
Pheatures Speadsheet:
How to Customize the Features

Floris van Vugt

2010

1. Orientation: Customizing the feature system

The feature system employed by Pheatures Spreadsheet is entirely customizable. You can
change the set of base symbols, their feature values, the layout of the symbols in the chart, and
the diacritics. This is not an easy task, for reasons that will be clear below, and you should take
it on only if you have serious reasons to change the features.

There is no user interface for editing the feature system, but it can be done using a

spreadsheet program such as Microsoft Excel or OpenOffice Spreadsheet.

2. A few assumptions about the feature system

First we will discuss briefly how the feature system works. It is defined by:

• Base Symbols — the base symbols as they have been introduced in the main manual.

They have a label that is used for displaying them (e.g. [a] or [p]) and a number of feature
settings, that is, a feature matrix. This is stored in the file basefeatures.txt, whose syntax
will be discussed in 3.3. It is important to note also that the features that occur in
basefeatures.txt will be taken as an exhaustive list of all features in the feature system.
That is, you cannot make mention in another file of a feature that does not also occur in
the base symbol list.

• Diacritics — These have a label and a feature matrix with requirements and one with the

feature changes they effect. They are defined in the file diacritics.rules (3.3). Some more
clarifications on how diacritics are used are presented in 2.2.

• Dependencies — Dependencies are used in the interface. When certain feature changes

are made, other feature changes follow–up automatically. For example, when the user
changes sounds to [+high], they are automatically changed to [–low]. Dependencies are
defined in dependencies.rules.

• Contradictions — Certain feature combinations are contradictory, such as [+front,

+back], and we want to warn the user about them. These contradictions are defined in
contradictions.rules.

• Chart definition — Finally we want to present all possible sounds in a chart that is

similar to the way the IPA alphabet is typically presented. This is defined and can be

van Vugt Customizing Features in Pheatures Spreadsheet p. 2

customized in three files, ipachart-consonants.txt, ipachart-other.txt and ipachart-
vowels.txt.

2.1 Diacritics

A diacritic is attached to a base symbol and effects some feature changes to that symbol.
Diacritics may pose requirements on what sounds they can attach to, in the form of a feature
matrix that the sound must match.

Here are a few observations about how Pheatures Spreadsheet views diacritic attachment.

2.1.1 Feeding and bleeding and multiple diacritics

Let us take the example of creating a voiceless aspirated nasal [m̥]. We find in the diacritic
list that the voiceless diacritic requires the sound it attaches to be [+sonorant, +voice], from
which [m] is nondistinct. So, using the inventory editor, we can drag the diacritic on to the base
symbol [m] to create [–spread gl, –constr gl], which matches [m̥], and therefore we can add it
and create the desired [m̥].

What would have happened if we had added them the other way around? We would run into

a problem when trying to add the aspiration diacritic to [m], because that diacritic requires the
sound to be [–voice], among other things, and [m] is [+voice]. One can say that the voiceless
diacritic has fed into the application of the aspirated diacritic.

Similarly, the voiceless diacritic bleeds application of other diacritics, such as the breathy–
voiced diacritic, since that one can only attach to [+voice] sounds.

To summarise:

• Diacritics pose requirements on the compound sound they attach to, not on the base
symbol. Therefore we get feeding and bleeding in diacritic attachment.

2.1.2 The transparency assumption in diacritic attachment

Pheatures Spreadsheet makes an additional assumption about diacritic attachment, which is
as follows:

• Every diacritic that is attached must be attached transparently, i.e. it cannot change the
value for features that previously attached diacritics set.

Let me give an example, which will be artificial precisely because our assumption is that
any sensible diacritic system has this transparency property anyway.

Suppose that we are in a simple feature system with three features: a, b and c. Suppose that
we have the base symbol B=[+a, –b, –c]. We have a diacritic x that applies to –a sounds and
changes them into [+b, +c], so we cannot form Bx (i.e. applying diacritic x to B). But let’s

van Vugt Customizing Features in Pheatures Spreadsheet p. 3

assume that there is also a diacritic y that applies to [–b] sounds and turns them into [–a]. Then
we can form By, which will have features [–a, –b, –c]. Let us also assume that there is a diacritic
z that applies to [–a] sounds and turns them into [+a]. Can we then add diacritic x to By, to form
Byx? Yes: By meets x’s requirement [–a] (so y has fed into x’s application).

But can we then add diacritic z to Byx to create the symbol Byxz? No, because this violates

the transparency condition. The point is that z changes the value [–a] (that was set by the
diacritic x) to [+a], thus as it is “overriding” another diacritic. That is what the transparency
condition prohibits.

Another way of putting the transparency condition:

• Given a symbol, the union of all the feature changes of the diacritics cannot contain a
contradiction.

In our example: the union of the feature changes of the diacritics in Byxz would be [–a, +b,

+c, +a] which contains a contradiction.

This has a useful consequence:

• A diacritic can only be applied once meaningfully to a symbol.

The point is that given the transparency condition, we know that the second application of

the diacritic would not effect any feature changes.

This means that even though we allow feeding and bleeding in our diacritic system, the
diacritics that are applied to a symbol are essentially a set: if there is one ordering of application
that is legal, i.e. that has the correct feeding and bleeding relations among them, then any other
ordering that is legal as well will create the exact same feature matrix.

What will go wrong if we violate this transparency constraint? The sim-ple answer is:
nothing. You will be allowed to create such symbols in the phoneme inventory editor. The
complicated answer is: the labeling algorithm (see main manual) will not find that label when it
requires it to try out non–transparent diacritic applications.

Notice finally that this transparency condition counts only for diacritics. We do not wish to
say anything about whether our phonological rules can be opaque or not!

2.2 Ordering diacritics for display

Since we have now established that the diacritics that apply to a symbol can be seen as a set,
we can address the next issue. Technically, the diacritic labels should be added in a particular
order so that the unicode symbol will display correctly. That is, we must first add the non–
spacing characters (i.e. characters that merely attach above or below the base symbol such as the
voiceless diacritic), and only afterwards the spacing characters (such as the aspiration diacritic).
If we would do it the other way around, the voiceless diacritic would not appear straight

van Vugt Customizing Features in Pheatures Spreadsheet p. 4

underneath the base symbol but be displaced to the right, since it takes into account the space
taken up by the aspiration h.

How is this ordering of attachment defined? Pheatures Spreadsheet quite simply registers the
order in which you give the diacritics in the file diacritics.rules, and for any symbol, it will
attach the diacritic labels in that order. For example, the voiceless diacritic will appear earlier in
the file diacritics.rules and that will cause it to always be applied before the aspiration.

Notice also that this ordering of application of diacritic labels is independent of the
application of their feature changes! This is important.

3. Input files and their syntax

Now that we have covered the fundamentals of our feature system, we are ready to look into
how to customize them by editing the files. Pheatures Spreadsheet might have come to you in a
compressed archive, called jar. This is a standard archive method for Java programs and its
convenience is that it yields a single file that contains all program requirements as well as data
files.

In order to edit the feature system you will first have to extract this archive (a zip file
extractor will do the job; these are easily obtained). Extract them in a folder and make sure it
recreates the folder structure present in the jar archive.

Then, after extraction you will notice a number of program files (which end in .class) and a
number of folders. All files configuring the feature system are found in the folder data/.

3.1 How to run the program in this extracted form?

You will need to invoke the main class, which is Pheatures.class, which is located in the
root folder of the jar archive. You can often do this by double– clicking or invoking java -jar
Pheatures from the command–line. Check the documentation of your Java Runtime
Environment for your operating system.

If you want to put the files back in archive form after you edited them, you can simply
compress the folder you previously extracted back into a jar archive, which you can then run and
send in the same way as the original Pheatures Spreadsheet package you downloaded.

3.2 Finding files and editing

In data/, you will find two types of files that require slightly different ways of editing: files
that end in .txt and files that end in .rules, and these will be discussed in the following sections.

Whenever you edit these files, make sure that your editor supports Unicode, since all of the

symbol characters as well as diacritics in Pheatures Spreadsheet are entirely Unicode–based.

van Vugt Customizing Features in Pheatures Spreadsheet p. 5

3.2.1 What are tab–separated files (.txt)?

The .txt files that are used by Pheatures Spreadsheet are not ordinary text files. They are
tables, and they are saved in a tab–separated format since this was thought to be compatible with
the largest number of existing spreadsheet editors.1 In these files, the rows of the table are the
lines in the file, and the columns in each row are separated by a tab (whitespace) character.
Contrary to usual csv files, the values are not enclosed by quotes ("like this") but stored plain
(like this).

You can open and edit these tab–separated files in a text editor (such as Windows Notepad

or GNU Emacs), but it is far more convenient to open them in a spreadsheet program such as
Microsoft Excel or GNU Numeric.

Upon opening, you might be asked for a field separator. Make sure you enter only tab as a

field separator and not comma or semicolon (;) as well as that might have unexpected results.
Furthermore what is often called “field encloser” should be absent, as no quotes surround the
cells.

Finally, make sure that you do not select to merge delimiters! In some applications, multiple

delimiters are considered as one. But for our purpose, when multiple tabs occur that reflects that
the cells they separate are empty. To ensure correct horizontal line–up, we should therefore not
merging delim-iters when reading or writing these tab–separated files.

Obviously, these same settings should be used when saving the files.

3.2.2 What are rule files (.rules)?

The .rules files are not tables. They are essentially a list, the exact contents of which vary,
and they will be discussed when we discuss each of the files. You can open, edit and save these
files from your favorite plain text editor such as Windows Notepad or GEdit. Make sure you do
not use a word processor as that may have unexpected results.

3.3 Syntax of the particular files

basefeatures.txt

This file defines the base symbols and their features. The first row is a header, giving the

names of the features.

As explained before, this is taken to define an exhaustive list of all feature names. You

cannot mention a feature elsewhere that does not appear as a column in this base symbol table.
Furthermore, the order of the columns in this file defines the order of the features in the drop–
down lists in the selection panel of the main user interface.

1 Some spreadsheet editors are able to read these files in their csv–mode (Comma– Separated Values), where

for these programs the “comma” is really a “tab”.

van Vugt Customizing Features in Pheatures Spreadsheet p. 6

The feature names, by the way, can contain spaces or other characters, as long as they do not
contain tabs (since this will cause confusing when these files are parsed by Pheatures
Spreadsheet).

Starting from the next row are the base symbols. The first column gives the (Unicode) label
of the symbol. The second column contains a reference to a sound file (which may or may not be
actually implemented in the version you are using — if you are not sure what to do, leave it
empty).

Then from the third column onwards you can enter the values for the feature that that
column represents. Possible values are plus (+), min(-)2 or null (0).3 Do not leave the field empty
but write 0 instead. Null has to be explicitly coded for parsing purposes and it will be clearer for
you when you edit the file.

diacritics.rules

In this file each row defines a diacritic. The format is as follows, where the parentheses are

not part of the format, but the semicolons (;) and arrows (>) are:

(1) (description) ; (label) ; (requirements) > (changes)

The items represent:

• (description) This is a (short) name that represents the diacritic. It must be unique, i.e.

there cannot be two diacritics with the same description.

• (label) This is the actual symbol that should be pasted onto the base symbol when we

apply the diacritic. This label can be given in one of two ways. Either it is just literally a
Unicode symbol, or, alternatively, its numeric character code. The reason for this
alternative is that it may not be straight–forward to enter a diacritic label in your text
editor without a base symbol to which it can attach. Therefore it may be easier to enter
the numeric character code, which can be found in any Unicode chart.4

• (requirements) This is a feature matrix (without enclosing square brack-ets) that defines
what features the sound must have to which this dia-critic attaches.

• (changes) Again a feature matrix, representing what feature changes this diacritic effects.

An example is the following line. Notice that any whitespace in between the items is

removed during parsing. This leaves you the freedom to vertically align the items so that they are

2 Notice that there are multiple Unicode characters corresponding to -(longer and shorter dashes). To avoid
errors, it is safest to copy a minus from another cell into where you want it, though in most cases the minus from
your keyboard should be the right one.

3 That is, the number 0. Not the letter o, nor uppercase O. Again, if you are confused, simply copy some of
the zeros from another row.

4 For an excellent resource, see http://www.phon.ucl.ac.uk/home/wells/ipa-unicode.htm.

van Vugt Customizing Features in Pheatures Spreadsheet p. 7

maximally readable for you. Note also that we have here used the numeric value (805) of the
voiceless diacritic, rather than write it as a Unicode character.

(2) voiceless; 805; +sonorant, +voice > -voice

Remark also that the order in which you give the diacritics in this file, is the order in which

the labels are applied to a base symbol (see 2.2).

dependencies.rules

Dependencies are changes that are applied automatically when the user se-lects to change
certain features. Again, each line represents one such depen-dency. The format is as follows:

(3) (conditional) > (changes)

• (conditional) A feature matrix (without enclosing square brackets) rep-resenting the

features that, when they are changed, initiate this depen-dency.

• (changes) A feature matrix representing the feature changes that occur automatically

when those in the conditional are changed.

An example is the following, which expresses that when a sound becomes consonantal, it

cannot have a tense value anymore. When the user makes this change in the interface, a grey
message will appear that this change has been filled in.

(4) +consonantal > 0tense

contradictions.rules

This file is one of the simplest: each line represents a single feature ma-trix specifying a
contradictory combination of features (without surrounding square brackets). For example:

(5) +consonantal, +tense

This line specifies that for a sound to be both +consonantal and +tense is contradictory. In
the interface it would appear marked in red. When the user attempts to write a rule that changes a
sound to [+consonantal, +tense] a red warning message will appear.

ipachart-*.txt

Perhaps the most tricky files to edit are those that define the IPA–like chart. They are used
by the program to lay out the base symbols in the inventory editor, as well as in the Chart view in
the main screen. It is crucial to edit this file if you add or remove base symbols, since all base
symbols must be present in this chart, and any symbol that appears must be a base symbol.

You can open the ipachart-X.txt in your spreadsheet editor (where X is either
consonants, other or vowels). Each cell is one of the following:

van Vugt Customizing Features in Pheatures Spreadsheet p. 8

• Empty. When you leave no character in the cell, it will be treated as empty in the chart.5

• A label. You can enter text that will appear in the phoneme inventory editor to clarify

what each row or column represents; or you could write the comments in the middle of
the table if you so prefer. Simply enter your text surrounded by square brackets ([like
this]). Any spaces you write in this label will be converted into line breaks when the cell
is displayed. Try it out. This will make it easier to fit all the text you want in the
relatively small cells. If you do not want such a line break, simply remove the space or
substitute it by a dash ([like-this]) will be easily readable as well.

Notice that labels are not shown in the Chart view in the main screen. This is thought to
be too confusing. They are only shown in the phoneme inventory editor.

• A symbol. That is, a base symbol, or a base symbol with some dia-critics added. For one,

all base symbols should have a place in one of the three charts (that is, in the consonant,
vowel or other chart). If the program encounters a base symbol that does not have a place
in either of these charts it will give an error message on the command–line. You should
fix this before you continue to use the program, otherwise unex-pected things will
happen. For example, the symbol will not be shown in the Chart view.

In addition to the base symbols you may add some base symbols with added diacrtiics.
This will make them easier available to the user when they build the phoneme inventory,
because then he or she does not have to drag it onto the base symbol him– or herself.

What is the format for entering a symbol? If you want to add a bare symbol, you simply
write its label as it appears in basefeatures.txt.

Make sure you write it in exactly the same way! Unicode symbols that consist of multiple
parts can often be written in more than one way, by adding the parts in different orders. It
is crucial that it appears in the chart as it does in basefeatures.txt or else it will not be
recognised. Again, to be sure, you are advised to copy and paste the symbols from
basefeatures.txt.

How to write a symbol with diacritics? You write the base symbol as above, followed by
a semi–colon (;) and then write the names of the diacritics separated by semicolons. So
do not write the diacritic labels here, nor paste the diacritics onto the base symbol
yourself! This is again for parsing reasons and readability, as well as to avoid confusion.
So for example our famous voiceless aspirated nasal [mh] will be written as
m;voiceless;aspirated.6

5 As mentioned earlier, make sure that your spreadsheet editor does not merge adjacent delimiters, since then

it will “delete” empty cells when it saves and shift all following cells leftward, causing misalignment.
6 Since, as we explained before, diacritics are essentially a set, you could also write m;aspirated;voiceless to

get the same result. The order of the diacritics does not reflect the order of attachment. In fact, you should be careful
not to write diacritics that cannot in any order attach to the base symbol! The program does not check this for you.

van Vugt Customizing Features in Pheatures Spreadsheet p. 9

3.4 Checking

How do you know if your changes do not cause internal errors in the feature system?
Pheatures Spreadsheet performs some checking when it starts up. For example, it will check
whether it recognised any symbol that you entered into the ipachart-X.txt files. Also, if there is
some base symbol that is not there, it will send a warning.

These warnings are written to the standard (error) output. If you run the program in
Windows and execute it by double–clicking on it, you will not see these messages. Rather, you
need to execute the program from the command–line. Similarly, in Mac OS, you can go to the
Console (typically found somewhere in Applications or Utilities).

Make sure you keep an eye on such messages and also keep a copy of any files you are
editing so that you can revert whenever you make a crucial or mysterious mistake.

3.5 Closing remarks

With this customizability, it is hoped that linguists can experiment with their own feature
systems and investigate how the phonological rules that they propose would work in detail and
check them for doing exactly what we want them to do.

It is finally hoped that the program will make learning phonology fun and take out the

frustrating aspects of never knowing what exact features sounds are supposed to have.

	1. Orientation: Customizing the feature system
	2. A few assumptions about the feature system
	2.1 Diacritics
	2.1.1 Feeding and bleeding and multiple diacritics
	2.1.2 The transparency assumption in diacritic attachment

	2.2 Ordering diacritics for display

	3. Input files and their syntax
	3.1 How to run the program in this extracted form?
	3.2 Finding files and editing
	3.2.1 What are tab–separated files (.txt)?
	3.2.2 What are rule files (.rules)?

	3.3 Syntax of the particular files
	3.4 Checking
	3.5 Closing remarks

