a few irregular forms in
which one allomorph “encroaches” on the context of another.

Ø In burnt, [-t] encroaches on [-d]’s territory.

• Distribution encroachment shows that one should pay attention to the internal homogeneity
of generalizations.

(39)  Our Solution (in outline)

• Force all rules to outperform the rules that cover a subset of their cases; if a rule fails to
outperform its subsets, it incurs a penalty.

• This penalizes the overly-general rule ∅ → t / # X [consonant] ___ #; the penalty is enough
that this rule is never used in deriving output forms.

(40) Looking ahead

This looks like a “credit assignment” problem that maxent might be able to solve for us.

TESTING THE MODEL
(41)  Training

• Training corpus:  4253 verbs = all verbs of frequency ≥ 10 in the English portion of the
CELEX database (Burnage 1991)

• We trained the model to predict the past tense form from the present stem.
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(42)  Corpus testing

• When you have just a few constraints, overlearning is probably not a peril, but it definitely
is here, so we took a standard precaution:

• Divide training data randomly into ten parts.
• Predict past tenses for the verbs of each tenth based on the remaining nine tenths.
• Results:

Ø For virtually every verb, the first choice of our model was the regular past tense.
Ø Past suffix took the phonologically correct form: [-t], [-d], or [-«d], depending on

the last segment of the stem.

• This mimics a general preference English speakers have for regular pasts.
• When humans speakers output irregular pasts for existing verbs, this is best attributed to

their having memorized them (see Pinker 1999).

(43)  Generalization Beyond the Training Data

• Examining the inflection of novel forms is the best way to compare a model with human
performance, because it forces both humans and model to create new forms productively
(Ling and Marinov 1993).

(44)  Some Simple Examples

• Because it learns general rules, the model assigns correct past tenses to unusual words of a
type not occurring in the training data.

Ø e.g. Prasada and Pinker’s (1993) forms ploamph and smairg were assigned the
correct pasts [plomft] and [smergd].

• This extends to sounds that don’t occur in English:  out-Bach is derived correctly as
[aUtbaxt].

(45)  Modeling Native Speaker Judgments in a Wug Test (Albright and Hayes 20035)

• Stimulus:
“The chance to rife would be very exciting. My
friend Sam _______ once, and he loved it.”

• Tasks:

Ø Fill in the blank.
Ø Rate different possibilities on a numerical scale.

worst best
rifed: ___ ___ ___ ___ ___ ___ ___

1 2 3 4 5 6 7

                                                
5 Linked from course web page
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rofe: ___ ___ ___ ___ ___ ___ ___
1 2 3 4 5 6 7

• 41 subjects volunteered forms; of these, 21 also provided ratings.

(46)  Verbs Tested

• Four kinds, classified according to the model’s predictions:

 I. should sound especially good as regular, but not as irregular
Example:  blafe [ends in a voiceless-fricative; cf. (11)]

 II. should sound especially good as (some kind of) irregular, but not as regular
Example:  spling [falls in the / ___ N island for I → Ã; cf. (10)]

 III. should sound good both as regular and as some kind of irregular
Example:  bize [fricative stems typically regular, aI → o frequent before

coronals]

 IV. should not sound especially good either as regular or as any kind of irregular
Example:  gude

(47)  Results:  Mean Ratings

Fig. 1:   Effect of Islands of Reliability (IOR) on Irregulars and Regulars
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(a) IOR Effect on Ratings (adjusted) (b) IOR Effect on Production Probabilities

• See Albright and Hayes (2003, Cognition) for full details.

(48)  Discussion

As our model predicts, English speakers

• Have gradient intuitions.
• Show a strong general preference for regulars.
• Give relatively higher scores to irregulars when they fall within an island of reliability for

an irregular change, e.g. I → Ã / ___ N (columns II/III higher than I/IV)
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• Give relatively higher scores to regulars when they fall within an island of reliability for

the regular change, e.g. ∅ → -ed / X 






voiceless

fricative  ___ # (columns I/III higher than II/IV)
• Do not in general (Albright and Hayes 2003) produce responses supported by one single

model (gezz - gozz, zay - zed).  That would not be minimal.

(49)  Word-by-Word Correlations

• Ratings Data (n = 41)

regulars r = .745, p < .0001
irregulars r = .570, p < .0001

• Volunteered Data (% volunteered, n = 41)

regulars r = .695, p < .0001
irregulars r = .333, p < .05

(50)  The Level of Detail in Human Linguistic Knowledge

• Applying our model to other languages, we have consistently found that it locates
generalizations that were missed in earlier paper-and-pencil analyses.

• To some extent, we have also been able to show that these generalizations are internalized
by human speakers.

Ø Italian conjugation classes are partially predictable from the phonological form of
the stem (Albright, 2002, Language)

Ø Spanish diphthongization is partially predictable from segmental context of the
changing vowel (Albright, Andrade, and Hayes 2001)

Ø The location of subject marking in Lakhota (infix vs. prefix) is partially predictable
from the phonological form of the stem (Albright, 20006)

Ø It is partially predictable (postdictable) which stems underwent the “honor” analogy
of Latin (Albright, 2002)

SOME WAYS THE MODEL COULD BE IMPROVED

(51)  Phonological Representations and Rules

Ø Representations are from Chomsky and Halle (1968) (sequences of feature matrices).
Ø Rules follow the very simple schema A→B / X CfeatC__D DfeatY.

• Phonology is richer than this, and in a number of areas, generalization will not be 
possible until the model incorporates more elaborate rules and representations.

• Both of the areas to be mentioned got addressed in Hayes and Wilson (2008), but not yet i
  this learner.

                                                
66 http://web.mit.edu/albright/www/papers/Albright-LakhotaInfixation.pdf
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(52)  Example 1:  Nonlocal Rules

• The concept of “closest vowel” is needed for e.g. Hungarian vowel harmony:

kö  nyv-n Ak → könyv-nek ‘book-dative’

target vowel
three intervening consonants

trigger vowel

Ø Our model cannot ignore the consonants that intervene between vowels, so it could
not learn this kind of rule.

(53)  Example 2:  Prosody

• Prosodic structure often plays a role in defining morphological rules.

Ø Syllables:   all polysyllabic English verb stems are regular (Pinker and Prince 1988)
Ø Syllable weight (e.g. Latin abstract nouns in [- ia]/[- ieùs]; Mester 1994)
Ø Metrical feet (e.g. foot-based allomorphy in Yidī ; Dixon 1977)

(54) …or maybe not

• See
Ø Hayes, Bruce and Adam Albright) (2006) "Modeling productivity with the

Gradual Learning Algorithm: the problem of accidentally exceptionless
generalizations".  In Gradience in Grammar: Generative Perspectives, ed. Gisbert
Fanselow, Caroline Fery, Matthias Schlesewsky and Ralf Vogel. Oxford:  Oxford
University Press.

for a later attempt to find non-local stuff by string-alignment procedures.

(55)  Multiple changes

• Recall from (17) that we sought to locate the “changing portion” by maximizing the
context terms:

“Assuming rule format A → B / C ___ D, maximize C, D.”

• But in many cases, this fails to locate a generalizable change, because there are two
changing portions.  Ilokano:

nwaN ‘water buffalo’ # n w a N #
pag-nwaN-an ‘place for water buffalo’ # p a g n w a N a n #

Ø The rule obtained by our method is nwaN → pagnwaNan / # ___ #.
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Ø We need something like the two-rule solution ∅ → pag / # ___ X #,
∅ → an / # X ___ #.

• What might help:

Ø Use some form of string-edit distance (Kruskal 1983), weighted by phonetic
similarity, to determine that -nwaN- is the string shared by the two forms;

Ø Adopt some method of morpheme discovery (e.g. Baroni 2000; Goldsmith 2001;
Neuvel, to appear; Schone and Jurafsky 2001; Baroni et al. 2002; Snover, Jarosz
and Brent 2002) and use its results to favor rules that prefix pag- and suffix -an.

WEIGHING CONFLICTING EVIDENCE:  WHAT IS THE RIGHT WAY?

(56)  OT’s method is (probably) not right

• OT (e.g., in the form of Boersma’s GLA) ranks constraints solely on the basis of when they
conflict.

• This wrongly lets perfect low-scope constraints totally outrank extremely general
constraints.

• See Vsevolod Kapatsinski (forthcoming, linked from course web site) for elegant
experimental work suggesting the same conclusion.

(57)  Five phenomena we must consider

• Straightforward ranking of large-scale generalizations, with full override.
• Small perfect generalizations making some headway against big imperfect ones.
• Distributional encroachment (above)
• Islands of reliability
• Pseudo-islands of reliability

(58)  Straightforward ranking of large-scale generalizations, with full override

ADD D ADD T AFTER VOICELESS

Input: Xm Xmd 1000
Xmt 0 1

Input: Xp Xpd 0 1
Xpt 1000 1

ADD D 13.98
ADD T AFTER VOICELESS 28.36

Input: Candidate: Observed: Predicted:
Xm Xmd 1000 0.999999
Xm Xmt 0 8E-7
Xp Xpd 0 5.6E-7
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Xp Xpt 1000 0.999999

(59) Small perfect generalization making (only) some headway against big imperfect ones

TAKE D TAKE T
AFTER

VOICELESS

ING
UNG

Xing Xung 4 1
Xingd 1
Xingt 1 1

Xvoiceless XvoicelessT 1000 1
XvoicelessD 1

X Xd 2000
Xt 1

• This one yields near-perfect matching if you don’t hobble ING-UNG

• So you need to hobble—the second reason (after unnaturalness, perhaps) for hobbling.
• I tried, purely ad hoc: sigma = 100000 for the general constraints, 10 for ING-UNG
• This yields 62% Xung, 38% regular.
• As noted earlier, we need a principled basis for hobble-size, not an ad hoc adjustment.

(60) Distributional encroachment

• Here, the allomorph for one environment occurs just a few times in the environment of the
other.

• Many dialects of English have this in verbs like burnt, spelt, spoilt.
• Presumably, these are irregular and should get little credence.
• Albright/Hayes added a whole extra provision “Impugnment” to their system to handle

this—since they create the unwanted constraint “Add t to any stem”.
• Maxent treats the marginal cases straightforwardly as irregulars.

TAKE D TAKE T AFTER VOICELESS TAKE T ANYWHERE
Xvoiced Xd 1000 1

Xt 1
Xvoiceless Xd 1 1

Xt 1000 1
X-ODDn X-ODDnd 1

X-ODDnt 4 1

TAKE D   5.52
TAKE T AFTER VOICELESS 20.24
TAKE T ANYWHERE   1.73

Xvoiced 0.996 d — i.e. frequency matching
Xvoiceless 1.000 t
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(61)  Islands of reliability

• These work fine in maxent, with the island constraint ganging with its regular partner to
produce the required boost.

• This is hard to simulate, but here is a rough approximation:

TAKE D
AFTER
VOICED

TAKE T
AFTER

VOICELESS

TAKE T AFTER
VOICELESS
FRICATIVE

TAKE IRREG (VARIOUS
CONSTRAINTS)

Xvoiced Xd 1425 1
Xt 1 1
IRREG 75 1

Xvoiceless Xd 1 1
Xt 950 1
IRREG 50 1

Xf Xfd 1 1 1
Xft 300 1
IRREG 1 1

Weights:
TAKE D AFTER VOICED 14.9
TAKE T AFTER VOICELESS 14.9
TAKE T AFTER VOICELESS FRICATIVE 11.2
TAKE IRREG (VARIOUS CONSTRAINTS) 11.9

This produces what we would hope for:
Frequency matching (95/5) for the regulars.
100% regular for the island.

(62) Pseudo-islands of reliability

• Imagine a dialect of English in which the only verbs that start with [dZ] are:

judge, gerrymander, jabber, gel, jumble

• Imagine a learner that infers:

TAKE D AFTER dZX

• One imagines that a Wug test with e.g. joke will yield voiceless -t, since hundreds of words
support this choice.

• This is a dangerous situation in the Albright/Hayes system of constraint evaluation—a
small but perfect generalization ought to have some say.

• Maxent utterly rejects this spurious environment:



y Class 4                                            Inductive Learning with Minimal Generalization                                                    p. 18

TAKE D TAKE T AFTER
VOICELESS

TAKE D AFTER JX

Xvoiced Xd 400
Xt 1

Xvoiceless Xd 1
Xt 200 1

JXVoiced JXVoicedD 5
JXVoicedT 1 1

JXVoiceless JXVoicelessD 1
JXVoicelessT 1 1

Take d 13.1
Take T after voiceless 26.0
Take d after JX 0.3

with virtually 100% regulars derived.

• Why?  My guess is that the algorithm “sees” that promoting Take d helps accuracy with
400 words, and promoted Take D after JX only helps a subset of 4 of them.

• The weak prior I used (sigma = 100000) perhaps exaggerated this effect.
• But notice that for independent reasons, Take D after JX would be hobbled.
• Such hobbling is perhaps needed when there are whole hordes of pseudo-IOR’s; Albright

and Hayes (2006.

(63) Upshot

• Everything seems to be going swimmingly but for one case; i.e. the need to hobble low-
scope perfect constraints.


