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A. The present paper is the first part of a sequence of papers
devoted to the modal logics of structures that arise from Government
and Binding theory. It has been shown in [9] that they can be modeled by
so-called multidominance structures (MDSs). The result we are going to
prove here is that the dynamic logic of the MDSs is decidable. Moreover,
we shall indicate how the theory of Government and Binding as well as
the Minimalist Program can be coded in modal logic. Some preliminary
decidability results for GB are obtained, which will be followed up in
the sequel to this paper.

1. I

In recent years, the idea of model theoretic syntax has been getting more
attention. One of the advantages of model theoretic syntax is that it de-
scribes syntactic structures using a logical language so that fundamental
theoretical questions can receive a precise formulation and can—hopefully—
be answered. This idea can be found already in the work by E S
(see [15]), where it was argued that questions of dependency among differ-
ent modules of grammar, or independence questions for principles can be
translated into logical questions. S chose a translation into predicate
logic, accompanied by an implementation in Prolog. Thus, questions could
be posed to a computer, which would then answer them. The problem with
this procedure is twofold. Often the predicate logic of a class of structures
is undecidable and so not all questions can be effectively answered. Second,
even if the logic is decidable we need to know about its complexity so that
we know how long we have to wait until we get an answer. Thus, the best
possible result would be one where we had not only a decidability result but
also a complexity result, preferrably showing that complexity is low.

Rabin has shown that the (weak) monadic second order logic (MSO) of
trees is decidable, a result that J R [14] has applied to syntactic
theory. The main disadvantage of this approach is that it does not cover
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LGB type structures.1 The obvious step was to reduce the latter to the for-
mer. This is not always possible, but it led to a result (independently proved
by J R and myself) that if head movement is bounded then Min-
imality in the sense of L R [13] or Locality in the sense of R
M [12] come down to the theory that the language is strongly context
free. However, nothing could be said about the case when head movement
was unbounded, because the reduction fails in this case. Now, R re-
marks that adding free indexation makes the second order theory undecid-
able (it is no longer monadic), thus implicitly claiming that the monadic
second order theory of LGB type structures might be undecidable.

The good news however is that this need not always be a concern. In
this paper I shall show that the dynamic logic of a good many classes of
structures is decidable. An application to non-context free languages will
be given. Moreover, I shall describe how GB type structures as well as MP
type structures can be described using dynamic logic. The sequel to this
paper will generalise the result of this paper still further. It will emerge
that many theories of generative grammar are effectively decidable. This
is hopefully the beginning of a general decidability proof that covers the
linguistically relevant structures. The applications of the present results
are manifold. We are given a decision procedure to see whether certain
principles of grammar are independent or not, and we are given a decision
procedure whether or not a sentence is in the language.

2. M S

In generative grammar, structures are derived from deep structure trees.
In [9] I considered three kinds of structures:trace chain structures(TCSs),
copy chain structures(CCSs) andmultidominance structures (MDSs).
TCSs are the kind of entities most popular in linguistics. When an element
moves, it leaves behind a trace and forms a chain together with the trace.
The technical implementation is a little different, but the idea is very much
the same. CCSs are different in that the moving element does not leave just
a trace behind but a full copy of itself. This type of chain structures is more
in line with recent developments (the Minimalist Program), rather than with
the GB. MDSs, however, are different from both. In an MDS, there are no
traces. Instead, movement to another position is represented by the addi-
tion of a link to that position. Thus, as soon as there is movement, there
are elements which have more than one mother. Moreover, it was shown in
[9] that MDSs contain exactly the same information as TCSs, since there is
an algorithm that converts one into the other. MDSs, like TCSs, are based

1The shorthand ‘LGB’ refers to [2] as a generic source for the kinds of structures that
Government and Binding uses.
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on an immediate dominance relation, written�. (The converse of this re-
lation is denoted by≺.) In what is to follow, we assume that structures are
downward binary branching. Every node has at most two daughters. To
install this, we shall assume two relations,�0 and�1 each of which is a
partial function, and� = �0 ∪ �1. We do not require the two relations to
be disjoint.

Definition 1. A preMDS is a structure〈M,�0,�1〉, where the following
holds:

(P1) If y �0 x and y�0 x′ then x= x′.
(P2) If y �1 x and y�1 x′ then x= x′.
(P3) If y �1 x then there is a z such that y�0 z.
(P4) There is exactly one x such that for no y, y� x (this element is

called theroot).
(P5) The set M(x) := {y : x ≺ y} is linearly ordered by≺+.

We call a pair〈x, y〉 such thatx ≺ y a link . We shall also writex; y to
say that〈x, y〉 is a link. The link〈x, y〉 such thaty is minimal in M(x) is
called aroot link . A link that is not a root link is calledderived. A leaf is
a node without daughters. Recall the definition of the transitive closureR+

of a binary relationR.
For technical reasons we shall split≺0 as follows.

(1) ≺0 = ≺00 ∪ ≺01

wherex ≺00 y iff x ≺0 y andy is minimal in M(x). Alternatively,x ≺00 y if
x ≺0 y and〈x, y〉 is a root link. Similarly,

(2) ≺1 = ≺10 ∪ ≺11

wherex ≺10 y iff x ≺1 y andy is minimal in M(x) (or, equivalently,〈x, y〉 is
a root link). The definition above is suitably amended. We shall define

≺•0 := ≺00 ∪ ≺10(3)

≺•1 := ≺01 ∪ ≺11(4)

The structures we get are calledPMDSs.

Definition 2. A PMDS is a structure〈M,�00,�01,�10,�11〉 which, in addi-
tion to (P1) – (P5) of Definition 1 satisfies

(P6) If y ∈ M(x) then x ≺•0 y iff y is the least element of M(x) with
respect to≺.

We note here that every MDS can be turned into a unique PMDS, and
every PMDS defines exactly one MDS. We shall work with PMDSs hence-
forth (but continue to call them MDSs). We assume that the leaves are
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linearly ordered in the following way.

(5) x < y :⇔ (∃z)(∃u)(∃v)(x ≺∗•0 z≺00 u �10 v �∗•0 y)

(This is not the only possible ordering; this establishes in fact the order at
D-structure. This is enough for the present purposes, though.)

Definition 3. An ordered MDS(OMDS) is a PMDS in which< is linear
on the leaves.

Now, since≺+
•0 is a tree ordering, we can extend< to an ordering between

any two incomparable nodes (wherex and y are incomparable if neither
x ≺+

•0 y nor y ≺+
•0 x nor x = y). In fact, the extension is exactly as defined

by (5). Details can be found, for example, in [11]. Notice that in an OMDS,
≺0 ∩ ≺1= ∅. For suppose otherwise. Then for somex andy we havex ≺0 y
andx ≺1 y and thereforez < z for any leafz≤ x, by definition of<.

In presence of the ordering postulate, the condition (P5) and (P6) can be
replaced by the following

(6) The setM(x) := {y : x ≺ y} is linearly ordered by≺+•0.

This is easy to see. First we prove a

Lemma 4. Suppose that y≺ y′ and that there is no x such that y≺+ x ≺+ y′.
Then y≺•0 y′.

The proof of the claim is in the fact thaty′ ∈ M(y). If the link is derived,
it is not minimal, so there is az such thaty′ ≺•0 z≺+ y′. And conversely.

Suppose now thatx ≺ y. Then there is a chainy = y0 ≺ y1 ≺ y2 ≺

· · · ≺ yn = y′. The longest such chain contains only nonderived links, by
Lemma 4. This means thatx ≺+

•0 y. Now, ≺+
•0 is a tree ordering, so that if

y′ ∈ M(x), thenx ≺+
•0 y′ as well, and so eithery = y′ or y ≺+

•0 y′ or y′ ≺+
•0 y,

as promised.

Proposition 5. LetM be a PMDS.M is an OMDS iff the following holds:
if x is not the root,≺10 is defined iff ≺00 is undefined on x.

We shall prove the theorem and exhibit some useful techniques. We code
the elements ofM by sequences in the following way. LetI be a chain
{xi : i < n + 1} such thatx0 is the root, andxi �•0 xi+1 for every i < n.
We call I a standard identifier for x and denote it byI (x). n is called the
standard depthof xn and we write sd(xn) to denote it.

Lemma 6. In an OMDS, every x has exactly one standard identifier. Hence,
the standard depth of x is uniquely defined.

(See also [9] on the notion of an identifier.) Let us see why the standard
identifier is unique.



On the Logic of LGB Type Structures. Part I: Multidominance Structures 5

We translate the identifier into a binary sequenceb0b1 · · · bn defined by

(7) bi =

0 if xi �00 xi+1,

1 if xi �10 xi+1.

In this way, we associate a binary sequence with each node. Now suppose
that (5) defines a linear ordering on the leaves. First: this number is unique.
For if not, there are two sequences,b0b1 · · · bn andc0c1 · · · cm of this kind
for xn. As they are distinct there is a least indexj such thatbj , cj, say
bj = 0 andcj = 1. Then, by (5), ifz ≤ xn is a leaf,z < z. Contradiction.
Now, let x be given. It has a sequenceb0b1 · · · bn associated with it. Let
y �•0 x. Theny is defined byb0b1 · · · bn−1, which is unique. So,≺•0 is a
partial function. Conversely, if≺•1 is a partial function, then the translation
into binary sequences is unique. Now define< for sequences byb0b1 · · · bn

andc0c1 · · · cm iff for the first j such thatbj , cj, bj = 0 < cj = 1. This
is exactly the order (5), spelled out for the representing sequences. This
order is loop free, transitive and linear on the maximal sequences (which
correspond to the leaves). We add thatb0b0 · · · bm is immediately to the left
of c0c1 · · · cn if

b0b0 · · · bm = b0b1 · · · bj−101· · · 1,(8)

c0c1 · · · cn = b0b1 · · · bj−110· · · 0

(The lengths of these sequences need not be equal.)
I should emphasize that the identifiers do not necessarily form a tree do-

main. Recall that a tree domainT is a subset ofN∗ such that the following
holds: (a) if ~xi ∈ T then ~x ∈ T, and (b) if ~x j ∈ T and i < j then also
~xi ∈ T. Property (a) holds but (b) does not hold in general. For suppose
that x �01 y andx �10 z. ThenI (z) = I (x)1. However since the linky; x is
derived there is no standard identifier of the formI (x)0. The identifierI (y)
containsI (z) = I (x)1 as a prefix.

3. D L

The language of dynamic propositional logic (PDL) is defined as follows.
Given any setΠ0 of so-calledbasic programs, a setΓ of propositional
constants, andV of variables, the set of formulae is the closure under the
following:

☞ If χ is a formula,χ? is a program.
☞ If χ, χ′ are formulae, so are¬χ andχ ∧ χ′.
☞ If α, α′ are programs, so isα;α′ andα ∪ α; andα∗.
☞ If α is a program andχ a formula,〈α〉χ is a formula.
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We putχ ∨ χ′ := ¬(¬χ ∧ ¬χ′) and [α]χ := ¬〈α〉¬χ, and similarly for other
boolean connectives. The minimal logic, also denotedPDL, is the least set
of formulae with the following properties:

(1) All propositional tautologies are inPDL.
(2) [α](χ→ χ′)→ ([α]χ→ [α]χ′) ∈ PDL.
(3) 〈χ?〉χ′ ↔ (χ ∧ χ′) ∈ PDL.
(4) 〈α ∪ α′〉χ↔ 〈α〉χ ∨ 〈α′〉χ ∈ PDL.
(5) 〈α;α′〉χ↔ 〈α〉〈α′〉χ ∈ PDL.
(6) χ ∧ [α∗](χ→ [α]χ)→ [α∗]χ ∈ PDL.
(7) If χ ∈ PDL then [α]χ ∈ PDL.
(8) If χ→ χ′ ∈ PDL andχ ∈ PDL thenχ′ ∈ PDL.
(9) If χ ∈ PDL, thens(χ) ∈ PDL for every substitutions.

Here, a substitution is defined by a functions that assigns a formulas(p)
to every variablep. The formulas(χ) is obtained by replacing every occur-
rence of a variablep by s(p), for every variablep. A dynamic logic is a
setL ⊆ PDL which has the properties (7) – (9). Letχ be a formula andL a
dynamic logic; thenL⊕ χ denotes the least dynamic logic containingL and
χ. Similarly with a set∆ in place ofχ.

Model structures are of the formF = 〈W,C,R〉, whereW is a set (the set
of worlds or points), C : Γ → ℘(W) a function assigning each constant
a set of worlds, andR : Π0 → ℘(W ×W) a function assigning each basic
program a relation onW. A valuation is a functionβ : V → ℘(W). Based
on this we define the interpretation of complex programs as relations in the
following way.

R(α ∪ α′) := R(α) ∪ R(α′)

R(α;α′) := R(α) ◦ R(α′)

R(α∗) := R(α)∗

R(χ?) := {〈w,w〉 : 〈F, β,w〉 � χ}

(9)

The truth of a formula at a world is defined thus.
〈F, β,w〉 � ¬χ :⇔ 〈F, β,w〉 2 χ

〈F, β,w〉 � χ ∧ χ′ :⇔ 〈F, β,w〉 � χ; χ′

〈F, β,w〉 � 〈α〉χ :⇔ there isu: w R(α) u and〈F, β,u〉 � χ
(10)

We writeF � ϕ if for all valuationsβ and all worldsw: 〈F, β,w〉 � ϕ. The
logic of a classK of structures is

(11) Th(K) := {ϕ : for all F ∈ K: F � ϕ}

It has been shown thatPDL is the logic of all structures and that it is also
the logic of the finite structures. From this follows the decidability ofPDL.
However, more is known.
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Theorem 7. PDL is EXPTIME-complete.

This means that there are constantsc andb and a polynomialp(x) such
that for every formulaϕ of lengthn > c the time needed to solve the prob-
lem whetherϕ ∈ PDL takesbp(n) time. (Additionally, any problem of this
complexity can be coded as such a problem in polynomial time.)

4. G  L

In context free grammars one distinguishes the terminal alphabet from the
rules. A similar distinction is made here as well. Nodes that have no daugh-
ters are calledterminal . The lexicon is a set of declarations which state
which labels terminal nodes may have. This is typically done by introduc-
ing a finite set of constants and the statement that all and only those nodes
may be terminal at which one of the constants is true. With the constants
a part of the language the lexicon is effectively identified with a specific
nonmodal formula. In fact, we are more generous here and assume that the
lexicon is a constant formulaλ, which may involve modal operators. This
is useful when we want to assume that the lexicon also contains complex
items, as is often the case in generative grammar. The grammar is a (finite)
set of formulae expressed in the above language. While the grammar is
believed to be the same for all languages, the lexicon is subject to variation.

The logic DPDL is obtained by adding the formula〈α〉χ → [α]χ for
every basic program. A frame is a frame forDPDL iff for every basic
programα: if x R(α) y and x R(α) y′ then y = y′. (One says that the
programα isdeterministic, and this is the reason the logic is calledDPDL.)
Furthermore, the logic of finite deterministic computations is obtained by
adding the formula

(12) [α+]([α+]p→ p)→ [α+]p

whereα is the union of all basic programs (hence this definition requires
thatΠ0 is finite). If we want to mention the numbern of programs, we write
DPDLn.f . The following is proved in [7] (fmp and decidability) and [16]
(EXPTIME-completeness).

Theorem 8. For every n,DPDLn.f is the logic of all finite structures with n
basic programs, where the basic programs are deterministic and their union
is loop free.DPDLn.f is decidable, it is EXPTIME-complete and complete
with respect to finite trees.

Theorem 9. For every n, thePDL-logic of n-branching trees has the finite
model property and is decidable.

Many of the basic results can also be obtained by using a translation of
dynamic logic into monadic second logic (MSO). The disadvantage is of
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using MSO is that the complexity of the logic is for the most part nonele-
mentary (in the sense of recursion theory), whilePDL is elementary (it is
EXPTIME complete). Second, the main result that we shall establish here,
the decidability of the dynamic logic of multidominance structures, cannot
be established in this way, as far as we can see. For this reason we shall use
dynamic logic.

5. T L  M S

For notation, let us agree on the following. For each of the relations�i j

we introduce a programOi j , which is interpreted by a relation that we write
�i j or �i j rather thanR(Oi j ). Structures are of the form

(13) 〈M,�00,�01,�10,�11〉.

We useO0 in place ofO00 ∪ O01, O1 for O10 ∪ O11 andO for O0 ∪ O1. The
relationsO0 andO1 are partial functions. Also, the notationO•0 := O00∪O10

andO•1 := O01∪ O11 is frequently used. Finally, let us write

(14) u := O∗

A structure is calledgeneratedif there is a single elementw such that the
least set containingw which is closed under taking successors along all
basic relations is the entire set of worlds. (In our case this is exactly true if
the structure is a constituent.) The following is easy to see.

Lemma 10. LetM be a generatedPDLn-structure with root x. Then we
have〈M, β, x〉 � [u]ϕ iff for all w: 〈M, β,w〉 � ϕ.

Our first goal is axiomatise the logic of all PMDSs. There is an important
tool that we shall use over and over.

Theorem 11. Suppose that L is a logic containingPDLn which has the
finite model property, and letχ be a formula. Then the logic L⊕ χ also has
the finite model property.

Proof. Suppose thatϕ is consistent withL ⊕ χ. Thenϕ; [u]χ also is
L ⊕ χ-consistent, and a fortioriL-consistent. Thus it has a finite model
〈〈F,R〉, β, x〉. We may actually assume that for everyy, x

u
→ y. Theny � χ,

and so the frame is a frame forL ⊕ χ, sinceχ is constant. 2

This theorem has interesting consequences worth pointing out. It allows
us to focus on the grammar rather than the lexicon. This reduces the prob-
lem to some degree.

Definition 12. Let PM := DPDL4.f ⊕ 〈O10〉> → [O11]> ⊕ 〈O00〉p →
[O01]> ⊕ 〈O•1〉p→ 〈O+•0;O〉p.
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The first two formulae make sure that each node has at most one left hand
daughter and at most one right hand daughter. The postulates are constant
and can be added without sacrificing decidability, by Theorem 11.

The third postulate ensures that the structures are trees, more exactly, they
are generated from a single node via�•0 (rather than all four relations). This
is because ifz ≺•1 y then there is a path along nonderived links toy, as we
shall show.

Lemma 13. SupposeF is a structure in which every basic program is de-
terministic and loop free and satisfies

For all w, u: if w �•1 u then there is a y such that y≺+
•0 w

and w≺ y.

ThenF is a structure forPM.

Proof. It suffices to show that this structure satisfies the additional axiom
of PM. Choose a valuationβ and a pointw such that

(15) 〈F, β,w〉 � 〈O•1〉p

Then eitherw � 〈O01〉p or w � 〈O11〉p. Then there is au such thatu ≺01 w
andu � p. By assumption onF, there is ay such thaty ≺+

•0 w andu ≺ y.
From the latter we gety � 〈O〉p, and from the first

(16) 〈F, β, y〉 � 〈O+•0〉〈O〉p

This shows the claim. 2

From this we prove that the axioms ofPM are valid in all PMDSs (Lemma 14).
This is one half of the characterization, Theorem 20, which asserts that if a
finite structure satisfies the axioms ofPM then it is actually a PMDS. The
other half is constituted by Lemma 19.

Lemma 14. PMDSs arePM-structures.

Proof. To see this, we shall verify that they satisfy the property given in
Lemma 13. To this end, take a PMDS〈M,�00,�01,�10,�11〉. Suppose that
x �•1 y. Thenx ∈ M(y), and there is, by assumption, an elementu ∈ M(y)
such thatu ≺+ x. (Notice that by (P6) of Definition 2,x cannot be the least
element inM(y) with respect to≺+ since the link〈x, y〉 is derived.) Choose
a pathΠ0 = u; · · · ; x. If this path contains only underived links, we are
done. Otherwise, let the path containv; v′, a derived link. Then there is a
path∆ = v; · · · ; w; v′ such thatw ≺•0 v′, by a similar argument. Replace
the pairv; v′ in Π0 by ∆. This gives a path which is longer thanΠ0. Thus,
as long as we have derived links we can replace them, increasing the length
of the path. Hence, as the procedure must end, it will deliver a path without
derived links, as promised. 2
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In the connection of the following lemma, we say thatR(α) satisfies a
fixed point property if for all formulaeϕ, framesF, valuationsβ and points
x:

(17) 〈F, β, x〉 � 〈α∗〉ϕ↔ ϕ ∨ 〈α;α∗〉ϕ

Lemma 15. Let 〈F,R〉 be a finite frameβ a valuation, and R(α) be loop
free. Then for all x andϕ:

(18) 〈F, β, x〉 � 〈α∗〉ϕ↔ ϕ ∨ 〈α;α∗〉ϕ

Proof. It follows from the axioms thatϕ → 〈α∗〉ϕ and〈α;α∗〉ϕ → 〈α∗〉ϕ
are generally valid. Hence we only have to establish

(19) 〈F, β, x〉 � 〈α∗〉ϕ→ ϕ ∨ 〈α;α∗〉ϕ

By assumption onR(α), for everyx there is a sequencex = x0
α
→ x1

α
→

x2 · · ·
α
→ xn wherexn has noR(α)-successor. We proceed by induction on

maximum length of such a chain starting atx. Call this theheight of x. If
the height is 0,x has noR(α)-successors. Then〈α;α∗〉ϕ is false, and so the
claim reduces to

(20) 〈F, β, x〉 � 〈α∗〉ϕ→ ϕ

which is correct. Now letx be of heightn+ 1 and the claim proved for all
points of height≤ n. Suppose〈α∗〉ϕ is true atx. Then there is a chain of
length≤ n+ 1: x = x0

α
→ x1

α
→ x2 · · ·

α
→ xk, andϕ is true atxk. Two cases

arise. k = 0, in which casex � ϕ and we are done. Ork > 0. Then, by
inductive hypothesis, sincex1 has height≤ n, 〈F, β, x1〉 � 〈α

∗〉ϕ and so we
havex � 〈α;α∗〉ϕ, as promised. 2

Say that a programα is progressive in L if R(α) is loop free in every
structure forL. In that case we say that a nodex hasα-heightn if there is
no sequencex

α
→ x1

α
→ x2 · · ·

α
→ xn+1. If x hasα-height 0 it means that it has

noα-successors. The important fact to note is that we can restrict ourselves
in the present context to progressive programs, and these are the programs
for which the fixed point equation holds. We say thatα is contained inβ, in
symbolsα ⊆ β, if L ` 〈α〉p→ 〈β〉p. If L has the finite model property this
is equivalent toR(α) ⊆ R(β) in every finiteL-structure. IfL′ ⊇ L andα ⊆ β
in L, then this holds also inL′, so this does not dependent much onL. α
andβ areequivalent in L if α ⊆ β as well asβ ⊆ α in L. If α is progressive
then so areαn (n > 0) andα+. The following theorem rests on the fact that
the logic of finite computations has a maximal progressive program.

Lemma 16. In PDLn.f every program is equivalent to a program of the
formϕ?, ϕ?∪ α, whereα is progressive.
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Proof. Notice thatα is equivalent to⊥?∪α, so we need no separate case
for progressive programs. Letζi, i < n, be the basic modalities. Put

(21) γ = (ζ0 ∪ ζ1 ∪ · · · ∪ ζn−1)
+

In PDLn.f , γ is progressive. Thenγ; γ as wellγ+ are likewise progressive.
Everyη that is contained in a progressive program is also progressive. What
we shall show is that every programη that is not a test can be written as
ϕ?∪ α whereα is contained inγ. Before we start notice that ifχ is a test
andα ⊆ γ thenχ?;α ⊆ α ⊆ γ and likewiseα; χ?⊆ α ⊆ γ.

We note thatϕ?;χ? is equivalent to (ϕ∧χ)? and thatϕ?∪χ? is equivalent
to (ϕ ∨ χ)?. Finally, (ϕ?)∗ is equivalent toϕ?, so that the operators reduce
on tests to a single test. Now, suppose thatη1 = ϕ1?∪ α1 andη2 = ϕ2?∪ α2

with α1, α2 contained inγ. Then
η1 ∪ η2 = (ϕ1?∪ α1) ∪ (ϕ2?∪ α2)

= (ϕ1 ∨ ϕ2)?∪ (α1 ∪ α2)
(22)

is of the desired form.
η1; η2 = (ϕ1?∪ α1); (ϕ2?∪ α2)

= (ϕ1?;ϕ2?)∪ (ϕ1?;α2) ∪ (ϕ1?;α2) ∪ (α1;α2)

⊆ (ϕ1 ∧ ϕ2)?∪ (ϕ1?;α1 ∪ α2;ϕ2?∪ α1;α2)
(23)

which is again of the desired form. Finally, letη = ϕ?∪ α. We observe that
η ⊆ >?∪α. Furthermore, since star is monotone,η∗ ⊆ (>?∪α)∗ = >?∪α+.
Now,α ⊆ γ, and soα+ ⊆ γ+ ⊆ γ, sinceγ is progressive.

2

Definition 17. TheFisher Ladner closureof a formula is defined as fol-
lows.

(1) If χ ∧ ψ ∈ FL(ϕ) thenχ, ψ ∈ FL(ϕ).
(2) If ¬χ ∈ FL(ϕ) thenχ ∈ FL(ϕ).
(3) If 〈α ∪ β〉χ ∈ FL(ϕ) then〈α〉χ, 〈β〉χ ∈ FL(ϕ).
(4) If 〈α; β〉χ ∈ FL(ϕ) then〈α〉〈β〉χ ∈ FL(ϕ).
(5) If 〈α∗〉χ ∈ FL(ϕ) thenχ, 〈α〉〈α∗〉χ ∈ FL(ϕ).
(6) If 〈ψ?〉χ ∈ FL(ϕ) thenψ, χ ∈ FL(ϕ).
(7) If 〈α〉χ ∈ FL(ϕ), α basic, thenχ ∈ FL(ϕ).

We remark that|FL(ϕ)| is linear in the length ofϕ. This is shown by
induction onϕ. This means that complexity can be measured either in terms
of the size of the formula or in terms of the size of FL(ϕ).

By collecting all the previous facts together one can actually show with
a little effort the following (see [16]).

Theorem 18. DPDLn.f has the finite model property, and is decidable in
EXPTIME.
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Now let At(ϕ) be the set of all conjunctions of formulae (or their nega-
tions) from the Fisher Ladner closure ofϕ. Set

(24) X(ϕ) := {〈O•1〉δ→ 〈O
+
•0;O〉δ : δ ∈ At(ϕ)}

Lemma 19.ϕ is consistent withPM iff ϕ; [u]X(ϕ) is consistent withDPDL4.f .

Proof. (⇒). If ϕ; [u]X(ϕ) is inconsistent inDPDLn.f , ¬ϕ can be proved
from [u]X(ϕ) in DPDL4.f . However, [u]X(ϕ) can be proved inPM. Hence
¬ϕ is provable inPM. (⇐). Now let us suppose thatϕ; [u]X(ϕ) is DPDL4.f -
consistent. Then by Theorem 8 it has a finite model based on a frame

(25) M = 〈M,�00,�01,�10,�11〉

with rootw0 and valuationβ. So,

(26) 〈M, β,w0〉 � ϕ; [u]X(ϕ)

We may assume that the relation≺•0 induces a tree ordering on the set of
worlds, though with multiple roots (this we have what is known as a forest).
We shall construct a finitePM-model from this. LetS be the closure ofw0

under the relation�•0, that is,S is the least set which containsw0 and is
closed under�•0. Members ofS are calledstandard points. Let

(27) E := {w : there isv ∈ S such thatw ≺•1 v}

For a pointw, let a(w) be the uniqueδ ∈ At(ϕ) such that

(28) 〈M, β,w〉 � δ

Now choose aw ∈ E. Let v be a standard world such thatw ≺•1 v. By
choice ofX(ϕ),

(29) 〈M, β,w0〉 � [u](〈O•1〉a(w)→ 〈O+•0;O〉a(w))

wherew0 is the root, so

(30) 〈M, β, v〉 � 〈O•1〉a(w)→ 〈O+•0;O〉a(w)

Sincea(w) is true atw and sincew ≺•1 v, we have

(31) 〈M, β, v〉 � 〈O+•0;O〉a(w)

Hence there is a standardu ≺+
•0 v andu∗ ≺ u such thata(u∗) = a(w). For

eachw, pick such a point and say that it islinked from w and writew L u∗.
Thus, L establishes a relation fromE to E ∪ S. We note the following.
w L u∗ does not mean thatu∗ is standard. However,u∗ has greater standard
depth asw, and ifu < S thenu∗ ∈ E and sou∗ can in turn be linked to some
node. It follows that for everyw ∈ E there is a standardu such thatw L+ u.
For suppose not. Then there is aw ∈ E of maximal depth which cannot be
linked to a standard point. But it can be linked to a point inE. The latter
has greater depth. Contradiction.
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Now we define a new frameS as follows. The set of points isS. Put
x �00 y iff x ≺00 y, x �10 y iff x ≺10 y; put x �01 y iff there is au such that
u ≺01 y andu L+ x; x �11 y iff there is au such thatu ≺11 y andu L+ x.
Finally,

(32) S := 〈S,�00,�01,�10,�11〉

The valuationβ′ is defined byβ′(p) := β(p) ∩ S. (If constants are present,
the value of a constantc in S is the value ofc intersected withS.) We shall
prove for everyw ∈ S and everyχ ∈ FL(ϕ):

(33) 〈S, β′,w〉 � χ ⇔ 〈M, β,w〉 � χ

The basic clause is
(Case 1.)χ = p, a variable. Then〈S, β′,w〉 � p iff w ∈ β′(p) iff w ∈ β(p) iff
〈M, β,w〉 � p, by definition ofβ′.
(Case 2.)χ = ¬ϑ.

〈S, β′,w〉 � ¬ϑ iff 〈S, β′,w〉 2 ϑ(34)

iff 〈M, β,w〉 2 ϑ

iff 〈M, β,w〉 � ¬ϑ

(Case 3.)χ = ϑ ∧ ϑ′.

〈S, β′,w〉 � ϑ ∧ ϑ′ iff 〈S, β′,w〉 � ϑ;ϑ′(35)

iff 〈M, β,w〉 � ϑ;ϑ′

iff 〈M, β,w〉 � ϑ ∧ ϑ′

Now let χ = 〈α〉ϑ. The claim will be proved by induction on the syntactic
complexity ofα.
(Case 4.)α = α′ ∪ α′′.

〈S, β′,w〉 � 〈α′ ∪ α′′〉ϑ′ iff 〈S, β′,w〉 � 〈α′〉ϑ ∨ 〈α′′〉ϑ(36)

iff 〈M, β,w〉 � 〈α′〉ϑ ∨ 〈α′′〉ϑ

iff 〈M, β,w〉 � 〈α′ ∪ α′′〉ϑ

(Case 5.)α = α′;α′′.

〈S, β′,w〉 � 〈α′;α′′〉ϑ iff 〈S, β′,w〉 � 〈α′〉〈α′′〉ϑ(37)

iff 〈M, β,w〉 � 〈α′〉〈α′′〉ϑ

iff 〈M, β,w〉 � 〈α′;α′′〉ϑ

We use (i) the fact thatα′ is syntactically less complex thanα′;α′′ and (ii)
the inductive hypothesis for〈α′′〉ϑ.
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(Case 6.)α = ψ?.

〈S, β′,w〉 � 〈ψ?〉ϑ iff 〈S, β′,w〉 � ψ;ϑ(38)

iff 〈M, β,w〉 � ψ;ϑ

iff 〈M, β,w〉 � 〈ψ?〉ϑ

Using the inductive assumptions onψ andϑ.
(Case 7.)α = α′∗. Now, in virtue of Lemma 16 we may assume thatα′ is
progressive, so

(39) 〈α′∗〉χ↔ χ ∨ 〈α′〉〈α′∗〉χ

is a theorem ofPDL. Further,α′ is of lesser complexity thanα′∗.

〈S, β′,w〉 � 〈α′∗〉ϑ iff 〈S, β′,w〉 � ϑ ∨ 〈α′〉〈α′∗〉ϑ(40)

iff 〈M, β,w〉 � ϑ ∨ 〈α′〉〈α′∗〉ϑ

iff 〈M, β,w〉 � 〈α′∗〉ϑ

(Case 8.)α = O00. Then the claim follows since≺00= �00.
(Case 9.)α = O10. Likewise.
(Case 10.)α = O01. We show first (⇒) in (33). 〈S, β′,w〉 � 〈O01〉ϑ implies
that there is av�01w such that〈S, β′, v〉 � ϑ. v is standard, and by induction
hypothesis,〈M, β, v〉 � ϑ. By construction,w �01 u for a u ∈ E such
that u L+ v. This means thata(u) = a(v) and so〈M, β,u〉 � ϑ; hence
〈M, β,w〉 � 〈O01〉ϑ. Now we show (⇐) in (33). Assume〈M, β, v〉 � 〈O01〉ϑ
andv ∈ S. Then there is aw ∈ E such thatw ≺01 v and 〈M, β,w〉 � ϑ.
By construction there is a standardu such thatw L+ u, and so〈M, β,u〉 �
ϑ, sincea(u) = a(w). By inductive hypothesis,〈S, β,u〉 � ϑ. Again by
construction,v �01 u, so〈S, β, v〉 � 〈O01〉ϑ.
(Case 11.)α = O11. Similar.

The next step is to verify thatS is anPM-frame. To that effect we have
to ensure that the union of the basic programs is deterministic and loop free
and that the structure satisfies the new axiom. First, letw ∈ S. Recall the
definition of the standard depth. It is easy to see that the standard depth of
points is the same in both structures. Now suppose thatw � u. We claim
that sd(w) > sd(u). (Case 1.)w �•0 u. Thenw ≺00 u or w ≺10 u, and
by definition of standard depth, sd(w) = 1 + sd(u). (Case 2.)w �01 u or
w �11 u. In this case there is ay such thatw �01 y or w �11 y such that
y L+ u andw �+ u′ for some standardu′. This means that sd(u) ≥ 2+sd(w).
Next, to show that the programs are deterministic, observe that the original
programs were deterministic, and each link was replaced by just one link.
Finally, from Lemma 13 it follows that the constructed structure satisfies
PM.
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Now, from (33) it follows that

(41) 〈S, β,w0〉 � ϕ

This shows the claim. 2

Theorem 20. The logic of PMDSs isPM. Moreover, this logic has the
finite model property, if finitely axiomatisable and therefore decidable. Its
complexity is 2EXPTIME.

The complexity follows from the fact that the formula to be satisfied has
lengthO(2n), and thatDPDL4.f is in EXPTIME.

6. S M MDS

There is an important class of MDSs, those whereM(x) has at most two
elements. This means in practice that each element is allowed to move
only once. This class of structures is very important, since the now current
Minimalist Program requires each movement step to be licensed. These
structures be the topic of Part II. Here we are interested only the axiomati-
sation of these structures. We have noted earlier that root links are always
the lowest links. Therefore, for every nodex there is at most oney such that
x ≺•0 y. On the other hand there can be any number of non-root links. The
narrowness determines the maximum number of non-root links.

(42) ν(p) := (p→ [O+]¬p) ∧ ¬(〈O00;O
∗〉p∧ 〈O10;O

∗〉p)

Lemma 21. Letβ be a valuation such that〈F, β〉 � [u]ν(p). Then|β(p)| ≤ 1.

Proof. Suppose thatx, y ∈ β(p). Thenx ≺+
•0 y cannot hold; for theny � p

but y 2 [O+]¬p. If howeverx andy are incomparable there are pointsu, v
andv′ such thatv , v′ andx ≺+ v ≺ u as well asy ≺+ v′ ≺ u. Then however
u � 〈O00;O+〉p; 〈O10;O+〉p. 2

Definition 22. An MDS is called n-narrow if |M(x)| ≤ n − 1 for all x. An
MDS is callednarrow if it is 1-narrow.

ξ(p) :=[u]ν(p)

→ [u](〈O•1〉p→ [O•0;O
∗](〈O〉p→ 〈O•0〉p))

(43)

Lemma 23. A MDS satisfiesξ(p) iff it is narrow.

Proof. Suppose the MDS is not narrow. Then there is ay andz, z′ ∈ M(y)
such thatz ≺+ z′ and both linksy; z andy; z′ are not root links. Then put
β(p) := {y}. Then throughout the MDS,p → [d+]¬p holds. Also, there
is no pointu such thatu �00 v, u �10 v′ andy ≺∗ v; v′. It follows that
z � 〈O•1〉p;¬〈O〉p andz′ � 〈O•1〉p. However,z′ R(O•0;O∗) z. So the formula
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is false under this valuation. Now assume that the MDS is narrow. Take a
valuation such thatν(p) everywhere. Lety be a node such thaty � 〈O•1〉p,
sayu ≺•1 y is such thatu � p. Thenβ(p) = {u} by Lemma 21. Now letzand
z′ be such thatz≤ z′ ≺•0 y andz � 〈O〉p. Thenz� u. Since the structure is
narrow,u ≺•0 z, showingz � 〈O•0〉p. 2

7. E  R  L

The fact that we are dealing with cycle free structures has great effect on
the expressivity of the language; basically, using implicit definitions all pro-
grams constructors of PDL can be eliminated; conversely, many seemingly
more powerful constructs can be effectively mimicked. We consider here
two devices: nominals and the converse. Anominal is a variable that can
be true only at a single world. It emerges from the discussion above that
nominals actually do not add any expressive strength to our language. Con-
sider a formulaϕ(i) which contains a nominali. Now consider the formula

(44) ν(p) ∧ 〈O+〉p→ ϕ(p/i)

This formula has a model〈F, β, x〉 only if β(p) is a singleton. The conse-
quence of this is the following

Theorem 24.For every first-order universal formulaζ using atomic formu-
lae of the form x R(α) y or x = y there is a modal formulaϕ such that for
any MDS,F � ζ iff F � ϕ.

Proof. Let ζ = (∀x0x1 · · · xn−1)α. Introduce nominalsi0, i1, · · · , in−1 and
define the following translation:

(xp = xq)
† := 〈O∗〉(ip ∧ iq)

(xp R(α) xq) := 〈O∗〉(ip ∧ 〈α〉iq)

(¬α)† := ¬α†

(α ∧ α′)† := α† ∧ α′†

(45)

It is not hard to see that〈F, β, x〉 � ¬α† iff F 2 ζ. The sought after formula
is

(46) ν(p0) ∧ ν(p1) ∧ · · · ν(pn−1)→ α†([pk/ik : i < n])

This completes the proof. 2

Also, let me recall a few other reductions that we have achieved. The
following equivalences hold:

〈α ∪ α′〉p↔ 〈α〉p∨ 〈α′〉p(47)

〈α;α′〉p↔ 〈α〉〈α′〉p(48)

〈ϕ?〉χ↔ ϕ ∧ χ(49)
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This means that the program constructs union, concatenation and test are
eliminable if they occur as outermost program constructors. However, we
have also shown that every program is a union of a test and a progres-
sive program and that for progressive programs the following holds in finite
structures:

(50) 〈α∗〉p↔ p∨ 〈α〉〈α∗〉p

This allows to eliminate the star as follows:

Lemma 25. Letα be progressive inF andχ a formula. Then

(51) 〈F, x〉 � χ(〈α∗〉δ/q)⇔ 〈F, x〉 � [u](q↔ δ ∨ 〈α〉q)→ χ

Proof. Suppose〈F, β, x〉 2 [u](q↔ δ ∨ 〈α〉q). Then by induction on the
α-height it is shown thatβ(q) = {x : x � 〈α∗〉δ}. (Assume that the claim is
shown for all point of height less than the height ofx. x � q iff eitherx � δ
in which casex � 〈α∗〉δ; or x � 〈α〉q, in which case there is any of lesser
height such thaty � q. By inductive hypothesis,y � 〈α∗〉δ and sox � 〈α∗〉δ
in this case as well.) Now assume that〈F, x〉 2 [u](q ↔ δ ∧ 〈α〉q) → χ.
Thenx � [u](q↔ δ∧ 〈α〉q);¬χ, from which we get thatβ(q) = β(〈α〉δ). So
we substitute and getx � ¬χ(〈α∗〉δ/q). This argument is reversible. 2

Notice that it is irrelevant whetherq actually occurs inχ or not. We shall
strengthen this language further by adding an operator on programs, the
converse. This will allow to talk about going up the tree. This makes the
statement of some restrictions easier. We shall show that for a large enough
portion of the newly added formulae, they do not add expressive power,
they just make life easier. The good news about them is that they can be
added without having to redo the proofs.

Recall that for a binary relationR,

(52) R` := {〈y, x〉 : x R y}

The languagePDL` has in addition a unary operator`, and the interpreta-
tion of α` is R(α)`, the converse ofR(α). It is axiomatised byPDL for all
programs plus for every programα:

(53) p→ [α]〈α`〉p, p→ [α`]〈α〉p

It turns out that it is enough to just add the converse for every elementary
program, for we have

(R∪ S)` := R` ∪ S`(54)

(R◦ S)` := S` ◦ R`(55)

(R∗)` := (R`)∗(56)

Also, notice that

(57) R((ϕ?)`) = R(ϕ?)
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Thus, rather than looking atPDL`4 (four basic programs and a converse
operator) we may look atPDL8 (eight basic programs, no converse), where
the postulates (53) have been added just for the basic programs. We shall not
take that route, though, since it produces needless complications. Rather,
we shall make the following observation.

Lemma 26. Let F = 〈F,R〉 be a frame, x∈ F a world, and2, �, and�
modalities such that R(�) = R(2)` is a partial function and� an operator
such that x R(�) y for all y. Then for any two formulasχ and δ and any
valuationβ:

(58) 〈F, β, x〉 � �((�⊥ → q) ∧ ♦> → (δ→ 2q) ∧ (¬δ→ 2¬q))→ χ

iff

(59) 〈F, β, x〉 � χ(�δ/q)

Proof. Assume (58). We claim thatβ(q) = {u : u � �δ}. Two cases arise.
(Case 1.)z has noR(�)-successor. Then�⊥ is true atz and so isq. (Case
2.) z has aR(�)-successor. Then this successor is unique by assumption.
Call it y. By assumption we havey R(2) z. Furthermore, asx R(�) y, we
havey � δ → 2q as well asy � ¬δ → 2¬q. Supposez � �δ. Theny � δ,
from whichy � 2q, and soz � q. If z � ¬ � δ theny � ¬δ, by functionality
of R(�). Hencey � 2¬q and soz � ¬q. This argument is reversible. 2

This lemma can be used to introduce converses for the programsO00

andO10, since they are backwards deterministic. This seemingly allows
for the reduction of any program to a forward looking program. However,
recall that the elimination of star used the fact that every program is basi-
cally progressive. With converses added this is no longer the case. So, star
is eliminable only if the program either contains only downward looking
modalities or only upward looking modalities. Tests may be considered to
belong to either class. Call such a formulafinite turn .

Theorem 27. Suppose a class of constituents is axiomatisable with some
finite turn axioms using the operatorsM00 andM10 in addition toOi j . Then
it can be axiomatised without the use ofM00 andM10.

This can be used in the following way. We have said earlier that the
PMDSs are not necessarily ordered in the standard sense. To enforce this
we need to add another postulate. The linear order is modally definable by

(60) α :=M∗;M0;O1;O
∗

In the definition we have made use of upward looking programs. It is
straightforward to verify that

(61) x < y ⇔ 〈x, y〉 ∈ R(α)
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This would ordinarily involve adding the converse operator. We have seen,
however, that there is a way to consider the converse operators as abbrevia-
tions. Thus we may define the following.

Definition 28. Let

OL := PM ⊕ 〈M00〉> → [M10]⊥ ⊕ 〈M10〉> → [M00]⊥(62)

⊕ 〈M00〉p→ [M00]p⊕ 〈M10〉p→ [M10]p

The way to understand this definition is to supplant the fomulaeχ by
[u](H(χ) → pχ) if they contain the converse. (You may do that regardless
of whether the converse occurs or not, but in the latter case this needlessly
complicates the formulae.) Using Theorem 11 we see that

Theorem 29. OL is decidable in EXPTIME.

8. N

The above results are encouraging, but not exactly what is needed. There
typically is a restriction on the distance that an element can move in a single
step. We take as our prime example the subjacency definition in [3]. As I
have argued in [6], perhaps the best definition is this. The antecedent of a
trace can be found within the next CP which contains the next IP properly
containing the trace. One is tempted to cash this out as the following axiom.

(63) 〈O•1〉p→ 〈O•0〉〈(¬CP?;O))∗; (¬IP;O)∗〉p

Here, CP, IP are constants, denoting phrasal nodes of category CP and IP.
This formula says that for every nodex, if there is a derived downward
link from x to somey, then there is a path toy following first a nonderived
link, then following down non-CP nodes and finally non-IP nodes. Unfor-
tunately, matters are not that easy. I have shown in [8] that this gives the
wrong results. Consider a VP and an NP that scrambles out of it. Consider
a movement of the VP that passes the the NP, whereupon the NP moves to
pass the VP again. Then the formula above maybe true even if there was
a step that crossed a barrier. (It counts also nonexistent paths such as a
movement that takes the NP for a ride inside the VP before it jumps out.)
This structure can be complicated just a little bit so as to exclude the piggy-
back movement entirely. Then the formula above is true even though no
derivation of the desired kind exists.

So, nearness constraints are not easily captured in model theoretic terms
because the structure does not explicitly say which link has been added
before which other. Indeed, notice that one and the same MDS allows for
quite different derivations. There is (up to inessential variations, see [10])
exactly one derivation that satisfies Freeze, and exactly one that satisfies
Shortest Steps. As it turns out, however, at least Freeze derivations are
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easy to characterize. The idea is that the longest path between two standard
elements is actually the one following standard links. Suppose we want to
define the subjacency domain for Freeze.

(64) σ = 〈O•1〉p→ 〈(O•0;¬CP?)+; (O•0;¬IP?)+;O〉p

Lemma 30.M � σ iff there is a Freeze derivation such that movement is
within the IP◦ CP-domain.

Proof. Suppose that movement is such that each step is within the IP◦CP-
domain of the trace. Then in the MDS, every path between these nodes
respects these domains. Conversely, letx be a node in an MDS andy �•1 x.
Putβ(p) := {x}. Theny � 〈O•0〉p. Hence, by assumption,

(65) 〈M, β, y〉 � 〈(O•0;¬CP?)+; (O•0;¬IP?)+;O〉p

which says that there is a standard path first along nodes that do no satisfy
CP and then along nodes that do not satisfy IP to some nodezwhich domi-
natesx immediately. The standard path is the movement path in the Freeze
derivation. This shows the theorem. 2

This can be generalized to any requirement that says that a path must re-
spect a regular language, which is more general than the definable command
relations of [4]. The general principle is therefore of the form

(66) Dist(c;�) = 〈O•1〉(c∧ p)→ 〈�;O〉p

wherec is a constant and� is an expression using onlyO•0 and constants.
Moreover, as we shall see, one can mix these postulates to have a particular
notion of distance for phrases and another one for heads, for example. In
general, any mixture of distance postulates is fine, as long as it is finite.

Theorem 31. The logic of MDSs which have a Freeze derivation satisfy-
ing a finite number of postulates of the formDist(R) has the finite model
property and is decidable.

Proof. We replay the proof of Lemma 19. Let Dist(ci;�i), i < n, be the
distance postulates.

(67) Y(ϕ) := {〈O•1〉(ci ∧ δ)→ 〈�i;O〉δ : δ ∈ At(ϕ), i < n}

Now define the linking in the following way. Ifw ≺•1 u andw � ci, then

(68) u � 〈�i;O〉a(u)

Hence there arew′, u′ such thatu′ ≺•0 u, w′ ≺ u′ and the standard path from
u to u′ is contained in�i, anda(w′) = a(w). We then putw L w′. Thus,
the condition on Freeze derivations is respected. The rest of the proof is the
same. 2
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9. F E: M

We shall present an example of a language that is trans-context free and
can be generated from a context free language through movement. Fur-
thermore, it shall follow from our results that the logic of the associated
structures is decidable. Take the following grammar.

S→ aT S→ aX

T→ bU X → bc(69)

U→ cS S→ S

This grammar generates the language{(abc)n : n > 0}. Now, we shall al-
low for movement of any element into c-commanding position. Movement
is only constrained by the fact that it is into c-commanding position, noth-
ing else. Since we have added the rule S→ S, the base grammar freely
generates sites to which a constituent can adjoin.

In order to implement this, we need to add constants. For each terminal
and each nonterminal element there will be a constant denoted by underlin-
ing it; for example,U is the constant denoting nodes with labelU. This will
be our new language. We also add the condition that the constants fromC
are mutually exclusive:

(70) Inc(C) := {X→ ¬Y : X , Y andX,Y ∈ C}

Also, we express the fact at each node at least one constant fromC must be
true by

(71) Suf(C) :=
∨
〈X : X ∈ C〉

These two together ensure that eacd node satisfies exactly one constant.
Next the context free grammar is described by a set of rules:

ρS := S→ 〈O00〉a∧ 〈O10〉T(72)

∨ 〈O00〉a∧ 〈O10〉X

∨ 〈O00〉S∧ ¬〈O10〉>

ρT := T→ 〈O00〉b∧ 〈O10〉U

ρU := U→ 〈O00〉c∧ 〈O10〉S

ρX := X → 〈O00〉b∧ 〈O10〉c

ρa := a→ ¬〈O•0〉>

ρb := b→ ¬〈O•0〉>

ρc := c→ ¬〈O•0〉>
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Now we are looking at the following logicMv , whereC := {S,T,U,X, a, b, c},
with

(73) Mv := OL ⊕ Inc(C) ⊕ Suc(C) ⊕ {ρX : X ∈ C}

Since the added postulates are constant, it is a matter of direct verification
that the structures for this logic are the PMDSs in which the underlying tree
(using the nonderived links) satisfies the context free grammar given in (69).
Any constituent may move, and moves to any c-commanding position.

It is interesting to spell out which linear order we use for the surface
constituents. To this end, letx ≺s y if y is the highest member ofP(x); we
also call the linkx; y a surface link. It is not hard to show that≺+s defines
a tree order on the worlds. Moreover, letx ≺s0 y if x ≺s y and x ≺0 y;
similarly, x ≺s1 y iff x ≺s y andx ≺1 y. We say that for two leavesx andy
thatx surface-precedesy, in x symbolsx ∝ y.

(74) x ∝ y :⇔ (∃u)(∃v)(∃w)(x ≺+s u ≺s0 v �s1 w �+s y)

This order is not modally definable. However, this does not defeat the use-
fulness of the present approach. There are two fixes; one is to introduce a
surface relation. Like we did for the root links, we have to introduce the
relations≺s0 and≺s1 explicitly. The proofs so far go through without a
change. Decidability is again guaranteed.

10. A

The next generalization we are going to make concernsadjunction. Re-
call from [6] that it is not enough to leave adjunction implicit. We must
add an explicit statement which nodes are maximal. An adjunction struc-
ture is therefore obtained by adding a subsetM of M. (Intuitively, this set
represents tha maximal nodes of a category.)

(75) xµ := the leasty ∈M such thaty �∗ x

Thecategoryof x is defined as follows.

(76) C(x) := {y : yµ = xµ}

A category is a subset ofM of the formC(x). y is a segmentof C(x) if
y ∈ C(x). Two categories are either equal or disjoint; hence the categories
form a partition ofM. Categories must also be linear. To ensure this we
must have the following: ify andy′ are distinct daughters ofx theny ∈ M

or y′ ∈ M. For otherwiseyµ = y;µ and soC(y) = C(y′) = C(x). Finally, in
adjunction structures c-command is revised as follows. Say thaty includes
x if all segments dominatex. x c-commandsy iff the leastz including x
dominatesy. Now we require that chains are linearly ordered through ac-
command. This is reflected in the following conditions.
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The setM(x) gets replaced by the setP(x), which is formed as follows.
Suppose thatx ≺+ u, whereu is minimal in its category (so that the category
is the least one that includesx), and there is a pathΠ from x to u going
only through nonminimal nodes, and following derived links. Thenu ∈
P(x). As before,P(x) reports about the movement history ofx. But now
that c-command is no longer defined using the one-node-up version (idc-
command in the sense of [1]), we need to define a different set of nodes that
need to be compared. This is why we choseP(x) to be the mothers of the
ultimate landing site of a complex formed through successive adjunction.
The link that adjunction creates is always counted as derived. We shall see
below an example of where this arises naturally.

In fact, adjunction has been taken to be more restrictive. Typically, when
an element adjoins, it must adjoin to the maximal segment of the existing
category. Whence, we shall simplify the task as follows. Callx infimal if
there is noy ≺ x which is nonmaximal (that is to say,x is the least member
in its category).

(77) P(x) := {y : y � x andx infimal or

there is a noninfimalz andy �•0 z�•1 x}

Definition 32. A pseudo-ordered adjunction MDS(PAMDS) is a structure
〈M,M,�00,�01,�10,�11〉, where the following holds:

(1) M ⊆ M.
(2) If y �0 x and y�0 x′ then x= x′.
(3) If y �1 x and y�1 x′ then x= x′.
(4) If y �1 x then there is a z such that y�0 x.
(5) There is exactly one x such that for no y, y� x (this element is

called theroot).
(6) If x �•1 y then y∈M. (Adjoining elements are maximal segments.)
(7) If x ≺ y and x′ ≺ y and x, x′ < M then x= x′. (Only one daughter

is a nonmaximal segment. Categories are linear.)
(8) The set P(x) is linearly ordered by≺+

•0 and if y is minimal with
respect to≺+ then y�•0 x.

As before, we need to define the logic of these structures and then show
that the defined logic has the finite model property, which shall establish its
decidability. First, let us notice a few facts about these structures. The idea
of adjunction plays the biggest role in head adjunction, because here the
new notion of c-command takes effect. A head adjoins to a higher head, but
in the new position it does not idc-command its trace, it just c-commands
it. The postulates are as follows. We shall introduce a constantµ whose
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interpretation is the setM. First, let us agree on the following notation.

A := 〈O〉¬µ(78)

H := (¬A?;O•1) ∪ (O•0; A?;O•1)(79)

A is true on the node to which one has adjoined;〈y, x〉 ∈ R(H) iff y ∈ P(x).

Definition 33. Let

PAM = DPDL4.f(80)

⊕ 〈O00〉¬µ→ [O10]µ

⊕ 〈O10〉¬µ→ [O00]µ

⊕ [O•1]µ

⊕ 〈H〉p→ 〈O+; (>?∪ H)〉p

Lemma 34. Every finite PAMDS satisfies the postulates ofPAM .

Proof. (a) The postulates ofDPDL4.f are satisfied, by similar arguments.
(b) SupposeM is a PAMDS, and letx ∈ M, x � 〈O00〉¬µ. Then there is a
y ≺00 x which is not inM. By (7), if z ≺10 x, z must be maximal, whence
z � µ. zwas arbitrary (in fact, if it exists, it is unique). Therefore,x � [O10]µ.
Similarly for the second axioms. (c)x � [O•1]µ. For lety ≺•1 x. Then by
(6), y ∈ M, whencey � µ. (d) Supposex � 〈H〉p. This means that there
is ay such thatx ∈ P(y). By (8), if x �•1 y, thenx is not minimal inP(y).
Hence, there is azsuch thatx �+ zandz ∈ P(x). This means either thatz is
minimal in P(x), in which casez � 〈>?〉p, or else thatz is not minimal, but
thenz � 〈H〉p. By assumption onP(y), thatx �+

•0 z. Hencez � 〈(>?)∪ H〉p
and sox � 〈O+

•0;H〉p. 2

Now we turn to the converse. Put

Z(ϕ) := {[u](〈O•1〉δ→ 〈O
+
•0; (>?∪ H)〉δ : δ ∈ At(ϕ)}(81)

∪ {[u](〈O00〉¬µ→ [O10]µ), [u](〈O10〉¬µ→ [O00]µ)}

∪ {[u][O•1]µ}

Lemma 35.ϕ is consistent withPAM iff ϕ; Z(ϕ) is consistent withDPDL4.f .

Proof. (⇒.) Clear. (⇐). Let Z(ϕ);ϕ be consistent withDPDL4.f . Then
it has a finite generated model based onM = 〈M,M,�00,�01,�10,�11〉, the
valuationβ andw0 such that

(82) 〈M, β,w0〉 � Z(ϕ);ϕ

(a) By choice ofZ(ϕ), w0 � [u](〈O00〉¬µ → [O10]µ). Takez ∈ M. Then, by
definition ofu, z � 〈O00〉¬µ → [O10]µ). Suppose now thaty is nonmaximal
andz�00 y. Thenz � 〈O00〉¬µ. Whencez � [O10]µ. So, if z�10 u, thenu is
maximal. Similarly it is seen that ifz�10 y andy is nonmaximal, andz�00 u
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thenu is maximal. This establishes linearity, (7). (b)z � [O•1]µ. Hence if
y �•1 z, y is maximal. Thus, (6) is satisfied. (c) Now we deal with the most
problematic formula, the last axiom. We replay the proof of Theorem 19.
The only change is that we define the relationL differently. For as before,S
is the set of standard points, andE the set of immediate, derived daughters
of standard points. We shall have to verify thatL is cycle free, and that
the structure obtained by identifying all pointsL-related to each other is a
PAM -structure and the resulting model satisfiesϕ. Basically, the proof of
the latter is as in Theorem 19. So let us see why the structure is aPAM -
structure. For, this we need to establish thatP(x) is linearly ordered by�+.
2

There are typically other requirements that are placed on adjunction struc-
tures. The first is that head adjunction takes place to the right only. Thus, if
y is a zero level projection andx �•1 y, theny must be to the right, so• = 1.
This is captured as follows. There is a constantH which is true of exactly
the zero-level projections. So we say

(83) H → [M10]⊥

Next, at least in the standard theory, the head-head complex cannot be taken
apart by movement again. (The phenomenon is known asexcorporation.)
Structurally, it means that an adjoined element cannot have two mothers.
Thus, if x, x′ �•1 y andy is zero level, thenx = x′. This must be added to
the list of requirements if needed. This is a universal first-order formula, so
only have to appeal to Theorem 24 to see that it can be axiomatised modally.

11. S E: S G

It is worth seeing a concrete example of how the present ideas can be
made to work. We choose Swiss German to exemplify the interplay between
movement and adjunction. Our analysis will be the cyclic head adjunction
analysis put forward in the 80s for Dutch and German.

We shall assume that lexical items have internal structure, which is also
binary branching. For simplicity, we denote the relations below the lexical
level by another symbol (? and>). (For all those worried about decidabil-
ity: they are dispensable. We could introduce a constantL, which is true of
all sublexical nodes. Then we put> = O; L? and? = L?;M.) The lexicon
contains complex nodes whose leftmost part is a string. The other nodes are
auxiliary and carry phonetically empty material, here one of the following:
α, δ andσ. They are mutually exclusive (just like the other labels).α is a
feature for accusative case,δ for dative case andσ for the selection of an
infinitival complement. The following are the lexical trees that we shall use;
Figure 1 shows two of them in tree format. (By the way, we abandon now
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F 1. Some Lexical Trees
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��

V •
@

@
@
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V
•
@

@
@
@
σ•

the underscore notation for constants.)

[d’chind α]NP(84)

[em chind δ]NP(85)

[aastriche α]V(86)

[[hälfe δ]V σ]V(87)

[[laa α]V σ]V(88)

The grammar for the deep structure is this:

VP→ V1 VP VP→ V NP(89)

V1→ V NP VP→ NP VP(90)

We shall assume that the surface structure is created through successive
cyclic head adjunction. That is to say, any head is allowed to move and
adjoin to the next higher head; adjunction is always to the right, but it need
not be cyclic. Suppose we have four headsV1 V2 V3 V4. Then we can
first adjoinV3 to V4, giving [V4 V3], thenV1 to V2, giving [V2 V1], and then
finally [V2 V1] to [V4 V3] to give [[V4 V3] [V2 V1]]. This can be excluded,
see below.

The rules, together with the lexicon can be translated into constant ax-
ioms as follows. (Recall from (78) the definitionA := 〈O〉¬µ. Furthermore,
>2

0 := >2; >2.)

ρVP := VP→ (〈O00〉V
1 ∧ 〈O10〉VP)(91)

∨ (〈O00〉V ∧ 〈O10〉NP)

∨ (〈O00〉V ∧ 〈O10〉VP)

ρV′ := V1→ 〈O00〉V ∧ 〈O10〉NP(92)
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ρNP := NP→ (〈>2
0〉(d’chind ∨ Hans ∨ · · · ) ∧ 〈>1〉α))(93)

∨ (〈>2
0〉(em chind ∨ em Hans ∨ · · · ) ∧ 〈>1〉δ))

ρN
V := (V ∧ ¬A)→ (〈>2

0〉(aastriche ∨ · · · ) ∧ 〈>1〉α)(94)

∨ (〈>2
0〉(〈>0〉 hälfe ∨ · · · ) ∧ 〈>1〉δ) ∧ 〈>1〉σ)

∨ (〈>0〉(〈>0〉 laa ∨ · · · ) ∧ 〈>1〉α) ∧ 〈>1〉σ)

ρA
V := (V ∧ A)→ 〈O00〉V ∧ 〈O11〉(V ∧ µ)(95)

ρα := α→ [>]⊥(96)

ρδ := δ→ [>]⊥(97)

ρσ := σ→ [>]⊥(98)

Notice that it is possible to enforce cyclic head adjunction by issuing the
following formula in place ofρA

V:

(99) γA
V := (V ∧ A)→ 〈O00〉(V ∧ ¬A) ∧ 〈O11〉(V ∧ µ)

This says that the left hand daughter must be infimal, hence that daughter is
lexical. The right hand daughter may however be complex.

Case government is implemented as follows.

κα := V ∧ 〈> ∪>2〉α→ 〈M; >〉α(100)

κδ := V ∧ 〈> ∪>2〉δ→ 〈M; >〉δ(101)

Selectional restriction concerning the infinitive is the formula

(102) σ := V ∧ 〈>〉σ→ 〈(¬VP?);M)∗;O〉VP

Notice that these formulae are all constant. They describe the restrictions
that apply at D-structure.

The only derivational steps are head adjunction, as shown above. The
crucial fact here is that head adjunction is local; so we restrict the condition
(7) in Definition 32 by saying that the distance between two members of
P(x) must be small. The head movement constraint is embodied in the
following formula

(103) µh := 〈H〉p→ 〈O2
•0; (>?∪ H)〉p

This formula is somewhat crude, saying that movement is only two steps
up. It suffices for our purposes, thanks to the particular grammar chosen. It
would be no problem to formulate a more sophisticated version which says
that a head may only move to the next head.

Definition 36. Call Swissthe logic

(104) OL ⊕ Inc(C) ⊕ Suf(C) ⊕ {ρVP, ρV′ , ρNP, ρ
N
V , ρ

A
V , κα, κγ, σ, µh}
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Swissis decidable. This follows from our results. The language is trans-
context free. To see this we must first define the surface order. This means
that we have to spell out which of the links is a surface link. This is the
standard link if the element is not a V, and it is not adjoined. Otherwise, it
is a derived link.

〈≺s0〉p↔ ((¬V ∧ ¬A)→ 〈≺00〉p)) ∧ ((V ∨ A)→ 〈≺01〉p)(105)

〈≺s1〉p↔ ((¬V ∧ ¬A)→ 〈≺10〉p)) ∧ ((V ∨ A)→ 〈≺11〉p)(106)

Notice that although we have introduced new symbols,≺s0 and≺s1, they are
eliminable, so they are in effect just shorthands.

After that we define the left-to-right order on the surface and finally the
relation∝s, which is like the surface∝, but it skips intervening empty heads.

∝ := ≺∗s;≺s0;�s1;�
∗
s(107)

c := σ ∨ α ∨ δ

∝s := ∝; (c?;∝)∗;¬c

Now, x is immediately to the left ofy in surface order ifx R(∝s) y. x R(Λs) y
if y is the next phonetically nonempty element to the right ofx. So, the
question whether the following sequence is derivable

(108) de chind em Hans es huus hälfe aastriche

now becomes the question whether the following formula has a model:

(109) [∝`s ]⊥ ∧ 〈∝s〉(de chind ∧ 〈∝s〉(em Hans ∧ 〈∝s〉(es huus

∧ 〈∝s〉(hälfe ∧ 〈∝s〉(aastriche ∧ 〈∝s〉[Λ]⊥)))))

12. C

Let us briefly review what has been achieved and what remains to be
done. We have established a way to reduce a grammar to alogic L, the
lexicon to aconstant formulaλ. As a result, parsing becomes asatisfiability
problemin a given logic (hereL⊕λ). (See [5, 8] for an extensive discussion.)
Provided that the logicL is decidable, also the logicL ⊕ λ is decidable and
the following questions become decidable:

• Given a string~x and a particular lexiconλ, is ~x derivable inL plus
λ?
• DoesL plusλ imply a PDL-expressible principleα?
• Is a given regular language included in the language derived byL

plusλ?

Since principles are axioms, our results establish decidability of these ques-
tions only on condition thatL falls within the range of logics investigated
here (or expansions by constant formulae). In particular, this means that
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movement is assumed to satisfyFreeze. (This has consequences only for
the formulation of nearness conditions.)

It should be said that there are questions that are known to be undecidable
and so there is no hope of ever finding an algorithm that decides them once
and for all. One problem is the question whether a given grammar generates
less sentences than another one. This is undecidable already for context free
grammars.

The reader might wonder what happened to surface structure and LF.
These two pose no problems, as far as I can see. All that needs to be done
is to split the relations≺i into four different ones (which are not mutually
exclusive). In this way, practically the full theory can be axiomatised within
PDL. It is to be noted, however, that while the lexicon consists of constant
formulae, the theory (consisting of general structural axioms) is phrased
with formulae containing variables.

The results obtained in this paper support the claim that properties of
generative grammars developed within GB or the Minimalist Program are
in fact decidable as long as they can be expressed in PDL. In Part II of this
sequence we shall show that this holds true also for the logic of narrow mul-
tidominance structures. These are structures where a given trigger licenses
only one movement step. Decidability will be shown for theories that admit
narrow structures with Freeze-style movement and command relations to
measure distance. This will be exploited further in Part III, where we study
Minimalism in depth.
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