
Is Adjunction Compositional?

Marcus Kracht
Department of Linguistics, UCLA

PO Box 951543
405 Hilgard Avenue

Los Angeles, CA 90095–1543
USA

kracht@humnet.ucla.de

Abstract

The idea of adjunction can be traced back to the beginnings of
generative syntax. Already Zellig Harris used adjunction and in [Har-
ris, 1979] even exposes the idea that sentence meanings can be derived
from kernel sentences via adjunction. Today, TAGs and the somewhat
lesser known contextual grammars ([Marcus, 1967]) still use adjunc-
tion as a major syntactic operation. Recently, [Kallmeyer and Joshi,
2003] have provided a semantics for TAGs they claim to be com-
positional. However, this semantics contains a partial record of the
derivation, thus adding detail that is of no semantic relevance.

1 Introduction

Recently, with the appearance of Hodges seminal work [Hodges, 2001], in-
terest in compositionality has come back into focus. Yet, as much as this is
a good development, what is still missing is a thorough discussion of what
linguistic frameworks are actually compositional and which ones are not.
Whether or not a given syntactic analysis is ‘compositional’ is still a matter
of personal conviction and taste.

Given that TAGs are considered an alternative to the prevailing trans-
formational account (see [Frank, 2002]) it is crucial to see how well TAGs

1

are suited for the purposes of semantic interpretation. In this paper I shall
show that the situation is not so favourable at all. In my view, TAGs cannot
provide an analysis of natural languages in a compositional way. I propose
a bundle of arguments to support this claim. It follows that the question of
compositionality is not vacuous despite claims to the contrary (see [Zadrozny,
1994]): there are syntactic frameworks which actually are not compositional.
This may come as a surprise because it seems unclear what the right kind of
semantics is. In fact, [Kallmeyer and Joshi, 2003] have recently proposed a
semantics for TAGs which they claim is compositional. So how do we decide?

Below we shall give an argument that is not based on any concrete se-
mantics but instead uses the notion of synonymy. It assumes that certain
sentences are synonymous while others are not. If one agrees with my claims
concerning synonymy it immediately follows that since [Kallmeyer and Joshi,
2003] succeed in computing meanings of composite expressions, they must
attribute distinct meanings to synonymous items. This is quite a common
situation in theoretical semantics. Many approaches to semantics do not
raise the question whether what they call semantics actually only consists in
the meaning. A particularly striking example is the paper [Zadrozny, 1994],
which argues that any language is compositional; the proof proceeds by re-
placing the original meanings by functions on meanings. Clearly, if the notion
of compositionality is to make any sense at all, we are not free to distinguish
synonymous items by means of any device whatsoever.

2 The Main Argument

A Tree Adjunction Grammar knows two kinds of trees: complete trees and
adjunction trees. A complete tree is one in which all leaves end in a
terminal symbol; an adjunction tree is a tree in which all but one leaf
is labeled by a terminal symbol and the nonterminal label of that leaf is
identical to the root. Adjunction works as follows. If a tree T contains a
node u with label X and there is an adjunction tree U whose root (and
designated leaf) has label X, then we bisect the tree T into the constituent
C headed by u and the remainder. We insert the adjunction tree U between
C and the remainder. (See Section 6 below, or [Frank, 2002], [Kracht, 2003]

or [Kallmeyer and Joshi, 2003] for details.) A TAG is (adjunction restrictions
aside) a pair consisting of a finite set of complete trees (called elementary
trees) and a finite set of adjunction trees (called auxiliary trees). The

2

language of trees is the one generated from the elementary trees by adjunction
of auxiliary trees. Trees are assumed to be binary branching, so that every
node can be named by a binary sequence, called its address. The operation
of adjunction uses as input three givens: a complete tree T , an auxiliary
tree U , and the address α of u. We denote the result by Tα(U, T). We shall
supply more details below in Section 6.

Clearly, we expect the following from a compositional grammar. If two
syntactic structures are synonymous and we apply the same syntactic opera-
tion to them, the results must also be synonymous. Now here is the example
where adjunction fails to preserve synonymy. Consider a grammar which has
the the trees of Figure 1. This grammar generates the following language:

{a drunkenn sailor and a drunkenm captain were caught(1)

speeding : m, n ∈ N}
∪{a drunkenn captain and a drunkenm sailor were caught

speeding : m, n ∈ N}

Concerning semantics, I only assume that and is commutative, so that ~x and ~y
and ~y and ~x are synonymous. Here is now the dilemma. Write α ≈ α′ if α
and α′ are trees with synonymous yield. Then we have:

(2) σ ≈ τ, T01(δ, σ) 6≈ T01(δ, τ)

This is because the following two sentences are the yield of T01(δ, σ) and
T01(δ, τ), respectively:

A drunken sailor and a captain were caught speeding.(3)

A drunken captain and a sailor were caught speeding.(4)

The two are clearly not synonymous.
This argument is vulnerable to the claim that the two sentences actually

do not have the same syntactic structure. This position is viable but meets
insurmountable difficulties. We can, for example, construct a sentence that
involves any number of NPs, such as

A sailor, a barman, a police officer and a captain(5)

were caught speeding.

3

drunken

AP
�

�
�
�
N
@

@
@
@
N

Nδ

NP
�

�
�

�
D

a

N

sailor

@
@

@
@

NP
�

�
�

�

HHH
HHH

HH
N′

�
�

�
�

Coord

and

@
@

@
@
NP
�

�
�

�
D

a

@
@

@
@
N

captain

σ

NP
�

�
�

�
D

a

N

captain

@
@

@
@

NP
�

�
�

�

HHH
HHH

HH
N′

�
�

�
�

Coord

and

@
@

@
@
NP
�

�
�

�
D

a

@
@

@
@
N

sailor

τ

Figure 1: Adjunction Tree and Centre Trees

4

This sentence has 24 synonymous alternatives obtained by permuting the
conjuncts. Adjoining drunken to the first we obtain six different sentences,
each with six synonymous permutations.

A drunken sailor, a barman, a police officer and a(6)

captain were caught speeding.

A drunken sailor, a police officer, a barman and a(7)

captain were caught speeding.

A drunken sailor, a captain, a police officer and a(8)

barman were caught speeding.

A drunken sailor, a police officer, a captain and a(9)

barman were caught speeding.

A drunken sailor, a captain, a barman and a police(10)

officer were caught speeding.

A drunken sailor, a barman, a captain and a police(11)

officer were caught speeding.

At each of these places we may adjoin some other tree and further reduce
synonymy. If one wishes to maintain the claim that all this is due to different
syntactic structure, one is forced to believe the following. In a conjunction
of n NPs, in any two permutations that have two different jth conjuncts C
and D, either the category of C is different from that of D, or the address
of C is different from Ds address. Additionally, for large enough n, the co-
ordinate structures must have been built through the use of adjunction. It
can be shown that they must have been built from some similar structure
with less coordinated members. As there are only finitely many auxiliary
trees, one can find a pair C and D which has been introduced by adjoin-
ing the same auxiliary tree Y . If adjunction of the adjective (or any other
auxiliary tree V) on a given node in Y is licit in one structure, it is licit in
all. Hence, on this pair we actually have an instance of an adjunction of the
same auxiliary tree V at the place of C and D. Still, the possibility remains
that C and D, although both conjuncts number j, actually have different
address. This eventually leads to the claim that in all permutations of a
coordinated structure, the analogous conjuncts have different address unless
literally identical.

At this point one may think the conditions are impossible to meet. This
is not so. In fact, I believe that it is possible to structurally encode the

5

semantics in such a way that compositional interpretation is possible. How-
ever, it consists in giving up any homogeneous account of syntactic structure
whatsoever. To see what it takes, let me point out that if two nouns, say
sailor and captain receive the same syntactic category in a grammar, they
are interchangeable in all strings. This is so for TAGs, CFGs, and so on.
In fact, one expects the converse to hold as well. If two strings are inter-
substitutable grammar should not distinguish them. We shall explicify this
principle. Languages are taken to be strings of letters, words are strings en-
closed by a blank. Thus, a sentence is a string of words. We assume that
trees for a language L are trees whose terminal leaves are labeled by words.

Definition 1 Let L be a language. Two strings ~x and ~y are called L–
indistinguishable if for every strings ~u and ~v: ~ua2a~xa2a~v ∈ L if and
only if ~ua2a~ya2a~v ∈ L. Let T be set of trees language for L. T is syn-
tactically adequate for L if whenever ~x and ~y are indistinguishable in L,
then substituting ~x for ~y at an address α in a tree of T also yields a tree of
T .

The principle is now this.

Identity of Indistinguishables. Any tree set T for L must
be syntactically adequate.

On the basis of this requirement it suffices to find two nouns which are
indistinguishable in English.

If one is not prepared to grant the existence of two nouns, or wishes to
deny the above principle, there is a more devastating attack, which I shall
launch below in Section 6. To put matters simply: the address of adjunction
is a syntactic device with no equivalent in semantics. Its identity cannot be
communicated to semantics in a compositional grammar. It follows that the
modes of composition cannot even be defined for TAGs.

3 Taking A Closer Look

Let us now take a look at the semantic representations and see how the failure
of compositionality shows up there. I assume that in nominal coordination,
and forms a set. (In fact, this assumption is not needed. What is needed is
only that the meaning of and is commutative.) The representation of

(12) A sailor and a captain were caught speeding.

6

will be like this:

(13)

X x0 x1

caught–speeding′(X);
X = {x0, x1}; captain′(x0);

sailor′(x1).

Let us ask first: what does synonymy mean for DRSs? It means identity of
truth conditions. The truth condition of (13) is that of

(14) (∃X)(∃x0)(∃x1)(X = {x0, x1} ∧ sailor′(x1) ∧ captain′(x0)

∧ caught-speeding′(X))

Hence, any suitable renaming of the variables yields a synonymous DRS. In
particular, the same DRS is assigned to

(15) A captain and a sailor were caught speeding.

Now, the problem that we are facing is that we want to go from (13) to

(16)

X x0 x1

caught–speeding′(X);
captain′(x0); drunken′(x0);
X = {x0, x1}; sailor′(x1).

as well as to

(17)

X x0 x1

caught–speeding′(X);
captain′(x1); drunken′(x0);
X = {x0, x1}; sailor′(x0).

There is a temptation here that must be avoided. Suppose we give (15) the
representation

(18)

X x0 x1

caught–speeding′(X);
X = {x0, x1}; captain′(x1);

sailor′(x0).

Then we could simply say that the meaning of the adjoined tree is drunken′(x0),
and that it is inserted anywhere in the main DRS. So, we go from (13) to (16)

7

and from (18) to (17). This solution however rests on a misunderstanding.
The variables of DRSs are bound and can be renamed. As (13) and (18) are
synonymous (but different), they are not the meanings, they are just proxy
for the meanings. A solution based on meanings as such must be immune to
renaming.

4 An Interesting Proposal

There is another possibility that may come to mind. We could make the
indexation relative to the meaning of the noun. The DRS for σ is of this
form:

(19)
S x0 x1

Σ

The two individuals talked about in (12) can be distinguished by some prop-
erty ϕ(x) (here, one is a sailor and the other is a captain). If this property
does not exist, then the descriptions offered by the nouns is identical. This
case is unproblematic. Now, assume that the DRS ∆1 (or whatever repre-
sentation is actually chosen) for α1 is arranged so that the individual that
gets modified is denoted by x0; similarly for the DRS ∆2 of α2. Denote by
[x1/x0]∆ the result of uniformly replacing occurrences of x0 in ∆ by x0 (and
doing some other renamings if necessary, that is, if x1 already occurs in ∆).
Now, define an operation, A, which works as follows:

(20) A(∆1, ∆2) :=

S x0 x1

Σ; ∆1; [x1/x0]∆2

if Σ � sailor′(x0)

S x0 x1

Σ; [x1/x0]∆1; ∆2

if Σ 2 sailor′(x0)

To understand the reason for this definition recall that it is independent of
the way the variables are named; we could exchange x0 and x1 in ∆ and
the result is still well–defined. One must remember that the definition needs
to be independent of what the variables are actually called. (Obviously, if
the variables can be something else but x0 and x1, the definition must be
changed accordingly.)

8

This operation modifies the variable satisfying ϕ, which by definition is
the one object whose description is to the left in (12) and to the right in
(15). Now, the semantic function accompanying T01(α1, α2) is A(∆1, ∆2).
This unfortunately gives the correct result only for (12).

Thus, in order to distinguish (12) and (15), we simply need to inhibit ad-
junction for (15). We have argued against that solution above, but let us see
where this proposals leads us to. We introduce another function T •

01(α1, α2),
whose result is the same as T01(α2, α1), but the accompanying semantics is
identical to A(∆1, ∆2). Similarly, we need to make sure that T •

01(α1, α2) is
undefined. So, we double the centre trees σ and τ ; one of the versions, σ◦
and τ◦, bans the adjunction of δ1 to the higher node and the other, σ• and
τ•, bans the adjunction of τ to the lower node. A lot of details still need to
be arranged. But the basic construction should be clear.

The problem with this approach is that the substitution function depends
on the actual semantics of the noun that one adjoins to. This works in the
present grammar, but in general there are infinitely many noun denotations.

5 Semantic Failures of Compositionality

The argument I have presented above may not appeal to everyone, since it
rests on the assumption that there exists synonymous sentences of particular
kind plus two L–indistinguishable nouns. However, if one is unwilling to
grant me this much, still I think there are good reasons why TAGs are just
not compositional.

Assume that sentences denote functions from possible worlds to truth
values, given by formulae. The meaning of the sentence

(21) A man sees a dog.

is (give or take changing the order of the conjuncts) given by the formula

(22) (∃x)(∃y)(man′(x) ∧ dog′(y) ∧ see′(x, y))

We want to insert the phrase λP .λx.big′(x) ∧ P(x) in order to get either of
the following.

(∃x)(∃y)(big′(x) ∧man′(x) ∧ dog′(y) ∧ see′(x, y))(23)

(∃x)(∃y)(man′(x) ∧ big′(y) ∧ dog′(y) ∧ see′(x, y))(24)

9

The order of conjuncts is again of no particular concern here. The problem
is, so to speak, to insert the adjective ‘post facto’ into the derivation. But
there is no derivation to begin with. What is at stake is that the meaning
of (21) cannot be generated from (22). The reason is that we need to know
exactly what variable quantifies the expression for dog, or which one corre-
sponds to man. But to spy into a quantifier to see what variable it binds is
to deny that changing bound variables is an operation that leaves meanings
invariant! (Even worse: for adherents of Frege, the meaning of an exten-
sional sentence is a truth value, so every pair of true sentences has the same
meaning.) The same problem arises with DRSs, which use open formulae,
as in [Kamp and Reyle, 1993]. Suppose that we want to adjoin the tree
for big, we need to assume that the is an argument available to which big

can be applied. In ordinary DRSs, these would be the discourse markers for
the objects corresponding to man and dog. Let them be x and y. For the
adjunction, we want to proceed from

(25)
x y

man′(x); dog′(y);
see′(x, y).

to either of the following two:

(26)
x y

man′(x); dog′(y);
see′(x, y); big′(x).

x y
man′(x); dog′(y);
see′(x, y); big′(y).

Once again, the adjunction is successful only if it is known prior to its exe-
cution whether we have chosen the right variable. Notice that the choice is
not just between x and y. Kamp and Reyle as well as Joshi and Kallmeyer
resort to syntactic indices to get the insertion of variables right. The prob-
lem is much deeper than ordinarily assumed; it has been made forcefully in
[Vermeulen, 1995]. The phrase a man is made from two DRSs, one for a and
one for man. However, to be really exact, the DRSs are like this, for each
possible choice of i, j ∈ N:

(27)

ai

xi

∅

manj

man′(xj)

10

The translation algorithm takes annotated syntactic representations as input,
annotation being done by numbers:

(28) A1 man1 sees〈1,2〉 a2 dog2.

The index i is translated into the variable xi. Correct indexation is a pre-
requisite for correct interpretation.

If adjunction is to work together with DRS formation, when adjoining a
structure with another we need to make sure that the correct indices are cho-
sen. However, one of the structures is of arbitrary size and its interpretation
contains any number of indices, so it is not clear how it is ensured that the
correct index is chosen when adjunction happens. If only one variable needs
to be shared across DRSs, or if that number is bounded, it is conceivable that
a naming convention for discourse markers can achieve the goal in question.
For example, suppose adjunction gives rise to the identification of just one
discourse marker. Then we can assume that the marker of the adjoining tree
is uniformly x0, the markers of the tree to which we adjoin x0, x1, . . ., xn−1,
where n is less than a fixed number (it depends only on the grammar chosen).
Then there are in principle only n ways to identify x0. Assume that x0 of
the adjoining tree is identified with xj of the other tree. Then the markers
of the adjoining tree are renamed from xi to x2i, the markers from the other
tree from xj to x2j+1, except for xj, which receives the name x0. Finally, the
DRSs are merged.

The previous discussion suggests that adjunction can be given a composi-
tional interpretation, if only on the representations. However, this depends
on the availability of enough discourse markers to begin with. For example,
there are adjectives that are not intersective but which depend on the de-
scription being used for the object. Examples are big, tall, good, and fake.
If I say that John is a tall basketball player, probably I want to say that he
is tall qua being a basketball player, not just tall as a grown up. Thus, tall
basketball player takes the latter in its scope. Let our first sentence be

(29) A policeman chases a basketball player.

From this sentence we want to get to

(30) A policeman chases a tall basketball player.

11

Translated into DRSs we want to go from left to right:

(31)

x0 x1

policeman′(x1);
basketball-player′(x0);

chase′(x1, x0).

x0 x1

policeman′(x1);
tall′(basketball-player′)(x0);

chase′(x1, x0).

Now it is less likely that such an operation exists, since it needs to decompose
an expression in the DRSs, just like the first example above. This time,
however, the expression is not identifiable by an index any more.

6 String Adjunction and Tree Adjunction

The rest of the paper is devoted to the following question: what needs to be
changed in the definition of TAGs so as to make adjunction compositional?
To anticipate the answer: in order to make TAGs compositional one needs
to remodel the derivations in such a way that we get a Linear Context Free
Rewrite System. There are two choices; the first construction ends in a
LCFRS that uses adjunction, called adjunction grammar; this grammar is
still vulnerable to the criticism of the earlier sections. However, it is the only
way in which adjunction can be retained in a compositional grammar.

Strings are denoted by vector arrows. ε denotes the empty string. Con-
catenation is sometimes written ~xa~y, but usually a is omitted. The length
of a string ~x is denoted by |~x|. A context is a pair of strings. If C = 〈~u1, ~u2〉
is a context, we write

(32) C(~x) := ~u1~x~u2

If D = 〈~v1, ~v2〉 is another context, put

(33) C(D) := 〈~u1~v1, ~v2~u2〉

Let ~x be a string, and let it be decomposed into

(34) ~x = ~u1~v~u2

Let D = 〈~y, ~z〉 be a context. Then the string adjunction to ~x with respect
to this decomposition is

(35) C(D(~v)) = ~u1~y~v~z~u2

12

Evidently, this operation is not uniquely defined by ~x.
Adjunction of trees is defined as follows. We call a tree a pair T = 〈T, `〉,

where T is a tree domain, and ` : T → K a function, the labeling. Let tree
U = 〈U,m〉 be given, and ~x ∈ T , ~y ∈ U , such that m(~y) = m(ε) = `(~x).
Then the following operation is defined:

ξ~x,~y(U, T) := {~z : ~z ∈ T, ~x not a prefix of ~z}(36)

∪ {~x~z : ~z ∈ U}
∪ {~x~y~v : ~x~v ∈ T}

ξ~x,~y(`, m) := {〈~z, `(~z)〉 : ~z ∈ T, ~x not a prefix of ~z}(37)

∪ {〈~x~z, m(~z)〉 : ~z ∈ U}
∪ {〈~x~y~z, `(~x~z)〉 : ~x~z ∈ T}

ξ~x,~y(T, U) :=〈ξ~x,~y(T, U), ξ~x,~y(`, m)〉(38)

~x is called the adjunction site. The general assumption in TAGs is the
following. A centre tree is a tree whose yield is a terminal string. An
adjunction tree is a tree whose yield has the form ~xaY a~y, where Y is
a nonterminal, and ~x and ~y are terminal strings. There is thus a single
leaf whose leaf is a nonterminal symbol which we call distinguished. (The
distinguished leaf is required to have the same label as the root and the
adjunction site.) Under these assumptions, we agree on the following.

(39) ξ~x(U, T) := ξ~x,~y(U, T)

where ~y is the unique address of the distinguished leaf of U. Notice, however,
that the adjunction site ~x must still be given.

Denote by Y (T) the yield of T. Let an address ~c be given. Then the nodes
below ~c form a tree with yield ~x. The context of this string is determined by
~c. Let it be C = 〈~v1, ~v2〉. Let Y (U) = D(N) = ~u1N~u2 for some nonterminal
N . Pick an address ~a in T. Suppose we adjoin U at ~a. Now T is factored
into C(~x) = ~v1~x~u2 by ~a. Then

(40) Y (ξ~a(U, T)) = C(D(~x)) = ~v1~u1~x~u2~v2

Now, suppose we allow adjunction to adjunction trees. Then a few more
cases need to be considered. Let ~c be the address of the distinguished leaf of
T. An adjunction site ~a induces a decomposition of the yield of T.

➀ ~a is a prefix of ~c. Then Y (T) = ~v1~u1N~u2~v2, and the constituent at ~a is
~u1N~u1.

13

➁ ~a precedes ~c. Then Y (T) = ~v1~u1~u2N~v2, and the constituent of ~a is ~u1

➂ ~b precedes ~c. Then Y (T) = ~v1N~u1~u2~v2 and the constituent at ~a is ~u2.

Then

(41) Y (ξ~a(U, T)) =

~v1~u1~x1N~x2~u2~v2 in Case 1

~v1~x1~u1~x2~u2N~v2 in Case 2

~v1N~u1~x1~u2~v2 in Case 3

Now, the nonterminal defines the split into left and right part of the context.
This is all that needs to be known to correctly compute the string adjunction.
Therefore, the trees are not needed at all. To know whether adjunction is
licit, we only need to know which category the adjunction site has.

A TAG is a pair consisting of a finite set of centre trees and a finite set of
adjunction trees. In principle, adjunction trees can be adjoined if and only
if adjunction is defined. TAGs allow in addition to restrict adjunction in the
following way. The label of each node is a pair 〈N, A〉, where N is a label of
any sort, and A a set of adjunction trees. Adjunction of U at ~x in a tree is
possible only if the label is of the form 〈N, A〉 with U ∈ A. (The root and
distinguished leaf of U shall require special treatment; their label is inherited
from T. Identity is not necessary for adjunction to be defined: only the first
in the pair needs to match!)

7 Compositionality

We shall use the terminology of [Kracht, 2003]. A sign is a triple 〈e, c, m〉
consisting of an exponent e, a category c and a meaning m. A language
is a set of signs. A grammar over E × C × M consists of is a finite set F
of function symbols, a signature Ω : F → N, and for each f ∈ F , functions
f ε : EΩ(f) → E, fγ : CΩ(f) → C and fµ : MΩ(f) → M such that E =
〈E, {f ε : f ∈ F}〉, C = 〈C, {fγ : f ∈ F}〉, and M = 〈M, {fµ : f ∈ F}〉 are
partial algebras. The signature defines the terms, and if t is a constant term
(a term without any variables), and if tε, tγ and tµ all exist, then t is called
definite. The language generated by G is the set of all 〈tε, tγ, tµ〉 where
t is definite.

We shall point out a few consequences of the definitions. First, we have
to choose what the exponents are and what the categories. In TAGs there is

14

no split between the two: trees contain structural information together with
labels of terminal nodes; especially in L-TAGs this is made a necessary mix.
One can say that the trees the grammars operate on are the exponents. The
categories are then not needed, but to conform to the format, we shall make
the algebra trivial (containing a single member). Thus, we are essentially
manipulating pairs of trees and meanings. It is not necessary to know what
the meanings actually are. However, one thing is clear: tree adjunction is
not uniquely defined by the trees alone. This is the same with strings. For
example, in the sentence

(42) The postman is biting the dog.

we can adjoin the tree for adjective ferocious at two positions. We may
think of the adjective as a context of the form 〈ferocious, ε〉, adjoined at
two positions:

The O postman N is biting the dog.(43)

The postman is biting the O dog N.(44)

This gives either

(45) The ferocious postman is biting the dog.

or

(46) The postman is biting the ferocious dog.

If we now turn to TAGs, we see that the trees for (43) and (44) are the same.
The result is different because a different adjunction site has been chosen.
But the resulting meanings are different. Thus, naming the adjunction site
is necessary for compositionality.

This creates a problem. The more trees get adjoined to a tree, the larger
the tree and the more adjunction sites may exist. This means that if just
the two trees are known the result of adjunction is still undefined. There is
no a priori limit on the number of possible adjunction sites. Thus we need
to eliminate the need to name the adjunction site; on the other hand, the
semantic functions need to be informed about the adjunction site. Since the
only communication channel that exists between syntax and semantics is the
choice of the function f ∈ F , and since F is finite, only a finite amount

15

of information can be shared between syntax and semantics. If there is an
infinity of adjunction sites, adjunction cannot be defined on the semantics.
That there really are arbitrarily many adjunction sites in a sentence, follows
easily by modifying our argument above.

We can eliminate the problem as follows. Instead of adjoining only to
centre trees, we adjoin to either adjunction trees or centre trees, but on
condition that they are basic. Since the latter are of bounded size, we can
assume for each address ~x ∈ N∗ a different adjunction function ξ~x. Notice
however that a centre tree can have more than one adjunction site. If the
adjunctions are done in sequence, only the first adjunction is to a basic tree
of the grammar. So only the first is guaranteed to apply to a tree of bounded
size. Thus, we need to reconsider adjunction, and allow for simultaneous
adjunction of several adjunction trees at several sites. Thus, we are proposing
to use multicomponent adjunction.

Let us summarize: to make TAGs compositional the basic operations must
be simultaneous adjunctions to well–defined positions in a tree, and the tree
adjoined to is restricted to a basic centre or a basic adjunction tree. Now, let
∗ be a binary operation on contexts and strings, which is defined as follows.

(47)
〈~u1, ~u2〉 ∗ ~x := ~u1~x~u2

〈~u1, ~u2〉 ∗ 〈~v1, ~v2〉 := 〈~u1~v1, ~v1~u2〉

Definition 2 An adjunction grammar is a sign grammar where for each
mode f :

➊ if Ω(f) = 0 then f ε is either a string or a context;

➋ if Ω(f) > 0, f ε is a Ω(f)–ary polynomial formed with the help of con-
stant strings, pair formation, and the operation ∗.

(In fact, ➊ is just ➋ for the case n = 0.) Notice that the fγ are the syntactic
categories in the ordinary sense. Suppose by way of example that we have a
single adjunction site in the following sentence, which we enclose by the pair
of triangles O · · ·N of category N:

(48) The O cat N is under the table.

16

Then this sentence is translated into the unary mode g, where (C = 〈~u1, ~u2〉)

gε(C) = 〈the, is under the table〉 ∗ (C ∗ cat)(49)

= thea~ua
1 cat

a~ua
2 is under the table

gγ(P) =

{
S if P = N

undefined else
(50)

(For example, 〈~u1, ~u2〉 may be 〈red, ε〉 or 〈ε, which scratches me〉.) If we
have two adjunction sites, say

(51) The O cat N is under the O table N

Then we simply use a binary mode h (C = 〈~u1, ~u2〉, D = 〈~v1, ~v2〉):

hε(C, D) = 〈〈the, ε〉 ∗ (C ∗ cat), 〈under the, ε〉 ∗ (D ∗ table)〉 ∗ is(52)

= thea~ua
1 cat

a~ua
2 is under thea~va

1 table
a~v2

hγ(P, Q) =

{
S if P = Q = N

undefined else
(53)

These examples should suffice for the reader to see that the above definition of
adjunction grammar really captures the generative device of multiple parallel
adjunction. It is however based on strings, not on trees.

The grammars so defined are a subclass of the Linear Context Free Rewrit-
ing Systems, in which constituents can have any number of parts (see [Kracht,
2003] for an exposition).

8 Conclusion

This paper vindicates the suspicion that adjunction is not compositional. We
have shown that if one wants adjunction to be compositional, not only have
derivations to be turned on their heads; also, we need to artificially split
syntactic trees into several isomorphic copies to ensure that synonymy does
not block our way. The result seems to carry over mutatis mutandis to the
somewhat lesser known contextual grammars. It is true, though, that these
grammars are much more flexible in the way adjunction can be restricted.
They can, for example, define arbitrary context sets for the adjunction site,
something which TAGs cannot do. Nevertheless, the present results show

17

that there is no hope that a solution within contextual grammars is either
simple or elegant.

The result does not disqualify adjunction as such, but it warns us against
the assumption that what is natural as a syntactic operation will also be nat-
ural as a semantic operation. I guess it has always been clear in most people’s
intuition that adjunction just can’t always be coroutined by semantics. 1

References

[Frank, 2002] Robert Frank. Phrase Structure Composition and Syntactic
Dependencies. MIT Press, Cambridge (Mass.), 2002.

[Harris, 1979] Zellig S. Harris. Mathematical Structures of Language. Robert
E. Krieger Publishing Company, Huntington, New York, 1979.

[Hodges, 2001] Wilfrid Hodges. Formal features of compositionality. Journal
of Logic, Language and Information, 10:7 – 28, 2001.

[Kallmeyer and Joshi, 2003] Laura Kallmeyer and Aravind Joshi. Factoring
Predicate Argument and Scope Semantics: Underspecified Semantics with
LTAG. Research in Language and Computation, 1:3 – 58, 2003.

[Kamp and Reyle, 1993] Hans Kamp and Uwe Reyle. From Discourse to
Logic. Introduction to Modeltheoretic Semantics of Natural Language, For-
mal Language and Discourse Representation. Kluwer, Dordrecht, 1993.

[Kracht, 2003] Marcus Kracht. The Mathematics of Language. Mouton de
Gruyter, Berlin, 2003.

[Marcus, 1967] Solomon Marcus. Algebraic Linguistics; Analytical Models.
Academic Press, New York and London, 1967.

[Vermeulen, 1995] Kees F. M. Vermeulen. Merging without mystery or: Vari-
ables in dynamic semantics. Journal of Philosophical Logic, 24:405 – 450,
1995.

1Aravind Joshi (p.c.) has argued that meanings are assigned to derivations trees, not
the trees that they yield. This claim is tantamount to giving up compositionality. For it
implies that at any stage we have access to the history of the tree in addition to the tree
itself.

18

[Zadrozny, 1994] Wlodek Zadrozny. From Compositional Semantics to Sys-
tematic Semantics. Linguistics and Philosophy, 17:329 – 342, 1994.

19

