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Embedding Grammar in a Quantitative Framework:
Case Sudies from Phonology and Metrics

Class 2. Frequency Matching in Hungarian/More on Models
1. Ladtime

Gradience in generd
Law of Frequency Matching—uwith the challenge of explaining it, and the deviations.
Basics of maxent — how to derive gradient outputs given condraint weights and violations

2. Today

A bigger case study of the Law of Frequency Matching — with one particular kind of deviation
from it — conjectured to be UG.

Learning chalenges for computationd linguists

Other models of gradience

3. Suggested reading

Hayes and Londe (2006), on course website
HUNGARIAN VOWEL HARMONY

4. Sources

Hayes and Londe (2006)

» Badcwork establishing applicability of Law of Frequency Maiching
Hayes/Zuraw/Siptar/Londe (submitted)

> Further study emphasizing the UG problem (below)
Both on course website,

5. Background: the UG problem

UG = Universal Grammar
One long-standing research interest of generative linguisticsis locate aspects of language that
are grounded in human nature — a some level, geneticaly coded.
These aspects can be:
» Characterigtics specific to the language faculty (UG narrowly construed)
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» Other innate properties of humans (cognitive, phonetic, etc.) that determine properties
of language (UG broadly construed)
Thedigtinction isnot crucid in this context.

6. Finding UG using just analysisishard

The usua method is to pursue typology: one formulates grammars for many languages, dl
pointing toward the same underlying theory (e.g. Hayes 1995).
However: language typology may reflect factors other than UG; notably factors of language
change
» Refs. Myers 2002, Baroni 2002, Blevins 2004, Wilson 2006, Koo and Cole 2006,
Moreton (to appear a), etc.

7. UG: theexperimental program

There has recently been agreat upwelling of interest in experiments addressing UG.

» Non-exhaudtive references. Schane, Tranel, & Lane (1974), Pertz and Bever (1975),
Saffran & Thiessen (2003), Albright and Hayes (2003), Pater and Tessier (2003),
Pychaet d. (2003), Wilson (2003, 2006), Buckley and Seidl (2005), Kawahara
(2006), Koo and Cole (2006), Zhang and Lai (2006), Albright (2007), Becker, Ketrez
and Nevins (2007), Graff (2007), Zuraw (2007), Berent et a. (2007, 2008), Berent et
al. (2008), Thatte (2007)

8. Ernestus and Baayen (2003—cour sewebsite): “Predicting the unpredictable”

Not a UG experiment, but relevant here.
Dutch has classcd Find Devoicing, asin
» [-sonorant] ® [—voicel / _ Jword

Fina Before vowe
[V2r?22it]  ‘widen’ [V2r??id-2n] ‘to widen’
[V2r?2?it]  ‘reproach’ [V2r?2?it-2n] ‘to reproach’

9. Ernestusand Baayen (2003): the Dutch data

The dternation patterns are unevenly digtributed in the Dutch lexicon:
» many casesof [p#] ~ [pV], few of [p#] ~ [bV]
> few casesof [f#] ~ [fV], many of [f#] ~ [vV]

10. Ernestusand Baayen (2003): theidea behind the study

Could Dutch speskers use a knowledge of the satistical regularities in the lexicon to “undo
Find Devoicing”, guessing the suffixed form from the isolation form for novel sems?
» Thiswould be “predicting the unpredictable’.
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11. Ernestusand Baayen (2003): Wug test

Give subjectsimaginary base forms, ask them to identify the suffixed form.
» Hear [k d?up] “I daup”, reply with dauben or daupen
> Hear [k t?f] “| taf”, reply with tafen or taven

12. Ernestusand Baayen (2003): resultsrespected Law of Frequency Matching

Many cases of [p#] ~ [pV], few of [p#] ~ [bV], so most (but not al) subjects prefer daup ~
daupen

Few cases of [f#] ~ [fV], many of [f#] ~ [vV], so most (but not al) subjects prefer taf ~ taven
13. Becker, Nevins, and Ketrez (ms—coursewebsite)

A dudy smilar to Ernestus and Baayen's, but for Turkish, which aso has “undoable” Find
Devoicing.
» many cases of [p#] ~ [bV], few of [p#] ~ [pV] (Dutch has the opposite disparity.)
> few casesof [t#] ~ [dV], many of [t#] ~ [tV]
New eement: they checked the lexicon for VC environments. Examples:
» Voicing dternaion is more common after high vowels

» [t7 ~ [d?] dternation is more common after back vowels
14. Becker et al.’sresults

C-internd environments, such as place of articulation: Turkish speskers acted just like Dutch
speakers, obeying the Law of Frequency Matching.
Environments based on preceding vowd: null result

> no frequency matching

» infact, no evidence that speskers are aware of the lexical pattern at all

15. Becker et al.’sinterpretation

They dam anew kind of argument for UG.

The information needed to pass the Wug test with VVC environments was made avalable to
Turkish speakers in childhood.

But they cannot passthistest for these environments—why not?

Reason: UG isn’t good enough to detect the crucid generdizations here,

Specificdly:  roughly, they claim that in UG, the only permitted vowe-consonant interactions
arethose involving ashared feature, like nasdity or backness.

16. Thegeneral prediction made under Becker et al.’s approach

The Law of Frequency Matching will hold true only for those phonologica patterns that can be
expressed in UG.
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For others, language learners are at a loss—thereis no learning without UG help.
17. 1I’'m skeptical of thisview

Earlier research gives strong evidence for productive phonologica patterns that are totaly
arbitrary.
Examples
> Yidi? productively epenthesizes [u] after nasals, extending the pattern to new stems
(Hayes 1999)
> English usestheregular past ending after every verb ending in a voicdess fricaive; and
wug-testing shows thisis productive (Albright and Hayes 2003)

18. What isreally going on: a conjecture

People do have a strong (but not unlimited) inductive learning capacity for unnatura
phonology.

But thereisabias (Wilson 2006, Cognitive Science) for grammars that obey principles of
UG.

» Wilson has formdized bias with maxent. More on this below.
Becker et d.’s experiment was senditive enough to pick up the UG-based patterns (like for
place of articulation), but not the arbitrary VC ones.
My colleagues and | haven't worked on Turkish, but can offer evidence from another
language.

19. Some Hungarian wug-testing

Two papers.
» Hayes and Londe (2006)—establish frequency matching; other issuesin phonology.
» Hayes, Zuraw, Siptér, and Londe (submitted): extend this result, take on the UG issue

20. Thebasicsof Hungarian vowe harmony

Hungarian vowd inventory:

» Back [uu,o00,?al “B”
» Frontrounded [y, Y, 9, @] “F’
> “Neutral” [i, 5, e, 7] “N”

Mogt suffixes dternate, agreeing in backness with the nearby vowels of the stem.
WE I ded just with the dative suffix: [-n?k] ~ [-r?K].

21. Thevowe harmony generalizations

For anice overview consult Siptar and Torkenczy (2000).
If the closest tem vowd is back, then back suffixes:



Linquistics 201 Class 2; Frequency Matching, other models

p.5

> [?bI?k-n?k]  ‘window-dat.’
» [biTo?n?k]  ‘judge-dat.’
> [glykoZ-n?k] ‘glucose-dat.’
If the closest stem vowd is front rounded, then front suffixes:
> [yx-mk] ‘cauldron-dat.’

» [?0fer-n?k] ‘chauffeur-dat.
22. Thevowel harmony generalizations (cont.)

If dl neutrd (front unrounded), then generdly front
> [K?rt-r?k] ‘garden-dat.’
> [taMm-r?k] ‘address-dat.’
» [r?p?s-m?k]  ‘splinter-dat.’

23. Hungarian vowd harmony: thezonesof variaion

If aback vowd isfollowed by one or more front unrounded vowels (...BN, ...BNN), the

|exicon takes over!

Harmony is unpredictable, and the behavior of every slem must be memorized.
But there are quantitetive lexica generdizations, just like in Dutch and Turkish.

24. Hungarian vowel harmony in the zones of variation: quantitative generalizations

Source of the counts

» Hayesand Londe's (2006) study, based on Googling thousands of semsto obtain user

frequencies.
25. Height effect

... Back + [i, i1 stems mostly take back suffixes,
... Back + [e] emstake front more often;
... Back + [?] stems (? islow) usudly take front suffixes.
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26. Count effect
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27. Hayes/Londe Wugtest: speakersmatch lexical frequencies
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28. Hungarian so far

The vowd harmony systemn obeys a number of generdization, including Satisticd
generdizations (Haght effect, Count effect) governing the zones of variation.

In wug testing, speakers respond to the statistical generaizations, in accord with the Law of
Frequency Matching.

29. Hayesand Londe sanalysis|: UG principles assumed

UG favors assmilation of single features (cf. Becker et d.)
UG favorslocal triggers over diga (cf. [glykoZz-n?kK])
“Spread bad vowel” (Kaun 1995) Perceptualy weak frontness® strong frontness harmony
trigger (they need more help, hence trigger harmony more)
> 1y, ¥? @, 87, with backness perceptualy obscured by rounding, are stronger triggers.
> Lower front vowds, which aren’t as front as higher ones, are stronger triggers.

30. Hayesand Lond€e sanalysisil: constraints

AGREE(back) with local back
AGREE(back) with back

AGREE(back) with loca low front
AGREE(back) with local nonhigh front
AGREE(back) with locd front
AGREE(back) with locd front + front
AGREE(back) with front rounded
AGREE(back) with local front rounded

31. Theconstraintsreflect the UG theory

Every condraint isan AGREE() condtraint for backness.

Those which are restricted to particular classes single out “bad vowels’, in Kaun's sense.
6/8 condraints are restricted to local environment; i.e. pendize only disagreement with the
locd gem vowd.

32. Finding theright weights

Hayes/LLonde did a maxent andysis (aswell as others) and got a good match to the observed
data.
Training data. use the Google data corpus frequencies for the training lexicon
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33. Matchup tothewug test results, using thisgrammar
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34. Local summary

Hayes and Londe offer afird-pass analyss of the Hungarian system, which

uses only UG-based congtraints

istuned by training on adata corpus

correctly predicts the behavior of Hungarian speakers when wug-tested—they obey the
Law of Frequency Matching

YV VYV .

35. Hungarian beyond UG: arethereunnatural constraints?

Hayes and Zuraw did an intensve search of the Hungarian lexica data (Excd + search
programs), looking for consonant environments that favor front or back suffixes, within the
zones of variation.

These turned out to exist! We picked the best four.

36. Four unnatural vowe harmony constraints

Prefer front suffixes when the sem endsin abilabial noncontinuant ([p, b, m])
Prefer front suffixes when the gem endsinagbilant ([s, z, 2, ?, ts, t?, d?])
Prefer front suffixes when the sem endsin a coronal sonorant ([n, ?, |, 1])

Prefer front suffixes when the sem ends in two consonants
> All have gaidicaly dgnificant effectsin the lexicon
» None has a particularly plausble UG bass.

37. Onemoreunnatural vowed harmony congtraint

All-N words are (weskly) a zone of variation, too, since afew of them take idiosyncratic back
auffixes. Examples

> [hY-rPk] ‘bridge-dat.’
> [AD-rk] ‘whigtle-dat.’
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> [d?rek-m?k] ‘waid-dat.
In this zone:
> Prefer back suffixes when the stem is monaosyllabic and has the vowd [i9 (like [hid] and

[7P])

38. Question: do Hungarian speakersinternalize the unnatural constraints?

Becker et d. would presumably predict, “no”.
» Thisisavowe-consonant interaction not based on shared features.
We can find out by doing a new wug tes.

39. Design of the new wug test

All our wug stems were from the zones of variation: BN, BNN, N.

To increase sengtivity, we tested 1703 wug stems — each subject got a separate batch, thus
reducing the chance of unwanted factors about particular sems playing arole.

Also to increase sengitivity, we used many (131) consultants

40. Choice of wug words

They were designed to test the unnatura condiraints, and otherwise datisticaly resemble
Hungarian words in every possible respect.
Each consultant got 13 words, as for example in the following batch.

Number | bilabial | coronal sonorant | shilant | CC | example
2 no no no no | [kode]
2 no no no yes | [prett]
2 no no yes no | [t?2nd?nd??]
1 no no yes | yes | [s?lhate®]
2 no yes no no | [n?n]
1 no yes no yes | [vur?ld?m]
2 yes no no no | [ha??k?m]
1 yes no no yes | [kehb]

41. Subject recruitment

To obtain authentic data, we ran our test on the Web, using Google Ad Words to recruit
ubjectsliving in Hungary.

Farmernak vaoy farmearnak?
Wegyel részt eqy nyehi kisérletben
a Kalifornial Egyetlem szemmzésében
paninl nguistics. ucla edu
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Thisyielded 131 subjects, after discarding non-Hungarians, under-18's, non-finishers.
42. Where our subjects came from

Source: www.google.com/anaytics/

43. Sampletest page
(origind verson entirely in Hungarian)
Halupem

Haupem was a goddess worshipped by the early pagan Hungarians. It is believed that
H&upem was the goddess of weaving. Not just the Hungarians but aso neighboring peoples
celebrated  -dat.’ s divine powers.Please check one:

[ ] Halupemnak
[ ] Halupemnek

Please rate each one:

Héalupemnak:
worst best
1 2 3 4 5 6 7
O O O O O O O
Halupemnek:
worst best

1 2 3 4 5 6 7
@) @) @) @) @) @) @)
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44. Results|: HayesL onde experiment isreplicated
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Note “depolarization” effect—probably due to modeling bad forms to the subjects (ca. Albright
and Hayes 2003).

45. Resultsll: 4/5 of the unnatural constraints had a significant effect

Test: logidtic regresson; probability that the environment has no effect on outcome

Monosyl lable with [i:] 0. 241
Fi nal bil abi al 0. 000
Fi nal coronal sonorant 0.016
Fi nal sibil ant 0. 046
Fi nal CC 0. 000

We suspect that the [i1 environment is dso significant, but our test was not designed to check
it and lacked enough forms.

46. Other statistical results

The same test showed massive sgnificance for dl of the natural condraints.
The effect 9zeis smdler for the unnatura congraints, as expected.

47. Discussion

Unlike Becker et d., we found a noticeable effect for unnatural constraints.
Suggested conclusion: people do learn unnatura phonology, but
> it'sharder for themtolearn

» it'sharder for usto detect — perhgps only experiments with many subjects and items
will suffice

48. Maxent modeling: Goal

Eludicate how Hungarian speakers, exposed to lexica data, learn the unnatura congtraints and
use them in forming their linguidic intuitions.
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49. Thebasisfor learning

13 condraints, as given above
» 8 naturd, from Hayes/Londe
» 5 unnatural, based on our discovered unnatura environments

50. Grammar L: train the weightsagainst thelexicon

We used the same Google frequency data that Hayes and Londe used.
To assign weights, we used an early version of the Maxent Grammar Tool (course website).

Weights obtained:
AGREE(back) with local back 4.00
AGREE(back) with back 5.35
AGREE(back) with locd low front 2.99
AGREE(back) with local nonhigh front 1.48
AGREE(back) with local front 1.64
AGREE(back) with locd front + front 4.05
AGREE(back) with front rounded 1.72
AGREE(back) with local front rounded 3.74
Front suffix if final bilabial consonant 2.46
Front suffix if final coronal sonorant 1.08
Front suffix if final sibilant 0.91
Front suffix if final CC 1.75
Back suffixes if monosyllable with [i] 2.37

51. Basc performance of Grammar L (correlations)

Basic check: its predictions corrdate well with the frequencies of the data from which it was
traned: r =.992
To check againgt the Wug test, we used a preference score; i.e. subject’ s[-n?Kk] preference
minus [-?k] preference.
» Corrddion isnot asgood, but dill subgtantid: r = .546 — confirming the Law of
Frequency Matching
The unnatura condraints help: without them, we get a corrdlation of only r = .521

52. What are nativeintuitionsin the ssmeterms? Grammar W

Grammar W is obtained by using the wug test data as the basis for congtraint weighting.
Thisisnot alearning smulation (children are not told their parents' intuitions).

Rather, it is an assessment of the importance of the congraintsin forming adult native spesker
intuitions.
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53. Weight comparison: Grammar L vs. Grammar W

Natural constraints: wW L
AGREE(back, loca) NA 4.00
AGREE(back, nonlocdl) 3.58 5.35
AGREE(low front, local) 1.05 2.99
AGREE(non-high front, local) .95 1.48
AGREE(front, locd) 2.22 1.64
AGREE(double front, locdl) 1.94 4.05
AGREE(front rounded, nonloca) NA 172
AGREE(front rounded, loca) NA 3.74

Unnatural constraints:

UsEFRONT / bilabid 1.04 2.46
UsE FRONT / [+cor,+son] 43 1.08
USEFRONT / dbilant 37 91
USEFRONT/CC .69 1.75
UsEBACK / [CoTTo] .80 2.37

54. Analyzing the weight comparison

35
3
25

5 2

gl.S-
1
0.5 1
0 ;

Natural (average of Unnatural (average
5) of 5)

B Grammar L
O Grammar W

Observe: abigger “hit” (.34 vs. .63) for the unnaturds.
55. What’sgoing on?

Depolarization: weights lower overdl.

Naturd vs. unnaturd: language learners can pick up unnatural environments, but give them less
credence.

Further details (constraint by constraint) can be accounted for, perhaps, with asmplicity bias.
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56. Moremodding results

The best fitting modd we can find uses two parameters. overdl weakening, and unnaturalness
bias. These are used to multiply dl the congtraints, and just the unnatural congtraints (values:
.56, .70)

This achieves a correlation of r = .569 to the wug test data.

57. Inprogress

We think we can show that the dleged “weakness’ of the unnatural congtraints can be
demongtrated statistically—we re doing a Monte Carlo smulation to show this.

58. Summary

Both the earlier Hayes/L onde experiment and our subsequent web experiment found
confirmation for the Law of Frequency Matching.

We got opposite results from Becker et d., concerning whether unnatural environments can
have effects in phonology, and don't know why (though we have guesses).

But the unnatura congraint seem to be “wesker”, tantaizing evidence that there may be UG
efectsin learning.

TWO LEARNABILITY PUZZLES ARISING FROM THIS WORK
59. Learnability puzzlesl: handling thelisted items

The maxent grammars given were “tailor made’—learn from lexicon, and test on wug data.

But red life is more complicated—more tasks for the grammear to do.

Forms in the zones of variation get the outcome specified in the lexicon.

| think the smplest and best supported theory for thisis Zuraw's: they're listed.

But suppose they are listed. We must make sure that the listed form gets used, and not the one
created by the phonologica grammar.

So: theweight of USE LISTED (Zuraw 2000) is very high.

I’ ve been able to get results vaguely in theright direction, but not what isredly needed: reliable
rendering of listed forms, reigble frequency-matching in novel forms.

60. Learnability puzzlesil: how to hobble?

We don't know how to “hobble’ a condraint for its unnaturaness.

61. One potential way to hobble: the Gaussian prior

Our favorite paper on “Biases’ is Wilson (2006).
He biases his congraints usng a Gaussan prior, with lower sgmafor apriori lesslikely
condrants.
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Gaussan prior: maximize probability of learning deta, but adding a pendty for postive weights:

» If mu is zero, then a congtraint gets punished for having alarge weight, especidly when
sgmaissmdl.

62. But hobbling with a constraint-specific prior isvery tricky

If you hobble, other congtraints will get different values too.
E.g., two congtraints, one hobbled, 50/50 learning datac  the other congtraint weakens itself so

as dtill to derive 50/50 outputs.
We suspect that Wilson succeeded because of particular, unusud properties of his grammar; we

cannot get the same resultsin ours.
OTHER CONSTRAINT-BASED THEORIES OF GRADIENCE

63. OT with free-variation strata

Anttila (19973, 1997b)
Group the congraints into strata; rank the Strata, but rank at random within strata.

This predicts a specific digtribution of outputs.
Very tightly constrained modd; our Hungarian is an example it seems unable to ded with.

64. Stochastic OT

Invented by Paul Boersma (1997); applied to phonology by Boersma and Hayes (2001).
Give every condraint a“ranking vaue'.

When you run the grammar, jiggle the weights by adding to each ranking value asmdl random
quantity. Then sort them and apply good-old OT to the result.

65. Thelearnability situation for stochastic OT

Boersma invented an dgorithm (“Gradud Learning Algorithm”) for stochastic OT.
It works pretty well for many smulations—though without maxent’ s uncanny accuracy.

Behaves very strangdly for others (my experience)
and (ouch!) was found to fall to find the solution in awell-defined class of cases—Pater (2008),

course web site
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» Pater, Joe. 2008. Gradual learning and convergence. Linguistic Inquiry 39. 334-345.
Magri (ms.), course web site, has abeautiful demondgtration of why GLA fails sometimesthe
right answer isn't evenin its search space! (= grammars obtainable by legd ranking vaues

adjustments.
Magri has abetter GLA, which he proves to converge, but only for non-stochastic grammar.

66. Noisy Harmonic Grammar

Paper by Boersma and Pater (course web site).
» Boersma, Paul, and Joe Pater. 2008. Convergence properties of a gradual learning
agorithm for Harmonic Grammar. Amsterdam and Amherst, MA: University of
Amsterdam and University of Massachusetts ms. Rutgers Optimality Archive.

Thisislike the smple Harmonic Grammar described last time (lowest pendty score wins), but
as with Stochastic OT you add a bit of noise to each condraint weight when you “gpply” the

granmar.

67. Thelearnability stuation for stochastic OT

Same as for stochagtic OT: there isalearnability proof, but only for the non-stochastic
goplications

68. Where maxent differs sharply from these models

Harmonically bounded candidates can semi-win (i.e. have more than zero probability)

A candidate is harmonicaly bounded if some other candidate has a strict subset of its violations.
Scholars differ in whether harmonicaly bounded candidates should ever win. Keller and
Asudeh (Linguistic Inquiry 2002) thinks they should; I’ ve found dightly better performancein
textsetting.! I'd say not letting them win is the mgjority current view.

69. Model-shopping: my own fedlings

Once burned, twice shy, re. usng agorithms that don’t have a convergence proof.
Some empirical worriesre.

» Condrant ganging (dl versgons of Harmonic Grammar)

» Harmonicaly bounded semi-winners (maxent)

1

http://Mmww.linguisti cs.ucl a.edu/peopl e/hayes/papers/HayesSl i des-or StanfordGradi enceWorkshop. pdf
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70.

71.

72.

73.

74.

75.

A QUICK OVERVIEW OF HOW LEARNING IN MAXENT WORKS

Source

This discussion follows the attempted layman’ s explanation in Hayes and Wilson (2008) (course
website).

Coreidea: “Objectivefunction”

Definesthe“god” of learning.

Thisis separated from the (varying) computationa agorithms can be used to achieveiit.
Maximize the predicted probability of the observed forms

hence, minimizes the predicted probability of the unobserved forms

Predicted probability of observed formsis quite caculable: caculate each one as given last
time, then multiply them dl together.

Metaphor: the objective function isa mountain

If we have just two congraints, let North-South be the axis for Congtraintl’ s weight, and East-
West be the axis for Congraint2' s weight, and height be the predicted probability of the
observed data under any weight assgnment.

Climb the mountain, and you will be standing at the point of optimum weights.

Two beautiful theorems

The mountain has but one peek (=is convex; has no loca maxima)

The dope dong any axis (if height expressed as alog) is Observed Violations — Expected
Violations, a caculable quantity.

S0 you can dways reech the top, Smply by persstently climbing uphill.

Thismay sound trivid but remember that the mountain actudly exigsin n-dimensiona space,
where n is the number of congrants.

Therest isimplementation

Ascending gradients efficiently is a popular chalenge for computer scientists; both Goldwater
and Johnson (2003) and the Maxent Grammar Tool adopt the “ Conjugate Gradient” agorithm.

Next time

Phonologica well-formedness (blick - ?bloick - *bnick) and how to predict it with maxent.



