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ABSTRACT

The perceptual magnet effect is one of the earliest known language-specific phenomena arising in infant
speech development. The effect is characterized by a warping of perceptual space near phonemic category
centers. Previous explanations have been formulated within the theoretical framework of cognitive psy-
chology. The model proposed in this paper builds on research from both psychology and neuroscience in
working toward a more complete account of the effect. The model embodies two principal hypotheses sup-
ported by considerable experimental and theoretical research from the neuroscience literature: (1) sensory
experience guides language-specific development of an auditory neural map, and (2) a population vector
can predict psychological phenomena based on map cell activities. These hypotheses are realized in a self-
organizing neural network model. The magnet effect arises in the model from language-specific nonunifor-
mities in the distribution of map cell firing preferences. Numerical simulations verify that the model cap-
tures the known general characteristics of the magnet effect and provides accurate fits to specific
psychophysical data.
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Magnet Effect and Neural Maps

1.  Introduction

Theperceptual magnet effect(Kuhl, 1991) is one of the most actively discussed topics in the recent spe
perception literature (e.g., Davis and Kuhl, 1994; Fox, Flege, and Munro, 1995; Iverson, Diesch, S
and Kuhl, 1994; Iverson and Kuhl, 1994, 1995; Kuhl, 1991, 1995; Kuhl, Williams, Lacerda, Stevens
Lindblom, 1992; Lacerda, 1995; Polka, 1995; Sussman and Lauckner-Morano, 1995). Roughly spe
the effect is characterized by a warping of perceptual space such that acoustic patterns near phonem
gory centers are perceived as closer together than equally spaced acoustic patterns that are furth
from phonemic category centers. Because the effect is language-specific, it is assumed that n
infants will not show the effect (although other, language-independent biases might exist at birt
Polka, 1995), but by six months of age a language-specific magnet effect arises (Kuhl, 1991; Kuhl
1992) and is apparently maintained through adulthood (Kuhl, 1991).

Previous attempts to explain this effect have typically been formulated within the theoretical framewo
cognitive psychology. Kuhl (1995) proposes a native language magnet (NLM) model of infant perce
development that includes an account of the magnet effect. Kuhl’s account assumes that a phonetic
type” for each sound category exists in memory and plays a unique role in speech perception: it fun
like a “perceptual magnet” for other sounds in the category that “attracts” these sounds so that they
more similar to the prototype itself. The explanation put forth by Lacerda (1995) suggests that the
occurs as an emergent property of an exemplar-based categorization process. Infants store exem
each category and compare new inputs to these exemplars. The perceived distance between two
related to the relative number of exemplars from different categories in the immediate neighborho
the inputs. Lacerda’s model assumes no special prototype (cf. Kuhl’s explanation) and magnet effec
erties arise due to the distribution of examples that the infant experiences.

In contrast to these psychological explanations, this article provides an explanation for the magne
using tools from computational neuroscience. This explanation arises from natural extensions of
principles used to study other sensory and motor modalities in the brain. The claim is that the magne
is a simple consequence of the formation of neural maps in the auditory system. These maps are a
to develop according to the same principles believed to be involved in map formation for other mod
such as vision (e.g., Grossberg, 1976; Kohonen, 1982; von der Malsburg, 1973) and somatic sens
Gaudiano, Olson, Tal, and Fischl, 1993; Pearson, Finkel, and Edelman, 1987; Sutton, Reggia, Arme
and D’Autrechy, 1994). In this account, exposure to a particular language leads to nonuniformities
distribution of the firing preferences of map cells, and this nonuniformity leads to the magnet effect
further hypothesized that a second well-known theoretical tool from neuroscience, thepopulation vector
(Georgopoulos, Caminiti, Kalaska, and Massey, 1983; Georgopoulos, Kalaska, Crutcher, Camini
Massey, 1984), can be used to predict psychological events based on the cell activities of the audito
Because this account posits explanations for the nature of memory and perception in terms of the
ties of neural systems, it also represents an attempt at a direct linkage of concepts from cognitive p
ogy to concepts from neuroscience.

Although the current work can in some respects be interpreted as a neuroscientific account of
(1991, 1995) magnet effect explanation (see Section 3) and, to a lesser degree, Lacerda’s (1995)
many important differences exist. Like the explanations of Kuhl and Lacerda, the current model as
that the magnet effect is related to the distribution of speech sounds experienced by an infant in t
stages of life. In contrast with Kuhl’s explanation, however, stored category prototypes do not play a
or special role in the current model’s account of the magnet effect. Instead, perceptual warping occu
to nonuniformities in the distribution of firing preferences of cells in an auditory neural map, which in
are the result of nonuniformities in the distributions of sounds experienced by the infant. The current
2



odels

oes not
ers that
of pho-
he lin-

rceptual
acerda
umber-
by six
ted to

tly but
f the
do not
d in the

bership
elieved

c audi-
ns for
s are
king of
ce away
ation

agnet
t effect
ation

cur-
deling

red to
clarity,
hown;

ation.
are

odeled

epre-
sured in
rmal-
presen-
Magnet Effect and Neural Maps

is similar to Lacerda’s model in that no special prototype is needed to explain the effect, but the two m
differ in many other aspects. First, Lacerda’s explanation requires that the infant haslabeledexemplars;
that is, the infant must know the category to which each stored sound belongs. An explanation that d
require linguistic category knowledge probably better captures the phenomenon when one consid
the effect is already present by six months of age, likely before infants have developed awareness
nemes as linguistic units (Kuhl, 1995). The current explanation does not require any knowledge of t
guistic categories of experienced sounds; exposure to thestatistical distributionof sounds in the native
language is all that is needed to produce the effect. Thus, the magnet effect is treated as a simple pe
phenomenon rather than a higher-level phenomenon involving linguistic categories. Second, L
assumes that experienced sounds are stored in memory individually. This explanation becomes c
some when one realizes that infants have likely experienced hundreds of thousands of vowels
months of age (Kuhl, 1995), suggesting that an increasingly large amount of memory must be devo
the process of vowel perception. In the current explanation, however, inputs are not stored explici
instead modify the firing preferences of a fixed number of cells in a neural map. The distribution o
experienced inputs affects the distribution of these firing preferences, but memory requirements
increase with the number of experienced sounds since the number of cells and synaptic weights use
map are fixed. Third, Lacerda’s model uses rather complex calculations to determine category mem
and perceived distance. In the current model, however, the effect arises from calculations that are b
by many to be basic properties of neural systems.

The next section describes the model and motivates its two main assumptions: (1) language-specifi
tory experience leads to a nonuniform auditory map, and (2) the population vector provides a mea
predicting perceptual effects from neural activities in this map. In Section 3, numerical simulation
used to show that the model captures the main known aspects of the magnet effect, including a shrin
perceptual space near phonemic category centers (Kuhl, 1991), an expansion of perceptual spa
from centers (Kuhl, 1995), and language-specificity in this warping (Kuhl et al., 1992). The simul
results reported in this section include accurate fits to data from psychophysical studies of the m
effect. This section also includes a discussion of an apparently paradoxical aspect of the magne
highlighted by the current model: unlike the results of many other studies which show better discrimin
for heavily experienced stimuli, the magnet effect is characterized byworsediscrimination for more typi-
cal vowel stimuli. Finally, Section 4 relates a magnet effect description in psychological terms to the
rent model’s description in neuroscientific terms and places the model in the context of a larger mo
framework of speech development and production called DIVA (Guenther, 1994, 1995a,b).

2.  Model Description

A schematic view of the model is provided in Figure 1. The model uses two layers of neurons, refer
as the formant representation and the auditory map, connected by a set of adaptive weights. For
only a subset of the pathways projecting from the formant representation to the auditory map are s
however, all formant representation cells project to all auditory map cells in the actual implement
Similarly, the competitive interactions implied by the inhibitory connections (marked by “-” signs)
assumed to occur between all cells in the map. These competitive interactions are not explicitly m
but are instead subsumed in the auditory map cell firing properties as discussed below.

Formant Representation.The model assumes that peripheral auditory processing yields a neural r
sentation of the formant values of speech sounds. The simulations reported here used formants mea
mels; nearly identical results were obtained in unreported simulations using formants in Hertz. A no
ized, agonist-antagonist neural representation was used for each formant. Specifically, the neural re
tation of the formants for a sound was defined as follows:
3
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(1)

where the indexi indicates the formant number, and are the activities of the antagonistically pa
cells coding theith formant, is the value of theith formant in Mels or Hertz, is the minimum
value of theith formant in the simulations, and is the maximum value of theith formant. The con-
stants and are parameters that insure that the cell activities and vary between
1. (All parameter values used in the simulations are reported in the Appendix.) Each simulation use
two formants, either F1 and F2 or F2 and F3.

The normalized, agonist-antagonist formant representation of Equation 1 was chosen to insure t
total activity in the formant representation was the same regardless of the formant values of the
sound. For example, a low value of F1 leads to a small value of and a large value of , whereas
value of F1 leads to a large value of and a small value of . If the antagonist cells were
included, input sounds with low formants would not produce much activity in the formant represent

AUDITORY
MAP

FORMANT
REPRESENTATION

FIGURE 1. Schematic of the model. Input sound patterns activate cells at the formant
representation level. These cells project through adaptive synaptic weights to cells in an
auditory map. The adaptive weights determine the firing preferences of cells in the auditory
map. During early exposure to sounds from a particular language, these weights self-
organize such that the distribution of firing preferences of auditory map cells reflects the
distribution of sounds in the language. The non-uniformity of this distribution of map cell
firing preferences leads to the magnet effect in the model.
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and this would lead to an undesirable bias in the learning process described below. Agonist-antagon
ral representations are common in biological nervous systems.

It is important to note that similar results would be expected for many different neural representatio
formant values. For example, von der Malsburg (1973), Pearson et al. (1987), and Sutton et al.
describe self-organizing neural maps that use very different input representations from the one used
is further expected that the main results reported herein will hold with input representations that in
more than the first two formants; this limited representation was used to simplify the simulations
graphical presentation of simulation results.

Auditory Map. In keeping with most models in the neural network literature, the input to each cell in
auditory map is calculated as the dot product of the input vector (i.e., the neural representation of fo
values) and the vector of weights projecting to the map cell. When an input is received, the L cells
map with the largest input are allowed to remain active, and the activities of all other nodes in the m
set to zero. This process approximates the effects of competitive interactions between map cells
berg, 1976; Kohonen, 1982; von der Malsburg, 1973), and the inhibitory synaptic connections belie
mediate this type of competition are seen in primary sensory areas of cortex, including auditory c
somatosensory cortex, and visual cortex (Kandel, Schwartz, and Jessell, 1991). During training,
monotonically decreasing function of time, as implemented in the self-organizing feature map of Koh
(1982). When testing the network, a fixed value of L is used. The activity levels of the L map cells wit
largest input are assumed to be proportional to the sizes of their inputs:

(2)

where is the activity of thejth map cell, and are modifiable synaptic weights projecting from t
ith antagonistic cell pair of the formant representation to thejth map cell, andM is the number of cells in the
map.

The learning process used to adjust the synaptic weights between formant representation cells and
the auditory map is defined by the following “instar” learning equation (Grossberg, 1969):

(3)

where is a learning rate parameter. This is essentially the same learning law that is used in man
models of map formation, including the models of von der Malsburg (1973), Grossberg (1976)
Kohonen (1982). Nearly identical learning laws have also been put forth by neurophysiologists to e
observed synaptic strength changes in areas such as visual cortex (Rauschecker and Singer, 197
and hippocampus (Levy and Steward, 1979); see Levy and Desmond (1985) for a short review.

One key property of this model is that the distribution of firing preferences of auditory map cells com
reflect the distribution of the inputs used to train the model (see Kohonen, 1982), which in turn refle
distribution of sounds in a particular language. This represents one of the two main hypotheses em
by the model, and in Section 3 we will see how this property leads to the magnet effect in model si
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tions. Such experience-based nonuniformities in the distribution of cell firing preferences have been
fied by neurophysiologists studying sensory maps in several different modalities. Probably the mos
known examples of this phenomenon come from studies of visual cortex. For example, limiting v
experience to one eye in kittens leads to many more cells in V1 devoted to the working eye than in n
kittens (Wiesel and Hubel, 1963). Studies of kittens reared in an environment consisting only of co
oriented in one direction (e.g., vertical stripes) indicate that more cells become tuned to the heavily e
enced stimulus than to contours of other orientations (e.g., Rauschecker and Singer, 1981). Severa
network models utilizing competitive interactions in neural maps similar to the model proposed here
been used to explain many of these results (e.g., Grossberg, 1976; Kohonen, 1982; von der Ma
1973). Analogous neurophysiological results have been found in somatosensory cortex, where topo
map reorganization results from peripheral nerve damage (Kaas, Merzenich, and Killackey, 1983) o
erential stimulation of certain digits (Jenkins, Merzenich, and Ochs, 1984; Jenkins, Merzenich,
Allard, and Guíc-Robles, 1990). Again, several neural models using competitive learning have bee
posed to explain these data (e.g., Gaudiano et al., 1993; Pearson et al., 1987; Sutton et al., 1994
over, studies from auditory cortex, more relevant to the current model, have shown similar re
Reorganization of auditory cortex topography after partial cochlear lesions has been reported in
pigs (Robertson and Irvine, 1989) and cats (Irvine, Rajan, Wize, and Heil, 1991), and Recan
Schreiner, and Merzenich (1993) showed that repeated exposure to tones in a particular frequenc
during learning of a discrimination task in owl monkeys resulted in an increase in the number of au
cortex cells tuned to the trained frequency. The current model’s hypothesis that the distribution of au
map cell firing preferences reflects the distribution of sounds in an infant’s native language is very m
keeping with these results.

The Population Vector.After the model described in the preceding paragraphs is trained by exposure
set of sounds approximating the distribution of sounds in a particular language, we are left with the
lem of interpreting map cell activities in perceptual terms. The second major hypothesis of the c
model is that a population vector (e.g., Georgopoulos et al., 1983, 1984) can be used to predict psy
ical phenomena from the pattern of neural activities in this map. This population vector is calculated
lows. Each cell in the current model’s auditory map will be maximally activated by a particular vect
formant space (e.g., a particular F1-F2 pair). This formant vector is the one whose neural represent
the first stage of the model is parallel to the vector of weights projecting to the auditory map cell. T
clear when one considers that the input to each map cell is the dot product of the neural representat
tor and the cell’s afferent weight vector, and the dot product of two vectors is maximal when the
between them is zero. The formant vector that maximally activates thejth auditory map cell will be referred
to as itspreferred stimulusand denoted as . It is assumed that the perceived sound can be derived
the pattern of cell activities at the auditory map using the following population vector equation:

(4)

Population vectors of this form have been used by neuroscientists to predict behavioral and psycho
phenomena from the ensemble of cell firing rates in a neural map. The population vector was orig
formulated to interpret single cell recording data from the arm map region of motor cortex in monkey
forming reaches to targets (Georgopoulos et al., 1983, 1984). In these studies, a preferred moveme
tion is calculated for each cell by finding the spatial movement direction which results in maximal firin
the cell. The firing levels of many cells are measured while producing the same spatial reach. The p
tion vector is calculated by multiplying each cell’s firing rate by it’s preferred direction vector, then s

F j

F perceived

mjF j
j

∑
mj

j
∑

-------------------=
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Magnet Effect and Neural Maps

ming this quantity over all the cells. The resulting vector has been shown to point in the direction o
actual movement with significant accuracy (e.g., Georgopoulos et al., 1984; Georgopoulos, Kettne
Schwartz, 1988). The population vector has been similarly used to study cell responses related to re
in premotor cortex and Area 5 of posterior parietal cortex; see Kalaska and Crammond (1992) for a
review.

Why do these population vector analyses work? To provide one possible answer to this, it is useful t
sider models of motor cortical function during reaching movements. In two recent neural network acc
of reaching (Bullock, Grossberg, and Guenther, 1993; Burnod et al., 1992), it is assumed that moto
cal cells are activated by upstream mechanisms coding the desired spatial direction of movement,
contribution of each motor cortical cell to downstream mechanisms that command joint rotations is
tor in joint velocity space that would move the hand in the desired spatial direction. The net effect
active motor cortical cells is summed at the cells commanding joint rotations, with the size of a moto
tical cell’s contribution being proportional to its firing rate. In these models, therefore, the joint rota
that move the arm are formed as a weighted average of the contributions of the motor cortical cel
manner very similar to the weighted averaging that produces the population vector.

Since the landmark reaching studies of Georgopoulos and colleagues, the population vector has be
to interpret activity patterns across neuronal populations during many different tasks in many dif
modalities. Schwartz (1994) showed that the population vector could be used to accurately reconstr
ral drawing movements from the activities of a population of cells in motor cortex. Lee, Rohrer, and S
(1988) used a population vector to interpret the coding of eye movements by superior colliculus ne
Georgopoulos, Lurito, Petrides, Schwartz, and Massey (1989) used a population vector analysis to
strate the well-known psychological phenomenon called mental rotation (Shephard and Metzler, 19
this study, monkeys were required to move in a direction differing by 90 degrees from the direction
cated by lights in a target array. Georgopoulos et al. showed that the motor cortex population vecto
out pointing in the direction of the target light, then rotates through 90 degrees just before movemen
to point in the direction of the actual movement. The population vector has also been used to study s
systems. Hess (1992) demonstrated that head orientation can be obtained by population vector an
the activities of otolith afferent signals. Steinmetz, Motter, Duffy, and Mountcastle (1987) interprete
activities of visual neurons in parietal cortex using a population vector. Vogels (1990) showed that a
lation vector analysis of visual cortex neurons can achieve an accuracy of line orientation discrimi
that is as good as behaviorally measured just noticeable differences, even with broadly tuned cel
large response variabilities. Zohary (1992) extended this work in a modeling study showing that a p
tion vector analysis could accurately extract information about a single stimulus dimension, althou
response of a single visual cortical cell could not reliably be used to extract this information due to th
that many stimulus dimensions are coded by each cell.

In summary, the two main hypotheses embodied by the current model receive significant support fro
ious studies in the computational neuroscience literature. The hypothesis that linguistic experience
in nonuniformities in the firing preferences of cells in an auditory map is supported by a large numb
neurophysiological studies of auditory, somatosensory, and visual cortices, and many neural mode
lar to the one posited here have been used to explain this phenomenon. The hypothesized utility of t
ulation vector for predicting psychological phenomena from the ensemble of cell activities in a neura
is also supported by several neurophysiological and modeling studies of different tasks in different m
ities. The next section provides further support for these hypotheses through model simulations tha
close fits to results from psychophysical studies of the magnet effect.
7
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3.  Simulations

The model defined in the preceding section was implemented in computer simulations, and its perfor
was compared to the results of several psychophysical studies of the perceptual magnet effect. Rand
tial weight vectors chosen from a uniform distribution over the input space were used in all simula
The model was then trained with formant input vectors chosen from Gaussian distributions cente
phonetic categories (see Appendix for details). Between 400 and 1000 inputs from each categor
used to train the network for each simulation. Gaussian distributions with zero covariance were cho
simplicity; qualitatively similar results to those reported here were obtained for a wide range of para
choices, and similar results would also be expected for many single-peaked distributions other than
ian distributions with zero covariance. It is important to note that the model self-organizes given on
input vectors without any information regarding their category membership; i.e., the input vectors a
labeled according to which phonetic category they belong. Within this explanation, therefore, it is no
essary for an infant to be capable of identifying sounds as members of phonetic categories in o
develop the magnet effect.

Simulation 1. The first simulation investigated a study of stimulus discrimination in Japanese and En
adult listeners when presented with stimuli in or near the American English phonemic categories /r/ a
as reported in Iverson and Kuhl (1994) and Kuhl (1995). (The English /r/ and /l/ categories do not
direct correlates in Japanese.) The input stimuli, psychophysical results, and model results are sh
Figure 2. This study used stimuli that were evenly spaced in F2-F3 space near the locations of the
mic categories /r/ and /l/ (see Figure 2(A)) and required subjects to indicate perceived similarity of st
Results from American adults indicated a perceptual warping around the phonemic categories (sh
Figure 2(B)), whereas the results from Japanese adults did not indicate warping around the catego

First, the model’s response to the input stimuli was tested without training on /r/ and /l/ stimuli.
untrained map is meant to approximate the auditory maps of Japanese listeners, who presumably
train on many instances centered at American English /r/ and /l/. The results of this simulation are sh
Figure 2(C), which plots the “perceptual results” obtained using the population vector to interpre
ensemble of auditory map cell activities. As with the Japanese listeners in the Iverson and Kuhl (
study, no perceptual clustering is seen around the American /r/ and /l/ categories. The model wa
trained with input vectors from Gaussian distributions centered on the left-most stimulus from the m
row of Figure 2 (corresponding to /r/) and the right-most stimulus from the middle row (correspondi
/l/). This simulation corresponds to an American adult, whose auditory map has developed in the pr
of many instances of /r/ and /l/. Interpreting the map activities using the population vector results
warped map shown in Figure 2(D), which shows a remarkable similarity to the results of Iverson and
(1994) for Americans (Figure 2(B)). Most notably, a strong perceptual clustering occurs near the cen
the phonemic categories. Furthermore, as one moves away from the category centers, the pattern
ing seen in the model remains very similar to the pattern seen in the human subjects. A final point o
est from this simulation concerns what happens in the region between the /r/ and /l/ categories. Kuhl
reports that the perceptual distances of Americans were expanded in this area relative to Japanese s
Comparing Figure 2(C) to Figure 2(D) clearly shows that the model also possesses this property
result highlights a reasonable rationale for why evolution would favor a learning process that lead
warped perceptual map: for a limited number of neurons, a warped representation makes it easier to
guish stimuli from different categories at the cost of less behaviorally relevant within-category discrim
tion.

Understanding the model’s performance requires a brief investigation of the effects of training on the
tive weights in the network. It was mentioned earlier that the “preferred stimulus” for a cell in the aud
8
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map is the stimulus that produced an input vector (i.e., formant representation) that was parallel to th
tor of weights projecting to the auditory map cell. A cell’s preferred stimulus vector can thus be equa
its afferent weight vector, and changing the weights during learning therefore changes the distribu
preferred stimuli across F2-F3 space. Kohonen (1982) demonstrated how a self-organizing feature m
allocate the afferent weight vectors of map cells according to the distribution of input patterns used t
the network. This is illustrated for the current model in Figure 3, which shows the distributions of pref
stimuli before training (top) and after training (bottom). The weight vectors before training were ch
randomly from a uniform distribution, as indicated by the relative uniformity of the distribution of p
ferred stimuli over F2-F3 space. Training using inputs distributed around the /r/ and /l/ categories le
peaks in the weight vector distribution at the category centers, as shown in the bottom half of Figure
interesting to note that the neurophysiological study of Recanzone et al. (1993) found similar peaks
distribution of auditory cortex cell firing preferences after repeated training on a small range of tona
quencies, with more than six times as much cortical area devoted to the heavily experienced stim
trained monkeys compared to untrained monkeys.

Now consider what happens if we apply a formant input that is centered directly on the peak corresp
to /r/ in the bottom plot of Figure 3. The population vector of the map’s activities is simply equal to
input vector. This is because the weighted average will have the most inputs from cells whose weig
tors represent this “ideal” /r/, and the contributions of cells tuned to either side of the ideal will essen
cancel out due to the approximate symmetry of the preferred stimulus distribution around the peak

(B)(A)

(D)(C)

FIGURE 2. Simulation of the Iverson and Kuhl (1994) study of perception near /r/ and /l/
categories. (A) The stimuli used to test subjects were evenly spaced (adapted from Kuhl,
1995). (B) Perceptual results when the test stimuli were presented to American subjects in
the Iverson and Kuhl study (adapted from Kuhl, 1995). Stimuli located near the sound
categories were perceived as closer together than stimuli located between categories. (C)
Simulation results when the test stimuli were presented to an untrained network. As
reported by Iverson and Kuhl (1994) for Japanese speakers, the model produces no
systematic warping near the /r/ and /l/ categories. (D) Simulation results when the test
stimuli were presented to a network trained with many American English /r/ and /l/ inputs.
The pattern of perceptual warping is remarkably similar to the warping seen in the
American subjects of Iverson and Kuhl (1994).
9
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“perceptual result” is indicated by the left-most data point in the middle row of Figure 2(D). Next, i
input pattern somewhat to the right of this ideal /r/ in F2-F3 space is applied (i.e., an input with a high
than an ideal /r/), the cells representing this formant vector will be maximally active, but the distributi
somewhat active cells on either side is skewed: there are more somewhat active cells to the left o
cells than to the right. Thus, the weighted average computed by the population vector is skewed to
as well. That is, the population vector is closer to the ideal for the phoneme than the input is. This is
cated by the second cell from the left in the middle row of Figure 2(D), which is closer to the left-m
point than the corresponding input is to the ideal /r/ input. In other words, the network “perceives” the
input to be closer to /r/ than it actually is due to the skewed distribution of weight vectors.

Simulation 2. The second simulation serves mainly to highlight similarities between the current mode
certain aspects of the NLM model of Kuhl. Kuhl (1995) hypothesized that by 6 months of age, infants
built up “stored representations, which reflect the distributional characteristics of the vowels the in
have heard” (p. 135). Schematics of these hypothesized representations from Kuhl (1995) are show
top row of Figure 4 for Swedish infants (left), English infants (center), and Japanese infants (right). G
ian distributions centered at the vowel categories shown in the top row were used to generate t

FIGURE 3. Distribution of the preferred stimuli of auditory map cells over F2-F3 space
before training (top plot) and after training with /r/ and /l/ inputs (bottom plot). The peaks
in the distribution after training correspond to the regions of formant space that were most
heavily experienced during training.
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inputs for three language-specific simulations. The second row shows the preferred stimuli for all ma
after training in the three cases. Here, we see clusters of cells with preferred stimuli near the vowel c
ries; these clusters correspond to peaks in the distribution of preferred stimuli as shown for the two
gory case in Figure 3. It is interesting to note that this distribution of preferred stimuli of auditory
cells, or, equivalently, the distribution of afferent weight vectors, constitutes a stored representatio
reflects the distributional characteristics of the vowels that the network has “heard”, as suggested b
and schematized in the top row of Figure 4. Finally, the third row of Figure 4 shows the perceptual r
when a uniform grid of inputs in formant space is applied to the network. The “stored representation”
ifested by the auditory map cells’ stimulus preferences results in the magnet effect, evidenced by t
guage-specific warping of perceptual space near the vowel categories in the bottom row of Figure 4

Simulation 3. The third simulation looks more closely at the warping of perceptual space near a singl
egory. Kuhl (1991) studied the abilities of adults, six month old infants, and monkeys to discrim

FIGURE 4. (Top row). Schematic of stored vowel representations after exposure to the
native language in a Swedish speaker (left), an English speaker (center), and a Japanese
speaker (right) as hypothesized by Kuhl (adapted from Kuhl, 1995). (Second row.) Locations
of preferred stimuli of auditory map cells in F1-F2 space after training for each of the three
languages. (Third row.) Perceptual results when network is tested with a uniform grid of
inputs in formant space. Perceptual warping is evidenced by the clusters at the vowel
categories for each of the three languages.

F1

F2
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between synthesized vowel stimuli. The results for adult subjects will be addressed here to avoid th
founding problems caused by difficulties in measuring the perceptions of infants. Each trial started b
senting subjects with a referent speech sound once per second. In half of the trials, the speech so
switched at some point to a new sound that was different from the first sound, and in the other h
sound was not changed. Subjects were asked to indicate when they detected a change in the sound
ject was said to generalize if the sound changed but the subject did not respond. The referent sou
either a prototype of the phonemic category /i/ or a non-prototypical sound further away from the cat
center. The test stimuli were located at radii of 1, 2, 3, or 4 steps away from the referent sound (wher
step consisted of a 30 Mel increase in radius from the category center), and the non-prototype r
sound was located at a radius of 4 steps from the prototype referent sound.

Figure 5 shows the results for adult subjects in the Kuhl (1991) study. The top curve represents the p
generalization of stimuli located 1, 2, 3, and 4 steps away from the prototype referent sound, and th
tom curve represents the corresponding results for the non-prototype referent sound.The most salie
acteristic of this study is that subjects were more apt to generalize sounds near the prototype than
near the non-prototype.

In order to simulate this experiment using the current model, one must first come up with a meth
measuring “percent generalization”. The most reasonable choice is to assume that percent genera
varies as some monotonic function of the distance between the referent sound and the test sound in
tual space. Relatedly, Flanagan (1955) measured the ability of subjects to discriminate vowel-like s
as a function of the distance between them in formant space. Two main results are of note from this
(1) the functions relating percent generalization to distance in formant space were typically expone
decaying or slightly sigmoidal in shape, and (2) the exact form of the function varied significantly wit
location of the referent stimulus in formant space. The results in one part of formant space are depi
Figure 6. (Note that Flanagan plots “percent judgments different” rather than percent generalization,
ing in curves that are flipped with respect to the corresponding percent generalization curves.)
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FIGURE 5. Generalization results for adults from the study of Kuhl (1991). Subjects were
much more likely to generalize sounds near a prototypical instance of the /i/ category than
they were to generalize sounds near a non-prototype.
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In keeping with Flanagan’s results, we assume a generalization function that falls off exponentially
distance from the referent sound. The final difficulty we must deal with is finding the exact shape o
function near the /i/ category. Note that one must assume that percent generalization varies as a fun
distance inperceptualspace rather than distance in formant space; otherwise the magnet effect wou
exist at all since equally spaced sounds in formant space would always lead to the same amount of g
ization. However, we do not have a direct measure of a stimulus’s position in perceptual space gi
position in formant space. Therefore, in order to get a reasonable generalization function we assum
perceptual space is relatively unwarped in the region near the non-prototype in Kuhl’s (1991) stud
then defined an exponentially decaying function which passed through the Kuhl (1991) non-prototyp
points shown in Figure 5 (see Appendix for details). Because Kuhl did not plot percent generalizatio
ues for the trials in which the distance between the referent sound and the test sound was zero, w
one final assumption concerning this function, which was that generalization scores are near 100%
the test and referent sounds are the same.

Once we have the function relating percent generalization to perceived distance, the simulation of
(1991) experiment is straightforward. For this simulation a single Gaussian distribution of inputs cen
at the /i/ category was presented during training. The test stimuli of Kuhl (1991) were then applied
network and percent generalization was calculated based on perceived distance using the expon
decaying function described above. The results of this simulation are shown in Figure 7, along with K
(1991) results. Again, the model produces a very accurate fit to the psychophysical results.

A paradoxical aspect of the magnet effect.We conclude this section with a brief investigation of a see
ingly paradoxical attribute of the magnet effect that has not been treated by previous models: unli
results of many other studies which show better discrimination for heavily experienced stimuli
Prosen, Moody, Sommers, and Stebbins, 1990; Recanzone et al., 1993; Zwislocki, Maire, Feldma
Rubin, 1958), discrimination isworsefor heavily experienced vowel stimuli (i.e., those near vowel ca

FIGURE 6. Function relating the discriminability of two vowel-like sounds to frequency
differences in one region of formant space (adapted from Flanagan, 1955).]
13



arger
ssion
orse

larger
in the

artz, and

nation,
pace
ividual
lation
mber of
shown
odel

educes
center
nce to
)

ar-
e pre-
f this
, there-
arply
Magnet Effect and Neural Maps

gory centers) than for less frequently experienced vowel stimuli. Furthermore, it is quite likely that l
cortical areas are devoted to prototypical vowel stimuli than non-prototypical vowel stimuli (see discu
of neurophysiological studies of sensory map formation in Section 2). The fact that discrimination is w
for more prototypical vowels is thus apparently at odds with neurophysiological data indicating that
areas of cortical representation are typically accompanied by increased discrimination capabilities
somatosensory system (e.g., Penfield and Rasmussen, 1950), visual system (e.g., Kandel, Schw
Jessell, 1991) and auditory system (e.g., Recanzone et al., 1993).

The current model provides a potential explanation for this phenomenon. To understand this expla
first note that it is very likely that the larger the number of cells devoted to a particular region of input s
in a neural map, the more tolerant the neural representation will be to noise in the responses of ind
cells in this region. This is supported by modeling studies indicating that the susceptibility of a popu
vector representation to random variations in the responses of individual cells decreases as the nu
cells increases (e.g., Vogels, 1990; Zohary, 1992). In contrast, the simulations in this section have
that the peak in the distribution of cell firing preferences at the center of a vowel category in the m
leads to a warping of the population vector representation toward the category center, which in turn r
discriminability near the category center. Thus, the larger number of cells devoted to stimuli near the
of a vowel category may contribute to two competing effects: (1) an increase in the system’s tolera
noise in individual cells that contributes to anincreasein discriminability near the category center, and (2
a magnet effect that contributes to adecreasein discriminability near the category center. As described e
lier, the magnet effect occurs in the model due to an asymmetry in the number of active cells whos
ferred stimuli fall near the probe stimulus. Figure 8 schematizes this and highlights an implication o
hypothesis: the more sharply peaked the distribution, the greater the asymmetry along the slope, and
fore, the more the percept of a stimulus will be warped toward the peak. In other words, more sh
peaked distributions produce stronger magnet effects.
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FIGURE 7. Comparison of the model’s generalization properties after learning (solid lines)
to the results of Kuhl (1991) for adult subjects (dashed lines).
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This property leads to a hypothesis regarding the apparent paradoxes mentioned above. The m
peaked nature of the distribution of vowel sounds in a language may lead to a neural map with a di
tion of preferred stimuli that is more sharply peaked than the distributions of cells in neural maps
senting other, less “categorical” stimuli, and these sharper peaks would result in much stronger m
effects. The distortion due to these stronger magnet effects may overcome the tendency for better d
nation due to the noise tolerance that accompanies larger cortical representations. The formation o
maps with this property also makes sense from a behavioral standpoint: when allocating neural res
to stimuli that fall into natural categories like vowels, it is typically more important to do so in a way
allows better discrimination between categories than within a category. Future research will further e
this hypothesis.

4.  Concluding Remarks

This paper proposes a model of the perceptual magnet effect that is formulated as a neural ne
thereby allowing the interpretation of psychological descriptions of the magnet effect in terms of the
erties of neural systems. Kuhl and others have described the magnet effect as involving a stored rep
tion of a category prototype, i.e., an exemplar whose perceptually measured goodness is maximal
category. This prototype serves as a sort of anchor whose functional role as a perceptual magnet s
strengthen category cohesiveness (e.g. Kuhl, 1991, p. 99). In the current account, the “stored repr
tion” of vowels is simply the set of synaptic weights projecting to the auditory map cells. “Category p
types” are stimuli located at the peaks in the distribution of map cell firing preferences (see Figu
which in turn reflect peaks in the distribution of sounds in a particular language. Category “goodnes
be equated to the number of cells in the map which are preferentially activated by an exemplar, w
prototype preferentially activating the most cells of any stimulus in the region of formant space surr
ing a phonemic category. The “magnet effect” itself is a warping of perceptual space resulting from a
uniform distribution of the preferred stimuli of map cells, and “category cohesiveness” describe

PROBE
STIMULUS

RANGE OF
ACTIVE CELLS

FIGURE 8. The magnet effect arises in the model due to an asymmetry in the number of
active cells whose preferred stimuli fall on either side of a probe stimulus. (A) For a broadly
peaked distribution of preferred stimuli, the number of active cells closer to peak (i.e., to the
right of the probe) is only moderately larger than the number of active cells further away
from the peak. This leads to a moderate warping of the population vector toward the peak,
corresponding to a moderate magnet effect. (B) For a more sharply peaked distribution the
asymmetry is greater, resulting in a much larger magnet effect.

(B)(A)
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psychological result of the multiply peaked form of this nonuniformity: inputs near the peaks of the d
bution are perceived as closer together than inputs near the valleys.

Numerical simulations illustrate the model’s ability to explain general characteristics of the magnet
and accurately reproduce specific psychophysical data. Although the model contains a relatively
number of cells and synaptic weights, only three free parameters were available to fit the data: the le
rate , the neighborhood size L, and the variance of the Gaussian distributions used to generate th
ing inputs. Furthermore, all simulations used the same values of and Gaussian variance; only the
borhood size L was changed slightly between simulations 1 and 2, owing to the differing numb
auditory map cells in these simulations. The function used to translate distance in perceptual space
cent generalization provided some additional fitting power for the third simulation, but this function w
fact very constrained by existing data: an exponential function was chosen to match the form of Flan
(1955) data, and the exponential was constrained to pass through the non-prototype data points
(1991). Despite the model’s simplicity, it captures the salient known aspects of the magnet effect
shrinking of perceptual space near phonemic category centers, an expansion of perceptual space aw
centers, and language-specificity in this warping), and it provides close fits to the psychophysical res
Kuhl (1991) and Iverson and Kuhl (1994). The model also requires no assumptions about the abili
infants to identify sounds as members of linguistic categories and therefore has no trouble explainin
the magnet effect is evident in six month old infants.

This model is envisioned as a component of a larger computational modeling framework of speech
opment, perception, and production called DIVA (Guenther, 1994, 1995a,b). The DIVA model po
direct link between perception and production during babbling that leads to the formation of speech
targets that take the form of regions in a speech planning space. Placing the current work within the c
of DIVA suggests a scenario in which the sharpening of perceptual representations of phonemic cate
inherent to the current model due to the sharpening of the peaks in the distribution of preferred stim
auditory map cells, leads to a progressive sharpening of the production target regions for these sam
gories. A similar link between perception and production has been hypothesized by Kuhl and Me
(1995) and gains some support from their study showing that repeated exposure to a particular vowe
to increased productions of that vowel during babbling in infants as young as 12-20 weeks of age.
issues will be investigated further in future work that will incorporate the current model into the D
framework.

The model described in this article proposes that the perceptual magnet effect arises as a natura
quence of the formation of neural maps in the auditory system. The model’s simplicity stems from its
ance on only two fundamental hypotheses, both of which are supported by a variety of neurophysio
and computational studies: (1) sensory experience leads to language-specific nonuniformities in the
bution of the firing preferences of cells in an auditory map, and (2) the population vector can be u
predict psychological phenomena based on the pattern of cell activities in this map. By fusing con
from neurosocience and psychology, this study expands the research opportunities for examining th
net effect. It is hoped that continued work bridging these fields will lead to a more complete understa
of the processes underlying speech development, perception and production.

Appendix: Simulation Parameters

The following parameter values were used for all simulations: , = 100 mels,
1100 mels, = 200 mels, = 2200 mels, = 300 mels, and = 3300 mels.
each phonemic category, the training inputs were chosen from a Gaussian distribution whose me
chosen to coincide with the phonemic category center as indicated by the original experiments. Th

α
α

α 0.04= F1 MIN F1 MAX
F2 MIN F2 MAX F3 MIN F3 MAX
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ances of the Gaussians were 20 mels in the F1 dimension, 40 mels in the F2 dimension, and 60 me
F3 dimension. The covariances of the Gaussians were zero.

The auditory map for simulation 1 consisted of 500 cells. The neighborhood L started at 35 cell
decreased linearly to 1 cell during training. A neighborhood of 30 cells was used to test the networ
auditory map for simulations 2 and 3 consisted of 1500 cells. L started at 40 and decreased linear
during training. A neighborhood of 35 cells was used to test the network.

Because training inputs were chosen from Gaussian distributions which have unlimited extent, it wa
sible to generate a very small percentage of inputs whose formant values were outside the formant
defined by the and values. When this occurred, the offending input was removed from
training set.

The function relating percent generalization to perceptual distance in simulation 3 was:

whered is the perceptual distance between two inputs measured in 30 mel steps. For example, if the
ence between the population vector values produced by the model for two inputs was 30 mels, thend = 1,
as in the Kuhl (1991) data plots reproduced in Figures 5 and 7. As described in Section 3, the expo
form of this equation was chosen to qualitatively match the results of Flanagan (1955), and a quartic
nential was chosen to insure that the function passed exactly through all four non-prototype data
from the Kuhl (1991) study.
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