On the Logic of LGB Type Structures. Part I: Multidominance
Structures

MARCUS KRACHT

AssTtrAacT. The present paper is the first part of a sequence of papers
devoted to the modal logics of structures that arise from Government
and Binding theory. It has been shown in [9] that they can be modeled by
so-called multidominance structures (MDSs). The result we are going to
prove here is that the dynamic logic of the MDSs is decidable. Moreover,
we shall indicate how the theory of Government and Binding as well as
the Minimalist Program can be coded in modal logic. Some preliminary
decidability results for GB are obtained, which will be followed up in
the sequel to this paper.

1. INTRODUCTION

In recent years, the idea of model theoretic syntax has been getting more
attention. One of the advantages of model theoretic syntax is that it de-
scribes syntactic structures using a logical language so that fundamental
theoretical questions can receive a precise formulation and can—hopefully—
be answered. This idea can be found already in the workh$iksLEr
(see [15]), where it was argued that questions of dependency amiéerg di
ent modules of grammar, or independence questions for principles can be
translated into logical questionstaSLer chose a translation into predicate
logic, accompanied by an implementation in Prolog. Thus, questions could
be posed to a computer, which would then answer them. The problem with
this procedure is twofold. Often the predicate logic of a class of structures
is undecidable and so not all questions canftecéively answered. Second,
even if the logic is decidable we need to know about its complexity so that
we know how long we have to wait until we get an answer. Thus, the best
possible result would be one where we had not only a decidability result but
also a complexity result, preferrably showing that complexity is low.

Rabin has shown that the (weak) monadic second order logic (MSO) of
trees is decidable, a result thamds Rocers [14] has applied to syntactic

theory. The main disadvantage of this approach is that it does not cover
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LGB type structures.The obvious step was to reduce the latter to the for-
mer. This is not always possible, but it led to a result (independently proved
by hMEes Rogers and myself) that if head movement is bounded then Min-
imality in the sense of lwar Rizzr [13] or Locality in the sense of &
Manzint [12] come down to the theory that the language is strongly context
free. However, nothing could be said about the case when head movement
was unbounded, because the reduction fails in this case. NawrRre-
marks that adding free indexation makes the second order theory undecid-
able (it is no longer monadic), thus implicitly claiming that the monadic
second order theory of LGB type structures might be undecidable.

The good news however is that this need not always be a concern. In
this paper | shall show that the dynamic logic of a good many classes of
structures is decidable. An application to non-context free languages will
be given. Moreover, | shall describe how GB type structures as well as MP
type structures can be described using dynamic logic. The sequel to this
paper will generalise the result of this paper still further. It will emerge
that many theories of generative grammar dfeatively decidable. This
is hopefully the beginning of a general decidability proof that covers the
linguistically relevant structures. The applications of the present results
are manifold. We are given a decision procedure to see whether certain
principles of grammar are independent or not, and we are given a decision
procedure whether or not a sentence is in the language.

2. MULTIDOMINANCE STRUCTURES

In generative grammar, structures are derived from deep structure trees.
In [9] | considered three kinds of structurésace chain structures(TCSs),
copy chain structures(CCSs) andmultidominance structures (MDSSs).
TCSs are the kind of entities most popular in linguistics. When an element
moves, it leaves behind a trace and forms a chain together with the trace.
The technical implementation is a littleftérent, but the idea is very much
the same. CCSs arefflirent in that the moving element does not leave just
a trace behind but a full copy of itself. This type of chain structures is more
in line with recent developments (the Minimalist Program), rather than with
the GB. MDSs, however, areftirent from both. In an MDS, there are no
traces. Instead, movement to another position is represented by the addi-
tion of a link to that position. Thus, as soon as there is movement, there
are elements which have more than one mother. Moreover, it was shown in
[9] that MDSs contain exactly the same information as TCSs, since there is
an algorithm that converts one into the other. MDSs, like TCSs, are based

The shorthand ‘LGB’ refers to [2] as a generic source for the kinds of structures that
Government and Binding uses.
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on an immediate dominance relation, written (The converse of this re-
lation is denoted by.) In what is to follow, we assume that structures are
downward binary branching. Every node has at most two daughters. To
install this, we shall assume two relations, and >; each of which is a
partial function, and- = >¢ U >;. We do not require the two relations to
be disjoint.

Definition 1. A preMDS is a structure(M, >q, >1), where the following
holds:

(P1) Ify >0 x and y>¢ X’ then x= X.

(P2) Ify >; x and y>; X’ then x= X.

(P3) If y >; x then there is a z such thaty z.

(P4) There is exactly one x such that for no y>yx (this element is

called theroot).
(P5) The set Mx) := {y: x <y} is linearly ordered by".

We call a pair(x,y) such thatx < y alink. We shall also writex; y to
say that(x,y) is a link. The link(x,y) such thaty is minimal in M(x) is
called aroot link . A link that is not a root link is callederived. A leaf is
a node without daughters. Recall the definition of the transitive cldRure
of a binary relatiorR.

For technical reasons we shall spig as follows.

(1) <o = <oo U <01

wherex <qo Y iff X <o y andy is minimal in M(x). Alternatively, X <qo Y if
X <o yand(x,y) is a root link. Similarly,

(2) <1=<pU <11

wherex <o Y iff X <3 y andy is minimal in M(x) (or, equivalently{x, y) is
aroot link). The definition above is suitably amended. We shall define
(3) <e0 := <00 U <10

(4) <e1:= <01 U <11

The structures we get are callBMDSs

Definition 2. APMDS s a structure{(M, >qo, >01, >10, >11) Which, in addi-
tion to (P1) — (P5) of Definition 1 satisfies

(PB) If y € M(X) then X<, VY iff y is the least element of (M) with
respect to<.

We note here that every MDS can be turned into a unigue PMDS, and
every PMDS defines exactly one MDS. We shall work with PMDSs hence-
forth (but continue to call them MDSs). We assume that the leaves are
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linearly ordered in the following way.
(5) XCY:e (FEAu@EV)(X<gZ<oo U>10V>.5Y)

(This is not the only possible ordering; this establishes in fact the order at
D-structure. This is enough for the present purposes, though.)

Definition 3. Anordered MDS(OMDYS) is a PMDS in whichC is linear
on the leaves.

Now, since<}, is a tree ordering, we can extendo an ordering between
any two incomparable nodes (whexeandy are incomparable if neither
X <!, ynory <}, xnorx =Yy). In fact, the extension is exactly as defined
by (5). Details can be found, for example, in [11]. Notice that in an OMDS,
<o N <1= @. For suppose otherwise. Then for sor@ndy we havex < y
andx <; y and therefore  zfor any leafz < x, by definition ofC.

In presence of the ordering postulate, the condition (P5) and (P6) can be
replaced by the following

(6) The setM(X) := {y : x <y} is linearly ordered by},.
This is easy to see. First we prove a

Lemma 4. Suppose that ¥ y and that there is no x such thaty x <* y'.
Theny<,0 Y.

The proof of the claim is in the fact thgt € M(y). If the link is derived,
it is not minimal, so there is asuch thaty <., z<* y’. And conversely.
Suppose now that < y. Then thereis achaip = yp < y1 < ¥» <
- < ¥y =Y. The longest such chain contains only nonderived links, by
Lemma 4. This means that<}, y. Now, <}, is a tree ordering, so that if
y € M(X), thenx <}, y' as well, and so either=y ory <}, y ory <{,,
as promised.

Proposition 5. LetMt be a PMDSt is an OMDS jf the following holds:
if X is not the root<1q is definedff <qo is undefined on x.

We shall prove the theorem and exhibit some useful techniques. We code
the elements of)t by sequences in the following way. Létbe a chain
{Xi 1 i < n+ 1} such thatx, is the root, andk; >.o X;1 for everyi < n.
We calll a standard identifier for x and denote it by (x). nis called the
standard depth of x, and we write sd¥,) to denote it.

Lemma 6. In an OMDS, every x has exactly one standard identifier. Hence,
the standard depth of x is uniquely defined.

(See also [9] on the notion of an identifier.) Let us see why the standard
identifier is unique.
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We translate the identifier into a binary sequebgt® - - - b, defined by

b = {0 if Xi >00 Xis1,

(7) .
1 if X >10 Xis1.

In this way, we associate a binary sequence with each node. Now suppose
that (5) defines a linear ordering on the leaves. First: this number is unique.
For if not, there are two sequencédgb; - - - b, andcyc; - - - ¢, Of this kind

for x,. As they are distinct there is a least indgguch thatb; # c;, say

bj = 0 andc; = 1. Then, by (5), ifz < x, is a leaf,z = z Contradiction.

Now, let x be given. It has a sequenbgb; - - - b, associated with it. Let

Y >.0 X. Theny is defined bybgb; - - - b1, which is unique. Sox. is a
partial function. Conversely, i,; is a partial function, then the translation
into binary sequences is unique. Now definéor sequences blgb; - - - by,
andcyCy - - - Gy iff for the first j such thato; # ¢;, b; = 0 < ¢; = 1. This

is exactly the order (5), spelled out for the representing sequences. This
order is loop free, transitive and linear on the maximal sequences (which
correspond to the leaves). We add thgl, - - - by, is immediately to the left

of cpCy - - - Cy if

(8) bObO cooby = bob1 . bj—101' -1
CoC1-+-Ch = bObl"'bj—llo"'o

(The lengths of these sequences need not be equal.)

| should emphasize that the identifiers do not necessarily form a tree do-
main. Recall that a tree domainis a subset oN* such that the following
holds: (a) ifXi € T thenxX € T, and (b) ifXj € T andi < j then also
Xi € T. Property (a) holds but (b) does not hold in general. For suppose
thatx >o; Yy andx >19 z. Thenl(2) = 1(X)1. However since the linig; x is
derived there is no standard identifier of the farfr)0. The identifier (y)
containsl (2) = 1(x)1 as a prefix.

3. Dynawmic Locic

The language of dynamic propositional logiifL ) is defined as follows.
Given any sefll, of so-calledbasic programs a setI’ of propositional
constants, and of variables, the set of formulae is the closure under the
following:

O If y is aformula,y? is a program.

O If y,x’ are formulae, so arey andy A x’.

O If @, are programs, so g, o’ anda U «; anda™.

O If is aprogram ang a formula(a)y is a formula.
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We puty V ¥’ := =(=x A ') and ]y := —~(a)—y, and similarly for other
boolean connectives. The minimal logic, also den®&d., is the least set
of formulae with the following properties:

(1) All propositional tautologies are iRDL.

(2) [allx = x') = ([alx — [a]x’) € PDL.

) W2’ < (x Ax’) € PDL.

(4) (e U )y & (a)yy V() € PDL.

(5) (@;a')x « {a)a’')x € PDL.

(6) x A la’](x — [alx) — [e"]x € PDL.

(7) If y € PDL then [o]y € PDL.

(8) If y » x’ €« PDL andy € PDL theny’ € PDL.

(9) If y € PDL, thens(y) € PDL for every substitutiors.

Here, a substitution is defined by a functisthat assigns a formulg(p)

to every variablg. The formulas(y) is obtained by replacing every occur-
rence of a variable by s(p), for every variablep. A dynamic logicis a
setL € PDL which has the properties (7) — (9). Lebe a formula and. a
dynamic logic; therL @ y denotes the least dynamic logic containlngnd
x- Similarly with a setA in place ofy.

Model structures are of the forgh = (W, C, R), whereW is a set (the set
of worlds or points), C : I' - p(W) a function assigning each constant
a set of worlds, an® : TIo — @(W x W) a function assigning each basic
program a relation olV. A valuation is a functions : V — p(W). Based
on this we define the interpretation of complex programs as relations in the
following way.

R(a U @) := R(a) U R(a')
R(a; @) := R(@) o R(@)

R(a*) := R(a)*

R(x?) = {{w, W) : (&.8, W) F x}
The truth of a formula at a world is defined thus.

(&8, W) F -y 1o (§.8,W) ¥ x
(10) (&EBW Ex Ax o (F.BW) Ex X
(&,B,W) E (a)y & there isu: w Rla) uand(g, 3, u) £ x

We write § F ¢ if for all valuationsg and all worldsw: (&,8,w) £ ¢. The
logic of a classK of structures is

(11) Th(X) :={¢ :forall F € K: § £ ¢}

It has been shown th&DL is the logic of all structures and that it is also
the logic of the finite structures. From this follows the decidabilityP@fL .
However, more is known.

(9)
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Theorem 7. PDLis EXPTIME-complete.

This means that there are constamtndb and a polynomialp(x) such
that for every formulap of lengthn > ¢ the time needed to solve the prob-
lem whetherp € PDL takesbP™ time. (Additionally, any problem of this
complexity can be coded as such a problem in polynomial time.)

4. GrRAMMARS AS Logcics

In context free grammars one distinguishes the terminal alphabet from the
rules. A similar distinction is made here as well. Nodes that have no daugh-
ters are callederminal. The lexicon is a set of declarations which state
which labels terminal nodes may have. This is typically done by introduc-
ing a finite set of constants and the statement that all and only those nodes
may be terminal at which one of the constants is true. With the constants
a part of the language the lexicon ifextively identified with a specific
nonmodal formula. In fact, we are more generous here and assume that the
lexicon is a constant formul& which may involve modal operators. This
is useful when we want to assume that the lexicon also contains complex
items, as is often the case in generative grammar. The grammar is a (finite)
set of formulae expressed in the above language. While the grammar is
believed to be the same for all languages, the lexicon is subject to variation.

The logicDPDL is obtained by adding the formula)y — [a]y for
every basic program. A frame is a frame OPDL iff for every basic
programa: if X R@) yandx Ra) y theny = y. (One says that the
program is deterministic, and this is the reason the logic is calBDL .)
Furthermore, the logic of finite deterministic computations is obtained by
adding the formula

(12) ["]([a"]lp— p) — [a']p

wherea is the union of all basic programs (hence this definition requires
thatIly is finite). If we want to mention the numbeiof programs, we write
DPDL,.f. The following is proved in [7] (fmp and decidability) and [16]
(EXPTIME-completeness).

Theorem 8. For every nDPDL,..f is the logic of all finite structures with n
basic programs, where the basic programs are deterministic and their union
is loop free.DPDL,.f is decidable, it is EXPTIME-complete and complete
with respect to finite trees.

Theorem 9. For every n, thd®DL-logic of n-branching trees has the finite
model property and is decidable.

Many of the basic results can also be obtained by using a translation of
dynamic logic into monadic second logic (MSO). The disadvantage is of
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using MSO is that the complexity of the logic is for the most part nonele-
mentary (in the sense of recursion theory), wiHBL is elementary (it is
EXPTIME complete). Second, the main result that we shall establish here,
the decidability of the dynamic logic of multidominance structures, cannot
be established in this way, as far as we can see. For this reason we shall use
dynamic logic.

5. THe Locic oF MULTIDOMINANCE STRUCTURES

For notation, let us agree on the following. For each of the relatigns
we introduce a program;j, which is interpreted by a relation that we write
>ij or <j; rather tharR(v;;). Structures are of the form

(13) (M, >00, >01, >10, >11)-

We usevy in place ofvgy U vy, V1 for vio U vy3 andv for vo U vy, The
relationsvy andv, are partial functions. Also, the notationg := vooU V19
andv,; := Vo1 U vyq is frequently used. Finally, let us write

(14) u:=v"

A structure is callegjeneratedif there is a single element such that the
least set containingv which is closed under taking successors along all
basic relations is the entire set of worlds. (In our case this is exactly true if
the structure is a constituent.) The following is easy to see.

Lemma 10. Let 9t be a generatedPDL ,-structure with root x. Then we
have(I, B, Xy £ [u]e iff for all w: (I, B, w) E .

Our first goal is axiomatise the logic of all PMDSs. There is an important
tool that we shall use over and over.

Theorem 11. Suppose that L is a logic containir@DL, which has the
finite model property, and lgt be a formula. Then the logic4 y also has
the finite model property.

Proof. Suppose thap is consistent withL @ y. Theng; [u]y also is
L @ y-consistent, and a fortiodi-consistent. Thus it has a finite model
«F,R),,X). We may actually assume that for every — y. Theny k y,
and so the frame is a frame for y, sincey is constant. O

This theorem has interesting consequences worth pointing out. It allows
us to focus on the grammar rather than the lexicon. This reduces the prob-
lem to some degree.

Definition 12. Let PM = DPDL4f & (Vig)T — [V T & (Voo)p —
[Vod T @ (V)P = (V0; V)P.
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The first two formulae make sure that each node has at most one left hand
daughter and at most one right hand daughter. The postulates are constant
and can be added without sacrificing decidability, by Theorem 11.

The third postulate ensures that the structures are trees, more exactly, they
are generated from a single node ¥ig (rather than all four relations). This
is because iz <.; y then there is a path along nonderived linkytas we
shall show.

Lemma 13. Supposey is a structure in which every basic program is de-
terministic and loop free and satisfies

For all w, u: if w >,; u then there is a 'y such thaty;, w
and w<y.

Theng is a structure forlPM.

Proof. It suffices to show that this structure satisfies the additional axiom
of PM. Choose a valuatiof and a poiniwv such that

(15) <8aﬂ’ W) F <vol>p

Then eithew £ (vo)p or w E (v11)p. Then there is a such thau <¢; W
andu £ p. By assumption o, there is ay such thaty <}, wandu < y.
From the latter we getr (v)p, and from the first

(16) (F.B,Y) E(VINV)P

This shows the claim. O

From this we prove that the axiomsP®M are valid in all PMDSs (Lemma 14).
This is one half of the characterization, Theorem 20, which asserts that if a
finite structure satisfies the axiomsPM then it is actually a PMDS. The
other half is constituted by Lemma 19.

Lemma 14. PMDSs ardPM-structures.

Proof. To see this, we shall verify that they satisfy the property given in
Lemma 13. To this end, take a PMDBI, >q0, >01, >10, >11). Suppose that
X >.1 Y. Thenx € M(y), and there is, by assumption, an elemert M(y)
such thau <* x. (Notice that by (P6) of Definition 2 cannot be the least
element inM(y) with respect to<* since the link(x, y) is derived.) Choose
a pathIl, = u;--- ;X If this path contains only underived links, we are
done. Otherwise, let the path contain/, a derived link. Then there is a
pathA = v;--- ;w;V such thaw <,q V, by a similar argument. Replace
the pairv; Vv in Il by A. This gives a path which is longer thaily. Thus,
as long as we have derived links we can replace them, increasing the length
of the path. Hence, as the procedure must end, it will deliver a path without
derived links, as promised. O
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In the connection of the following lemma, we say tiR{ty) satisfies a
fixed point property if for all formulaey, framesy, valuationgs and points
X:

(17) (&8, X) Ela)p & @ Viaa)y

Lemma 15. Let (F,R) be a finite frame3 a valuation, and Rx) be loop
free. Then for all x ana:

(18) (@&, X) Ela ) & @ Viaa)y

Proof. It follows from the axioms thap — (a*)¢ and{(a; a*)p — (a*)p
are generally valid. Hence we only have to establish

(19) @B X Ea)p = @ Via;a' )y

By assumption oriR(a), for everyx there is a sequence = X 5ox >

Xo-++ — X, Wherex, has noR(a)-successor. We proceed by induction on
maximum length of such a chain startingxatCall this theheight of x. If
the height is Ox has noR(«a)-successors. The; a*)¢ is false, and so the
claim reduces to

(20) &L XY E(a ) = ¢

which is correct. Now lek be of heighth + 1 and the claim proved for all
points of height< n. Suppos€a*)y is true atx. Then there is a chain of
length< n+1: X = Xg — X — X+ — X, andy is true atx,. Two cases
arise. k = 0, in which casex £ ¢ and we are done. Gk > 0. Then, by
inductive hypothesis, since has heighk n, (§,8, X1) F (a¢*)¢ and so we
havex k (a; a*)¢, as promised. O
Say that a program is progressivein L if R(a) is loop free in every
structure forL. In that case we say that a nod&asa-heightn if there is

NO SEQUENCE — X1 — X+ - — Xue1. If X hasa-height 0 it means that it has

no a-successors. The important fact to note is that we can restrict ourselves
in the present context to progressive programs, and these are the programs
for which the fixed point equation holds. We say thas contained irg, in
symbolsa C B, if L + {(a)p — (B)p. If L has the finite model property this

is equivalent tdr(a) € R(B) in every finiteL-structure. IfL’ 2 L anda C 8

in L, then this holds also ih’, so this does not dependent muchlana

andg areequivalentinL if « € Bas well ag3 C ain L. If a is progressive

then so are" (n > 0) anda*. The following theorem rests on the fact that

the logic of finite computations has a maximal progressive program.

Lemma 16. In PDL,.f every program is equivalent to a program of the
forme?, ¢?U a, wherea is progressive.
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Proof. Notice thata is equivalent taL?U a, SO we need no separate case
for progressive programs. L&t i < n, be the basic modalities. Put

(21) Y=oVl V---Ulna)
In PDL,.f, v is progressive. Thef; y as welly* are likewise progressive.
Everyn that is contained in a progressive program is also progressive. What
we shall show is that every prograsnthat is not a test can be written as
¢?U a wherea is contained iny. Before we start notice that if is a test
anda C y theny?;a C @ C y and likewisea; y? C a C .

We note thatp?;y? is equivalent tof A y)? and thapp?U y? is equivalent
to (¢ V x)?. Finally, (?) is equivalent tap?, so that the operators reduce
on tests to a single test. Now, suppose that ¢1?U a1 andn, = ¢,?U as
with a4, a, contained iny. Then

mUnz = (17U a1) U (927U a2)

(22) = (g1 V 92)?U (a1 U ap)

is of the desired form.
nm2 = (p1?U a1); (92? U a2)
(23) = (p1?;92?) U (91?;02) U (p17;02) U (@1; @)
C (1 A @2)?U (1?7501 U a5 02? U @1 @)
which is again of the desired form. Finally, gt ¢?U a. We observe that
n € T?Ua. Furthermore, since star is monotopec (T?Ua)* = T?Ua".
Now, a C vy, and sax* C y* C v, sincey is progressive.
O

Definition 17. TheFisher Ladner closureof a formula is defined as fol-
lows.

(1) If ¥ Ay € FL(p) theny, ¥ € FL(p).

(2) If =y € FL(p) theny € FL(y).

(3) If (@ U B)x € FL(p) then(a)x, (B)x € FL(y).
(4) If (a; B)x € FL(p) then(a)(B)x € FL(y).

(5) If (a*)xy € FL(¢) theny, (a){a* )y € FL(g).
(6) If (w?)x € FL(¢) theny, y € FL(yp).

(7) If @)y € FL(p), a basic, theny € FL(p).

We remark that FL(¢)| is linear in the length ofp. This is shown by
induction ony. This means that complexity can be measured either in terms
of the size of the formula or in terms of the size of k).(

By collecting all the previous facts together one can actually show with
a little effort the following (see [16]).

Theorem 18. DPDL,.f has the finite model property, and is decidable in
EXPTIME.
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Now let At(p) be the set of all conjunctions of formulae (or their nega-
tions) from the Fisher Ladner closureof Set
(24) X(p) i= {(Va1)d = (V5o; V)I 1 6 € Al(p)}
Lemma 19. ¢ is consistent witlPM iff ¢; [u] X(¢) is consistent witlDPDL ,4.f.

Proof. (=). If ¢; [u]X(y) is inconsistent iMPDL,,.f, =¢ can be proved
from [u] X(¢) in DPDL,4.f. However, [l X(¢) can be proved if?M. Hence
- is provable inrPM. (). Now let us suppose that [u] X(¢) is DPDL ,4.f-
consistent. Then by Theorem 8 it has a finite model based on a frame

(25) M = (M, >0, >01, >10, >11)
with rootwg and valuatiorB. So,
(26) (M, B, Wo) E ¢; [U]X(¢)

We may assume that the relatiegy induces a tree ordering on the set of
worlds, though with multiple roots (this we have what is known as a forest).
We shall construct a finitEM-model from this. Le§ be the closure ofv
under the relation-,q, that is,S is the least set which containg and is
closed under,o. Members ofS are calledstandard points. Let

(27) E := {w: thereisv e S such thatv <,; v}
For a pointw, leta(w) be the uniqué € At(¢) such that
(28) M, B, W) E O

Now choose av € E. Letv be a standard world such that<,; v. By
choice ofX(y),

(29) (M, B, Wo) E [U]({Vep)a(w) — (vio; via(w))
wherew, is the root, so

(30) M, B,V) E (Va)a(W) — (Vo V)a(w)
Sincea(w) is true atw and sincev <,; v, we have

(31) (M, B, V) E (Y 50; V)A(W)

Hence there is a standand<], v andu” < u such thata(u’) = a(w). For
eachw, pick such a point and say that itlisked from w and writew L u'.
Thus, L establishes a relation frofa to E U S. We note the following.
w L u* does not mean that is standard. Howeveu' has greater standard
depth asv, and ifu ¢ S thenu* € E and sou* can in turn be linked to some
node. It follows that for every € E there is a standandsuch thawv L* u.
For suppose not. Then there isvae E of maximal depth which cannot be
linked to a standard point. But it can be linked to a poinEinThe latter
has greater depth. Contradiction.
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Now we define a new framé& as follows. The set of points iS. Put
X <lgo Y Iff X <o ¥, X <10 Y iff X <19 Y; put X <o Y iff there is au such that
U <o1 Yandu L* x; x <111 y iff there is au such thatu <;; y andu L* x.
Finally,

(32) S = (S, >00, >01, >10, >11)

The valuatiorns’ is defined bys’(p) := B(p) N S. (If constants are present,
the value of a constauwtin S is the value ot intersected witts.) We shall
prove for everyw € S and everyy € FL(y):

(33) (G,8,wW) E x S (M, B, W) E x

The basic clause is
(Case 1.)y = p, avariable. TherS, 8, w) £ pifftwe g/'(p) iff we B(p) iff
(M, B, w) E p, by definition ofg’.
(Case 2.}y = .
(34) (G, , W) E - iff (S,8,w) £ 9
i (M, B, W) &
HE (0L, B, W) E =)
(Case 3.y =9 A .
(35) (.8, W)y A iff(3,8,W) £
iff (M, B, W) E 9
HE (0L B, W) E 9 A
Now lety = (a)¥. The claim will be proved by induction on the syntactic
complexity ofa.
(Cased. =’ Ua”.
(36) (S, , W) E (o' U )Y iff (3,5, W) E () V (")
iff (M, B, W) E (@) V (@)
iff (M, B, W) E (@’ Ua”)d

(Case 5. = o';a”.

(37) (S,B,W) E(a;a”")FIff (S,B,W) E (a’Wa"")I
iff (M8, B, W) E (@' a' Y
iff (ML, B, W) E (a; @’ Y

We use (i) the fact that’ is syntactically less complex thari; o”” and (ii)
the inductive hypothesis fgr” )d.
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(Case 6.y = y?.

(38) (S, ,W) E WP (S, B, W) k y; F
iff (I, B, W) E ;O
HE (0L, B, W) E (Y2

Using the inductive assumptions grandd.

(Case 7.)a = o’*. Now, in virtue of Lemma 16 we may assume thais
progressive, so

(39) (@ o x V' X"y
is a theorem oPDL. Further,a’ is of lesser complexity tham’™.
(40) (S,B,W) E (@) Iff (S, B/, W) E IV (@' Ya"™)F

iff (O, B, W) E OV (@ Ma'* )0
iff (N, B, W) E (@)

(Case 8.1x = vgo. Then the claim follows sincege= <lgo.
(Case 9.xx = vy,. Likewise.
(Case 10.x = vo;. We show first £) in (33). (S, 8, w) E (Vo) implies
that there is & <ip;w such that S, 8, vy £ . vis standard, and by induction
hypothesis (9, B,v) £ . By constructionw >o; ufor au € E such
thatu L* v. This means thaa(u) = a(v) and so(,B,uy £ ¥; hence
(M, B, W) E (Vo). Now we show €) in (33). Assumedi, B, V) E (Vo)
andv € S. Then there is av € E such thatw <q; v and{d,B,w) £ 9.
By construction there is a standandsuch thatw L* u, and so(, B, u)
¥, sincea(u) = a(w). By inductive hypothesis(S,B,uy £ . Again by
constructiony >3 U, SO(S, B, V) E (V1)?.
(Case 11.)y = vq;. Similar.

The next step is to verify tha® is anPM-frame. To that fect we have
to ensure that the union of the basic programs is deterministic and loop free
and that the structure satisfies the new axiom. FirsiyletS. Recall the
definition of the standard depth. It is easy to see that the standard depth of
points is the same in both structures. Now supposewhatu. We claim
that sdgv) > sd@). (Case 1.)w <o U. Thenw <gg U Or W <30 U, and
by definition of standard depth, sd( = 1 + sdu). (Case 2.)w <ip; U or
W <11 U. In this case there is asuch thatw >¢; y or w >;; y such that
y LY uandw >* U for some standard’. This means that sd) > 2+ sd{w).
Next, to show that the programs are deterministic, observe that the original
programs were deterministic, and each link was replaced by just one link.
Finally, from Lemma 13 it follows that the constructed structure satisfies
PM.
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Now, from (33) it follows that

(41) (S,B,Wo) F ¢
This shows the claim. |

Theorem 20. The logic of PMDSs i$M. Moreover, this logic has the
finite model property, if finitely axiomatisable and therefore decidable. Its
complexity is 2EXPTIME.

The complexity follows from the fact that the formula to be satisfied has
lengthO(2"), and thaDPDL,.f is in EXPTIME.

6. SNGLE MoveMENT MDSs

There is an important class of MDSs, those whel(e) has at most two
elements. This means in practice that each element is allowed to move
only once. This class of structures is very important, since the now current
Minimalist Program requires each movement step to be licensed. These
structures be the topic of Part Il. Here we are interested only the axiomati-
sation of these structures. We have noted earlier that root links are always
the lowest links. Therefore, for every nogéhere is at most ongsuch that
X <. Y. On the other hand there can be any number of non-root links. The
narrowness determines the maximum number of non-root links.

(42) v(p) := (p = [V*]=p) A =({Vo0; V)P A (V10; V') P)
Lemma 21. LetB be a valuation such thag, 8) £ [u]v(p). ThenB(p)| < 1.

Proof. Suppose that,y € g(p). Thenx <, y cannot hold; for they = p
buty ¥ [v*]-p. If howeverx andy are incomparable there are pointsv
andv’ such thav # v andx <* v < uas well asy <* v < u. Then however

UE (Yoo, V)P; {V10; V). O

Definition 22. An MDS is called marrow if [IM(X)| < n— 1 for all x. An
MDS is callednarrow if it is 1-narrow.

&£(p) :=[ulv(p)
- [U](<Vo1>p - [VOO; V*](<V>p - <v00> p))
Lemma 23. A MDS satisfieg(p) iff it is narrow.

(43)

Proof. Suppose the MDS is not narrow. Then thereysadz z € M(y)
such thatz <* Z and both linksy; z andy; Z are not root links. Then put
B(p) := {y}. Then throughout the MDSy — [d*]-p holds. Also, there
iS no pointu such thatu > v, U >10 V andy <* v; V. It follows that
ZE (Vo) p; (Vypandz k (v.1)p. However,z R(v.o; v*) z. So the formula
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is false under this valuation. Now assume that the MDS is narrow. Take a
valuation such that(p) everywhere. Ley be a node such that: (v.1)p,

sayu <,; Yis such that £ p. Theng(p) = {u} by Lemma 21. Now lezand

Z be such thar < Z <, yandzk (v)p. Thenz > u. Since the structure is
narrow,u <,g z, Showingz £ (v.o)p. O

7. EXTENDING AND REDUCING THE L ANGUAGE

The fact that we are dealing with cycle free structures has gfistt®n
the expressivity of the language; basically, using implicit definitions all pro-
grams constructors of PDL can be eliminated; conversely, many seemingly
more powerful constructs can bé&ectively mimicked. We consider here
two devices: nominals and the conversendminal is a variable that can
be true only at a single world. It emerges from the discussion above that
nominals actually do not add any expressive strength to our language. Con-
sider a formulap(i) which contains a nominal Now consider the formula

(44) v(p) A (V)P — ¢(p/i)
This formula has a mod€R, 8, x) only if B(p) is a singleton. The conse-
guence of this is the following

Theorem 24. For every first-order universal formulausing atomic formu-
lae of the form x Ry) y or x = y there is a modal formula such that for

any MDS & £ Ciff & E ¢.
Proof. Let/ = (VXoX1 - - Xo_1)a. Introduce nominal, iy, - -, in_; and
define the following translation:
(Xp = Xg)" 1= (v*)(ip Ag)

(Xp R(@) Xq) = (V" )ip A {a)ig)

(45) T

(—u)T =
(@na) =a" Ana’

It is not hard to see thaf, 3, X) £ ~a' iff § ¥ £. The sought after formula
is

(46) v(Po) A v(P1) A -+ v(Pne1) — @' ([pe/ik 1 i <))

This completes the proof. O
Also, let me recall a few other reductions that we have achieved. The
following equivalences hold:

(47) (eUa)p e (a)pVia)Hp
(48) (a; @' )yp & (a)a')p
(49) (P <Ay
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This means that the program constructs union, concatenation and test are
eliminable if they occur as outermost program constructors. However, we
have also shown that every program is a union of a test and a progres-
sive program and that for progressive programs the following holds in finite
structures:

(50) (@)p e pViaXa)p
This allows to eliminate the star as follows:

Lemma 25. Leta be progressive iy andy a formula. Then
(51) (&%) Ex(a)d/q) & (F, X F[ul(qg e 6 Vg — x

Proof. Suppos€d, 3, X) ¥ [u](q « 6 V {(@)q). Then by induction on the
a-height it is shown thgB(q) = {x : X k (a*)¢}. (Assume that the claim is
shown for all point of height less than the heightxofx £ qiff eitherx £ §
in which casex £ {(a*)d; or X £ {a)q, in which case there is anof lesser
height such thay £ g. By inductive hypothesisg k (a*)é and sox k (a*)d
in this case as well.) Now assume thgt x) # [u](q < 6 A (@)Q) — x.
Thenx k [u](g « § A {@)q); =y, from which we get thg8(q) = S({a)d). So
we substitute and getr —y({a*)6/q). This argument is reversible. O

Notice that it is irrelevant whetheractually occurs iry or not. We shall
strengthen this language further by adding an operator on programs, the
converse This will allow to talk about going up the tree. This makes the
statement of some restrictions easier. We shall show that for a large enough
portion of the newly added formulae, they do not add expressive power,
they just make life easier. The good news about them is that they can be
added without having to redo the proofs.

Recall that for a binary relatioR,

(52) R :={(y,X): xRy}

The languag®DL ™ has in addition a unary operatorand the interpreta-
tion of o~ is R(a)~, the converse oR(«). It is axiomatised byPDL for all
programs plus for every program

(53) p—[ala)p,  p— [ Ka)p

It turns out that it is enough to just add the converse for every elementary
program, for we have

(54) (RUS) =R US"
(55) (RoS) =S oR
(56) (R) =RY)

Also, notice that
(57) R((#7?)") = R(¢?)
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Thus, rather than looking &DL; (four basic programs and a converse
operator) we may look &DL g (eight basic programs, no converse), where
the postulates (53) have been added just for the basic programs. We shall not
take that route, though, since it produces needless complications. Rather,
we shall make the following observation.

Lemma 26. Let§ = (F,R) be a frame, x F a world, andO, g, andx=
modalities such that &) = R(O)" is a partial function andg an operator
such that x Rx) y for all y. Then for any two formulag andé and any
valuationp:

(58) (BB XER((BL—->QAOT — (6 > O0) A (=6 - 0-Q)) > x
Vi
(59) (.8, %) E x(B6/0)

Proof. Assume (58). We claim th#(q) = {u : u r B6}. Two cases arise.
(Case 1.)z has noR(B)-successor. TheR.L is true atzand so igg. (Case
2.) z has aR(B)-successor. Then this successor is unique by assumption.
Call it y. By assumption we hawe R(O) z. Furthermore, ag R(R) y, we
havey £ 6 — Oqgas well asy £ =6 — O-q. Suppose £ 86. Theny & 6,
from whichy £ Oq, and saz k @. If z¢ = 86 theny £ =8, by functionality
of R(B). Hencey k O—-qand saz £ —q. This argument is reversible. O

This lemma can be used to introduce converses for the progvams
and vy, since they are backwards deterministic. This seemingly allows
for the reduction of any program to a forward looking program. However,
recall that the elimination of star used the fact that every program is basi-
cally progressive. With converses added this is no longer the case. So, star
is eliminable only if the program either contains only downward looking
modalities or only upward looking modalities. Tests may be considered to
belong to either class. Call such a formiitate turn .

Theorem 27. Suppose a class of constituents is axiomatisable with some
finite turn axioms using the operatorg, and Ay in addition tov;;. Then
it can be axiomatised without the usexf and A1.

This can be used in the following way. We have said earlier that the
PMDSs are not necessarily ordered in the standard sense. To enforce this
we need to add another postulate. The linear order is modally definable by

(60) @ :=A"; Ao, V1 VT

In the definition we have made use of upward looking programs. It is
straightforward to verify that

(61) XCYy & XYy eRw
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This would ordinarily involve adding the converse operator. We have seen,
however, that there is a way to consider the converse operators as abbrevia-
tions. Thus we may define the following.

Definition 28. Let
(62) OL = PMea <A00>T - [Alo]J_ &) <A10>T - [Aoo]J_
® (200)P — [200] P& (A10)P — [A10] P

The way to understand this definition is to supplant the fomyldmy
[u(H(x) — p,) if they contain the converse. (You may do that regardless
of whether the converse occurs or not, but in the latter case this needlessly
complicates the formulae.) Using Theorem 11 we see that

Theorem 29. OLis decidable in EXPTIME.

8. NEARNESS

The above results are encouraging, but not exactly what is needed. There
typically is a restriction on the distance that an element can move in a single
step. We take as our prime example the subjacency definition in [3]. As |
have argued in [6], perhaps the best definition is this. The antecedent of a
trace can be found within the next CP which contains the next IP properly
containing the trace. One is tempted to cash this out as the following axiom.

(63) (Va1)P = (Vo X(=CP?;v))"; (=IP; v)")p

Here, CP, IP are constants, denoting phrasal nodes of category CP and IP.
This formula says that for every node if there is a derived downward

link from x to somey, then there is a path tpfollowing first a nonderived

link, then following down non-CP nodes and finally non-IP nodes. Unfor-
tunately, matters are not that easy. | have shown in [8] that this gives the
wrong results. Consider a VP and an NP that scrambles out of it. Consider
a movement of the VP that passes the the NP, whereupon the NP moves to
pass the VP again. Then the formula above maybe true even if there was
a step that crossed a barrier. (It counts also nonexistent paths such as a
movement that takes the NP for a ride inside the VP before it jumps out.)
This structure can be complicated just a little bit so as to exclude the piggy-
back movement entirely. Then the formula above is true even though no
derivation of the desired kind exists.

So, nearness constraints are not easily captured in model theoretic terms
because the structure does not explicitly say which link has been added
before which other. Indeed, notice that one and the same MDS allows for
quite diferent derivations. There is (up to inessential variations, see [10])
exactly one derivation that satisfies Freeze, and exactly one that satisfies
Shortest Steps. As it turns out, however, at least Freeze derivations are



20 MARCUS KRACHT

easy to characterize. The idea is that the longest path between two standard
elements is actually the one following standard links. Suppose we want to
define the subjacency domain for Freeze.

(64) 0 = (V)P = {((Veo; "CP?}; (Vo0; =IP?); V)P

Lemma 30. M k o iff there is a Freeze derivation such that movement is
within the IPo CP-domain.

Proof. Suppose that movement is such that each step is within t{&RP
domain of the trace. Then in the MDS, every path between these nodes
respects these domains. Converselyxle¢ a node in an MDS and>,; x.
PutB(p) := {x}. Theny k (v.o)p. Hence, by assumption,

(65) (M, B,Y) E ((Veo; "CP?Y; (Vao; —IP?)"; V)P

which says that there is a standard path first along nodes that do no satisfy
CP and then along nodes that do not satisfy IP to some nadhéch domi-
natesx immediately. The standard path is the movement path in the Freeze
derivation. This shows the theorem. O

This can be generalized to any requirement that says that a path must re-
spect a regular language, which is more general than the definable command
relations of [4]. The general principle is therefore of the form

(66) DistC; @) = (V.1)(CA p) = (@; V)P

wherec is a constant an@ is an expression using onty,o and constants.
Moreover, as we shall see, one can mix these postulates to have a particular
notion of distance for phrases and another one for heads, for example. In
general, any mixture of distance postulates is fine, as long as it is finite.

Theorem 31. The logic of MDSs which have a Freeze derivation satisfy-
ing a finite number of postulates of the fomst(R) has the finite model
property and is decidable.

Proof. We replay the proof of Lemma 19. Let Dist(®@), i < n, be the
distance postulates.

(67) Y(@) := {{Va1)(Gi A 8) = (@i; V)5 : 6 € At(p),i < n}
Now define the linking in the following way. W <,; uandw k ¢, then
(68) u e (@i; v)a(u)

Hence there are’, U’ such that/ <,o u, w < U and the standard path from
uto U’ is contained inz;, anda(w’) = a(w). We then puw L w. Thus,

the condition on Freeze derivations is respected. The rest of the proof is the
same. O
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9. ArsT EXAMPLE: MOVEMENT

We shall present an example of a language that is trans-context free and
can be generated from a context free language through movement. Fur-
thermore, it shall follow from our results that the logic of the associated
structures is decidable. Take the following grammar.

S—aT S — aX
(69) T—-bU X — bc
U—cS S— S

This grammar generates the langud@@é®c)” : n > 0}. Now, we shall al-
low for movement of any element into c-commanding position. Movement
is only constrained by the fact that it is into c-commanding position, noth-
ing else. Since we have added the rule-SS, the base grammar freely
generates sites to which a constituent can adjoin.

In order to implement this, we need to add constants. For each terminal
and each nonterminal element there will be a constant denoted by underlin-
ing it; for exampleU is the constant denoting nodes with label his will
be our new language. We also add the condition that the constant£from
are mutually exclusive:

(70) IncC) :={X - =Y: X#YandX Y € C}

Also, we express the fact at each node at least one constan€Cfraost be
true by

(71) SufC) = \/(Z : X € C)

These two together ensure that eacd node satisfies exactly one constant.
Next the context free grammar is described by a set of rules:

(72) ps:=S— (VopaA(VinT
V{(Vooya A (Vig)X
V{(Voo)SA (V1) T
pr =T — (Voyb A(ViU
pu=U—> (Voo)CA(V10)S
px =X = (Vopb A{(Vig)C
Pa=a—> (V)T
Pp=b— (V)T
Pc = (Vo) T

1o |
!
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with
(73) Mv := OL & Inc(C) & SucC) & {px : X € C}

Since the added postulates are constant, it is a matter of direct verification
that the structures for this logic are the PMDSs in which the underlying tree
(using the nonderived links) satisfies the context free grammar given in (69).
Any constituent may move, and moves to any c-commanding position.

It is interesting to spell out which linear order we use for the surface
constituents. To this end, let<g y if y is the highest member ¢#(x); we
also call the linkx; y a surface link. It is not hard to show that{ defines
a tree order on the worlds. Moreover, bet<g Yy if X <g yandx <q Y,
similarly, x <4 Y iff X <g y andx <; y. We say that for two leavesandy
thatx surface-precedey, in x symbolsx « y.

(74) Xocy:e Au)@AV)(AW)(X < U<gn V>g W>LY)

This order is not modally definable. However, this does not defeat the use-
fulness of the present approach. There are two fixes; one is to introduce a
surface relation. Like we did for the root links, we have to introduce the
relations<yg and <g explicitly. The proofs so far go through without a
change. Decidability is again guaranteed.

10. ADJUNCTION

The next generalization we are going to make concadjsnction. Re-
call from [6] that it is not enough to leave adjunction implicit. We must
add an explicit statement which nodes are maximal. An adjunction struc-
ture is therefore obtained by adding a sulfgebf M. (Intuitively, this set
represents tha maximal nodes of a category.)

(75) X := the leasty € M such thaty >* x
Thecategoryof x is defined as follows.
(76) C(¥) =1y y' = x4}

A categoryis a subset oM of the formC(x). y is asegmentof C(x) if

y € C(x). Two categories are either equal or disjoint; hence the categories
form a partition ofM. Categories must also be linear. To ensure this we
must have the following: i andy’ are distinct daughters oftheny € M

ory € M. For otherwise/ = y;* and soC(y) = C(y’) = C(xX). Finally, in
adjunction structures c-command is revised as follows. Saytimatudes

x if all segments dominatg. x c-commandsy iff the leastz including x
dominatesy. Now we require that chains are linearly ordered through ac-
command. This is reflected in the following conditions.
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The setM(x) gets replaced by the sB(x), which is formed as follows.
Suppose that <* u, whereu is minimal in its category (so that the category
is the least one that includeg, and there is a pathl from x to u going
only through nonminimal nodes, and following derived links. Ther
P(x). As before,P(x) reports about the movement historyf But now
that c-command is no longer defined using the one-node-up version (idc-
command in the sense of [1]), we need to definel@ent set of nodes that
need to be compared. This is why we ch&%&) to be the mothers of the
ultimate landing site of a complex formed through successive adjunction.
The link that adjunction creates is always counted as derived. We shall see
below an example of where this arises naturally.

In fact, adjunction has been taken to be more restrictive. Typically, when
an element adjoins, it must adjoin to the maximal segment of the existing
category. Whence, we shall simplify the task as follows. @atifimal if
there is noy < x which is nonmaximal (that is to say,s the least member
in its category).

(77) P(x) :={y:y> xandxinfimal or
there is a noninfimat andy >.g Z >.1 X}

Definition 32. A pseudo-ordered adjunction MDEPAMDYS) is a structure
(M, M, >q0, >01, >10, >11), Where the following holds:

(1) M c M.

(2) Ify >9 x and y>q X' then x= X'

(3) Ify >; xand y>; X’ then x= X

(4) Ify >; x then there is a z such thatyy x.

(5) There is exactly one x such that for no y>yx (this element is
called theroot).

(6) If x >.1 y then ye M. (Adjoining elements are maximal segments.)

(7) If x <yand X <yand xx ¢ M then x= x'. (Only one daughter
Is a nonmaximal segment. Categories are linear.)

(8) The set Rx) is linearly ordered by<;, and if y is minimal with
respect to<* then y>,q X.

As before, we need to define the logic of these structures and then show
that the defined logic has the finite model property, which shall establish its
decidability. First, let us notice a few facts about these structures. The idea
of adjunction plays the biggest role in head adjunction, because here the
new notion of c-command takeffect. A head adjoins to a higher head, but
in the new position it does not idc-command its trace, it just c-commands
it. The postulates are as follows. We shall introduce a congiavitiose
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interpretation is the sék. First, let us agree on the following notation.
(78) A= (V)
(79) V= (A?; V1) U (Veo; A?;Va1)
A'is true on the node to which one has adjoingdx) € R(v) iff y € P(X).
Definition 33. Let
(80) PAM = DPDL,.f

® (Voo)—H — [Violp

® (V1) — [Voolu

@ [Var]u

S(V)p = (V' (T?UV)p

Lemma 34. Every finite PAMDS satisfies the postulate®AM .

Proof. (a) The postulates @PDL,.f are satisfied, by similar arguments.
(b) Supposéli is a PAMDS, and lek € M, X £ (Vgoo)—u. Then there is a
Y <00 X Which is not indt. By (7), if z <10 X, Zmust be maximal, whence
zk u. zwas arbitrary (in fact, if it exists, itis unique). Therefore; [V1o]u.
Similarly for the second axioms. (&) [V..]Ju. For lety <,; x. Then by
(6),y € M, whencey £ u. (d) Suppose £ (¥)p. This means that there
is ay such thatx € P(y). By (8), if X >.; ¥, thenx is not minimal inP(y).
Hence, there is asuch thatx >* zandz € P(x). This means either thatis
minimal in P(X), in which casez £ (T?)p, or else thatis not minimal, but
thenz = (v)p. By assumption ofP(y), thatx >, z. Hencez r ((T?)U v)p
and sox E (V] v)p. O

Now we turn to the converse. Put

(81) Z(p) i= {[Ul({Ve1)d = (V3o; (T?U V)6 1 6 € At(gp)}
UALUl({Voo) =1 = [Vao]), [Ul({ Y10}t = [Vool)}
U {[U][ Vsl
Lemma 35. ¢ is consistent witlPAM iff ¢; Z(p) is consistent witlDPDL 4.f.
Proof. (=.) Clear. ). Let Z(¢); ¢ be consistent witlDPDL4.f. Then

it has a finite generated model based®r= (M, M, >qo, >01, >10, >11), the
valuationg andwg such that

(82) (M, B, Wo) E Z(p); ¢

(a) By choice ofZ(y), Wo E [U]({Voo)—u — [V1oJu). Takez € M. Then, by
definition ofu, z £ (Voo)—u — [V10]u). Suppose now thatis nonmaximal
andz >qo y. Thenzk (vooy—u. Whencez £ [Vig]u. So, ifz>19 U, thenuis
maximal. Similarly itis seen that #>1o y andy is nonmaximal, and >q U
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thenu is maximal. This establishes linearity, (7). ¥ [v..]u. Hence if
Y >.1 z, yis maximal. Thus, (6) is satisfied. (c) Now we deal with the most
problematic formula, the last axiom. We replay the proof of Theorem 19.
The only change is that we define the relatiodifferently. For as befor&
is the set of standard points, akdhe set of immediate, derived daughters
of standard points. We shall have to verify thats cycle free, and that
the structure obtained by identifying all poiritsrelated to each other is a
PAM -structure and the resulting model satisfiesBasically, the proof of
the latter is as in Theorem 19. So let us see why the structur@fdVi:
structure. For, this we need to establish thét) is linearly ordered by-*.
O

There are typically other requirements that are placed on adjunction struc-
tures. The first is that head adjunction takes place to the right only. Thus, if
yis a zero level projection ard>,; y, theny must be to the right, se = 1.
This is captured as follows. There is a constidnivhich is true of exactly
the zero-level projections. So we say

(83) H— [AIO]J—

Next, at least in the standard theory, the head-head complex cannot be taken
apart by movement again. (The phenomenon is knowexasrporation.)
Structurally, it means that an adjoined element cannot have two mothers.
Thus, ifx, X' >.; y andy is zero level, thenx = x'. This must be added to

the list of requirements if needed. This is a universal first-order formula, so
only have to appeal to Theorem 24 to see that it can be axiomatised modally.

11. Siconp ExampLE: Swiss GERMAN

It is worth seeing a concrete example of how the present ideas can be
made to work. We choose Swiss German to exemplify the interplay between
movement and adjunction. Our analysis will be the cyclic head adjunction
analysis put forward in the 80s for Dutch and German.

We shall assume that lexical items have internal structure, which is also
binary branching. For simplicity, we denote the relations below the lexical
level by another symbol{ and®). (For all those worried about decidabil-
ity: they are dispensable. We could introduce a condtanthich is true of
all sublexical nodes. Then we pat= v;L? and® = L?;A.) The lexicon
contains complex nodes whose leftmost part is a string. The other nodes are
auxiliary and carry phonetically empty material, here one of the following:
a, 6 ando. They are mutually exclusive (just like the other labelg)s a
feature for accusative casefor dative case and for the selection of an
infinitival complement. The following are the lexical trees that we shall use;
Figure 1 shows two of them in tree format. (By the way, we abandon now
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Ficure 1. Some Lexical Trees

Vv
NP
v g
NP . Vv »
d’chind laa
the underscore notation for constants.)
(84) [d’ chind a]np
(85) [em chind §]np
(86) [aastriche a]y
(87) [[halfe 6]y o]v
(88) [[1aa a]v olv
The grammar for the deep structure is this:
(89) VP - ViVP VP - V NP
(90) VIS5 VNP VP — NP VP

We shall assume that the surface structure is created through successive
cyclic head adjunction. That is to say, any head is allowed to move and
adjoin to the next higher head; adjunction is always to the right, but it need
not be cyclic. Suppose we have four heddsV, V; V4. Then we can
first adjoinVs to Vg, giving [V, V3], thenV, to Vs, giving [V, V4], and then
finally [V, V4] to [V, V3] to give [[V4 V5] [V2 V1]]. This can be excluded,
see below.
The rules, together with the lexicon can be translated into constant ax-

ioms as follows. (Recall from (78) the definitigh:= (v)-u. Furthermore,
Q§ 1= Q2; ©2.)
(91)  pvp = VP = ((Voo)V' A (V1)VP)

V (VooV A (V1e)NP)

V (Voo)V A (V19)VP)
(92)  pv = V!5 (Veo)V A (V10)NP
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(93)  pne = NP — ((©3)(d’chind V Hans V ---) A (@1)a))
V ((@3)(em chind vV em Hans V ---) A (@1)5))

(94) oy = (V A -A) - ((@3)(aastriche V- --) A (@1)a)
V (26)(©o) halfe V ---) A (©1)8) A (©1)0)
V ((Q0)((@o) 1aa Vv - --) A{@1)a) A{(@1)0)

95) Py i=(VAA) = (Voo)V A(Vi)(V A p)

(96) P = a — [Q]L

(97) ps =0 — [Q]L

(98) Po =0 > [Q]L

Notice that it is possible to enforce cyclic head adjunction by issuing the

following formula in place op%:

(99) 70 = (VA A) = (Too)(V A =A) A(V12)(V A p)

This says that the left hand daughter must be infimal, hence that daughter is
lexical. The right hand daughter may however be complex.
Case government is implemented as follows.

(100) Ke =V AQUQHa — (A; Q)a

(101) ks =V A{Q U QS — (A; Q)5
Selectional restriction concerning the infinitive is the formula
(102) o=V A(@)o — ((=VP?);a)"; V)VP

Notice that these formulae are all constant. They describe the restrictions
that apply at D-structure.

The only derivational steps are head adjunction, as shown above. The
crucial fact here is that head adjunction is local; so we restrict the condition
(7) in Definition 32 by saying that the distance between two members of
P(x) must be small. The head movement constraint is embodied in the
following formula

(103) pih i= (V)P = (V2 (TRU V)P

This formula is somewhat crude, saying that movement is only two steps
up. It sufices for our purposes, thanks to the particular grammar chosen. It
would be no problem to formulate a more sophisticated version which says
that a head may only move to the next head.

Definition 36. Call Swissthe logic
(104) OL & Inc(C) ® SUf(C) @ {ove, pv', PNP: O+ 0§ Kas Ky» T Hn}



28 MARCUS KRACHT

Swissis decidable. This follows from our results. The language is trans-
context free. To see this we must first define the surface order. This means
that we have to spell out which of the links is a surface link. This is the
standard link if the element is not a V, and it is not adjoined. Otherwise, it
is a derived link.

(105) (<P © ((=V A =A) = (<00)P)) A ((V V A) = (<01)P)
(106) (<P & (VA =A) = (<100P)) A ((V V A) = (<11)P)

Notice that although we have introduced new symbelsand<g, they are
eliminable, so they are infiect just shorthands.

After that we define the left-to-right order on the surface and finally the
relationecg, which is like the surface, but it skips intervening empty heads.

(107) o 1= < <e0) 7sl; > 6
C=o0oVvVaVvd
ocg 1= oc; (C?;¢)"; =C
Now, x is immediately to the left of in surface order ik R(«g) y. X R(Ag) Yy

if y is the next phonetically nonempty element to the righofSo, the
guestion whether the following sequence is derivable

(108) de chind em Hans es huus hdlfe aastriche

now becomes the question whether the following formula has a model:

(109) [oc]L A (exg)(de chind A (xcg)(em Hans A (xg)(es huus

A {xgy(hdalfe A (xg)(aastriche A (xg)[A]L)))))

12. CoNCLUSION

Let us briefly review what has been achieved and what remains to be
done. We have established a way to reduce a grammaidgi@al, the
lexicon to aconstant formulal. As a result, parsing becomesatisfiability
problemin a given logic (heré®). (See [5, 8] for an extensive discussion.)
Provided that the logit is decidable, also the logice A is decidable and
the following questions become decidable:

e Given a stringX and a particular lexicon, is X derivable inL plus
A?
e DoesL plusa imply a PDL-expressible principle?
e Is a given regular language included in the language deriveld by
plusA?
Since principles are axioms, our results establish decidability of these ques-

tions only on condition thak falls within the range of logics investigated
here (or expansions by constant formulae). In particular, this means that
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movement is assumed to satidfyeeze. (This has consequences only for
the formulation of nearness conditions.)

It should be said that there are questions that are known to be undecidable
and so there is no hope of ever finding an algorithm that decides them once
and for all. One problem is the question whether a given grammar generates
less sentences than another one. This is undecidable already for context free
grammars.

The reader might wonder what happened to surface structure and LF.
These two pose no problems, as far as | can see. All that needs to be done
is to split the relationss; into four different ones (which are not mutually
exclusive). In this way, practically the full theory can be axiomatised within
PDL. It is to be noted, however, that while the lexicon consists of constant
formulae, the theory (consisting of general structural axioms) is phrased
with formulae containing variables.

The results obtained in this paper support the claim that properties of
generative grammars developed within GB or the Minimalist Program are
in fact decidable as long as they can be expressed in PDL. In Part Il of this
sequence we shall show that this holds true also for the logic of narrow mul-
tidominance structures. These are structures where a given trigger licenses
only one movement step. Decidability will be shown for theories that admit
narrow structures with Freeze-style movement and command relations to
measure distance. This will be exploited further in Part lll, where we study
Minimalism in depth.
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