
Pregroup Grammars are Turing Equivalent

Greg Kobele and Marcus Kracht, UCLA

1 Algebraic Grammars

If f : X → Y is a function andU ⊆ X then we write f [U] := { f (x) : x ∈ U}
for the image ofU under f . An signatureΩ over a setF of function symbols is
a functionΩ : F → N (where 0∈ N). An Ω–algebra is a pair〈B,I〉 such that
I assigns to eachf ∈ F a functionBΩ(f) → B. B is partial if I(f) may also
be a partial function. We shall also writefB in place ofI(f). For example, let
F = {1,⊗} andΩ(1) = 0 andΩ(⊗) = 2. AnΩ–algebra is a pair〈B,I〉 such that
I(1) : {∅} → B andI(⊗) : B2→ B (recall thatB0 = {∅}). Thus we may also view
I(1) as an element ofB instead of a zeroary function. A particular example of an
Ω–algebra is the algebraS(A) of strings over an alphabetA. Here, the underlying
set ofS(A) is the setA∗ of strings overA and 1S(A) = ε as well as⊗S(A) =a, the
concatenation of strings. Notice that concatenation is associative, that is, for all
stringsx, y andz.

(1) xa(yaz) = (xay)az

Given two algebrasB = 〈B,I〉 andC = 〈C,J〉, we putB × C = 〈A×C,K〉 where

(2) K(f)(〈b1, c1〉, 〈b2, c2〉, · · · , 〈bΩ(f), cΩ(f)〉) :=

〈I(f)(b1,b2, · · · ,bΩ(f),J(f)(c1, c2, · · · , cΩ(f))〉

This is undefined if the right hand side is. In turn this is undefined if any of the
functionsI(f) or J(f) is undefined on their respective arguments.

Let B be an algebra andX ⊆ B a set. Then algebra generated byX in B,
is obtained as follows. First, we call a subsetM of A closedif whenever for all
f ∈ F and all i < Ω(f): ai ∈ M also fB(a1,a2, · · · ,aΩ(f)) ∈ M. We let 〈X〉 be
the least closed set containingM. The algebraB defines an algebraX on 〈X〉
via f X(a1,a2, · · · ,aΩ(f)) := fB(a1,a2, · · · ,aΩ(f)). The left hand is defined iff the
right hand side is. We can give a more concrete characterisation as follows. Say
that aterm is built from variables using the function symbols ofF. Terms with
only the binary symbol⊗ as function symbols arex, y, x ⊗ y, x ⊗ (y ⊗ x), and
so on. If t(x1, · · · , xn) is a term, andci, 1 ≤ i ≤ n are elements of the algebra,
thent(c1, · · · , cn) denotes the result of substituting the valuesci for the variables

xi. With this, 〈X〉 consists of all elementst(c1, · · · , cn), wheret(x1, · · · , xn) is a
term and for alli ≤ n, ci ∈ X. A term t(x1, · · · , xn) defines a term functiontB :
〈c1, · · · , cn〉 7→ t(c1, · · · , cn) on An. We shall henceforth not distinguish between
the termt and the term function it induces onB. If f is a term function andU a
set, write f [U] := { f (~c) : ~c ∈ Un}. We can now also say

(3) 〈X〉 =
⋃
{ f [X] : f a term function ofB}

An algebraic grammar schemeis a partial algebra over the signature{⊗} of the
form C × S(A). Here,C is the algebra ofcategoriesandS(A) is the algebra of
exponents. A lexicon is a finite subset ofC × A∗. Finally, we select a setS ⊆ B
of so–calleddesignated categories. We shall require that this set is in some sense
finitely specified. For example, in standard categorial grammarS consists of just
one element, denoted here byc. In pregroup grammars we takeS to be the set of
all categories belowc; this is possible because pregroups have a partial order. The
triple G = 〈G,D,S〉, whereG is an algebraic grammar scheme,D a lexicon andS
a subset ofC is called analgebraic grammar. Thus the scheme merely provides
for the categories and the strings to be manipulated, while the lexicon provides the
actual entries that the grammar uses. It is required that the lexicon is finite; hence
we can equate algebraic grammars with finitely generated grammar schemes. A
string~x is acceptedif there is ac ∈ C such that〈c, ~x〉 ∈ 〈D〉. We write

(4) L = L(G)

Basic categorial grammar can be construed as an algebraic grammar in the fol-
lowing way. LetT be the set of types over a given set of basic types, using the
constructor/. Now introduce a binary partial function· which satisfies the follow-
ing law:

(5) (x/y) · y = x

That is to say,u · y is defined iff u = x/y for somex, and the then result isx. This
forms the algebraT = 〈T, ·〉. Then a categorial grammar takes the formT×S(A).
Now fix a symbolc of T. We say that a stringx is asentence over the lexiconL
if the least partial algebra containingL also contains〈c, x〉.

2

2 Some Basic Results

The first theorem is about closure under homomorphisms. Recall that a string
homomorphism fromA∗ to B∗ is a maph that satisfies

(6) h(~xa~y) = h(~x)ah(~y)

Such a map is uniquely determined by its action onA.

Theorem 1 Let G= 〈B×S(A),D,S〉 be an algebraic grammar and h: A∗ → B∗

a string homomorphism. Put Dh := {〈b,h(~x)〉 : 〈b, ~x〉 ∈ D} and Gh := 〈B ×
S(B),Dh,S〉. Then L(Gh) = h[L(G)].

Proof. We extendh to a map 1× h : B × S(A) → B × S(B) by putting (1×
h)(〈b, ~x〉) := 〈b,h(~x)〉. This is a homomorphism, as is easily verified. This means
that for every termt, and all elementssi = 〈bi , ~xi〉

(7) (1× h)(t(s1, · · · , sn)) = t((1× h)(s1), · · · , (1× h)(sn))

In turn, this means that (1×h)[t[X]] = t[(1×h)[X]]. Hence, (1×h)[t[D]] = f [Dh].
It follows that

(8)

〈Dh〉 =
⋃
{t[Dh] : t a term function}

=
⋃
{(1× h)[t[D]] : t a term function}

= (1× h)[〈D〉]

Now,~y ∈ L(Gh) iff there is ac ∈ S such that〈c, ~y〉 ∈ 〈Dh〉 iff there is ac ∈ S such
that 〈c, ~y〉 ∈ (1 × h)[〈D〉] iff there is ac ∈ S and a~x ∈ A∗ such that~y = h(~x) and
〈c, ~x〉 ∈ D iff there is~x ∈ L(G) such thath(~x) = ~y. Hence,L(Gh) = h[L(G)], as
promised. a

This theorem did not make any assumptions on the algebra of categories. Next
we shall exhibit a general construction, namely theproduct of two grammars.
This works as follows. LetG1 = 〈B1×S(A),D1,S1〉 andG2 = 〈B2×S(A),D2,S2〉

grammars. PutD1 ×
′ D2 := {〈b,b′, ~x〉 : 〈b, ~x〉 ∈ D1, 〈b′, ~x〉 ∈ D2}. Finally, put

G1 ×G2 := 〈B1 ×B2 ×S(A),D1 ×
′ D2,S1 × S2〉.

Suppose that the lexicon is such that〈b, ~x〉 ∈ D only if ~x ∈ A. Then an analysis
of a string of lengthn will contain exactlyn occurrences of lexical elements. So,
~x ∈ 〈D〉 iff there is a termt(x1, · · · , xn) containing exactlyn− 1 (!) occurrences of
⊗ and lexical elementssi = 〈b1, ~xi〉, 1 ≤ i ≤ n, such that

(9) t(s1, · · · , sn) = 〈c, ~x〉

3

for somec. If ⊗ is associative, we can choose the following term:

(10) (· · · ((s1 ⊗ s2) ⊗ s2) · · · sn)

This will be useful for the next theorem.

Theorem 2 Suppose that G1 and G2 are grammars whose algebras of categories
are associative. Furthermore, assume that each of the Di only contains items of
the form〈b, ~x〉 where~x ∈ A. Then L(G1 ×G2) = L(G1) ∩ L(G2).

Proof. Define the following maps.π1 : B1×B2×S(A)→ B1×S(A) : 〈b,b′, ~x〉 7→
〈b, ~x〉, andπ2 : B1 × B2 × S(A) → B1 × S(A) : 〈b,b′, ~x〉 7→ 〈b′, ~x〉. These
maps are actually homomorphisms. Furthermore,π1[D1 ×

′ D2] = D1 as well as
π2[D1 ×

′ D2] = D2. From this we can already deduce that if~x ∈ L(G1 × G2)
then~x ∈ L(G1) ∩ L(G2). For if ~x ∈ L(G1 × G2) then there areb, b′ such that
b ∈ S1 and b′ ∈ S2 and 〈b,b′, ~x〉 ∈ 〈D1 ×

′ D2〉, then 〈b, ~x〉 = π1(〈b,b′, ~x〉 ∈
π1[〈D1 ×

′ D2〉] = 〈π1[D1 ×
′ D2]〉 = 〈D1〉. Similarly 〈b′, ~x〉 ∈ 〈D2〉 is established.

For the converse we need to make use of our further assumptions. Suppose that
~x ∈ L(G1) and~x ∈ L(G2). Then there is a termt(y1, · · · , yp) and elementssi ∈ D1,
such thatt(s1, · · · , sp) = 〈c, ~x〉 for somec ∈ S1; and there is a termt′(z1, · · · , zq)
and elementss′i ∈ D2 such thatt(s′1, · · · , s

′
q) = 〈c

′, ~x〉 for somec′ ∈ S2. We are not
guaranteed thatt andt′ are the same term. However, under the assumptions made,
as the discussion above has revealed, we do havep = q = n, and we can use the
same term. Moreover, we havesi = 〈bi , xi〉 ands′i = 〈b

′
i , xi〉 for certainbi ∈ B1 and

b′i ∈ B2. It follows that

(11) t(〈b1,b
′
1, x1〉, · · · , 〈bn,b

′
n, xn〉) = 〈c, c

′, ~x〉

and since〈c, c′〉 ∈ S1 × S2, we now have~x ∈ L(G1 ×G2). a

The theorem can be improved. It is often customary to allow for the empty
string ε in the lexicon. In context free grammars it is possible to eliminate the
use of the empty string. However, it is also possible to include the string. One
possibility is when both algebras of categories have a unit. Aunit is an element 1
which satisfiesx = 1 · x andx = x · 1 for all x. In this case, the product grammar
shall contain also the following items:〈c,1, ε〉 iff 〈c, ε〉 ∈ D1 and 〈1, c′, ε〉 iff
〈c′, ε〉 ∈ D2. Or, equivalently, we assume that both lexicons contain the entry
I := 〈1, ε〉. Now the argument goes through as follows. Suppose~x ∈ L(G1 ×G2),
and we have termst andt′ as above. Now we want to find a termu in the product.
To that end, lett = s1 ⊗ t∗ andt′ = s′1 ⊗ t′∗. ands1 = 〈b1, ~x1〉, s′1 = 〈b

′, ~x′1〉. Case

4

1. ~x1 = ~x′1. Then on condition we have found the termu∗ for t∗ andt∗′, we can
put u := 〈b1,b′1, ~x1〉 ⊗ u∗. Case 2.~x1 , ~x′1. Then, since the strings are either
empty or a letter, and they cannot be distinct letters, one of the strings is empty
and the other is a letter. Without loss of generality let~x1 = a and~x′1 = ε. Now put
u = 〈b1,1,a〉 ⊗ 〈1,b′1, ε〉 ⊗ u∗. Case 3. One of the terms is exhausted. So, we have
— without loss of generality — thatt′ is empty. Thens1 = 〈b1, ε〉, because the
strings oft andt′ multiply to the same string; ast′ is empty, this product is empty.
Thenu := 〈b1,1, ε〉 ⊗ u∗. This completes the definition ofu.

We shall briefly prove a theorem to the effect that the algebras must be infinite
in order to yield nontrivial results.

Theorem 3 Let G= 〈B × S(A),D,S〉 be a grammar with finite algebra of cate-
gories. If⊗ is associative, L(G1) is regular.

Proof. Define an automatonA as follows. The set of states is{q0} ∪ B, and the
transition table isq0

x
→ b iff 〈b, x〉 ∈ D andb

x
→ b′ iff there is ac such thatb′ = b·c

and〈c, x〉 ∈ D. It is easily shown thatq0
x1···xn
−→ c iff there arebi, 1 ≤ i ≤ n, such

that for all i 〈bi , xi ∈ D andb1 · b2 · · · · · bn = c iff

(12) 〈b1, x1 ⊗ 〈b2, x2〉 ⊗ · · · ⊗ 〈bn, xn〉 = 〈c, x1 · · · xn〉

Finally, let the set of accepting states beS. Thenx1 · · · xn ∈ L(A) iff q0
x1···xn
−→ c for

somec ∈ S iff there is a termt(y1, · · · , yn) and elementssi = 〈bi , xi〉 ∈ D such that
t(s1, · · · , sn) = 〈c, x1 · · · xn〉 for somec ∈ S iff x1 · · · xn ∈ L(G). a

3 Pregroups

A pregroup is a structure〈G,1, ·,r ,` ,≤〉 such that the following holds.

➀ x · 1 = 1 · x = x,

➁ x · (y · z) = (x · y) · z,

➂ x · xr ≤ 1 ≤ xr x,

➃ x`x ≤ 1 ≤ xx`, and

➄ if x ≤ y thenxz≤ yzandzx≤ zy.

5

The set of designated categories is the set of allx ≤ c, wherec is the category of
sentences. Thus, apregroup grammar is a triple〈B ×S(A),D,C〉, whereB is a
pregroup andC = {x : x ≤ c}, c ∈ B. For a classV of pregroups and a language
L, we say thatL isV–definable if there is a pregroup grammarG whose algebra
is fromV such thatL = L(G).

Theorem 4 (Buszkowski) Let F be the variety of free pregroups. The class of
languages definable byF is the class of context free languages.

We shall note that the product of two pregroups also is a pregroup, where〈x, y〉 ≤
〈x′, y′〉 iff x ≤ x′ andy ≤ y′. LetP be the class of direct products of two pregroups.
Our main theorem is this.

Theorem 5 The class of languages definable byP is the class of recursively enu-
merable languages.

Proof. It is known that every recursively enumerable language is the homomor-
phic image of an intersection of two context free languages. By Proposition 1
it is enough to show that every intersection of two CF languages isP–definable.
By Proposition 2 and Theorem 4 this is shown if we can see to it that there is a
pregroup grammar with a free pregroup for a CF language whose lexicon consists
only of letters. This can be achieved as follows. Suppose that the lexicon contains
an entry〈b, xa1~y〉, where~y = x2 · · · xn, n > 1. The algebra of categories is the free
pregroupF(X) over some setX of generators. Then adjoin toX a new element
u, and let the new algebra of categories beF(X ∪ {u}). Then the lexiconD is
embedded into this new algebra in the natural way. We eliminate the entry〈b, ~x〉
and add instead the following entries:〈bu, x1〉 and〈ur , ~y〉. It is a matter of direct
verification that the new grammar accepts the same strings. a

6

