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ABSTRACT

The perceptual magnet effect is one of the earliest known language-specific phenomena arising in infant
speech development. The effect is characterized by a warping of perceptual space near phonemic category
centers. Previous explanations have been formulated within the theoretical framework of cognitive psy-
chology. The model proposed in this paper builds on research from both psychology and neuroscience in
working toward a more complete account of the effect. The model embodies two principal hypotheses sup-
ported by considerable experimental and theoretical research from the neuroscience literature: (1) sensory
experience guides language-specific development of an auditory neural map, and (2) a population vector
can predict psychological phenomena based on map cell activities. These hypotheses are realized in a self-
organizing neural network model. The magnet effect arises in the model from language-specific nonunifor-
mities in the distribution of map cell firing preferences. Numerical simulations verify that the model cap-
tures the known general characteristics of the magnet effect and provides accurate fits to specific
psychophysical data.
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1. Introduction

Theperceptual magnet effe@ituhl, 1991) is one of the most actively discussed topics in the recent speech
perception literature (e.g., Davis and Kuhl, 1994; Fox, Flege, and Munro, 1995; Iverson, Diesch, Siebert,
and Kuhl, 1994, Ilverson and Kuhl, 1994, 1995; Kuhl, 1991, 1995; Kuhl, Williams, Lacerda, Stevens, and
Lindblom, 1992; Lacerda, 1995; Polka, 1995; Sussman and Lauckner-Morano, 1995). Roughly speaking,
the effect is characterized by a warping of perceptual space such that acoustic patterns near phonemic cate-
gory centers are perceived as closer together than equally spaced acoustic patterns that are further away
from phonemic category centers. Because the effect is language-specific, it is assumed that newborn
infants will not show the effect (although other, language-independent biases might exist at birth; see
Polka, 1995), but by six months of age a language-specific magnet effect arises (Kuhl, 1991; Kuhl et al.,
1992) and is apparently maintained through adulthood (Kuhl, 1991).

Previous attempts to explain this effect have typically been formulated within the theoretical framework of
cognitive psychology. Kuhl (1995) proposes a native language magnet (NLM) model of infant perceptual
development that includes an account of the magnet effect. Kuhl's account assumes that a phonetic “proto-
type” for each sound category exists in memory and plays a unique role in speech perception: it functions
like a “perceptual magnet” for other sounds in the category that “attracts” these sounds so that they sound
more similar to the prototype itself. The explanation put forth by Lacerda (1995) suggests that the effect
occurs as an emergent property of an exemplar-based categorization process. Infants store exemplars of
each category and compare new inputs to these exemplars. The perceived distance between two inputs is
related to the relative number of exemplars from different categories in the immediate neighborhoods of
the inputs. Lacerda’s model assumes no special prototype (cf. Kuhl's explanation) and magnet effect prop-
erties arise due to the distribution of examples that the infant experiences.

In contrast to these psychological explanations, this article provides an explanation for the magnet effect
using tools from computational neuroscience. This explanation arises from natural extensions of neural
principles used to study other sensory and motor modalities in the brain. The claim is that the magnet effect
is a simple consequence of the formation of neural maps in the auditory system. These maps are assumed
to develop according to the same principles believed to be involved in map formation for other modalities
such as vision (e.g., Grossberg, 1976; Kohonen, 1982; von der Malsburg, 1973) and somatic sense (e.g.,
Gaudiano, Olson, Tal, and Fischl, 1993; Pearson, Finkel, and Edelman, 1987; Sutton, Reggia, Armentrout,
and D’Autrechy, 1994). In this account, exposure to a particular language leads to nonuniformities in the
distribution of the firing preferences of map cells, and this nonuniformity leads to the magnet effect. It is
further hypothesized that a second well-known theoretical tool from neurosciengepbktion vector
(Georgopoulos, Caminiti, Kalaska, and Massey, 1983; Georgopoulos, Kalaska, Crutcher, Caminiti, and
Massey, 1984), can be used to predict psychological events based on the cell activities of the auditory map.
Because this account posits explanations for the nature of memory and perception in terms of the proper-
ties of neural systems, it also represents an attempt at a direct linkage of concepts from cognitive psychol-
ogy to concepts from neuroscience.

Although the current work can in some respects be interpreted as a neuroscientific account of Kuhl's
(1991, 1995) magnet effect explanation (see Section 3) and, to a lesser degree, Lacerda’s (1995) model,
many important differences exist. Like the explanations of Kuhl and Lacerda, the current model assumes
that the magnet effect is related to the distribution of speech sounds experienced by an infant in the first
stages of life. In contrast with Kuhl's explanation, however, stored category prototypes do not play a direct
or special role in the current model’s account of the magnet effect. Instead, perceptual warping occurs due
to nonuniformities in the distribution of firing preferences of cells in an auditory neural map, which in turn
are the result of nonuniformities in the distributions of sounds experienced by the infant. The current model
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is similar to Lacerda’s model in that no special prototype is needed to explain the effect, but the two models
differ in many other aspects. First, Lacerda’s explanation requires that the infalableded exemplars;

that is, the infant must know the category to which each stored sound belongs. An explanation that does not
require linguistic category knowledge probably better captures the phenomenon when one considers that
the effect is already present by six months of age, likely before infants have developed awareness of pho-
nemes as linguistic units (Kuhl, 1995). The current explanation does not require any knowledge of the lin-
guistic categories of experienced sounds; exposure tatttistical distributionof sounds in the native
language is all that is needed to produce the effect. Thus, the magnet effect is treated as a simple perceptual
phenomenon rather than a higher-level phenomenon involving linguistic categories. Second, Lacerda
assumes that experienced sounds are stored in memory individually. This explanation becomes cumber-
some when one realizes that infants have likely experienced hundreds of thousands of vowels by six
months of age (Kuhl, 1995), suggesting that an increasingly large amount of memory must be devoted to
the process of vowel perception. In the current explanation, however, inputs are not stored explicitly but
instead modify the firing preferences of a fixed humber of cells in a neural map. The distribution of the
experienced inputs affects the distribution of these firing preferences, but memory requirements do not
increase with the number of experienced sounds since the number of cells and synaptic weights used in the
map are fixed. Third, Lacerda’s model uses rather complex calculations to determine category membership
and perceived distance. In the current model, however, the effect arises from calculations that are believed
by many to be basic properties of neural systems.

The next section describes the model and motivates its two main assumptions: (1) language-specific audi-
tory experience leads to a nonuniform auditory map, and (2) the population vector provides a means for
predicting perceptual effects from neural activities in this map. In Section 3, numerical simulations are
used to show that the model captures the main known aspects of the magnet effect, including a shrinking of
perceptual space near phonemic category centers (Kuhl, 1991), an expansion of perceptual space away
from centers (Kuhl, 1995), and language-specificity in this warping (Kuhl et al., 1992). The simulation
results reported in this section include accurate fits to data from psychophysical studies of the magnet
effect. This section also includes a discussion of an apparently paradoxical aspect of the magnet effect
highlighted by the current model: unlike the results of many other studies which show better discrimination
for heavily experienced stimuli, the magnet effect is characterizaeddrgediscrimination for more typi-

cal vowel stimuli. Finally, Section 4 relates a magnet effect description in psychological terms to the cur-
rent model’s description in neuroscientific terms and places the model in the context of a larger modeling
framework of speech development and production called DIVA (Guenther, 1994, 1995a,b).

2. Model Description

A schematic view of the model is provided in Figure 1. The model uses two layers of neurons, referred to
as the formant representation and the auditory map, connected by a set of adaptive weights. For clarity,
only a subset of the pathways projecting from the formant representation to the auditory map are shown;
however, all formant representation cells project to all auditory map cells in the actual implementation.
Similarly, the competitive interactions implied by the inhibitory connections (marked by “-” signs) are
assumed to occur between all cells in the map. These competitive interactions are not explicitly modeled
but are instead subsumed in the auditory map cell firing properties as discussed below.

Formant Representation. The model assumes that peripheral auditory processing yields a neural repre-
sentation of the formant values of speech sounds. The simulations reported here used formants measured in
mels; nearly identical results were obtained in unreported simulations using formants in Hertz. A normal-
ized, agonist-antagonist neural representation was used for each formant. Specifically, the neural represen-
tation of the formants for a sound was defined as follows:
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FIGURE 1. Schematic of the model. Input sound patterns activate cells at the formant
representation level. These cells project through adaptive synaptic weights to cells in an
auditory map. The adaptive weights determine the firing preferences of cells in the auditory
map. During early exposure to sounds from a particular language, these weights self-
organize such that the distribution of firing preferences of auditory map cells reflects the
distribution of sounds in the language. The non-uniformity of this distribution of map cell
firing preferences leads to the magnet effect in the model.
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where the index indicates the formant number;’ amgd are the activities of the antagonistically paired
cells coding thé™ formant, F; is the value of th&" formant in Mels or HertzF; , is the minimum

value of thei! formant in the simulations, and; \,ax is the maximum value ofithérmant. The con-
stantsF, ,,y and; yax are parameters that insure that the cell actixities x;and  vary between 0 and
1. (All parameter values used in the simulations are reported in the Appendix.) Each simulation used only
two formants, either F1 and F2 or F2 and F3.

The normalized, agonist-antagonist formant representation of Equation 1 was chosen to insure that the
total activity in the formant representation was the same regardless of the formant values of the input
sound. For example, a low value of F1 leads to a small valué; of andalarge vatye of , whereas a high
value of F1 leads to a large value &  and a small valuecpf . If the antagonistgells  were not
included, input sounds with low formants would not produce much activity in the formant representation,
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and this would lead to an undesirable bias in the learning process described below. Agonist-antagonist neu-
ral representations are common in biological nervous systems.

It is important to note that similar results would be expected for many different neural representations of
formant values. For example, von der Malsburg (1973), Pearson et al. (1987), and Sutton et al. (1994)
describe self-organizing neural maps that use very different input representations from the one used here. It
is further expected that the main results reported herein will hold with input representations that include
more than the first two formants; this limited representation was used to simplify the simulations and
graphical presentation of simulation results.

Auditory Map. In keeping with most models in the neural network literature, the input to each cell in the
auditory map is calculated as the dot product of the input vector (i.e., the neural representation of formant
values) and the vector of weights projecting to the map cell. When an input is received, the L cells in the
map with the largest input are allowed to remain active, and the activities of all other nodes in the map are
set to zero. This process approximates the effects of competitive interactions between map cells (Gross-
berg, 1976; Kohonen, 1982; von der Malsburg, 1973), and the inhibitory synaptic connections believed to
mediate this type of competition are seen in primary sensory areas of cortex, including auditory cortex,
somatosensory cortex, and visual cortex (Kandel, Schwartz, and Jessell, 1991). During training, L is a
monotonically decreasing function of time, as implemented in the self-organizing feature map of Kohonen
(1982). When testing the network, a fixed value of L is used. The activity levels of the L map cells with the
largest input are assumed to be proportional to the sizes of their inputs:

Zx, z”+xz

K @
WheremJ is the activity of théh map cell,zj andz; are modifiable synaptic weights projecting from the
antagonlstlc cell pair of the formant representatlon tq‘fhmap cell, andM is the number of cells in the
map.

The learning process used to adjust the synaptic weights between formant representation cells and cells in
the auditory map is defined by the following “instar” learning equation (Grossberg, 1969):

®3)

wherea is a learning rate parameter. This is essentially the same learning law that is used in many other
models of map formation, including the models of von der Malsburg (1973), Grossberg (1976), and
Kohonen (1982). Nearly identical learning laws have also been put forth by neurophysiologists to explain
observed synaptic strength changes in areas such as visual cortex (Rauschecker and Singer, 1979, 1981)
and hippocampus (Levy and Steward, 1979); see Levy and Desmond (1985) for a short review.

One key property of this model is that the distribution of firing preferences of auditory map cells comes to
reflect the distribution of the inputs used to train the model (see Kohonen, 1982), which in turn reflect the
distribution of sounds in a particular language. This represents one of the two main hypotheses embodied
by the model, and in Section 3 we will see how this property leads to the magnet effect in model simula-
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tions. Such experience-based nonuniformities in the distribution of cell firing preferences have been identi-
fied by neurophysiologists studying sensory maps in several different modalities. Probably the most well-
known examples of this phenomenon come from studies of visual cortex. For example, limiting visual
experience to one eye in kittens leads to many more cells in V1 devoted to the working eye than in normal
kittens (Wiesel and Hubel, 1963). Studies of kittens reared in an environment consisting only of contours
oriented in one direction (e.g., vertical stripes) indicate that more cells become tuned to the heavily experi-
enced stimulus than to contours of other orientations (e.g., Rauschecker and Singer, 1981). Several neural
network models utilizing competitive interactions in neural maps similar to the model proposed here have
been used to explain many of these results (e.g., Grossberg, 1976; Kohonen, 1982; von der Malsburg,
1973). Analogous neurophysiological results have been found in somatosensory cortex, where topographic
map reorganization results from peripheral nerve damage (Kaas, Merzenich, and Killackey, 1983) or pref-
erential stimulation of certain digits (Jenkins, Merzenich, and Ochs, 1984; Jenkins, Merzenich, Ochs,
Allard, and Guic-Robles, 1990). Again, several neural models using competitive learning have been pro-
posed to explain these data (e.g., Gaudiano et al., 1993; Pearson et al., 1987; Sutton et al., 1994). More-
over, studies from auditory cortex, more relevant to the current model, have shown similar results.
Reorganization of auditory cortex topography after partial cochlear lesions has been reported in guinea
pigs (Robertson and Irvine, 1989) and cats (Irvine, Rajan, Wize, and Heil, 1991), and Recanzone,
Schreiner, and Merzenich (1993) showed that repeated exposure to tones in a particular frequency range
during learning of a discrimination task in owl monkeys resulted in an increase in the number of auditory
cortex cells tuned to the trained frequency. The current model’s hypothesis that the distribution of auditory
map cell firing preferences reflects the distribution of sounds in an infant’s native language is very much in
keeping with these results.

The Population Vector. After the model described in the preceding paragraphs is trained by exposure to a
set of sounds approximating the distribution of sounds in a particular language, we are left with the prob-
lem of interpreting map cell activities in perceptual terms. The second major hypothesis of the current
model is that a population vector (e.g., Georgopoulos et al., 1983, 1984) can be used to predict psycholog-
ical phenomena from the pattern of neural activities in this map. This population vector is calculated as fol-
lows. Each cell in the current model’s auditory map will be maximally activated by a particular vector in
formant space (e.g., a particular F1-F2 pair). This formant vector is the one whose neural representation at
the first stage of the model is parallel to the vector of weights projecting to the auditory map cell. This is
clear when one considers that the input to each map cell is the dot product of the neural representation vec-
tor and the cell’'s afferent weight vector, and the dot product of two vectors is maximal when the angle
between them is zero. The formant vector that maximally activatejg‘theditory map cell will be referred

to as itspreferred stimulugnd denoted ab; . It is assumed that the perceived sound can be derived from
the pattern of cell activities at the auditory map using the following population vector equation:

%
N > M

Fperceived = (4)
2.,
J

Population vectors of this form have been used by neuroscientists to predict behavioral and psychological
phenomena from the ensemble of cell firing rates in a neural map. The population vector was originally
formulated to interpret single cell recording data from the arm map region of motor cortex in monkeys per-
forming reaches to targets (Georgopoulos et al., 1983, 1984). In these studies, a preferred movement direc-
tion is calculated for each cell by finding the spatial movement direction which results in maximal firing of
the cell. The firing levels of many cells are measured while producing the same spatial reach. The popula-
tion vector is calculated by multiplying each cell’s firing rate by it's preferred direction vector, then sum-
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ming this quantity over all the cells. The resulting vector has been shown to point in the direction of the
actual movement with significant accuracy (e.g., Georgopoulos et al., 1984; Georgopoulos, Kettner, and
Schwartz, 1988). The population vector has been similarly used to study cell responses related to reaching
in premotor cortex and Area 5 of posterior parietal cortex; see Kalaska and Crammond (1992) for a recent
review.

Why do these population vector analyses work? To provide one possible answer to this, it is useful to con-
sider models of motor cortical function during reaching movements. In two recent neural network accounts
of reaching (Bullock, Grossberg, and Guenther, 1993; Burnod et al., 1992), it is assumed that motor corti-
cal cells are activated by upstream mechanisms coding the desired spatial direction of movement, and the
contribution of each motor cortical cell to downstream mechanisms that command joint rotations is a vec-
tor in joint velocity space that would move the hand in the desired spatial direction. The net effect of all
active motor cortical cells is summed at the cells commanding joint rotations, with the size of a motor cor-
tical cell's contribution being proportional to its firing rate. In these models, therefore, the joint rotations
that move the arm are formed as a weighted average of the contributions of the motor cortical cells in a
manner very similar to the weighted averaging that produces the population vector.

Since the landmark reaching studies of Georgopoulos and colleagues, the population vector has been used
to interpret activity patterns across neuronal populations during many different tasks in many different
modalities. Schwartz (1994) showed that the population vector could be used to accurately reconstruct spi-
ral drawing movements from the activities of a population of cells in motor cortex. Lee, Rohrer, and Sparks
(1988) used a population vector to interpret the coding of eye movements by superior colliculus neurons.
Georgopoulos, Lurito, Petrides, Schwartz, and Massey (1989) used a population vector analysis to demon-
strate the well-known psychological phenomenon called mental rotation (Shephard and Metzler, 1971). In
this study, monkeys were required to move in a direction differing by 90 degrees from the direction indi-
cated by lights in a target array. Georgopoulos et al. showed that the motor cortex population vector starts
out pointing in the direction of the target light, then rotates through 90 degrees just before movement onset
to point in the direction of the actual movement. The population vector has also been used to study sensory
systems. Hess (1992) demonstrated that head orientation can be obtained by population vector analysis of
the activities of otolith afferent signals. Steinmetz, Motter, Duffy, and Mountcastle (1987) interpreted the
activities of visual neurons in parietal cortex using a population vector. Vogels (1990) showed that a popu-
lation vector analysis of visual cortex neurons can achieve an accuracy of line orientation discrimination
that is as good as behaviorally measured just noticeable differences, even with broadly tuned cells with
large response variabilities. Zohary (1992) extended this work in a modeling study showing that a popula-
tion vector analysis could accurately extract information about a single stimulus dimension, although the
response of a single visual cortical cell could not reliably be used to extract this information due to the fact
that many stimulus dimensions are coded by each cell.

In summary, the two main hypotheses embodied by the current model receive significant support from var-
ious studies in the computational neuroscience literature. The hypothesis that linguistic experience results
in nonuniformities in the firing preferences of cells in an auditory map is supported by a large number of
neurophysiological studies of auditory, somatosensory, and visual cortices, and many neural models simi-
lar to the one posited here have been used to explain this phenomenon. The hypothesized utility of the pop-
ulation vector for predicting psychological phenomena from the ensemble of cell activities in a neural map
is also supported by several neurophysiological and modeling studies of different tasks in different modal-
ities. The next section provides further support for these hypotheses through model simulations that yield
close fits to results from psychophysical studies of the magnet effect.
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3. Simulations

The model defined in the preceding section was implemented in computer simulations, and its performance
was compared to the results of several psychophysical studies of the perceptual magnet effect. Random ini-
tial weight vectors chosen from a uniform distribution over the input space were used in all simulations.
The model was then trained with formant input vectors chosen from Gaussian distributions centered on
phonetic categories (see Appendix for details). Between 400 and 1000 inputs from each category were
used to train the network for each simulation. Gaussian distributions with zero covariance were chosen for
simplicity; qualitatively similar results to those reported here were obtained for a wide range of parameter
choices, and similar results would also be expected for many single-peaked distributions other than Gauss-
ian distributions with zero covariance. It is important to note that the model self-organizes given only the
input vectors without any information regarding their category membership; i.e., the input vectors are not
labeled according to which phonetic category they belong. Within this explanation, therefore, it is not nec-
essary for an infant to be capable of identifying sounds as members of phonetic categories in order to
develop the magnet effect.

Simulation 1. The first simulation investigated a study of stimulus discrimination in Japanese and English
adult listeners when presented with stimuli in or near the American English phonemic categories /r/ and /l/,
as reported in Iverson and Kuhl (1994) and Kuhl (1995). (The English /r/ and /I/ categories do not have
direct correlates in Japanese.) The input stimuli, psychophysical results, and model results are shown in
Figure 2. This study used stimuli that were evenly spaced in F2-F3 space near the locations of the phone-
mic categories /r/ and /I/ (see Figure 2(A)) and required subjects to indicate perceived similarity of stimuli.
Results from American adults indicated a perceptual warping around the phonemic categories (shown in
Figure 2(B)), whereas the results from Japanese adults did not indicate warping around the categories.

First, the model’'s response to the input stimuli was tested without training on /r/ and /I/ stimuli. The
untrained map is meant to approximate the auditory maps of Japanese listeners, who presumably do not
train on many instances centered at American English /r/ and /l/. The results of this simulation are shown in
Figure 2(C), which plots the “perceptual results” obtained using the population vector to interpret the
ensemble of auditory map cell activities. As with the Japanese listeners in the Ilverson and Kuhl (1994)
study, no perceptual clustering is seen around the American /r/ and /I/ categories. The model was then
trained with input vectors from Gaussian distributions centered on the left-most stimulus from the middle
row of Figure 2 (corresponding to /r/) and the right-most stimulus from the middle row (corresponding to
/IN). This simulation corresponds to an American adult, whose auditory map has developed in the presence
of many instances of /r/ and /I/. Interpreting the map activities using the population vector results in the
warped map shown in Figure 2(D), which shows a remarkable similarity to the results of lverson and Kuhl
(1994) for Americans (Figure 2(B)). Most notably, a strong perceptual clustering occurs near the centers of
the phonemic categories. Furthermore, as one moves away from the category centers, the pattern of warp-
ing seen in the model remains very similar to the pattern seen in the human subjects. A final point of inter-
est from this simulation concerns what happens in the region between the /r/ and /I/ categories. Kuhl (1995)
reports that the perceptual distances of Americans were expanded in this area relative to Japanese speakers.
Comparing Figure 2(C) to Figure 2(D) clearly shows that the model also possesses this property. This
result highlights a reasonable rationale for why evolution would favor a learning process that leads to a
warped perceptual map: for a limited number of neurons, a warped representation makes it easier to distin-
guish stimuli from different categories at the cost of less behaviorally relevant within-category discrimina-
tion.

Understanding the model’'s performance requires a brief investigation of the effects of training on the adap-
tive weights in the network. It was mentioned earlier that the “preferred stimulus” for a cell in the auditory
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FIGURE 2. Simulation of the Iverson and Kuhl (1994) study of perception near /r/ and /I/

categories. (A) The stimuli used to test subjects were evenly spaced (adapted from Kuhl,

1995). (B) Perceptual results when the test stimuli were presented to American subjects in

the Iverson and Kuhl study (adapted from Kuhl, 1995). Stimuli located near the sound

categories were perceived as closer together than stimuli located between categories. (C)

Simulation results when the test stimuli were presented to an untrained network. As

reported by Iverson and Kuhl (1994) for Japanese speakers, the model produces no

systematic warping near the /r/ and /I/ categories. (D) Simulation results when the test

stimuli were presented to a network trained with many American English /r/ and /I/ inputs.

The pattern of perceptual warping is remarkably similar to the warping seen in the

American subjects of Iverson and Kuhl (1994).
map is the stimulus that produced an input vector (i.e., formant representation) that was parallel to the vec-
tor of weights projecting to the auditory map cell. A cell’'s preferred stimulus vector can thus be equated to
its afferent weight vector, and changing the weights during learning therefore changes the distribution of
preferred stimuli across F2-F3 space. Kohonen (1982) demonstrated how a self-organizing feature map can
allocate the afferent weight vectors of map cells according to the distribution of input patterns used to train
the network. This is illustrated for the current model in Figure 3, which shows the distributions of preferred
stimuli before training (top) and after training (bottom). The weight vectors before training were chosen
randomly from a uniform distribution, as indicated by the relative uniformity of the distribution of pre-
ferred stimuli over F2-F3 space. Training using inputs distributed around the /r/ and /I/ categories leads to
peaks in the weight vector distribution at the category centers, as shown in the bottom half of Figure 3. Itis
interesting to note that the neurophysiological study of Recanzone et al. (1993) found similar peaks in the
distribution of auditory cortex cell firing preferences after repeated training on a small range of tonal fre-
guencies, with more than six times as much cortical area devoted to the heavily experienced stimuli in

trained monkeys compared to untrained monkeys.

Now consider what happens if we apply a formant input that is centered directly on the peak corresponding
to /r/ in the bottom plot of Figure 3. The population vector of the map’s activities is simply equal to the
input vector. This is because the weighted average will have the most inputs from cells whose weight vec-
tors represent this “ideal” /r/, and the contributions of cells tuned to either side of the ideal will essentially
cancel out due to the approximate symmetry of the preferred stimulus distribution around the peak. This
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FIGURE 3. Distribution of the preferred stimuli of auditory map cells over F2-F3 space
before training (top plot) and after training with /r/ and /I/ inputs (bottom plot). The peaks
in the distribution after training correspond to the regions of formant space that were most
heavily experienced during training.

“perceptual result” is indicated by the left-most data point in the middle row of Figure 2(D). Next, if an
input pattern somewhat to the right of this ideal /r/ in F2-F3 space is applied (i.e., an input with a higher F3
than an ideal /r/), the cells representing this formant vector will be maximally active, but the distribution of
somewhat active cells on either side is skewed: there are more somewhat active cells to the left of these
cells than to the right. Thus, the weighted average computed by the population vector is skewed to the left
as well. That is, the population vector is closer to the ideal for the phoneme than the input is. This is indi-
cated by the second cell from the left in the middle row of Figure 2(D), which is closer to the left-most
point than the corresponding input is to the ideal /r/ input. In other words, the network “perceives” the new
input to be closer to /r/ than it actually is due to the skewed distribution of weight vectors.

Simulation 2. The second simulation serves mainly to highlight similarities between the current model and
certain aspects of the NLM model of Kuhl. Kuhl (1995) hypothesized that by 6 months of age, infants have
built up “stored representations, which reflect the distributional characteristics of the vowels the infants
have heard” (p. 135). Schematics of these hypothesized representations from Kuhl (1995) are shown in the
top row of Figure 4 for Swedish infants (left), English infants (center), and Japanese infants (right). Gauss-
ian distributions centered at the vowel categories shown in the top row were used to generate training
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inputs for three language-specific simulations. The second row shows the preferred stimuli for all map cells
after training in the three cases. Here, we see clusters of cells with preferred stimuli near the vowel catego-
ries; these clusters correspond to peaks in the distribution of preferred stimuli as shown for the two-cate-
gory case in Figure 3. It is interesting to note that this distribution of preferred stimuli of auditory map
cells, or, equivalently, the distribution of afferent weight vectors, constitutes a stored representation that
reflects the distributional characteristics of the vowels that the network has “heard”, as suggested by Kuhl
and schematized in the top row of Figure 4. Finally, the third row of Figure 4 shows the perceptual results
when a uniform grid of inputs in formant space is applied to the network. The “stored representation” man-
ifested by the auditory map cells’ stimulus preferences results in the magnet effect, evidenced by the lan-
guage-specific warping of perceptual space near the vowel categories in the bottom row of Figure 4.
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FIGURE 4. (Top row). Schematic of stored vowel representations after exposure to the
native language in a Swedish speaker (left), an English speaker (center), and a Japanese
speaker (right) as hypothesized by Kuhl (adapted from Kuhl, 1995). (Second row.) Locations
of preferred stimuli of auditory map cells in F1-F2 space after training for each of the three
languages. (Third row.) Perceptual results when network is tested with a uniform grid of
inputs in formant space. Perceptual warping is evidenced by the clusters at the vowel
categories for each of the three languages.

Simulation 3. The third simulation looks more closely at the warping of perceptual space near a single cat-
egory. Kuhl (1991) studied the abilities of adults, six month old infants, and monkeys to discriminate
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between synthesized vowel stimuli. The results for adult subjects will be addressed here to avoid the con-
founding problems caused by difficulties in measuring the perceptions of infants. Each trial started by pre-
senting subjects with a referent speech sound once per second. In half of the trials, the speech sound was
switched at some point to a new sound that was different from the first sound, and in the other half the
sound was not changed. Subjects were asked to indicate when they detected a change in the sound. A sub-
ject was said to generalize if the sound changed but the subject did not respond. The referent sound was
either a prototype of the phonemic category /i/ or a non-prototypical sound further away from the category
center. The test stimuli were located at radii of 1, 2, 3, or 4 steps away from the referent sound (where each
step consisted of a 30 Mel increase in radius from the category center), and the non-prototype referent
sound was located at a radius of 4 steps from the prototype referent sound.

Figure 5 shows the results for adult subjects in the Kuhl (1991) study. The top curve represents the percent
generalization of stimuli located 1, 2, 3, and 4 steps away from the prototype referent sound, and the bot-
tom curve represents the corresponding results for the non-prototype referent sound.The most salient char-
acteristic of this study is that subjects were more apt to generalize sounds near the prototype than sounds
near the non-prototype.
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FIGURE 5. Generalization results for adults from the study of Kuhl (1991). Subjects were
much more likely to generalize sounds near a prototypical instance of the /i/ category than
they were to generalize sounds near a non-prototype.

In order to simulate this experiment using the current model, one must first come up with a method for
measuring “percent generalization”. The most reasonable choice is to assume that percent generalization
varies as some monotonic function of the distance between the referent sound and the test sound in percep-
tual space. Relatedly, Flanagan (1955) measured the ability of subjects to discriminate vowel-like sounds
as a function of the distance between them in formant space. Two main results are of note from this study:
(1) the functions relating percent generalization to distance in formant space were typically exponentially
decaying or slightly sigmoidal in shape, and (2) the exact form of the function varied significantly with the
location of the referent stimulus in formant space. The results in one part of formant space are depicted in
Figure 6. (Note that Flanagan plots “percent judgments different” rather than percent generalization, result-
ing in curves that are flipped with respect to the corresponding percent generalization curves.)

12
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FIGURE 6. Function relating the discriminability of two vowel-like sounds to frequency
differences in one region of formant space (adapted from Flanagan, 1955).]

In keeping with Flanagan’s results, we assume a generalization function that falls off exponentially with
distance from the referent sound. The final difficulty we must deal with is finding the exact shape of the
function near the /i/ category. Note that one must assume that percent generalization varies as a function of
distance inperceptualspace rather than distance in formant space; otherwise the magnet effect would not
exist at all since equally spaced sounds in formant space would always lead to the same amount of general-
ization. However, we do not have a direct measure of a stimulus’s position in perceptual space given its
position in formant space. Therefore, in order to get a reasonable generalization function we assumed that
perceptual space is relatively unwarped in the region near the non-prototype in Kuhl’'s (1991) study and
then defined an exponentially decaying function which passed through the Kuhl (1991) non-prototype data
points shown in Figure 5 (see Appendix for details). Because Kuhl did not plot percent generalization val-
ues for the trials in which the distance between the referent sound and the test sound was zero, we made
one final assumption concerning this function, which was that generalization scores are near 100% when
the test and referent sounds are the same.

Once we have the function relating percent generalization to perceived distance, the simulation of Kuhl's
(1991) experiment is straightforward. For this simulation a single Gaussian distribution of inputs centered
at the /i/ category was presented during training. The test stimuli of Kuhl (1991) were then applied to the
network and percent generalization was calculated based on perceived distance using the exponentially
decaying function described above. The results of this simulation are shown in Figure 7, along with Kuhl's
(1991) results. Again, the model produces a very accurate fit to the psychophysical results.

A paradoxical aspect of the magnet effectWe conclude this section with a brief investigation of a seem-
ingly paradoxical attribute of the magnet effect that has not been treated by previous models: unlike the
results of many other studies which show better discrimination for heavily experienced stimuli (e.g.,
Prosen, Moody, Sommers, and Stebbins, 1990; Recanzone et al., 1993; Zwislocki, Maire, Feldman, and
Rubin, 1958), discrimination is/orsefor heavily experienced vowel stimuli (i.e., those near vowel cate-
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FIGURE 7. Comparison of the model's generalization properties after learning (solid lines)

to the results of Kuhl (1991) for adult subjects (dashed lines).
gory centers) than for less frequently experienced vowel stimuli. Furthermore, it is quite likely that larger
cortical areas are devoted to prototypical vowel stimuli than non-prototypical vowel stimuli (see discussion
of neurophysiological studies of sensory map formation in Section 2). The fact that discrimination is worse
for more prototypical vowels is thus apparently at odds with neurophysiological data indicating that larger
areas of cortical representation are typically accompanied by increased discrimination capabilities in the
somatosensory system (e.g., Penfield and Rasmussen, 1950), visual system (e.g., Kandel, Schwartz, and
Jessell, 1991) and auditory system (e.g., Recanzone et al., 1993).

The current model provides a potential explanation for this phenomenon. To understand this explanation,
first note that it is very likely that the larger the number of cells devoted to a particular region of input space

in a neural map, the more tolerant the neural representation will be to noise in the responses of individual
cells in this region. This is supported by modeling studies indicating that the susceptibility of a population
vector representation to random variations in the responses of individual cells decreases as the number of
cells increases (e.g., Vogels, 1990; Zohary, 1992). In contrast, the simulations in this section have shown
that the peak in the distribution of cell firing preferences at the center of a vowel category in the model
leads to a warping of the population vector representation toward the category center, which in turn reduces
discriminability near the category center. Thus, the larger number of cells devoted to stimuli near the center
of a vowel category may contribute to two competing effects: (1) an increase in the system’s tolerance to
noise in individual cells that contributes to entreasein discriminability near the category center, and (2)

a magnet effect that contributes td@creasen discriminability near the category center. As described ear-

lier, the magnet effect occurs in the model due to an asymmetry in the number of active cells whose pre-
ferred stimuli fall near the probe stimulus. Figure 8 schematizes this and highlights an implication of this
hypothesis: the more sharply peaked the distribution, the greater the asymmetry along the slope, and, there-
fore, the more the percept of a stimulus will be warped toward the peak. In other words, more sharply
peaked distributions produce stronger magnet effects.
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FIGURE 8. The magnet effect arises in the model due to an asymmetry in the number of
active cells whose preferred stimuli fall on either side of a probe stimulus. (A) For a broadly
peaked distribution of preferred stimuli, the number of active cells closer to peak (i.e., to the
right of the probe) is only moderately larger than the number of active cells further away
from the peak. This leads to a moderate warping of the population vector toward the peak,
corresponding to a moderate magnet effect. (B) For a more sharply peaked distribution the
asymmetry is greater, resulting in a much larger magnet effect.

This property leads to a hypothesis regarding the apparent paradoxes mentioned above. The multiply
peaked nature of the distribution of vowel sounds in a language may lead to a neural map with a distribu-
tion of preferred stimuli that is more sharply peaked than the distributions of cells in neural maps repre-
senting other, less “categorical” stimuli, and these sharper peaks would result in much stronger magnet
effects. The distortion due to these stronger magnet effects may overcome the tendency for better discrimi-
nation due to the noise tolerance that accompanies larger cortical representations. The formation of neural
maps with this property also makes sense from a behavioral standpoint: when allocating neural resources
to stimuli that fall into natural categories like vowels, it is typically more important to do so in a way that
allows better discrimination between categories than within a category. Future research will further explore
this hypothesis.

4. Concluding Remarks

This paper proposes a model of the perceptual magnet effect that is formulated as a neural network,
thereby allowing the interpretation of psychological descriptions of the magnet effect in terms of the prop-
erties of neural systems. Kuhl and others have described the magnet effect as involving a stored representa-
tion of a category prototype, i.e., an exemplar whose perceptually measured goodness is maximal for that
category. This prototype serves as a sort of anchor whose functional role as a perceptual magnet serves to
strengthen category cohesiveness (e.g. Kuhl, 1991, p. 99). In the current account, the “stored representa-
tion” of vowels is simply the set of synaptic weights projecting to the auditory map cells. “Category proto-
types” are stimuli located at the peaks in the distribution of map cell firing preferences (see Figure 3),
which in turn reflect peaks in the distribution of sounds in a particular language. Category “goodness” can
be equated to the number of cells in the map which are preferentially activated by an exemplar, with the
prototype preferentially activating the most cells of any stimulus in the region of formant space surround-
ing a phonemic category. The “magnet effect” itself is a warping of perceptual space resulting from a non-
uniform distribution of the preferred stimuli of map cells, and “category cohesiveness” describes the
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psychological result of the multiply peaked form of this nonuniformity: inputs near the peaks of the distri-
bution are perceived as closer together than inputs near the valleys.

Numerical simulations illustrate the model’s ability to explain general characteristics of the magnet effect
and accurately reproduce specific psychophysical data. Although the model contains a relatively large
number of cells and synaptic weights, only three free parameters were available to fit the data: the learning
ratea , the neighborhood size L, and the variance of the Gaussian distributions used to generate the train-
ing inputs. Furthermore, all simulations used the same valuas of and Gaussian variance; only the neigh-
borhood size L was changed slightly between simulations 1 and 2, owing to the differing number of
auditory map cells in these simulations. The function used to translate distance in perceptual space to per-
cent generalization provided some additional fitting power for the third simulation, but this function was in
fact very constrained by existing data: an exponential function was chosen to match the form of Flanagan’s
(1955) data, and the exponential was constrained to pass through the non-prototype data points of Kuhl
(1991). Despite the model's simplicity, it captures the salient known aspects of the magnet effect (i.e., a
shrinking of perceptual space near phonemic category centers, an expansion of perceptual space away from
centers, and language-specificity in this warping), and it provides close fits to the psychophysical results of
Kuhl (1991) and Iverson and Kuhl (1994). The model also requires no assumptions about the abilities of
infants to identify sounds as members of linguistic categories and therefore has no trouble explaining why
the magnet effect is evident in six month old infants.

This model is envisioned as a component of a larger computational modeling framework of speech devel-
opment, perception, and production called DIVA (Guenther, 1994, 1995a,b). The DIVA model posits a
direct link between perception and production during babbling that leads to the formation of speech sound
targets that take the form of regions in a speech planning space. Placing the current work within the context
of DIVA suggests a scenario in which the sharpening of perceptual representations of phonemic categories,
inherent to the current model due to the sharpening of the peaks in the distribution of preferred stimuli of
auditory map cells, leads to a progressive sharpening of the production target regions for these same cate-
gories. A similar link between perception and production has been hypothesized by Kuhl and Meltzoff
(1995) and gains some support from their study showing that repeated exposure to a particular vowel leads
to increased productions of that vowel during babbling in infants as young as 12-20 weeks of age. These
issues will be investigated further in future work that will incorporate the current model into the DIVA
framework.

The model described in this article proposes that the perceptual magnet effect arises as a natural conse-
quence of the formation of neural maps in the auditory system. The model’s simplicity stems from its reli-
ance on only two fundamental hypotheses, both of which are supported by a variety of neurophysiological
and computational studies: (1) sensory experience leads to language-specific nonuniformities in the distri-
bution of the firing preferences of cells in an auditory map, and (2) the population vector can be used to
predict psychological phenomena based on the pattern of cell activities in this map. By fusing concepts
from neurosocience and psychology, this study expands the research opportunities for examining the mag-
net effect. It is hoped that continued work bridging these fields will lead to a more complete understanding
of the processes underlying speech development, perception and production.

Appendix: Simulation Parameters

The following parameter values were used for all simulatienss 0.04 F; =100 rhRglg,ax =
1100 melsF, v =200 melss, yax  =2200 mebs; =300 mels, BRJyax = 3300 mels. For
each phonemic category, the training inputs were chosen from a Gaussian distribution whose mean was
chosen to coincide with the phonemic category center as indicated by the original experiments. The vari-
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ances of the Gaussians were 20 mels in the F1 dimension, 40 mels in the F2 dimension, and 60 mels in the
F3 dimension. The covariances of the Gaussians were zero.

The auditory map for simulation 1 consisted of 500 cells. The neighborhood L started at 35 cells and
decreased linearly to 1 cell during training. A neighborhood of 30 cells was used to test the network. The
auditory map for simulations 2 and 3 consisted of 1500 cells. L started at 40 and decreased linearly to 1
during training. A neighborhood of 35 cells was used to test the network.

Because training inputs were chosen from Gaussian distributions which have unlimited extent, it was pos-
sible to generate a very small percentage of inputs whose formant values were outside the formant ranges
defined by theF; \,n ané, yax Vvalues. When this occurred, the offending input was removed from the
training set.

The function relating percent generalization to perceptual distance in simulation 3 was:

percent generalizatior exp( 4.665 5.3Ut 3.4631° - 1.087d° + 0.117d4)

whered is the perceptual distance between two inputs measured in 30 mel steps. For example, if the differ-
ence between the population vector values produced by the model for two inputs was 30 meals; then

as in the Kuhl (1991) data plots reproduced in Figures 5 and 7. As described in Section 3, the exponential
form of this equation was chosen to qualitatively match the results of Flanagan (1955), and a quartic expo-
nential was chosen to insure that the function passed exactly through all four non-prototype data points
from the Kuhl (1991) study.
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