Background

- Do infants have a domain-specific *a priori* bias\(^1\) for phonetically-motivated phonological processes? Such processes are:
 - Cross-linguistically common
 - Easier for adults to learn in artificial grammar learning studies\(^2\)
 - Correlated with the progression of infant articulatory development\(^3\)
- Previous studies\(^4\) test learning of processes or patterns, not unlearned biases
- Exception is \(^2\): without training, infants prefer triad sequences with articulatorily-motivated nasal assimilation [un, ber]—[umber] compared to unassimilated clusters [un, ber]—[umber].
 - Results consistent with presence of *a priori* bias. But perhaps these are reactions to individual components, not the phonological process
- Our approach:
 - Test young infants for *a priori* bias in favor of a phonological process motivated by ease of articulation, without training
 - Include control experiments to rule out possibility that infants simply respond to phonotactics of syllables rather than the process as a whole

Methods

Headturn Preference Procedure\(^1\)
- Training phase replaced by instrumental music
- Test phase of 12 trials, 20 seconds maximum each

Triad paradigm (i.e., [pi, fi, pivi]) represents inputs and outputs of phonological processes\(^2\):

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intervocalic Voicing</td>
<td>[pi, fi, pivi]</td>
</tr>
<tr>
<td>Intervocalic Devoicing</td>
<td>[pi, vi, pifi]</td>
</tr>
</tbody>
</table>

4.5-month-old subjects
- Youngest to reliably control head movement\(^5\)
- Too young for influential articulatory experience
- English-only input
- Normal hearing

Conclusions

4.5-month-olds:
- Show no preference for phonetically-motivated phonological patterns
- But, may be biased to learn processes differently, even after only a few seconds of exposure

Subsequent work in progress:
- Test older infants on Process Input Fricatives to determine when language experience effect surfaces

Plans for future work:
- Add training phase to experiments

References

Acknowledgments

We would like to thank:
- Professor Bruce Hayes for comments
- Kristi Hendrickson, Chad Viciunik, Yun Jung Kim, and the UCLA Language Acquisition Lab research assistants
- Henry Tehrani for hardware development
- Brook Lillehaugen for stimuli recordings
- The Ladefoged Scholarship Program for partial funding

This material is based upon work supported in part by the National Science Foundation under Grant No. 0957956.