Pregroup Grammars are Turing Equivalent
Greg Kobele and Marcus Kracht, UCLA

1 Algebraic Grammars

If f: X — YisafunctionandJ C X then we writef[U] := {f(X) : X € U}

for the image olJ underf. An signature Q over a sef of function symbols is

a functionQ : F — N (where Oe N). An Q-algebrais a pair(B, J3) such that

3 assigns to eacli € F a functionB*") — B. % is partial if J(f) may also
be a partial function. We shall also wrifé® in place of3(f). For example, let

F ={1,®} andQ(1) = 0 andQ(®) = 2. An Q-algebra is a pai¢B, J3) such that
3(1) : {@} —» Band3(®) : B> — B (recall thatB® = {@}). Thus we may also view
3J(1) as an element @ instead of a zeroary function. A particular example of an
Q-algebra is the algebra(A) of strings over an alphabét Here, the underlying
set of S(A) is the setA* of strings overA and B® = ¢ as well ass®*® =", the
concatenation of strings. Notice that concatenation is associative, that is, for all
stringsx, y andz

(1) x(y29=(xVy)z
Given two algebra®3 = (B, 3) andC€ = (C, J), we putB x € = (Ax C, &) where

(2) K(f)(by, 1), (P2, C2), - -+, (Pays), Caqr))) =
(S(F)(by, b2, - -+, by, J(F)(C1, C2, - -, Cary))

This is undefined if the right hand side is. In turn this is undefined if any of the
functions3(f) or 3(f) is undefined on their respective arguments.

Let B be an algebra and C B a set. Then algebra generated Xyn 3,
is obtained as follows. First, we call a subs&tof A closedif whenever for all
f e Fandalli < Q(f): & € M also f¥(ay, ay, - - - ,ag(n) € M. We let(X) be
the least closed set containifd. The algebraB defines an algebrd on (X)
via f¥(ag, @, -+ ,aq(n) = f¥(a @, - ,aqmn). The left hand is definedfithe
right hand side is. We can give a more concrete characterisation as follows. Say
that aterm is built from variables using the function symbolsff Terms with
only the binary symbo® as function symbols arg, y, Xx® y, Xx® (y ® x), and
so on. Ift(x,---,X,) is aterm, andi, 1 < i < n are elements of the algebra,
thent(cy, - - - , Cy) denotes the result of substituting the valge®or the variables

Xi. With this, (X) consists of all elementgcy,--- ,C,), wheret(xy, -+, X,) is a
term and for ali < n, ¢ € X. Atermt(xy,--- , X,) defines a term functiot® :
(C1,+-+,Cny > t(Cy,- -+, Cy) ON A", We shall henceforth not distinguish between
the termt and the term function it induces dh If f is a term function and) a
set, writef[U] := {f(C) : Ce U"}. We can now also say

) X)= U{f[X] . f aterm function ofB}

An algebraic grammar schemds a partial algebra over the signatyeg of the

form € x S(A). Here,C is the algebra otategoriesand S(A) is the algebra of
exponents A lexiconis a finite subset o€ x A*. Finally, we select a s& C B

of so—calleddesignated categoriesWe shall require that this set is in some sense
finitely specified. For example, in standard categorial granneonsists of just

one element, denoted here byln pregroup grammars we taketo be the set of

all categories below; this is possible because pregroups have a partial order. The
triple G = (®, D, S), where® is an algebraic grammar scheniea lexicon ands

a subset o€ is called amalgebraic grammar. Thus the scheme merely provides

for the categories and the strings to be manipulated, while the lexicon provides the
actual entries that the grammar uses. It is required that the lexicon is finite; hence
we can equate algebraic grammars with finitely generated grammar schemes. A
string X is acceptedif there is ac € C such thatc, X) € (D). We write

4) L=L(G)

Basic categorial grammar can be construed as an algebraic grammar in the fol-
lowing way. LetT be the set of types over a given set of basic types, using the
constructor/. Now introduce a binary partial functionvhich satisfies the follow-

ing law:

B) Xy -y=x

That is to sayu - y is defined ff u = x/y for somex, and the then result i& This
forms the algebr& = (T, -). Then a categorial grammar takes the fam S(A).
Now fix a symbolc of T. We say that a string is asentence over the lexicoi
if the least partial algebra containimhgalso containgc, x).

2 Some Basic Results

The first theorem is about closure under homomorphisms. Recall that a string
homomorphism fronA* to B* is a maph that satisfies

(6) h(X'y) = h(X)"h(y)
Such a map is uniquely determined by its actionfon

Theorem 1 Let G= (B x S(A), D, S) be an algebraic grammar and:hrA* — B*
a string homomorphism. PutD:= {(b,h(X)) : (b,X) € D} and @' = (B x
S(B), D", S). Then I(G") = h[L(G)].

Proof. We extendhto a map Ix h : B x S(A) —» B x S(B) by putting (1x
h)((b, X)) := (b, h(X)). This is a homomorphism, as is easily verified. This means
that for every ternt, and all elements, = (b;, X)

(7) Axh)(t(se. - .) = (I x h)(s). - . (1 xh)(s))

In turn, this means that (h)[t[X]] = t[(1xh)[X]]. Hence, (Ixh)[t[D]] = f[D"].
It follows that

(D" = U{t[Dh] : t a term function
(8) = U{(l x W[t[D]] : t a term functioh
= (I xh)[D)]

Now, ¥ € L(G") iff there is & € S such thatc, y) € (D" iff there is & € S such
that(c,y) € (1 x h)[(D)] iff there is ac € S and aX € A* such thaty = h(X) and
(c,X) € Diff there isX € L(G) such thath(X) = ¥. Hence,L(G") = h[L(G)], as
promised. 4

This theorem did not make any assumptions on the algebra of categories. Next
we shall exhibit a general construction, namely fneduct of two grammars.
This works as follows. LeB; = (81X S(A), D1, S1) andG; = (B,xS(A), Dy, S,)
grammars. PubD; X’ D, := {{b,b/,X) : (b, X) € Dy, (0", X) € D,}. Finally, put
G xGy = (B X By X @(A), D, X' Ds, S1 X Sz)

Suppose that the lexicon is such tkiatX) € D only if X e A. Then an analysis
of a string of lengtn will contain exactlyn occurrences of lexical elements. So,
X € (D) iff there is a terni(xy, - - - , X,) containing exactly — 1 (!) occurrences of
® and lexical elements = (b;, X)), 1 <i < n, such that

9) t(s,--,s)=(cX%

for somec. If ® is associative, we can choose the following term:

(10) (- ((81®9)® %) - S)
This will be useful for the next theorem.

Theorem 2 Suppose that Gand G, are grammars whose algebras of categories
are associative. Furthermore, assume that each of thenly contains items of
the form(b, X) wherex € A. Then I(G; x G;) = L(G;) N L(G,).

Proof. Define the following mapsr; : B1xBorx S(A) —» B1xS(A) : b, b, X) >

(b,X), andm, : By x By x S(A) —» By x S(A) : (b,b,X) — (b',X). These
maps are actually homomorphisms. FurthermagfD; x’ D,] = D; as well as
m[Dy X’ D] = Dy, From this we can already deduce thakie L(G; x G,)
thenX € L(Gy) N L(Gy). For if X € L(G; x Gy) then there ard, b’ such that

b e S;andb’ € S, and(b,b’,X) € (D; X' D), then(b,X) = m,({b,b’,X) €
m1[(D1 X’ Dy)] = (m[D1 X’ Dy]) = (D1). Similarly (b’, X} € (D,) is established.

For the converse we need to make use of our further assumptions. Suppose that
X e L(G;1) andX € L(Gy). Then there is a terrtfys, - - - ,yp) and elements; € Dy,

such that(s,,--- , sp) = (c, X) for somec € S;; and there is a terrti(zy, - - - , Zy)

and elements/ € D, such that(s], - - - ’qu) = (¢, X) for somec’ € S,. We are not
guaranteed thatandt’ are the same term. However, under the assumptions made,
as the discussion above has revealed, we do pavel = n, and we can use the
same term. Moreover, we hage= (b;, x;) ands = b/, x) for certainb; € B, and

b/ € B,. It follows that

(11) t(<bl9 b;_’ X1>9 R <bn, b|/'v Xn)) = <C’ C”)?>

and sincec, c') € S; X Sy, we now haveX € L(G; X Gy). .

The theorem can be improved. It is often customary to allow for the empty
string € in the lexicon. In context free grammars it is possible to eliminate the
use of the empty string. However, it is also possible to include the string. One
possibility is when both algebras of categories have a unitnidis an element 1
which satisfiexx = 1- x andx = x- 1 for all x. In this case, the product grammar
shall contain also the following itemgic, 1, ¢) iff (c,e) € D; and(1,c,¢) iff
(c,e) € D,. Or, equivalently, we assume that both lexicons contain the entry
I:=(1,&). Now the argument goes through as follows. Supposd.(G; x G,),
and we have termisandt’ as above. Now we want to find a texnin the product.

To that end, let = s, @ t* andt’ = s, @ t"*. ands, = (by, X1), s = (I, X}). Case

4

1. X, = X|. Then on condition we have found the teunfor t* andt”, we can
putu := (b, b}, %) ® u. Case 2.X; # X;. Then, since the strings are either
empty or a letter, and they cannot be distinct letters, one of the strings is empty
and the other is a letter. Without loss of generalitydet aandX; = . Now put
u=<(y,laye(l b, e)®u". Case 3. One of the terms is exhausted. So, we have
— without loss of generality — thdt is empty. Thers, = (by, €), because the
strings oft andt’ multiply to the same string; asis empty, this product is empty.
Thenu := (b, 1, &) ® u*. This completes the definition of

We shall briefly prove a theorem to thffect that the algebras must be infinite
in order to yield nontrivial results.

Theorem 3 Let G = (8B x S(A), D, S) be a grammar with finite algebra of cate-
gories. If® is associative, (G,) is regular.

Proof. Define an automato®l as follows. The set of states {go} U B, and the
transition table ig)y 5 biff (b, Xy € D andb % b iffthere is ac such that’ = b-c
and{(c, x) € D. Itis easily shown that TR Ciff there arey;, 1 <i < n, such
that for alli (b;, x, e Dandb; -b,----- b, = ciff

(12) (b1, X1 ® (b2, X2) @ - - - @ (b, Xn) = (C, X - - - Xn)

Finally, let the set of accepting states®eThenx; - - - x, € L() iff qo T ¢ for
somec € S iff there is a termi(ys, - - - , o) and elements, = (b;, X;) € D such that
t(St, -,) =(C Xy -+ Xy fOr somec € Siff x; - - - X, € L(G). -

3 Pregroups
A pregroup is a structuréG, 1, -,",¢, <) such that the following holds.
O x-1=1-x=x,
O x-(y-9=(xy)-z
O x-X <1< XX,
0 x‘x <1< xx,and

O if x<ythenxz<yzandzx< zy.

The set of designated categories is the set of allc, wherec is the category of
sentences. Thus,megroup grammar is a triple(8 x S(A), D, C), where3B is a
pregroup an@ = {x : X < ¢}, ¢ € B. For a classV of pregroups and a language
L, we say that is V—definableif there is a pregroup gramm& whose algebra
is fromV such that. = L(G).

Theorem 4 (Buszkowski) Let ¥ be the variety of free pregroups. The class of
languages definable 3% is the class of context free languages.

We shall note that the product of two pregroups also is a pregroup, Whene<
X,yyiff x< X andy < y'. Let®l be the class of direct products of two pregroups.
Our main theorem is this.

Theorem 5 The class of languages definable®ys the class of recursively enu-
merable languages.

Proof. It is known that every recursively enumerable language is the homomor-
phic image of an intersection of two context free languages. By Proposition 1
it is enough to show that every intersection of two CF languag@s-gefinable.

By Proposition 2 and Theorem 4 this is shown if we can see to it that there is a
pregroup grammar with a free pregroup for a CF language whose lexicon consists
only of letters. This can be achieved as follows. Suppose that the lexicon contains
an entry(b, X3y), wherey = X, - - - X,, n > 1. The algebra of categories is the free
pregroupd(X) over some seX of generators. Then adjoin % a new element

u, and let the new algebra of categories®e U {u}). Then the lexicorD is
embedded into this new algebra in the natural way. We eliminate the ¢nity

and add instead the following entriedu, x;) and(u’, y). It is a matter of direct
verification that the new grammar accepts the same strings. 4

