Pregroup Grammars are Turing Equivalent

Greg Kobele and Marcus Kracht, UCLA

1 Algebraic Grammars

If $f: X \rightarrow Y$ is a function and $U \subseteq X$ then we write $f[U]:=\{f(x): x \in U\}$ for the image of U under f. An signature Ω over a set F of function symbols is a function $\Omega: F \rightarrow \mathbb{N}$ (where $0 \in \mathbb{N}$). An Ω-algebra is a pair $\langle B, \mathfrak{J}\rangle$ such that \mathfrak{I} assigns to each $f \in F$ a function $B^{\Omega(f)} \rightarrow B$. \mathfrak{B} is partial if $\mathfrak{J}(f)$ may also be a partial function. We shall also write $f^{\mathfrak{B}}$ in place of $\mathfrak{J}(f)$. For example, let $F=\{1, \otimes\}$ and $\Omega(1)=0$ and $\Omega(\otimes)=2$. An Ω-algebra is a pair $\langle B, \mathfrak{J}\rangle$ such that $\mathfrak{J}(1):\{\varnothing\} \rightarrow B$ and $\mathfrak{J}(\otimes): B^{2} \rightarrow B$ (recall that $\left.B^{0}=\{\varnothing\}\right)$. Thus we may also view $\mathfrak{J}(1)$ as an element of B instead of a zeroary function. A particular example of an Ω-algebra is the algebra $\subseteq(A)$ of strings over an alphabet A. Here, the underlying set of $\subseteq(A)$ is the set A^{*} of strings over A and $1^{\Theta(A)}=\varepsilon$ as well as $\otimes^{\Xi(A)}=^{-}$, the concatenation of strings. Notice that concatenation is associative, that is, for all strings x, y and z.

$$
\begin{equation*}
x^{\wedge}\left(y^{\wedge} z\right)=\left(x^{\wedge} y\right)^{\wedge} z \tag{1}
\end{equation*}
$$

Given two algebras $\mathfrak{B}=\langle B, \mathfrak{J}\rangle$ and $\mathfrak{C}=\langle C, \mathfrak{J}\rangle$, we put $\mathfrak{B} \times \mathfrak{C}=\langle A \times C, \mathfrak{R}\rangle$ where

$$
\begin{align*}
\Omega(f)\left(\left\langle b_{1}, c_{1}\right\rangle,\left\langle b_{2}, c_{2}\right\rangle, \cdots,\right. & \left.\left\langle b_{\Omega(f)}, c_{\Omega(f)}\right\rangle\right):= \tag{2}\\
& \left\langle\mathfrak{J}(f)\left(b_{1}, b_{2}, \cdots, b_{\Omega(f)}, \mathfrak{J}(f)\left(c_{1}, c_{2}, \cdots, c_{\Omega(f)}\right)\right\rangle\right.
\end{align*}
$$

This is undefined if the right hand side is. In turn this is undefined if any of the functions $\mathfrak{J}(f)$ or $\mathfrak{J}(f)$ is undefined on their respective arguments.

Let \mathfrak{B} be an algebra and $X \subseteq B$ a set. Then algebra generated by X in \mathfrak{B}, is obtained as follows. First, we call a subset M of A closed if whenever for all $f \in F$ and all $i<\Omega(f): a_{i} \in M$ also $f^{\mathfrak{B}}\left(a_{1}, a_{2}, \cdots, a_{\Omega(f)}\right) \in M$. We let $\langle X\rangle$ be the least closed set containing M. The algebra \mathfrak{B} defines an algebra \mathfrak{X} on $\langle X\rangle$ via $f^{\mathfrak{Z}}\left(a_{1}, a_{2}, \cdots, a_{\Omega(f)}\right):=f^{\mathfrak{B}}\left(a_{1}, a_{2}, \cdots, a_{\Omega(f)}\right)$. The left hand is defined iff the right hand side is. We can give a more concrete characterisation as follows. Say that a term is built from variables using the function symbols of F. Terms with only the binary symbol \otimes as function symbols are $x, y, x \otimes y, x \otimes(y \otimes x)$, and so on. If $t\left(x_{1}, \cdots, x_{n}\right)$ is a term, and $c_{i}, 1 \leq i \leq n$ are elements of the algebra, then $t\left(c_{1}, \cdots, c_{n}\right)$ denotes the result of substituting the values c_{i} for the variables
x_{i}. With this, $\langle X\rangle$ consists of all elements $t\left(c_{1}, \cdots, c_{n}\right)$, where $t\left(x_{1}, \cdots, x_{n}\right)$ is a term and for all $i \leq n, c_{i} \in X$. A term $t\left(x_{1}, \cdots, x_{n}\right)$ defines a term function $t^{\mathfrak{B}}$: $\left\langle c_{1}, \cdots, c_{n}\right\rangle \mapsto t\left(c_{1}, \cdots, c_{n}\right)$ on A^{n}. We shall henceforth not distinguish between the term t and the term function it induces on B. If f is a term function and U a set, write $f[U]:=\left\{f(\vec{c}): \vec{c} \in U^{n}\right\}$. We can now also say

$$
\begin{equation*}
\langle X\rangle=\bigcup\{f[X]: f \text { a term function of } \mathfrak{B}\} \tag{3}
\end{equation*}
$$

An algebraic grammar scheme is a partial algebra over the signature $\{\otimes\}$ of the form $\mathfrak{C} \times \mathfrak{S}(A)$. Here, \mathfrak{C} is the algebra of categories and $\mathbb{S}(A)$ is the algebra of exponents. A lexicon is a finite subset of $C \times A^{*}$. Finally, we select a set $S \subseteq B$ of so-called designated categories. We shall require that this set is in some sense finitely specified. For example, in standard categorial grammar S consists of just one element, denoted here by c. In pregroup grammars we take S to be the set of all categories below c; this is possible because pregroups have a partial order. The triple $G=\langle\mathfrak{G}, D, S\rangle$, where \mathfrak{G} is an algebraic grammar scheme, D a lexicon and S a subset of C is called an algebraic grammar. Thus the scheme merely provides for the categories and the strings to be manipulated, while the lexicon provides the actual entries that the grammar uses. It is required that the lexicon is finite; hence we can equate algebraic grammars with finitely generated grammar schemes. A string \vec{x} is accepted if there is a $c \in C$ such that $\langle c, \vec{x}\rangle \in\langle D\rangle$. We write
(4) $L=L(G)$

Basic categorial grammar can be construed as an algebraic grammar in the following way. Let T be the set of types over a given set of basic types, using the constructor /. Now introduce a binary partial function • which satisfies the following law:

$$
\begin{equation*}
(x / y) \cdot y=x \tag{5}
\end{equation*}
$$

That is to say, $u \cdot y$ is defined iff $u=x / y$ for some x, and the then result is x. This forms the algebra $\mathfrak{I}=\langle T, \cdot\rangle$. Then a categorial grammar takes the form $\mathfrak{I} \times \Im(A)$. Now fix a symbol cof T. We say that a string x is a sentence over the lexicon L if the least partial algebra containing L also contains $\langle\mathrm{c}, x\rangle$.

2 Some Basic Results

The first theorem is about closure under homomorphisms. Recall that a string homomorphism from A^{*} to B^{*} is a map h that satisfies

$$
\begin{equation*}
h(\vec{x} \vec{y})=h(\vec{x}) \quad h(\vec{y}) \tag{6}
\end{equation*}
$$

Such a map is uniquely determined by its action on A.
Theorem 1 Let $G=\langle\mathfrak{B} \times \subseteq(A), D, S\rangle$ be an algebraic grammar and $h: A^{*} \rightarrow B^{*}$ a string homomorphism. Put $D^{h}:=\{\langle b, h(\vec{x})\rangle:\langle b, \vec{x}\rangle \in D\}$ and $G^{h}:=\langle\mathfrak{B} \times$ $\left.\Theta(B), D^{h}, S\right\rangle$. Then $L\left(G^{h}\right)=h[L(G)]$.

Proof. We extend h to a map $1 \times h: \mathfrak{B} \times \mathfrak{S}(A) \rightarrow \mathfrak{B} \times \mathbb{S}(B)$ by putting $(1 \times$ $h)(\langle b, \vec{x}\rangle):=\langle b, h(\vec{x})\rangle$. This is a homomorphism, as is easily verified. This means that for every term t, and all elements $s_{i}=\left\langle b_{i}, \vec{x}_{i}\right\rangle$

$$
\begin{equation*}
(1 \times h)\left(t\left(s_{1}, \cdots, s_{n}\right)\right)=t\left((1 \times h)\left(s_{1}\right), \cdots,(1 \times h)\left(s_{n}\right)\right) \tag{7}
\end{equation*}
$$

In turn, this means that $(1 \times h)[t[X]]=t[(1 \times h)[X]]$. Hence, $(1 \times h)[t[D]]=f\left[D^{h}\right]$. It follows that

$$
\begin{align*}
\left\langle D^{h}\right\rangle & =\bigcup\left\{t\left[D^{h}\right]: t \text { a term function }\right\} \\
& =\bigcup\{(1 \times h)[t[D]]: t \text { a term function }\} \tag{8}\\
& =(1 \times h)[\langle D\rangle]
\end{align*}
$$

Now, $\vec{y} \in L\left(G^{h}\right)$ iff there is a $c \in S$ such that $\langle c, \vec{y}\rangle \in\left\langle D^{h}\right\rangle$ iff there is a $c \in S$ such that $\langle c, \vec{y}\rangle \in(1 \times h)[\langle D\rangle]$ iff there is a $c \in S$ and a $\vec{x} \in A^{*}$ such that $\vec{y}=h(\vec{x})$ and $\langle c, \vec{x}\rangle \in D$ iff there is $\vec{x} \in L(G)$ such that $h(\vec{x})=\vec{y}$. Hence, $L\left(G^{h}\right)=h[L(G)]$, as promised.

This theorem did not make any assumptions on the algebra of categories. Next we shall exhibit a general construction, namely the product of two grammars. This works as follows. Let $G_{1}=\left\langle\mathfrak{B}_{1} \times \mathfrak{G}(A), D_{1}, S_{1}\right\rangle$ and $G_{2}=\left\langle\mathfrak{B}_{2} \times \mathfrak{S}(A), D_{2}, S_{2}\right\rangle$ grammars. Put $D_{1} \times^{\prime} D_{2}:=\left\{\left\langle b, b^{\prime}, \vec{x}\right\rangle:\langle b, \vec{x}\rangle \in D_{1},\left\langle b^{\prime}, \vec{x}\right\rangle \in D_{2}\right\}$. Finally, put $G_{1} \times G_{2}:=\left\langle\mathfrak{B}_{1} \times \mathfrak{B}_{2} \times \Subset(A), D_{1} \times D_{2}, S_{1} \times S_{2}\right\rangle$.

Suppose that the lexicon is such that $\langle b, \vec{x}\rangle \in D$ only if $\vec{x} \in A$. Then an analysis of a string of length n will contain exactly n occurrences of lexical elements. So, $\vec{x} \in\langle D\rangle$ iff there is a term $t\left(x_{1}, \cdots, x_{n}\right)$ containing exactly $n-1(!)$ occurrences of \otimes and lexical elements $s_{i}=\left\langle b_{1}, \vec{x}_{i}\right\rangle, 1 \leq i \leq n$, such that

$$
\begin{equation*}
t\left(s_{1}, \cdots, s_{n}\right)=\langle c, \vec{x}\rangle \tag{9}
\end{equation*}
$$

for some c. If \otimes is associative, we can choose the following term:

$$
\begin{equation*}
\left(\cdots\left(\left(s_{1} \otimes s_{2}\right) \otimes s_{2}\right) \cdots s_{n}\right) \tag{10}
\end{equation*}
$$

This will be useful for the next theorem.
Theorem 2 Suppose that G_{1} and G_{2} are grammars whose algebras of categories are associative. Furthermore, assume that each of the D_{i} only contains items of the form $\langle b, \vec{x}\rangle$ where $\vec{x} \in A$. Then $L\left(G_{1} \times G_{2}\right)=L\left(G_{1}\right) \cap L\left(G_{2}\right)$.

Proof. Define the following maps. $\pi_{1}: \mathfrak{B}_{1} \times \mathfrak{B}_{2} \times \mathfrak{G}(A) \rightarrow \mathfrak{B}_{1} \times \subseteq(A):\left\langle b, b^{\prime}, \vec{x}\right\rangle \mapsto$ $\langle b, \vec{x}\rangle$, and $\pi_{2}: \mathfrak{B}_{1} \times \mathfrak{B}_{2} \times \mathfrak{S}(A) \rightarrow \mathfrak{B}_{1} \times \subseteq(A):\left\langle b, b^{\prime}, \vec{x}\right\rangle \mapsto\left\langle b^{\prime}, \vec{x}\right\rangle$. These maps are actually homomorphisms. Furthermore, $\pi_{1}\left[D_{1} \times D_{2}\right]=D_{1}$ as well as $\pi_{2}\left[D_{1} \times D_{2}\right]=D_{2}$. From this we can already deduce that if $\vec{x} \in L\left(G_{1} \times G_{2}\right)$ then $\vec{x} \in L\left(G_{1}\right) \cap L\left(G_{2}\right)$. For if $\vec{x} \in L\left(G_{1} \times G_{2}\right)$ then there are b, b^{\prime} such that $b \in S_{1}$ and $b^{\prime} \in S_{2}$ and $\left\langle b, b^{\prime}, \vec{x}\right\rangle \in\left\langle D_{1} \times^{\prime} D_{2}\right\rangle$, then $\langle b, \vec{x}\rangle=\pi_{1}\left(\left\langle b, b^{\prime}, \vec{x}\right\rangle \in\right.$ $\pi_{1}\left[\left\langle D_{1} \times^{\prime} D_{2}\right\rangle\right]=\left\langle\pi_{1}\left[D_{1} \times^{\prime} D_{2}\right]\right\rangle=\left\langle D_{1}\right\rangle$. Similarly $\left\langle b^{\prime}, \vec{x}\right\rangle \in\left\langle D_{2}\right\rangle$ is established. For the converse we need to make use of our further assumptions. Suppose that $\vec{x} \in L\left(G_{1}\right)$ and $\vec{x} \in L\left(G_{2}\right)$. Then there is a term $t\left(y_{1}, \cdots, y_{p}\right)$ and elements $s_{i} \in D_{1}$, such that $t\left(s_{1}, \cdots, s_{p}\right)=\langle c, \vec{x}\rangle$ for some $c \in S_{1}$; and there is a term $t^{\prime}\left(z_{1}, \cdots, z_{q}\right)$ and elements $s_{i}^{\prime} \in D_{2}$ such that $t\left(s_{1}^{\prime}, \cdots, s_{q}^{\prime}\right)=\left\langle c^{\prime}, \vec{x}\right\rangle$ for some $c^{\prime} \in S_{2}$. We are not guaranteed that t and t^{\prime} are the same term. However, under the assumptions made, as the discussion above has revealed, we do have $p=q=n$, and we can use the same term. Moreover, we have $s_{i}=\left\langle b_{i}, x_{i}\right\rangle$ and $s_{i}^{\prime}=\left\langle b_{i}^{\prime}, x_{i}\right\rangle$ for certain $b_{i} \in B_{1}$ and $b_{i}^{\prime} \in B_{2}$. It follows that
(11) $t\left(\left\langle b_{1}, b_{1}^{\prime}, x_{1}\right\rangle, \cdots,\left\langle b_{n}, b_{n}^{\prime}, x_{n}\right\rangle\right)=\left\langle c, c^{\prime}, \vec{x}\right\rangle$
and since $\left\langle c, c^{\prime}\right\rangle \in S_{1} \times S_{2}$, we now have $\vec{x} \in L\left(G_{1} \times G_{2}\right)$.
The theorem can be improved. It is often customary to allow for the empty string ε in the lexicon. In context free grammars it is possible to eliminate the use of the empty string. However, it is also possible to include the string. One possibility is when both algebras of categories have a unit. A unit is an element 1 which satisfies $x=1 \cdot x$ and $x=x \cdot 1$ for all x. In this case, the product grammar shall contain also the following items: $\langle c, 1, \varepsilon\rangle$ iff $\langle c, \varepsilon\rangle \in D_{1}$ and $\left\langle 1, c^{\prime}, \varepsilon\right\rangle$ iff $\left\langle c^{\prime}, \varepsilon\right\rangle \in D_{2}$. Or, equivalently, we assume that both lexicons contain the entry $\mathbb{I}:=\langle 1, \varepsilon\rangle$. Now the argument goes through as follows. Suppose $\vec{x} \in L\left(G_{1} \times G_{2}\right)$, and we have terms t and t^{\prime} as above. Now we want to find a term u in the product. To that end, let $t=s_{1} \otimes t^{*}$ and $t^{\prime}=s_{1}^{\prime} \otimes t^{\prime *}$. and $s_{1}=\left\langle b_{1}, \vec{x}_{1}\right\rangle, s_{1}^{\prime}=\left\langle b^{\prime}, \vec{x}_{1}\right\rangle$. Case

1. $\vec{x}_{1}=\vec{x}_{1}$. Then on condition we have found the term u^{*} for t^{*} and $t^{* \prime}$, we can put $u:=\left\langle b_{1}, b_{1}^{\prime}, \vec{x}_{1}\right\rangle \otimes u^{*}$. Case 2. $\vec{x}_{1} \neq \vec{x}_{1}$. Then, since the strings are either empty or a letter, and they cannot be distinct letters, one of the strings is empty and the other is a letter. Without loss of generality let $\vec{x}_{1}=a$ and $\vec{x}_{1}=\varepsilon$. Now put $u=\left\langle b_{1}, 1, a\right\rangle \otimes\left\langle 1, b_{1}^{\prime}, \varepsilon\right\rangle \otimes u^{*}$. Case 3. One of the terms is exhausted. So, we have - without loss of generality - that t^{\prime} is empty. Then $s_{1}=\left\langle b_{1}, \varepsilon\right\rangle$, because the strings of t and t^{\prime} multiply to the same string; as t^{\prime} is empty, this product is empty. Then $u:=\left\langle b_{1}, 1, \varepsilon\right\rangle \otimes u^{*}$. This completes the definition of u.

We shall briefly prove a theorem to the effect that the algebras must be infinite in order to yield nontrivial results.

Theorem 3 Let $G=\langle\mathfrak{B} \times \subseteq(A), D, S\rangle$ be a grammar with finite algebra of categories. If \otimes is associative, $L\left(G_{1}\right)$ is regular.

Proof. Define an automaton \mathfrak{A} as follows. The set of states is $\left\{q_{0}\right\} \cup B$, and the transition table is $q_{0} \xrightarrow{x} b$ iff $\langle b, x\rangle \in D$ and $b \xrightarrow{x} b^{\prime}$ iff there is a c such that $b^{\prime}=b \cdot c$ and $\langle c, x\rangle \in D$. It is easily shown that $q_{0} \xrightarrow{x_{1} \cdots x_{n}} c$ iff there are $b_{i}, 1 \leq i \leq n$, such that for all $i\left\langle b_{i}, x_{i} \in D\right.$ and $b_{1} \cdot b_{2} \cdots \cdots b_{n}=c$ iff

$$
\begin{equation*}
\left\langle b_{1}, x_{1} \otimes\left\langle b_{2}, x_{2}\right\rangle \otimes \cdots \otimes\left\langle b_{n}, x_{n}\right\rangle=\left\langle c, x_{1} \cdots x_{n}\right\rangle\right. \tag{12}
\end{equation*}
$$

Finally, let the set of accepting states be S. Then $x_{1} \cdots x_{n} \in L(\mathfrak{H})$ iff $q_{0} \xrightarrow{x_{1} \cdots x_{n}} c$ for some $c \in S$ iff there is a term $t\left(y_{1}, \cdots, y_{n}\right)$ and elements $s_{i}=\left\langle b_{i}, x_{i}\right\rangle \in D$ such that $t\left(s_{1}, \cdots, s_{n}\right)=\left\langle c, x_{1} \cdots x_{n}\right\rangle$ for some $c \in S$ iff $x_{1} \cdots x_{n} \in L(G)$.

3 Pregroups

A pregroup is a structure $\left\langle G, 1, \cdot,^{r},{ }^{\ell}, \leq\right\rangle$ such that the following holds.
(1) $x \cdot 1=1 \cdot x=x$,
(2) $x \cdot(y \cdot z)=(x \cdot y) \cdot z$,
(3) $x \cdot x^{r} \leq 1 \leq x^{r} x$,
(4) $x^{\ell} x \leq 1 \leq x x^{\ell}$, and
(5) if $x \leq y$ then $x z \leq y z$ and $z x \leq z y$.

The set of designated categories is the set of all $x \leq c$, where c is the category of sentences. Thus, a pregroup grammar is a triple $\langle\mathfrak{B} \times \mathfrak{S}(A), D, C\rangle$, where \mathfrak{B} is a pregroup and $C=\{x: x \leq c\}, c \in B$. For a class \mathcal{V} of pregroups and a language L, we say that L is \mathcal{V}-definable if there is a pregroup grammar G whose algebra is from \mathcal{V} such that $L=L(G)$.

Theorem 4 (Buszkowski) Let \mathcal{F} be the variety of free pregroups. The class of languages definable by \mathcal{F} is the class of context free languages.

We shall note that the product of two pregroups also is a pregroup, where $\langle x, y\rangle \leq$ $\left\langle x^{\prime}, y^{\prime}\right\rangle$ iff $x \leq x^{\prime}$ and $y \leq y^{\prime}$. Let \mathfrak{P} be the class of direct products of two pregroups. Our main theorem is this.

Theorem 5 The class of languages definable by \mathcal{P} is the class of recursively enumerable languages.

Proof. It is known that every recursively enumerable language is the homomorphic image of an intersection of two context free languages. By Proposition 1 it is enough to show that every intersection of two CF languages is \mathcal{P}-definable. By Proposition 2 and Theorem 4 this is shown if we can see to it that there is a pregroup grammar with a free pregroup for a CF language whose lexicon consists only of letters. This can be achieved as follows. Suppose that the lexicon contains an entry $\left\langle b, x_{1}^{-} \vec{y}\right\rangle$, where $\vec{y}=x_{2} \cdots x_{n}, n>1$. The algebra of categories is the free pregroup $\mathfrak{F}(X)$ over some set X of generators. Then adjoin to X a new element u, and let the new algebra of categories be $\mathfrak{F}(X \cup\{u\})$. Then the lexicon D is embedded into this new algebra in the natural way. We eliminate the entry $\langle b, \vec{x}\rangle$ and add instead the following entries: $\left\langle b u, x_{1}\right\rangle$ and $\left\langle u^{r}, \vec{y}\right\rangle$. It is a matter of direct verification that the new grammar accepts the same strings.

