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Preface 5

1 Preliminaries and Introduction

Some Useful Hints. This text provides a syllabus for the course. It is hopefully
needless to state that the manuscript is not claimed to be in its final form, and | am
constantly revising the text and it will grow as material gets added. Older material

is subject to change without warning. One principle that | have adopted is that
everything is explained and proved, unless the proof is too tedious or uses higher
mathematics. This means that there will be a lot offstioat is quite dificult

for someone interested in practical applications. These passages are marked by

@in the margin, so that you know where it is safe to skip. If you notice any
inconsistencies or encountefftiulties in understanding the explanations, please
let me know so | can improve the manuscript.

Statistics and probability theory are all about things that are not really certain.
In everyday life this is the norm rather than the exception. Probability theory is
the attempt to extract knowledge about what event has happened or will happen
in presence of this uncertainty. It tries to quantify as best as possible the risks and
benefits involved. Apart from the earliest applications of probability in gambling,
numerous others exist: in science, where we make experiments and interpret them,
in finance, in insurance and in weather reports. These are important areas where
probabilities play a pivotal role. The present lectures will also give evidence for
the fact that probability theory can be useful for linguistics, too. In everyday life
we are frequently reminded of the fact that events that are predicted need not hap-
pen, even though we typically do not calculate probabilities. But in science this is
absolutely necessary in order to obtain reliable result. Quantitative statements of
this sort can sometimes be seen, for example in weather reports, where the experts
speak of the “probability of rain” and give percentages rather than saying that
rain is likely or unlikely, as one would ordinarily do. Some people believe that
statistics requires new mathematics, as quantum mechanics required a new kind
of physics. But this is not so. The ordinary mathematics is quite enough, in fact it
has often been developed for the purpose of applying it to probability. However,
as we shall see, probability is actually &idiult topic. Most of the naive intuitions
we have on the subject matter are either (mathematically speaking) trivial or false,
so we often have to resort to computations of some sort. Moreover, to apply the
theory in a correct fashion, often two things are required: extensive motivation
and a lot of calculations. | give an example. To say that an event happens with the
probability%S means that it happens in 1 out of 6 cases. So if we throw a die six
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times we expect a given number, say 5, to appear once, and only once. This means
that in a row of six, every one of the numbers occurs exactly once. But as we all
know, this need not happen at all! This does not mean that the probabilities are
wrong. In fact probability theory shows us that any six term sequence of numbers
between 1 and 6 may occur. Any sequence is equally likely. However, one can
calculate that for 5 to occur not at all is less likely than for it to occur once, and
to occur a numben > 1 of times also is less likely. Thus, it is to be expected that
the number of occurrences is 1. Some of the events are therefore more likely than
others. But if that is so, throwing the die 60 times will not guarantee either that 5
occurs exactly 10 times. Again it may occur less often or more. How come then
that we can at all be sure that the probabilities we have assigned to the outcomes
are correct? The answer lies in the so called law of the large numbers. It says that
if we repeat the experiment more often than the chance of the frequency of the
number 5 deviating from its assigned probability gets smaller and smaller; in the
limit it is zero. Thus, the probabilities are assunes@ctlyin the limit. Of course,

since we cannot actually perform the experiment an infinite number of times there
is no way we shall actually find out whether a given die is unbiased, but at least
we know that we can remove doubts to any desirable degree of certainty. This is
why statisticians express themselves in such a funny way, saying that something
is certain (!) to occur with such and such probability or is likely to be the case
with such and such degree of confidence. Finite experiments require this type of
caution.

At this pointitis actually useful to say something about théedlence between
probability theoryand statistics First, both of them are founded on the same
model of reality. This means that they do not contradict each other, they just
exploit that model for dferent purposes. The model is this: there is a certain
space of events that occur more or less freely. These can be events the happen
without us doing anything like “the sun is shining” or “there is a squirrel in the
trashcan”. Or they can be brought about by us like “the coin shows tails” after
we tossed it into the air. And, finally, it can be the result of a measurement, like
“the voice onset time is 64 ms”. The model consists in a set of such events plus a
so-called probability. We may picture this as an oracle that answers our question
with “yes” or “no” each time we ask it. The questions we ask are predetermined,
and the probabilities are the likelihood that is associated with a “yes” answer. This
is a number between 0 and 1 which tells us how frequent that evebais is
obtained by making aexperiment An experiment is in this scenario a question
put to the oracle. An array of experiments yields data. Probability theory tells us
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how likely a particular data or set of data is.

In real life we do not have the probabilities, we have the data. And so we
want tools that allow us to estimate the probabilities given the data that we have.
This is what statistics is about. Theffégirence is therefore merely what is known
and what is not. In the case of an unbiased die we already have the probabilities;
and so we can make predictions about a particular experiment or series thereof.
In science it is the data we have and we want to know about the probabilities. If
we study a particular construction, say tag questions, we want to know what the
probability is that a speaker will use a tag question (as opposed to some other
type of construction). Typically, the kind of result we want to find is even more
complex. If, for example, we study the voice onset time of a particular sound,
then we are interested to find a number or a range thereof. Statistics will help in
the latter case, too, and we shall see how.

Thus, statistics is the art of guessing the model and its parameters. It is based
on probability theory. Probability theory shows us why the particular formula by
means of which we guess the model is good. For example, throw a die 100 times
and notice how many times it shows 5. Let that number be 17. Then statistics
tells you that you should guess the probability of 5 gtl0® = .17. Probability
tells you that although that might not be right, it is your best bet. What it will in
fact prove is that if you assign any other probability to the outcome 5 then your
experiment becomes less likely. This argument can be turned around. Probability
theory tells you that the most likely probability assignment is .17. All this is
wrapped up in the formula that the probability equals the frequency. And this is
what you get told in statistics.

Literature. The mathematical background is covered in [5] and in [2]. Both
texts are mathematically demanding. As for R, there is a nice textbook by Peter
Dalgaard, himself a member of the R team, [1]. This book explains how to use R
to do statistical analysis and is as such a somewhat better source than the R online
help. In this manuscript | shall give a few hints as to how to use R, but | shall
not actually introduce R nor do | intend to give a comprehensive reference. For
that the book by Dalgaard is a good source and is recommended as complementary
reading. For linguistic interests one may use [3]. There is a lot of more specialised
literature which I shall point out in the sequel.
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2 Counting and Numbers

We begin with a few very basic facts about counting elements in a set. We write
N for the set of natural numbers. This set contains the numbers starting with 0.
Thus

(1) N={0,1234,...}

The cardinality of a set tells us how large that set is. If the set is finite, the
cardinality is a natural number. We wrii for the cardinality ofA. If Bis also a
set (not necessarily flerent) themA U B is the set that contains the memberg\of
andB. Since an element can belong to both but is only counted once we have

2) |IAUB| =|Al+|B - |AN B|

The setA x B contains all pairgx,y) such thatx € A andy € B. The setA®
contains all functions fronB to A.

3) |Ax Bl =|A x|B|
(4) AP = |A®

We say thatA and B have the same cardinality if there is a one—to—one and onto
function f : A — B. Equivalently, it stfices to have function$ : A - B and
g: B — Asuchthat for alk € A, g(f(x)) = xand for ally € B, f(g(y)) =.

Theorem 1 |p(A)| = 2. In other words, there are as many subsets of A as there
are functions from A into a two—element set.

Proof. For convenience, 1€k = {0, 1}. Clearly,|T| = 2. LetX C A. Then letq(X)
be the following functiong(X)(u) = 1 if u € X andq(X)(u) = 0 otherwise. Then
g(X) : A— T. Now letg: A — T be a function. Pup(g) := {ue A: g(u) = 1}.
Thenp(g) € A. All we have to do is show thagt andq are inverses of each other.
Q) LetXC A p((X)) ={u:q(X)(u) =1} ={u:ue X} =X. (2) Letf : A—>T.
Thenqg(p(f)) = q{u : f(u) = 1}). This is a function, andgj(p(f))(v) = 1 iff
giu: f(u) =1)(v) =1iffve{u: f(u) = 1} iff f(v) = 1. Andq(p(f))(v) = O iff
f(v) = 0 follows. Hencef = q(p(f)). s

One of the most important kinds of numbers arelimomial codficients We
shall give several equivalent characterisations and derive a formula to compute
them.
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Definition 2 The number of k element subsets of an n element set is denoted by
(E) (pronounce: n choose k).

We do not need to require  k < n for this to be well-defined. In that case it is
easily seen that the number is 0.

Theorem 3 The following holds.

0 (k1) = () + ().
0 Yio(f) =2

Proof. Consider firsn = 1. Here, ifk = 0, (1) =1, and(cl’) + (8) =0+1=1,as
promised. Now lefA be ann + 1 element set, and lete A. ThenA - {a} is ann
element set. Now choose a subXedf A of cardinalityk + 1. (Case 1).a € X.
ThenX - {a} is ann element subset ¢k — {a}. Conversely, for everid C A— {a}
that hask elements the séi U{a} hask+ 1 elements. (Case 22.¢ X. ThenXis a
k+1 element subset & {a}. Conversely, everk+ 1 element subset &—{a} is

ak + 1 element subset &, and this finishes the proof. The second claim follows
from the observation that the numbers are nonzero only whek & n and from
the fact that the number of subsets ofre@lement set is2 .

Theorem 4 For all complex numbers x and y and natural numbers n:

n

ONENCTREDY (E)xky”-k

k=0

Proof. Forn = 1, the claim is that

(6) X+y=(X+y)?!= (é)xoy1 + (i)xlyo =X+Y
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Now suppose the claim has been established.fdihen

X+ )™= (x+y)(x+y)"

= (x+Y) (i (E)xky”"‘)

k=0

(2 (2 (e
(7) _ Zn:(E)Xk+ly(n+l)—(k+l) N C (E)Xky(ml)—k

k=0

S

_ (n "l; 1)Xky(n+1)—k

k=0

—

This is a very important theorem. Notice that we can derive the second part of
the previous theorem as follows. Put=y := 1. Then we get

) 2“:(1+1)”:2(E)

k=0
Another formula that we get is this one. But= 1 andy := —1. Then

n

9  o=@-1=) (E)(_l)k

k=0

How to use R to do the calculations. Arithmetical expressions are written using
+, * and so on. Help is provided in the R manual on how to do this. | shall only
sketch a few useful tricks. R has a functidiwose which allows to calculate the
binomials. For exampl ig) must be entered byhoose (23, 16) (and you get
the value 245157. If you want to assign that to a variable xsgpu will have to

type

(20) > X <- choose (23, 16)
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and hit ‘enter’. (Here, is the prompt; this is not what you type, it is already
present on your screen. You type only what comes after the prompt.)

Now let us see how we can check the validity of Theorem 3. We want to
calculate the sum of a{ﬁo) where runs from 0 to 10. Write as follows:

> x <- 0

(1) > for (i in 0:10) x <- x + choose (10, i)
> X

[1] 1024

This means the following. The varialtes assigned the value 0. Nowjs made

to visit all values from O to 10 and each time add the resu(tli‘?)fto the value of

x. Finally, when all is done we ask R for the valuexofThe expression: 10 is

known as avalue range It denotes the sequence (!) of numbers 0, 1, 2, 10.

The start of the sequence is the left hand number, the end is given by the right hand
number. The value range 10 is therefore distinct from®: 0, which denotes the
sequence 10,9, 8;-, 0.

There is an interesting way to get the same result. First we are going to create
a vector of length 11 that contains the entl(i%, (110), (120) and so on. The way to
do this is very easy:

(12) > z <- choose (10, 0:10)

Next issue
(13) > sum(z)
[1] 1024

and you get back the prompt. This last example shows the use of vectors and
how to generate them with a formula. Generally, if you put a range in place of
the variable it will create a vector containing the values of the formula with each
member of the sequence inserted in turn. It you want to see the graphical shape
of your vector you may typ@lot (z). It opens a window and it gives you a
graphical display of the values in ascending order.

To save graphics, here is a sample dialog. Save in a file the following data (as
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you see it) into a file, sagalling. txt:

distance height
2 10
2.5 8
3.5 7
5 4
7 2

(14)

(There is no need to align the numbers). Now issue the following:
(15) > d <- read.table("falling.txt",header=T)

The last argument is important since it declares that the first line contains the
header (rather than being part of the data). Now you can do the following:

> pdf (file = "graph.pdf")
(16) > plot (d)
> dev.off O

This will cause .pdf to be stored in your temporary workspace. When you quit R
you will be asked whether you want to save the workspace. If you enter 'y’ then
you will find a file calledgraph. pdf that contains your data. It is possible to use
other device drivers (for example PostScript). Please read the manual for "plot”
as well as "pdf” for further option. Also, get help on "read.table” to find out how
you can prepare your data to be read by R.
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3 Some Background in Calculus

The most important notion in calculus is that ofimit. Consider the following
two sequences:

(17)  1,1/2,1/3,1/4,1/5,...
(18) 1,-1,1,-1,1,-1,..
(19) 0,1,2,3,4,...

What separates the first from the second and third sequence is that the members
of the sequence get closer and closer to 0 as time moves on. From tm¢he
distance to 0 is at most @ for any of the subsequent members. We call Qithé

of the sequence. Indeed, it is even the case that the members get closer to each
other because they all zoom in on the same value. This is to say that from a certain
time point on every member is close to every other member of the sequence. In
the present case this distance is again at mgst [This is the Cauchy-property

and is equivalent to having a limit.) The second sequence is a little bit similar:
here all the members of the sequence are eitherlLom hus, the members of the
sequence zoom in on two values, their distance among each other is sometimes 2
sometimes 0. Finally, the last sequence has no such property at all. The members
of the sequence are not within a fixed corridor from each other. Sequences may
show any mixture of these behaviours, but these three cases may be enough for
our purposes.

Let us first look at a functiorf : N — R. These functions are also called
sequences and often written down in the manner shown above. This function is
said to beconvergentif for every ¢ there is an(e) such that for alh, n” > n(¢)

(20) It -f(nM)i<e

If fis convergentthere is a real numizesuch that the following holds: for a#l
there is an(e) such that ifn > n(e) then

(21) If(n)-a <e
This number is called thikmit of the functionf, and we write

(22)  a=lim f(n)
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Now suppose that is a function from real numbers to real numbers. We shall use
the notion of limit to define continuity of a function. There is a definition which
runs as follows:f is continuous irnx, if, given any sequence)nay With limit xg

the sequence of value$(k,))nar @lso is convergent with limit(x;). Notice that

the sequencex{),.w Need not contairx, itself, but must get infinitely close to it.

The previous definition is somewhat cumbersome to use. Here is a better one. We
say thatf is continuous at xg if for every & > 0 there is &(¢) > 0 such that if

X — Xo| < 6(g) andly — Xo| < 6(g) then

(23) (¥ -fyli<e

The nice aspect of this definition is thikheed not be defined &. There is again
exactly one value thdt can be given axy to make it continuous, and that value is
called thdimit of f in xg:

(24)  lim £(x)

Now if f is continuous in a point then we can know its value at that point if we
study the values at points close to it. To be really exact, if we want to make an
error of at most we should study values at distance at mi§sj. If one wants to
suppress explicit mention of the dependency, one write as follows.

(25) f(Xo+A) = f(Xo)

And this means that the error becomes smal iis small enough A is a real
number, any number, but preferably small. Now imagine a nurdikgthat is so

small that it is not zero but smaller than every real numb@r In physics this is
known as avirtual number in mathematics we call themfinitesimals. A num-

ber greater than zero but less than every real numbe is called infinitesimal.
Although you may find this intuitive, at second though you may find this contra-
dictory. Do not worry: mathematician used to think that this is impossible, but it
has been shown to be consistent! What rebels in you is only the thought that the
line that you see has no place for them. But who knows? Now, writesay that

the numbers are fierent only by an infinitesimal amount.

(26) f(%o + dx) = f(xo)

The two are however fierent, and the dlierence is very small, in fact smaller
than every reab 0. This number is denoted by {)(xo).

27)  @N)(x0) := T(x + dx) = f(X0)
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We shall use this definition to define the derivative. For a gixeandA # 0

define
@8)  ga):= A0

If fis not everywhere defined, we need to make exceptions,fbut we assume
that f is defined in at least some open interval aroundr he functiong as given
is defined on that interval except far We say thatf has aderivative in xg if gis
continuous inxg, and we set

(29) F'(x0) = lim g(A)

To be precise here: the notion of limit applies to real valued functions and yields
a real value. Now, the same can be done at any other point at Wwhsctiefined,

and so we get a functioff : R — R, called thederivative of f. Another notation

for f' is % The latter will become very useful. There is a useful intuition about
derivatives.f has a derivative &, if it can be written as

(30)  flx+4)~ f(X)+Af(x)

where the error has size For~ we may ignore the error if infinitesimally small,
write

(31)  flxo+dx) = f(X) + f'(x)dX%

Sticking this into (27) we get

(df)x) _. df
dxg T dx

where now we have inserted a function that yields very, very small values, namely
df. However, when divided by another function that also yields very, very small
values, the quotient may actually become a real number again!

(32) f'(%o0) = (Xo)

We can do real calculations using that, pretendirgo be a number.

dix®)  (x+dxX?—-x2  2xdx— (dX)(dx)
dx dx B dx a

If you want to know the real number that this gives you, just ignore the addition

of dx. It's just 2x. To be exact, we may write

d(x?) N
dx

(33) 2X + dx

2X

(34)
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Indeed, the latter is a real valued function, so it is our candidate for the derivative
(which after all is a real valued function again). Hence, the derivative of the
function f(X) = X2 at X is the function Z,. In this vein one can deduce that the
derivative ofx" is nx"1.

However, we can use this also for very abstract calculations. Suppose that you
have a functionf(g(x)). You takex and applyg and then applyf. Now, let us
calculate:

(35  f(g(x+dx) = f(9(x) + (dg)(x)) = F(g(x)) + (d)((dg)(x))

It follows that (suppressing the variable)

(36)  d(fog)=(df)-(dg
This is often given the following form.

df dfdy

Here,y is an arbitrary variable. In our casge= g(x), soy depends in value or.
Understood as a fraction of numbers this is just an instance of ordinary expansion
of fractions.

Here is another useful application.

d(f +9g) = (f + 9)(x+dx) — (f + 9)(x)
(38) = (f(x+dx) — f(x)) + (9(x + dX) — 9(X))
= (df)(X)dx+ (dg)(x)dx
From this we derive
d(f +g) df @

(39) dx  dx  dx
d(fg) = (fo)(x+dx) — (f + 9)(X)
= f(x+ dX)g(x+ dx) — f(X)g(x)
(40) = ((F(9) + (d F)(¥)dX)(a(x) + (dg)(x)) — F(X)g(X)

= f(X)g(X) + (df)(X)g(x)dx+ f(x)dg(x)dx
+ (df)(X)(dg)(x)dxdx— f(x)g(x)
= ((dH)(¥)g(x) + f(x)(dg)(x))dx+ (d F)(X)(dA(x)(d%)?
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We get that

d(f
@y %9 @ng+ (g + @h@gdx = @Ng+ f(dg
Recall that the derivative is a real valued function, so we may eventually ignore

the infinitesimally smalld f)(dg)dx. We derive a last consequence. Suppose that
f(g(X)) = x; in other words f is the inverse of. Then, taking derivatives, we get

dtdg_,

2 Lo

We are interested in the derivative éfas a function of a variable, sgy vy is
implicitly defined (viag). In fact,dy = dg. Then, multiplying

1 -1
“3) dfigy ) (%)

For example, the derivative ef is €. The inverse of this function is \1 Thus

diny (dE)\"* 1 1
@ Ty _(dX) ey

Theorem 5 The following laws holds for the derivatives:

1. % =ax* 1 aeR.

d(f+g) _ df | dg
2. dx 7 dx + dx”

d(fg) _ ¢dg df
3. 5 = f&+g&.

7. M) — cosx.
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This is as much as we need in the sequel. We shall look at the last two claims in
particular. First, notice that

(45) d(e) = e+ — e = e¥(e®™* - 1)

Thus we establish that

de) ex-1
(46) dx ¢ dx
It is actually the definition oé that
-1

LR

This settles the claim as follows.

48 ~lm—=1
(48) x im

Now, using complex numbers, notice thgit = cosx + i sinx so that sirk =
(e —e™)/2. This gives

d(sinx) _ d((e” - e)/2)
dx dx

= %(ieix — (-i)e)

(49) = % (i(cosx + i sinx) + i(cos(Xx) + i sin(=x)))

1
= 2i

5 (2i cosx)
= COSX

We have used cosk) = cosx and sinEx) = —sinx.

Now we turn to integration. Integration is a technique to calculate the area
beneath some graph of a function. Before we approach the problem of integration
we shall first look at the notion of area. rAeasureis a functionu that assigns to
subsets of a space some real number, callechireesureof that set. Not every set
needs to have a measure. There are three conditions we wish to impgasa on
order to qualify for a measure.
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1. u(w) =0.
2. If AnB = @ thenu(AU B) = u(A) + u(B).

3. If Ay, ne N, are pairwise disjoint, then

u(JA) = u(A)

neN neN

We can for example define the following measure on sets of real numbers. For
an interval p, b] with a < b the measure ib — a. In particular, ifa = b we get
u({ah) = u([a,al) = 0. It follows that every finite set has measure 0, and so does
every set that can be enumerated with the natural numbers. But if an intetal [

Is not a singleton it actually has more members than can be enumerated! Now, it
follows that every finite or countable disjoint union of intervals has a measure.
These sets are called tBerel sets of finite measure Another characterization

is as follows.

Definition 6 LetB be the least set of subsetsRofvhich contains the finite inter-
vals and is closed under complement and countable unions.

The set £o0,Y] is a Borel set but its measure is infinite. The rational numbers are
also Borel, and of measure 0.

The same definition of Borel set is defined &t. We do this fom = 2. We
start with rectangles of the forna{, b;] x [a,, by] which we declare to be sets of
measurelf; — a;)(b, — a;) and then close under infinite unions and complement.
However, for purposes of integration we define the measure as follows. In the
following definition,b; < 0 < bs.

(50) u([as, ba] x [0, by]) := by(by — &)
(51) u([ag, by] x [by, 0]) := by(by — &)

Thus, the interval [[34] x [0, 2] has measure 2, while [8] x [-2, 0] has measure
—2. To see why we need this odd looking definition, take a look at integration.
Suppose you are integrating the functibfx) = —2 between 3 and 4. Instead of
the value 2 (which would give you the area) it is actually defined te BeThe
area below the line counts negatively for the integration.
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Once we have the definition of this measure, we can define as follows:

b
(52) f(X)dx=pu({(x,yy:a<x<band: 0<y< f(x)orf(x) <y<0})

X=a

We abbreviate the set to the right bf(K)]2. This definition has a number of
immediate consequences. First,

(53) fab f(X)dx = fac f(x)dx+fcb f(x)dx

For a proof, notice thai([ f(x)]g) = f(c) - 0 = O, by definition. Now, notice that
the measure is additive:
u([F(912) = u([ (15 U [F(2]0)

= u([F (15 U ((F1E = [F(X19)

= u([F 12 + w((F (e - [F(ID)

= u([f(912) + u([F(9]0)

Another important consequence is that integration is the inversefefetiation:

d( [ X f(y)dy) - " oy - [ "ty

X+dx
- f f(y)dy

Assuming thatf is continuous, the values dfin the interval are only infinitesi-
mally apart fromf(x), so we may assume that they all lie in an interviglx) —
adx f(x) + ad¥, aa real number. Then we have

(54)

(55)

(56)  dx(f(X)—adx < fx+dxf(y)dys dx(f(X) + adx)

Now we have

(57) f(x) —adx<

w < f(X) + adx

The left and right are only infinitesimally apart, so in terms of real numbers they
are equal. We conclude

d([." f(y)dy)
X

(58) .

= f(x)
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This greatly simplifies integration, sincefiirentiation is on the whole easier to
do, and once a functiofi is known to be a derivative of some other functign
the integral off is known to beg (plus a constant) as well. We derive a particular
consequence, the rule phrtial integration. Consider having to calculate the

integral fab fgdx Suppose we know how to integratebut notg. Then we can
proceed as follows. Suppose tifé‘tf(x)dx: h(x). Then

b b
(59) f f(x)g()dx = h(x)g(x)I3 - f h(x)g'(x)dx

For a proof, just take derivatives on both sides:

60 10990 = g [ 102

dix(h(y)g(yn;— [ h(y)g'(y)dy)= 2 (h993) ~ 9 ()

=T(¥)9(x) + h(x)g'(x) - h(x)g'(x)
=f(x)9(¥)

(61)
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4 Probability Spaces

The definition of probability spaces is somewhat involved. Before we can give it
in its full generality, let us notice some special cases. Intuitively, certain events
happen with some probability. If | throw a coin then it will either show heads or
tails. Moreover, we assume that the probability with which heads comes up is
%. This means that we expect that half of the time we get heads and half of the
time we get tails. Similarly, throwing a die we have sixfdient outcomes and

we expect each of them to be occur as often as the others; throwing two dice, a
green and a red one, each outcome where the green die shows some inantcber
the red die a numbeyis equally likely. There are 36 such outcomes. Each one
therefore has probabilitgg. To give yet another example, suppose that we throw
two dice, but that our outcomes are now the sum of the points we have thrown.
These are the numbers 2,.3,, 12, but the probabilities are now

p2) =% pB) =% pP@) =%
p6) =% p6) =% P7) =%
p8) =2 pO) =3 p10) =5
p(11) =% p(12) =5

You may check that these probabilities sum to 1. This time we have achatlly
assumed that all outcomes are equally likely. Why is that so? For an explana-
tion, we point to the fact that the events we look at are actually derived from the
previous example. For notice that there are five possibilities to throw a sum of 6.
Namely, the sum is six if the first die shows 1 and the second 5, the first shows 2
and the second 4, and so on. Each possibility occurs with the probagéili@nd

the total is thereforgx. This example will occur later on again.

[y

(62)

Let us return to a single die. There are six outcomes, denoted by the numbers
from 1 to 6. In addition to them there are what we @lénts These are certain
sets of outcomes. For example, there is an event of throwing an even number.
The latter comprises three outcomes: 2, 4 and 6. We expect that its probability
is exactly half, since the probability of each of the outcomes is ex%ctlyl the
language of probability theorgventsare sets of outcomes. The probability of an
event is the sum of the probabilities of the outcomes that it contains. Thus, in the
finite case we get a s& of outcomes, and a functigm: Q — [0, 1] such that

63) > plw) =1

we
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For a subsef C Q we put

(64)  P(A) =) pw)

weA

Notice that we have used afidirent letter here, namely. We say thatP is
the probability function and thatp is its density or distribution . The latter is
applied only to individual events, whileis applied to sets of outcomes.dfis an
outcome, therP({x}) = p(X). Since there is no risk of confusion, one also writes
P(x) in place ofP({x}). From this definition we can derive a few laws.

(65) P(2) =0
(66) PQ) = 1
(67)  P(AUB) = P(A) + P(B) - P(AN B)

The first is clear: if we sum over an empty set we get 0. The second is also clear,
it follows from (63). The third needs proof. Perhaps it is easier to start with a
different observation. Suppose tidat B = @. Then

68) PA+B) = > pw) =) pw)+ ) pw)=PA) +P(B)

weAUB weA weB

Now if AN B # @ notice thatAu B = AU (B — A), and the two sets are disjoint.
SoP(AUB) = P(A)+P(B-A). Also,B = (B- A)U(Bn A), with the sets disjoint,
and this givesP(B) = P(B — A) + P(An B). Together this yields the formula
P(AU B) = P(A) + P(B) — P(An B). Finally, we note that ii;, 1 < i < n, are
pairwise disjoint sets then

(69)  P(_JA) = P(A) + P(Ao) + - + P(A)
i=1

This is in fact all that needs to be saidfis finite.

However, whem is infinite we need to look harder. Suppose, namely, that
Q is the set of natural numbers. Suppose further that each of the numbers is
equally probable. Then the probability of each number is actually 0. However,
this means that the probability of every subset of the numbers is 0 as well. So,
the approach of assigning probabilities to outcomes fails; instead, in probability
theory one does not assign probabilities to outcomes but rather to events. For
example, if every number has the same probability, the set of even numbers has
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the probability%, likewise the set of odd numbers. This means that the probability
that a randomly chosen natural number is eve%m, while the probability that it

is equal to 377 is 0. In order to make the approach work out correctly we need to
restrict the domain of the function that assigns the probabilities. We shall require
that the sets that receive probabilities form a boolean algebra. This is a bit more
general than typically assumed, where additionally it is required that they are
closed under intersection and union over countably many sets (such algebras are
calledo—algebrag.

To give a nontrivial example, ldfl(k, n) be the set of numbers that leave the
remaindeik when divided byn. Give probability% to these sets. Lét be the set
of all finite unions and intersections of the sété, k) for all n € N andk < n.
This is a boolean algebra. It is closed under the required operations.

Definition 7 A probability spacas a triple (Q, %, P), whereQ is a set, the set of
outcomes C p(Q) a boolean algebra, the algebra effentsand P: A — [0, 1]
a function satisfying the following.

1. P(@)=0
2. Q) =1,

3. If A, i€, are pairwise disjoint sets andl < w then

P(JA) =) P(A)

i€l i€l

A note on notationl shall always be an algebra of sets o¢erThus, we shall
not write Oy but rathers. The operations ol are union (), intersection) and
relative complement). In particular, notice thatA = Q — A.

We give some examples.

The Laplace space. Let Q be a finite set containing elements.2A = p(Q).
Finally, putP(A) = '—f}‘. In this space, every outcome has the same probability,
namely%. The above examples (tossing an unbiased coin, throwing a die) are of
this form.
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The Bernoulli space. LetQ = {0,1}, A = p(Q). With p := p(1), we havey :=

p(0) = 1 - p. Here 1 represents the event of “success”, while 0 represents failure.
For example, betting schemes work as follows. Team A plays against Team B in a
match. Team A is expected to win with probability 75%, or 0.75. Hgmee0.75

andq = 0.25. The Bernoulli space is the smallest of all probability spaces, but its
usefulness in probability theory can hardly be overestimated. One says that this is
the probabilities of tossing a “biased coin”, where the biag/ {[gagainst you. If

the coin is actually unbiased, then= g = 1/2 so that the bias is 1. In the above
example the bias is.05/0.25 = 3. Indeed, if the bettingféice is convinced that

the odds are 3:1 that A wins and you are betting ten dollars that B wins instead, it
will offer to pay (at most) 40 dollars to you if B wins while cashing your money
when it loses. If the bettingffice is not trying to make money then it will pay
exactly 40 dollars. In general, if the odds arel, then for every dollar you bet
against the event you get+ 1 if you win and nothing otherwise. To see that this

is fair, notice that on average you win 1 outrof 1 (!) times, you get back the
sum you placed and additionally wirdollars for every dollar, while you lose and
then lose the dollars you placed on the bet. This scheme will in the long run make
no one richer than he was originally (on average). The proof for this will have to
be given. But intuitively it is clear that this is the case. Notice that bettifiges

do aim at making money, so they will make sure that you lose in the long run. To
give an example, in French roulette there are 37 numbers (from 0 to 36). 0 plays a
special role. If you bet 10 dollars on a numbeffelient from 0, say 15, then you

get paid 360 dollars if 15 shows, while you get nothing when it doesn’t. This is
slightly less than the actual odds (which are 36:1, which means that you should
get 370 dollars), to make sure that the casino is on average making money from
its customers.

Discrete spaces. A space idiscreteif A = p(Q). So, every conceivable set is
an event, and therefore has a probability assigned to it. In particulaisifin
outcome, therfx} is an event (these two things are often confused). Therefore, we
may putp(x) := P({x}). Then we get

(70)  P(A) =) pw)
weA
This however is only defined @ is either finite or countably infinite. However,
we shall not encounter spaces that are not countably infinite, so this is as general
as we need it.
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We shall present some abstract constructions for probability spacesf :L
X — Y be a function, ant) € X andV C Y. Then put

(71) f[U]:={h(x) : x e U}
(72) V] :={xeU: f(x) eV}

f[U] is called thedirect image of U under f, and f-[V] the preimage of V
underf. Now, if B C p(V) is a boolean algebra, sofi§![B] : B € B}. Here is a
proof. (1) fY[2] =@, (2) fHVuW] = fV]uU fW]. Forx e fIVuWw]
iff f(X) e VUWIff f(X) € Vorf(x) e Wiff x e f[V]or x € f1W]. (3)
fUY -V] = X - fYV]. Forxe f7Y-V]iff f(X) e Y-Viff f(X) € Y and
f(x) ¢ Viff x e Xand notx € f1[V]iff xe X - f1V]. 4) fHVW] =
f-1[V] n f-1[W]. Follows from (2) and (3), but can be proved directly as well.

Now suppose we have a probability functien: 2« — [0, 1]. Then we can
only assign a probability to a set i if its full preimage is in2. Thus, we call
f 1 Q — Q' compatible with A if f-[B] € A for all B € B. In this case every set
in B can be assigned a probability by

(73)  P'(B):=P(f[B]

This is a probability function: (1P'(Q) = P(f1[Q]) = P(Q) = 1, Q) P(2) =
P(f-Y[2]) = P(2) = 0, (3) If AandB are disjoint, so aré '[A] and f~}[B], and
thenP’ (AU B) = P(f1[AuUB]) = P(f}[A]u f~1B]) = P(fY[A]) + P(f[B]) =
P’(A) + P'(B).

Proposition 8 Let (Q, %, P) be a finite probability spaceB a boolean algebra
overQY and f: Q — Q a surjective function compatible with. Put P(B) :=
P(f-1[A]). Then(Q’, ", Py is a probability space.

We shall put this to use as followd! is finite and has atom4,, ..., A,. Then

let Q" = {1,...,n} and definef by f(x) := i, wherex € A;. This is well defined:
every element is contained in one and only one atom of the algebra. This function
is compatible witRI. For letS C Q’. Then

(74) fﬂa:UAem
ieS

Here is an example. Suppose that {1, 2, 3,4, 5, 6}, and that
(75) A =1{2,{1,2},{3,4,5,6},Q}.
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This is a boolean algebra, and it has two atofhs?} and{3, 4, 5, 6}. Now define

f(l) = f(2) = aandf(3) := f(4) = 1(5) = f(6) = 8. Thenf(v) = 2,
f({1,2}) = {a}, 1({3,4,5,6}) = {B}, and f(QQ) = {a,B}. Finally, assume the
following probabilities:P({1, 2}) = %, P({3,4,5,6}) = % Then we pufP’ ({a}) :=

% andP’({8}) = % Notice that the original space was drawn from a simple Laplace
experiment: throwing a die, where each outcome has equal probability. However,
we considered only four events, with the appropriate probabilities given. The

resulting space can be mapped onto a Bernoulli spacep/\tiﬂ%.

There is an immediate corollary of this. Say theX 2, P) is reducible to
(Q, W, P) if there is a functionf : Q — Q' such thatl = {f~![B] : B € U’}
andP’(B) = P(f~[B]) for all B € %’. Thus the second space has perhaps less
outcomes, but it has (up to isomorphism) the same event structure and the same
probability assignment.

Proposition 9 Every finite probability space is reducible to a discrete probability
space.

This means that in the finite setting it does not make much sense to consider
anything but discrete probability spaces. But the abstract theory is nevertheless to
be preferred for the flexibility that it gives.

Next we look at another frequent situation. Kgtand(Q, be sets of outcomes
of experiments; andE,, respectively. Thef; x Q, is the set of outcomes of the
experiment where botk; andE, are conducted. For example, suppose we are
tossing a coin and throw a die. Then the outcomes are {fairé wheref € {H, T}
andm € {1,2,3,4,5,6}. Now, what sort of event do we have to consider? |If
A; € A; andA, € A, we would like to have the every; x A,. However, one can
show that the set of these event is not a boolean algebra since it is in general not
closed under negation and union. To take an easy example; letQ, = {0, 1}
and; = Ay = p({0,1}). The set{(0, 1),(1,0)} is the union of the two sets
{0} x {1} = {{0, 1)} and{1} x {0} = {1, 0)}. But it is not of the formA x B for any
A, B.

Instead we simply take all finite unions of such sets:

p
(76) WA= {UA x B, : foralli: A € %y, B 6912}

i=1
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The probabilities are assigned as follows.
(77) (P1 X P2)(Ax B) := P1(A) - P2(B)

It is a bit tricky to show that this defines probabilities for all sets of the new
algebra. The reason is that in order to extend this to unions of these sets we
need to make sure that we can always use disjoint unions. We perform this in case
we have a union of two sets. Notice thatX B) n (A’ N B’) = (An A’) x (BN B').

Using this and (67) we have

(78) P((AxB)U (A" xB)) = P(AxB) + P(A'x B") - P(ANn A’) x (BN B))

This is reminiscent of the fact that the intersection of two rectangles is a rectangles.
So, if we take the sum of the probabilities we are counting the probability of the
intersection twice. The latter is a rectangle again.

The probabilities of the right hand side are defined; so is therefore the one to
the left.

Definition 10 LetP; = (Qq, A4, P1) and P, = (Q,, A5, P,) be probability spaces.
ThenP, ® P, := (Q1 x Q, A ® Ay, P X Py) is a probability space, the so—called
product space

We give an application. Take a Bernoulli experiment witl- 0.6. This defines

the spac®. Suppose we do this experiment twice. This we can alternatively view
as a single experiment, where the probability space isAawP. It is not hard to
verify that the algebra of events is the poweks@0, 1} x {0, 1}). Also, we have

(79) p((0,0)) = 0.36, p((0, 1)) = p((1,0)) = 0.24, p(<1,1)) = 0.16

The probabilities sum to 1 as is readily checked.
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5 Conditional Probability

Suppose that some person A has three children, and suppose that the probability
of a child being a boy is simplj. The probability of having exactly one boy and
therefore two girls i%. Now suppose you know that A has at least one girl, what

is the probability that he has exactly one boy? The probability cannot be the same
again. To see this, let us note that the probability of having three sons is zero
under this condition. If we didn’t know there was at least one girl, the probability
would have bee%. So, some probabilities have obviously changed. Let us do the
computation then. The probability of having at least one giél. i$he probability

of having exactly one boy i§. If there is exactly one boy there also is at least
one girl, so the probabilities compare to each other as 3:7. Thus we expect that
the probability of having exactly one boy on condition of having at least one girl
IS % How exactly did we get there? Let us consider an e¥eahd ask what its
probability is on condition thaB. There are in total four cases to considé.

may or may not be the case, aBdnay or may not be the case. However, as we
have excluded thd fails to be the case, we havéectively reduced the space of
possibilities to those in whicB holds. Here the odds aR{A N B) : P((—A) N B).

Thus the probability tha# holds on condition thaB, denoted byP(A|B) is now

P(AN B) _ P(AnB)
P(ANB)+P(-A)nB)  P(B)

(80)  P(AB) =

Definition 11 Theconditional probabilityof A on condition that B is denoted by
P(AB) and is computed as

P(AN B)

(81) P(AIB) = TR

This is known aBBayes law of conditional probabilities We can derive a series
of important conclusions. First, it allows to compiEA N B) by

(82) P(An B) = P(AIB)P(B)
Furthermore, a& = (AN B) U (AN (-B)), the sets being disjoint, we have
(83) P(A) = P(AIB)P(B) + P(A| — B)P(-B)

This means that the probability of an event can be computed on the basis of the
conditional probabilities for a family of se8, i € |, provided that the latter are
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a partition ofQ. (In words: theB; must be pairwise disjoint and honempty, and
Uiel Bi = Q)

Furthermore, reversing the rolesAfandB in (81), notice that

3 P(Bn A) 3 P(ANnB) P(B) 3
®)  PEA="Tm = Tre  P® -

P(AB) - %

Thus, as long as the individual probabilities are known (or the oddsagjainst
B) then we can compute the probability Bon condition that if only we know
the probability ofA on condition thaB. This formula is very important. To see
its significance, suppose we have a biased coin, with 0.4, the probability of
getting H. Now, toss the coin ten times. Suppose you get the sequence

(85) HT,T,HHTHHT,T

Thus, rather than getting H the expected 4 times we get it 5 times. We can calculate
the probability of this happening: it is

(86) (150) .0.4°-0.6° = 0.201

Suppose however that the coin is not biased. Then the probability is

1
(87) (50) .0.5°-0.5° =0.236

Thus, the event of getting H 5 times is more likely when we assume that our coin
is in fact not biased. Now we want to actually answer féedént question: what

is the probability of it being biased with = 0.4 as opposed to not being biased

if the result is 5 times H? To answer this, Bbe the event that the coin is biased
with p = 0.4. LetF be the event that we get H 5 times. e the event that

the coin is not biased. We assume (somewhat unrealistically) that 8ithre is

the case. SA?(B) + P(N) = 1. Puta := P(B). We have

(88) P(F|B) = 0.201, P(F|N) = 0.236
We want to havé®(B|F). This is

(89)  P(BIF) = P(FIB)- % ~0201 5



34 Conditional Probability

So, we need to know the probabiliB(F). Now, P(F) = P(F n B) + P(F N N) =
P(FIB)P(B) + P(FIN)P(N) = 0.201x + 0.236(1- @) = 0.236— 0.035x. Thus we
get

a
(90) P(BIF) = 0.201- 0.236_0.035%
If both B andN are equally likely, we have = 1/2 and so
1 1
1 P(BIF) = 0.201- =0.201- ——— = 0.462
(1) (BIF) = 0.20 2(0.236- 0.0185) 020 0.438 0.4621

Thus, the probability that the coin is biased i4&21 and unbiased with the prob-
ability 0.5379, on the assumption that it is either biased vate 0.4 or with
p = 0.5, with equal likelihood for both hypotheses.

The latter kind of reasoning is very frequent. One has several hypothigses
Ha, ---, Hpn, with “a priori” probabilitesP(H;), i = 1,2,---,n, and computes
the probabilities of the outcon® of the experiment. These are the probabilities
P(BJH;). Then one conducts the experiment and gets the rBsiNbw one asks:
what is the probability of hypotheskd; now thatB actually happened? Thus one
wants to establisii?(H;|B). These are the “a posteriori” probabilities of thie
Abstractly, this can be done as follows. We have

P(Hi)
(92)  P(HIB) = PBIM) 5
The only thing we need to know (B). Here we do the same as before. We have
assumed that the hypotheddsobtain with probabilitiesP(H;), and that these
probabilities add up to 1, so that one of the hypotheses obtains. Bhus ) | H;,
the sets pairwise disjoint. We therefore h&e | J,(B N H;). Now we get

n

(93)  P(B) =) P(BIH)P(H)

i=1
Entering this into (92) we get

P(H;)

949 P(HIB) = PEIH) s mmypm)

If Adoes notdepend dBwe expect that its conditional probabiliB(A|B) equals
P(B). This means thaP(A N B) = P(AIB)P(B) = P(A)P(B). This leads to the
following definition.
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Definition 12 Let A and B be events of a probability spate: (Q, 2, P). We call
A and Bindependenif P(An B) = P(A) - P(B). Furthermore, let3,; and 3B, be
two subalgebras ofl. B, andB, are independentif for all B, € B, and B, € B,
P(B1 N By) = P(By) - P(By).

We present an example that we shall be using later on. Consider theJ3peage
where® = (Q, U, P) andQ = (', ", P’). The setA x B have been assigned the
probabilitiesP,(A x B) := P(A)P(B). This means that

Po(Ax Q') = P(A) - P(Q) = P(A)

(95) P,(Q x B) = P(Q) - P'(B) = P(B)

Now

P,((Ax Q)N (Qx B)) = Po((AN Q) x (Q N B))
(96) = P,(Ax B) = P(A) - P(B)
= Pz(AX .Q./) . PZ(Q X B)

Proposition 13 The sets Ax Q' andQ x B are independent for all A& A and
B € % in the spaceéP ® Q.

Moreover, letB; be the algebra of sets of the foryix Q' and®B, the subalgebra
of sets of the fornf2 x B. First we shall show they actually are subalgebras.

Proposition 14 Let2A and B be nontrivial boolean algebras. The map:iA -
A x 1gis an embedding of into A ® B. Similarly, the map,i: B 1, x Bisan
embedding o3 into A ® B.

Proof. First, the map; is injective: for letA, C be sets such th& x 15 = C x 1.
Since }k # @ this means that there iskac 1z. For everya e A, (a,b) € Ax 1,
hence(a, b) € C x 1g, soa € C. Similarly, for everyc € C, (c,b) € C x 1g, so
(c,b) € C x 1g, whencec € A. ThereforeA=C. i;(AUC) = (AUC) x 1 =
(Ax1g)U(Cx1g) = i1(A)UIi1(C). Alsoii(-A) = (-A) x 1z = Ax(-1g) U(-A) X
(-1g) U —(Ax 1g) = (-A) x 15 = —ig(A). Similarly for the second claim. s

The algebra$;(2) andi,(2) are independent, as we have just shown. They
represent the algebra of events of performing the experiment for the first time
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(B1) and for the second timeX;). The reassuring fact is that by grouping the
two executions of the experiment into a single experiment we have preserved the
probabilities and moreover have shown that the two experiments are independent
of each other in the formal sense.

Theorem 15 Let? = (Q,A, Py andQ = (', W, P’) be probability spaces. Then
the algebras¢/[%] = {(AX Q' : A€ A} and (RIAW] = {QxB: B e W} are
independent subalgebras Bfe 2'.

Postscript

The case discussed above about adjusting the probabilities raises issues that are
worth addressing. | choose again the case where what we know is that the coin
Is unbiased or biased with = 0.4. The probabilityP(p = 0.4) is denoted by

a. Now, let us perforrm experiments in a row, ending ktimes H. (It is possi-

ble to perform the argument—with identical numerical result—using a particular
experimental outcome rather than the evdatifhes K”. This is because we are
lumping together individual outcomes that always receive the same probability.
Thus, in general one should be aware of a potential confusion here.) Let us write
B(n, k) for the probability that this happens in case the coin is biasedy@mk)

for the probability that this happens if the coin is unbiased. We have

1

©7) vk = (2)2_

(98)  BnK) = (E)O.4ko.6”-k

The unconditional a priori probability ok'times H’ is now

v(n,K)P(p = 0.5) + B(n,kK)P(p = 0.4)

> :(E)(O.S”(l - ) + 0.40.6""a)
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We are interested in the a posteriori probability of that the coin is biased with
p = 0.4 based on the outcomé& times H”. It is given by

P(p = 0.4k times H)
P(p=0.4)
P(k times H)

n [0
=( "|o.4%0.6"*
(100) (k) (1051 - @) + 0.40.6™*a)

—0.440.6™ X @
0.5"(1 — a) + 0.4<0.6"*a

a
~(0.5/0.4)<(0.5/0.6)" K (1 - a) + a

=P(k times Hp = 0.4)

For a real numbes, write

a

(101) fp(a) = m

Our particular case above was= 10 andk = 5. Here the a posteriori probability
of a is

(0

(102) f(e)= 0'2010.236— 0.035%

So, in this case = 0.236/0.201. This is an update on our prior probabilities.
Several questions arise. First, does it matter which prior probabilities we had?
The answer is easy: it does! To see this, just insertfizréint value into the
function. For example, put ia = 0.25. Then you get

0.201

4(0.236- 0.035/4)
0.201

(103) ~0.944—0.035
0201

~0.909
=0.2211

£(0.25) =

So, if you already had the opinion that the coin was unbiased with probability
0.75, now you will believe that with probability.#789. Second question: is there
a prior probability that would not be changed by this experiment? Intuitively, we
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would regard this as the ideal assumption, the one that is absolutely confirmed by
the data. So, we ask if there aresuch that

(104) f(a)=«a
Or

a
105 Q201 =
(105) 0.236- 0.03%

(0

The first solution isr = 0. Excluding this we can divide hy and get

0.201 _1
0.236- 0.03%
(106) 0.201= 0.236- 0.03%
0.035%r = 0.035
a=1

Thus, there are two (!) a priori probabilities that are né¢eted by the datar = 0

anda = 1. They represent the unshakeable knowledge that the coin is unbiased
(e = 0) and the unshakeable knowledge that it is biaseéd (1). Especially the

last one seems suspicious. How can the fact that we get 5 times Htect this

prior probability if it is the less likely outcome? The answer is this: it is not ex-
cluded that we get this outcome, and if we get it and simply know for sure that our
coin is biased, what should ever make us revise our opinion? No finite evidence
will be enough. We might say that it is unwise to maintain such an extreme posi-
tion, but probability is not a normative science. Here we are just concerned with
the revision suggested by the experiment given our prior probabilities.

There is a temptation to use the data as follows. Surely, the outcome sug-
gests that the posterior probability of biasf{g) rather thanr. So, knowing this
we may ask: had we started with the prior probability) we would now have
reachedf?(a) = f(f(«)), and had we started with the latter, we would now have
reachedf(f?(a)) = f3(a) and so on. Repeating this we are probability getting
into a limit, and this is the hypothesis that we should eventually adopt. It turns
out that our function has the following behaviouraf= 1 thenf(a) = 1, so we
already have an equilibrium. & < 1 thenf(a) < a, and by iteration we have a
descending sequence

(107)  a> f(a)> f2(a) > 3@) > ...
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The limit of this series is 0. So, the equilibrium solutien= 1 is unstable,
while the solutionr = 0 is stable, and it represents the firm belief that the coin is
unbiased. So we think that this is what we should adopt simpliciter.

Seeing it this way, though, is to make a big mistake. What we fdeetesely
doing is using the same data several times over to revise our probabilities. This is
tantamount to assuming that we performed the experiment several times over with
identical result. In fact we did the experimesriceand therefore can use it only
once to update our probabilities. To jump to the conclusion that therefore we have
to adopt the firm belief (in fact knowledge) that the coin is unbiased is unwarranted
and dangerous. In probability, knowledge is time dependent; probabilities are time
dependent. Data advises us to change our probabilities in a certain way. Once we
did that, the data has become worthless for the same purpose. (It can be used for
a different purpose such as revising other people’s probabilities.) This cannot be
overestimated. For example, suppose you read somewhere that spinach is good
for you, presumably because it contains a lot of iron, and that this has been proved
by experiment. The more you read the same claim the more you are inclined
to believe that it is true. However, underlying this tendency is the assumption
that all this is based on fierent experiments. Suppose, namely, you are told that
everybody who writes this bases himself or herself—directly or indirectly—on
the same study conducted some decades ago. In that case it is actually so that
reading this claim for the second time already should not (and hopefully will not)
make you think it becomes more plausible: the experiment has been conducted
once—that’s it. If however a new study supports this then that is indeed a reason
to believe more strongly in the claim.

We can also prove formally that this is what we should expect. Notice the
following equation

Sara
f(fy (@) =— L=
P (1 - p(l—a/)+a) + p(l-a)+a
_ 04
(108) plo(l-a)+a-a)+a
(04

:pz(l —a)+a

= fpz(a’)
Let us look at the numberfor the experiment that we wikout of ntimes. It is
(109)  m, = (0.5/0.4)%(0.5/0.6)" %
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It is observed that
(110)  maxon = i,

So we conclude thaf?(@) = f,,,,,(@)), corroborating our claim that adjusting
the probabilities twice yields the same probabilities as if we had performed the
experiment twice with identical result.
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6 Random Variables

Let? = (Q, %A, P) be a probability space andl: Q — R. We call X arandom
variable if for everya € R and| = [a, b] we haveX1({a}) € A andX~[I] € A.

The reason the condition has been brought in is that we want to hawéfial e

A whenevelA is a certain set of reals (in general a so called Borel set, but in fact
it is enough to require that the preimage of a singleton and of a closed interval
is an event). IfP is discrete then any function into the real numbers is a random
variable. We give an example. Suppose that a doctor has two kinds of patients,
one with insurance A and one with insurance B. If a patient has insurance A the
doctor gets 40 dollars per visit, if the patient is from insurance B he gets 55. The
function X : {A,B} — R defined byf(A) := 40 andf(B) := 55 is a random
variable over the spacgA, B}, p({A, B}), P) whereP(A) = pandP(B) = 1 - p.
Suppose thap = %; how much money does the doctor get on average from every
patient? The answer is

1 2
(111)  5-40+3-55=50

This value is known as thexpected valueor expectationof X.

Definition 16 Theexpectationof a random variable X is defined by

(112)  E(X):= ) x-P(X=X)

XeR

where RX = X) = P(X71({x})).

We see that for this to be well-definett;}({x}) must be an event in the probability
space. We shall consider a special case wRehas a density functiop. Then
the formula can be rendered as follows.

(113)  E(X):= ), X(@): p)

weQ

There are many applications of this definition. For example, the words of English
have a certain probability, and the functi¥rihat assigns to each word a length is
a random variable for the discrete space over all words of English. Efénis
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the expected length of a word. This has to be kept distinct from the notion of an
average length, which is

Z)?EL X()?)
LI

whereL is the set of English words. The average is taken over the words regardless
of their probabilities. It says this: suppose you take ouk @n arbitrary word,

what length will it have? The expectation isfdrent. It says: suppose you hit
somewhere on a word (say you open a book and point randomly at a word in it).
What length will it have? To answer the latter question we need to know what the
likelihood is to hit a specific word. Let us continue the example of the doctor. The
average payment of the insurances iS@®™ollars, but the doctor gets more since
the higher insured patients are more likely to show up. Another doctor might have
a different ratio and his expected payment per patient m@grdiccordingly.

(114)

Suppose we have a random variaKlen a spacé&. From the definition it is
clear thatX is compatible with the algebra of events and therefore this defines a
new probability space on the direct imaggQ], as given in Section 4. For exam-
ple, instead of talking about insurance as outcomes for the doctor we may simply
talk about payments directly. The space is nd®@, 55} and the probabilities are
P’(40) = % andP’(55) = % This is a diterent way of looking at the same matter,
and there is no obvious advantage of either viewpoint over the other. But this con-
struction helps to explain why there are spacékerignt from the Laplace space.
Suppose namely that there is a sp&cef outcomes; if we know nothing else the
best assumption we can make is that they are all equally likely to occur. This is the
null hypothesis. For example, when we are shown a die we expect that it is fair, so
that every number between 1 and 6 is equally likely. Now suppose we throw two
dice simultaneously and report only the sum of the values. Then we géteedt
space, one that has outcomes 2,3, 12, with quite dfferent probabilities. They
arise as follows. We define a random varialfligx,y)) := X + y on the set of
outcomes. The probability of a numteis simply X-1({z}). The new space is no
longer a Laplace space, but it arose from a Laplace space by transforming it via
a random variable. The Laplace space in turn arises through the null hypothesis
that both dice are unbiased.

Suppose thah C Q is a set. Then let

1 fweA
0 else.

(115)  1(A) (W) = {
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The functionl (A) is known as theharacteristic function of A. It is obviously a
random variable, so its expectation can be computed. Itis

(116)  EI(A) = ) p@)(Aw) = ) pWw) = P(A)

weQ weA

Proposition 17 E 1(A) = P(A).

If XandY are random variables, we can defife Y, X andX-Y as follows.

(117) X+ Y)(w) := X(w) + Y(w)
(118) (@X)(w) = a - X(w)
(119) (X Y)(w) := X(w) - Y(w)

These functions are not necessarily random variables as well.

Proposition 18 Suppose that X and Y are random variables. X anda X are
random variables, then

(120) E(X+Y) = E(X) + E(Y)
(121) E(@X) = a E(X)

Proof. Direct verification. We do the case whdpPénas a density.

E(X+Y) = > (X+ Y)(w)p(w)

we)

= ) (X() + Y()) p(w)

we

(122) = ) X(@)p(@) + Y(w)p(w)

we)

= > X(@)p(w) + Y Y(w)p(w)

we) We

= E(X) + E(Y)
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Also
E(@X) = ) (@X)(w)p(w)
WeQ
= ) aX(w)p(®)
(123) w0
=a ) X(w)p(w)
WEQ
= a E(X)

—

These formulae are very important. We give an immediate application. Sup-
pose we have a Bernoulli spageand a random variablX. Its expectation is
E(X). The expectation per patient is the same no matter how often we do the ex-
periment. In the case of the doctor, the average payment he gets from two patients
is 50 per patient, therefore 100 in total. Indeed, let us perform a Bernoulli exper-
iment twice. Then we may also view this as a single spage?. Now we have
two random variables$;((x, y)) = X(X), andXo({X,y)) = X(y). The first variable
returns the value for the first experiment, and the second the value for the second
experiment. The variablé(xl + X;) takes the mean or average of the two. We
have

(124) E(%(x1 + xz)) - E(X)

Equivalently, the expectation of; + X, is 2E(X). This is easily generalised to
n—fold iterations of the experiment.

The expectation may not be a value that the variable ever attains; an example
has been given above. Moreover, one is often interested in knowing how far the
actual values of the variableftiér from the expected one. This is done as follows.

(125)  V(X) = E(X — E(X))?

This is know as theariance of X. By way of example, let us calculate the vari-
ance of the identity function on a Bernoulli experiment. First we have to estab-
lish its expectation (recall thag = p(1) andg = p(0) = 1 - p).

(126) El=p-1+q-0=p
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It has two outcomes, 0 and 1, and the random variable assigns 0 to 0 and 1 to 1.
So

Vi=p-(1-EN?+q-(0-EI)?
= p(1- p)* +a(-p)’
(127) = pd +qp’
= po@+ p)
= pPq
This will be useful later. Also, thetandard deviation of X, o-(X), is defined by

(128) o (X) 1= W(X)

Notice thatX — E(X) is a random variable returning for eachthe diference
X(w) — E(X). This difference is squared and summed ovewalbut the sum is
again weighted with the probabilities. In the case of the doctor, we have (
E(X))(A) = -10 and K — E(X))(B) = 5. Hence

150

(129)  V(X) = % - (-10¢ + g 52 = = 50

(That this is also the expected value is a coincidence.) Heti¥@ = V50 ~

7.071. Thus, the payment that the doctor gets standardly deviates from the ex-
pected value 50 by 7.071. The deviation measures the extent to which the actual
payments he receivesftir from his expected payment. If the deviation is 0 then
no payment is dierent, all payments equal the expected payment; the larger the
deviation the larger the fierence between individual payments is to be expected.

The formula for the variance can be simplified as follows.
(130)  V(X) = E(X?) - (E(X))?
For a proof notice that
E(X - EX)? = E(X - EX)(X - EX)

= E(X?-2X-E X+ (EX)?

(131) = E(X?) - 2E((E X) - X) + (E X)?
= E(X?) - 2(E X)(E X) + (E X)?
= E(X?) - (E X)?

We shall use the notatiax = x for the set of all outcomes such thaiX(w) = x.
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Definition 19 Let X and Y be random variables on a spateX and Y are said
to beindependentf for all x,ye R: P(X=xNnY =y) = P(X = X) - P(Y = ).

Theorem 20 Let X and Y be independent random variables. TEEX - Y) =
EX-EY andvV(X+Y)=VX+VY.

Proof. For the first, assume tha¢ assumes the valuds; : i € |} and thatY
assumes the valugg; : j € J}.

E(X-Y) = E(Z m(A-)) [Z y,-u(B,-)]

i€l jed

= E( > Xiyjl(AiﬂBj)]

iel,jed
= > Xy EI(A nB,-)]
iel,jed

(92 = > xyP(AN Bj)}

iel,jed

=| 2w P(A)P(Bj)}

iel,jed

- Z XaP(Ai)] (Z Yi P(Bj)]

i€l jed

=(EX)-(EY)

Notice that the independence assumption entered in form of the eqir{ion

Bj) = P(A) - P(B;j). Also, the expectation does distribute over infinite sums just
in case the sum is absolute convergent. For the second claim notice first that if
X andY are independent, so ake— « andY — g for any real numbera andg.

In particular,X — EX andY — EY are independent, (X - EX)(Y - EY)) =
E(X-EX)-E(Y - EY) = 0. From this we deduce the second claim as follows.

VIX+Y)=E(X-EX)+ (Y -EY))?
(133) =E(X-EX)?-2E(X-EX)(Y-EY) +E(Y -EY)?
=VX+VY
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-

This is but a special version of a more general result, which is similar in spirit
to Theorem 15.

Theorem 21 LetP and Q be probability spaces, and X and Y random variables
over P and Q respectively. Then define the following random variablésaxd
Y2

X (w1, w2)) 1= X(wy)

134
(134) Y2 (w1, w2)) = Y(w2)

Then X and Y2 are independent random variables ove® Q.

The proof is relatively straightforwarX! = w; = (X = w;) x Q" andY? = w, =
Q' x (Y = wy), and so by definition

(135)  P(X'=wiNY?=wy) = P(X! = w) - P(X? = wy)
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7 Expected Word Length

We shall present some applications of the previous definitions. The first concerns
the optimal encoding of texts. The letters of the alphabet are stored in a computer
in the so—called ASCII code. Here each letter receives an 8bit sequence. In con-
nection with coding we say thatlatter code C is a map which assigns to each
membera of an alphabeA a member oB*, the so—calleccode word of a. A

string Xy % - - - X, is then coded b (x;)C(x2) - - - C(X,). There obviously are quite
diverse kinds of codes, but we shall only consider letter codes. The Morse code
is a letter code, but it is ffierent from the ASCII in one respect. While some
letters get assigned rather long sequences, some get quite shore gas just

one, the dot). One fference between these codes is that the expected length of
the coding is dferent. The Morse code is moréieient in using less symbols

on average. This is so since more frequent letters get assigned shorter sequences
than less frequent ones. In statistical terms we say that the expected word length
is smaller for the Morse code than for the ASCII code. This can be computed
once the probabilities of the letters are known. Rather than doing that, we shall
describe here a general method that allows to generate an optimal letter coding (in
the sense that it minimises the expected word length) on the basis of the probabili-
ties for the letters. We are of looking for a so—called prefix free code; this is a code
where no prefix of a code word is a code word. This ensures unique readability.
The Morse code is prefix free; this is so since we assign to each letter the Morse
sequence plus the following silence. (You have to realize that the Morse code uses
in total three letters:, — and silence.) Theompression factoris the inverse of

the expectation of the code length. Rébe the random variable which assigns to
eacha € Athe length ofC(a). Then

(136)  E(X) = ) X(@p(a)

acA
Since the length of the original symbol is 1 for each A, a symbol is replaced
on average b¥ X many symbols. This is why we call its inverse the compression
factor.

As the probabilities of the letters may befdrent, the codings of letters may
result in diferent compression factors. Obviously, it is best to assign the short-
est words to those letters that are most frequent. We shall present an algorithm
that produces a letter code int®, 1}* that minimises the expected word length
(and therefore maximises the compression factor). This is the so—thlkchan



Expected Word Length 49

code (As we shall see, there typically are several such codes for any given alpha-
bet. But they result in the same compression factor.) We give an example. Let the
alphabet b¢a, b, c, d} with the following frequencies:

(137) p(a) =0.1, p(b) = 0.2, p(c) = 0.3, p(d) = 0.4

To start we look for a pair of letters whose combined frequency is minimal. For
examplea andb together occur in 3 out of 10 times, and no other pair of letters
occurs that rarely. We introduce (temporarily) a new lettewhich replaces both

a andb. The new alphabet i, c, d}. The frequencies are

(138)  p(x) = 0.3, p(c) = 0.3, p(d) = 0.4

We repeat the step: we look for a pair of letters whose frequency is minimal. There
is only one possibility, namely andd. We add a new lettey, which represents
bothx andc. This gives the alphabéy, d}, with frequencies

(139)  p(y) = 0.6, p(d) = 0.4

We repeat the same step again. This time there is no choice, the pair is bound to
bey andd. Letz be a new letter, with frequency 1. Now we start to assign code
words. We assign the empty word2oNow z actually represents a pair of letters,

y andd. Therefore we expand the word faras follows: we append to get the

word fory and we append to get the word ford. We repeat this foy, which
representg andc. We append for x and1 for c. As x represents both andb,

we append to get the code foa and1 to get the code fob. These are now the
code words:

(140) C(a) = 000,C(b) = 001,C(c) =01,C(d) =1
The expected word length is
(141) L(C)=01%x3+02x3+03%x2+04%x1=19

The compression is thereforg119 = 0.5263. Suppose that instead we had used
the following block code which is a code that assigns words of equal length to
each letter.

(142) C'(a) = 00,C’(b) = 81,C'(c) = 18,C’(d) = 11



50 Expected Word Length

Then the expected word length is
(143) L(C)=01%x2+02x2+03x2+04x2=2

with compression rate.B. Thus, the Hfman code is better than the block code.
Notice that we claimed above that there are several optimal codes. Indeed, there
are several places where we made a choice. For example, we chose to @ppend
to represeny and1 to presentl. Obviously we could have chosarto represent

y and® to represend. This would have given the code

(144) C(a) = 100,C(b) = 161,C(c) = 11,C(d) = 0

Every time we choose a pair of letters we face a similar choice for the code. Also,
it may occur that there are two or more pairs of letters that have the same minimal
frequency. Again several possibilities arise, but they all end up giving a code with
the same expected word length and compression.

We shall briefly comment on the possibility of improving the compression.
One may calculate that a somewhat better compression can be reached if the text
Is cut into chunks of length 2, and if each 2 letter sequence is coded using the
Huffman code. Thus the alphabetAsx A, which contains 16 ‘letters’. A still
better coding is reached if we divide the text into blocks of length 3, and so on.
The question is whether there is an optimal bound for codes. It is represented by
the entropy. Suppose thafA = {a; : 1 < i < n}, and thatp; is the frequency of
letter a;.

(145)  H(p) =~ ) pilog, p
i=1

For our original alphabet this is
(146) —(0.1xl0g,0.1+0.2l0g,0.2+ 0.3l0g,0.3+ 0.4l09,0.4) = 1.8464

The optimal compression that can be reached is therefore 0.5416. These results
hold only if the probabilities are independent of their relative position, that is to
say, if some letter occurs at positiothe conditional probability of another letter

to occur at position + 1 (or at any other given position) is its probability. One
says that the source has no memory.

Suppose that we have an alphabet of 3 letterls and blank. The probabilities
are as follows.

1

(147)  pla) = 5.p(b) = 3,p(O) = 3
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A text is a string over this alphabet. We assume (somewhat unrealistically) that
the probability of each letter in the text is independent of the other letters. So,
a occurs aftera with the same probability as it follows or blank, namely%.

Later we shall turn to Markov models, where it is possible to implement context
restrictions on the frequencies. Words in a text are maximal subsequences which
do not contaimo. We shall establish first the probability that a certain word occurs
in a text. For example, the wordoccurs with the probabilityfﬁ, while b occurs

with probability lis To see this, lei be an occurrence of blanky) in the text
which precedes that letter. One would ordinarily assume that the probability that
the next symbol is is exactly3. But this is not so. For we have placed the blank
such that it precedes a letter, in other words such that the next symbot &
blank. This therefore calls for the following conditional probability:

3
5

Now, it is not enough that the next letteras we also must have that the letter
following it is blank. Therefore, we only have an occurrence ofloed a if the
next letter isa, which adds a factor o§ We write p,(X) for the probability that
the wordX occurs. Hence we ggd,(a) = 1i0 Likewise, the probability of the
wordbis Z- 1 = L. Here are now the probabilities of words of length 2:

(148)  P(fallfa,b}) =

olul| NI
|

1 1

pw(aa) =35 pw(ab) =35
pu(ba) =35 pulbb) =z
The general formula is this:

(149)

(150)  pOwe-x) = ¢ | | px)
i=1

The additional factoé derives, as explained above, from two facts: first, that we
have chosen a position which is followed by a nonblank (a factb),@&nd from

the fact that the sequence we are considering must be followed by a blank (a factor
1/6).

Now let X be a random variable, assigning each word its length. Thus { - x,) =
n. We want to know its expectation. This will give us an estimate of the length of
a randomly chosen word. We shall first derive a formula for the probability that a
word has lengtin. Forn = 1itis 55 + .z = = = 2. Forn= 2 itis
1 1 1 1 9+6+6+4 5
151 —+—=+—=+-—=—" =
15D %6*3" 30" 2 180 36
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This suggestég%l as a general probability. Indeed, there is an easy way to see this.
The probability that théth letter is eithern or b is g We haven letters, therefore

the probability is(g)n. Finally, the next letter must be the blank, so we have to
multiply by . It is checked that

>, 51 1°°(5)”
L4 6 6; 6
1 1
(152) "6 1-5/6
1
=2.6
6

=1

To see this, notice that

Lemma 22 Let p# 1 be a real number.

l_pm+1
1-p

(153) ) p'=
n=0

Proof. By induction onm. Form = 0, the sum extends ovgf = 1. The term on
1
the right isll%"“p = 1. Now assume the formula holds for Then we have

_1-p™t4+ p™i(1-p)

(154) 1-p
~ 1_pm+1+ pm+1_pm+2
= 1-p
1_pm+2
1-p

_|

Notice that the formula holds for all reals, except for= 1, for which trle
sum is simplym. To finish the proof, notice that |p| < 1 then the value o%

approache§}—IO for growingm. So the infinite sum actually equaﬂ_ép.
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So indeed this is a probability function. We are now ready for the expected
length:

o n 5"
1 = —. =
(155) EMX)=) & =
n=0
Now, we need to solve an sum over a series of the foph @

Proposition 23 Let p# 1 be a real number.

S o (m+1 p - 1
(159 2;"6‘(p—1‘(p—an AT

Proof. Let m = 0. Then the left hand side equals 1. The right hand side equals

( 1 b )p+ 1 _plp-1)-p+1_
p-1 (p-1)7 (p—1) (p—1y
(157) _PP-2p+1
(p—1y
-1

Now we proceed to the inductive step.

m+2(m+2 p ) 1

p-1 (p-12/ (p-17
_ m+1(m+ 1 _ p ) + 1
p-1 (p-12) (p-1)7
(158) _ﬁm%mm+m—mwlt_ﬁ—p)
- p-1 (p- 1)
:mm%w—nm+n+p_ p )
p-1 (p-1)
=(m+ 1)p™*
This is as promised. .

As mgrows large (156) approaches

1

139) @
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With p = g this becomes %= 36. We insert this into (155) and get

(160) E(X)= %6 ~ 6
A final remark. The expected word length does not depend on the individual

frequencies of the letters. All that it depends on is the probability of the blank.

If we convert this to a probability space, we will g&i, p(N), P) with p(n) =
% andP(A) = Ya P(K). As we have seen the probabilities sum to 1. The
exponential decline in probability occurs in many other circumstances. There is
an observation due t@ipf that the frequency of words decreases exponentially
with their length. This cannot be deduced from our results above for the fact that
the letter probabilities are not independent.

Let us investigate somewhat closer the frequencies of words. We have just
seen that if the letters are randomly distributed the probability of a word decreases
exponentially with its length. On the other hand, there are exponentially many
words of lengthn. Let us define a bijective functioh from the natural numbers
onto the set of words such that the frequencyf 0f + 1) is less or equal to the
frequence off (n). In other wordsf orders the words according to their frequency,
and it is sometimes called thank function; f(1) is the most frequent word,
followed by f(1) with equal probability (or less), followed bf(2), and so on. It
is not necessarily the case that a more frequent word is also shorter. To continue
our example,

1 1 1 1 1 1
(161) pu(aaaa)=—-= I pw(bbb) = 10 %~ 270

10 2¢
On a larger scale, however, it is true that the less frequent an item is the longer it
is. To make the computations simple let us assume that all symistaseahit from
the blank have the same frequencyFurthermore, let there lemany nonblank
letters. This means that the probability that a given word has lemggtexactly
a" - (1 - a). And so the probability of any given word %(j;—") since there ard"
words of lengtm. Now, if k < ¢ then we havep,(k) < pw(¢) since the correlation
between length and probability is monotone decreasing. (If letters are unequally
distributed this would not be strictly so, as we have seen above.) The item number
Ko = d:;_lll is the first to have length. Solving this forn we get

(162)  n=(logy(ka(d-1)+1))-1
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For a real number, let"r™ denote the largest integerr. We derive for the length
{(K) of thekth item on the following probability rank:

(163) c(logyk(d—-1)+1)-1.<l(kK) < c(logykd-1)+1)-1.+1
For largek we have
(164)  (logy(k(d—-1)+1)-1) ~ logyk(d — 1)

Noticing that log x = (log, d)(log, X) and log k(d — 1) = logy(d — I) + log, k we
can say that

(165) (k) ~ B+ alog, k

for somea andgB. Notice that this an asymptotic formula, and where the original
function was taking only positive integer values, this one is a real valued function
which moreover is strictly monotone increasing. Nevertheless, we have shown
that there is some reason to believe that the length of a word increases logarith-
mically as a function of its rank in the probability scale. Finally, let us insert
this into the formula for probabilities. Before we do this, however, note that the
original formula was based on the length being a discrete parameter, with values
being positive integers. Now we are actually feeding real numbers. This has to be
accounted for by changing some numerical constants. So we are now operating
we the assumption that the probability of a word depends only on its leraytid
equals

(166) 1y -2

for somey andé to be determined. Insert the formula for the length based on its
rank:

p(k) = 729(ﬁ+a log, k)
— ,}/29[32& log, k
= y2°PK*
= ke

(167)

where¢ = y2%. Actually, the value of can be expressed as follows. By defini-
tion of the Riemann zeta—function,

(168) =Y
k=1
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we immediately get

(169) ¢ ={(-a)*

This is done to ensure that the probabilities sum to exactly 1. Thus, the higher
an item is on the rank, the less probable it is, and the longer it is. The length
increases logarithmically the probability decreases exponentially with the rank.
This is known a<Zipf's Law . Again, notice that we have not strictly speaking
derived it. Our assumptions were drastic: the probabilities of letters are all the
same and they do not depend on the position the letters occur in. Moreover, while
this ensures that probabilities can be equal among words of adjacent rank, we have
fitted a curve there that decreases strictly from one rank to the next. Thus, on this
model no two words have the same probability.
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8 The Law of Large Numbers

The probabilities that occur in the definition of a probability space are simply
numbers. But these numbers have a concrete meaning. They say that aA event
occurs with chanc®(A) and does not occur with chance-1P(A). If P(A) = 0.7

we expect that in 7 out oA casesA is the case. If we perform the experiment,
however, it can only do one thing: occur or not occur. The probability becomes
certainty. Thus itis absolutely useless to assign probabilities to an experiment that
can only be conducted once. However, if we can arbitrarily repeat the experiment,
we can actually make sense of the probabilities as followsP(#X) = 0.7 we
expect that in 7 out of 10 experimer#sobtains. Now, we have seen earlier
that it does not mean that when we perform the experiment 10 time# tinaist

hold exactly 7 times. To see this, let us calculate the probabilities in detail. The
experiment is a Bernoulli experiment with= 0.7. The chance thah obtains
exactly 10 times is, for example,@°. Let o; be the event thah occursi times
exactly:

P(ag) =03 = 0.00000590
Pla) =(¥)-03°-07* =0.00013778
P(a;) =(%)-03%.0.72 =0.00144670
Plas) = 2130;.0.37-0.73 = 0.00900169
Plas) =(Y)-03° 074 =0.03675691
(170)  P(as) = 215();.0.35-0.75 = 0.10291935
P(as) =(%)-03*-0.7° =020012095
Plar) =(%)-03%-07" =0.26682793
Plag) =(3)-032-07° =0.23347444
P(as) =(3)-03"-0.7° =012106082
P(ai0) =0.7% = 0.02824752

We can see two things: none of the outcomes is impossible, but the outgome
is more likely than the others. The eventsU a7 U ag together have probability
0.7, roughly. If we deviate by 1 from the expected outcome, the probability is 0.7;
if we deviate by up to 2 from the expected result the probability is even larger: it
exceeds 0.9.

Now suppose we repeat the experiment 100 times, what do we get? Rather
than do the calculations (which involve quite large numbers) we give the answer
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right away: the likelihood that the mean deviates from the expected value, 0.7,
by at most 10, becomes larger. This means that the mean is less likely to deviate
from the expected value as the number of iterations get larger. This is known as
the law of large numbers. We shall prove it rigorously. We begin with an easy
observation.

Lemma 24 (Chebyshev)Let X be a positive random variable asd> 0. Then
P(X > &) < E(X)/e.

Proof. Let I(A) be the function such th&afA)(x) = 1 iff x e Aand O else. Then
(A71) X=2X-I(Xz¢g)=>el(X=¢)

This is seen as follows. Suppo¥éw) < . ThenX(w) > X(w) - (X > &)(w) >
el(X > &), becausd (X > &)(w) = 0. Now assume thaX(w) > . Thenl(X >
&)(w) =1 and saXw) > X(w) - 1(X > €) > el (X > ). Now we obtain

(172) EX>E(el(X>¢)=eP(X > ¢)

This holds because in generaldf> Y, that is, if for allw: X(w) > Y(w), then
EX>EY. AndEI(A) = P(A) for everyA. For

(173)  EIA) =) 1(AW)- pw) = ), pw) = P(A)

wWeQ weA

The following are immediate consequences.
Corollary 25 Let X be a random variable. Then

O P(X| > &) < E(X])/e.
O P(X| > ¢) = P(X? > &) < (E X?)/&2.
O P(X-EX|) > ¢&) < (VX)/&

Proof. The first follows from Lemma 24 by noting thgf| is a random variable
taking only positive values. The second follows siXéelso is a positive random
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variable. Finally, notice that the varianceXfs the expectation ok —E X, so the
third follows from the second if we substitu¥e— E X for X in it. s

Let X, be the following random variable 40, 1}":
n
(174)  Xollwn,wa, -+, X)) i= > %
i=1

The expectation ipn, as we have noted earlier. We ask what the probability is
that it deviates more thasn from this value. This is equivalent to asking whether
the mean ofX; deviates more thasnfrom p if the experiment is repeatettimes.

We calculate
X
8) < V(—n) /&%
n

Let us therefore calculate the varianceX@fn. To obtain it, let us recall that ¥
andZ are independent/(Y+Z) = V X+V Z. Define variablex* : {0, 1}" — {0, 1}

by
(176)  XN((Xq, X, -+, Xn)) 1= X«

These variables are independent. To see thig lbetthe setof alb = (X1, X0, - - - , X)
such thatx; = a. The probability of this set is exactlyif a = 1 andq otherwise.
For the set has the form

Xn

(175) P(F—p >

(177) {0, 1x{a}x{0,1}""t = {0, 1} x---{0, 1} x{a} x---{0, 1} x - - - x {0, 1}

and so by Proposition 2B,(A) = P({a}). Similarly, let B be the set of tuples
such thaty = b. Then its probability i({b}). Finally, the probability oAN B is
P({a}) - P({B}), by the same reasoning.

Now that we have established the independence oXthaotice thatX, =
X+ X2+ ...+ X", For each of thex! we know that they have the same expecta-
tion and variance as the identity on the Bernoulli experiment, which by (127) has
variancepq. Therefore,

(178)  VXa= ). pal@)(Xa(w) - pn)? = npg
we{0,1}"

Inserting this back into (175) we get

Xn - Pa

a9 P(I=-pze)< 2
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Observe thapq < 1/4 so that we can make the estimate independeptaofdq:

> 3) < i

~ )7 4ne?

Now chooses as small as you like. Furthermore, choose the probabhiliof
deviation by at most as small as you like. We can chooseraimdependent on
p andq such that performing the experiment at leasimes will guarantee with
probability 1- 6 that the mean of the variab}will deviate fromE X by at most
e. Indeed, just choose

(180) P(‘% —p

1
181 >
(181) 275
and then

X 1 452
182 P(—”— '2 )s _0F
(182) n P28 dmey T T 2 O

In mathematics, the fact that for largehe probability approaches a certain value
Is expressed as follows.

Definition 26 Let f(n) be a function from natural numbers to real numbers. We
write lim,_,., f(n) = b iff the following holds: for every > O there is an i) such
that for all n > n(e) we have

(183) |f(n)-bl<e

This says in plain words that for any erwwe choose there is a point from which

on the values of the sequences are found within the error maiay from the
valueb. Such a statement is often found in statistics. We first name an interval (the
confidence interva) within which values are claimed to fall and then we issue a
probability with which they will actually fall there. The probability is often either

a number close to 1, or it is a small number, in which case one actually gives
probability that the values wihot fall into the named interval.

This entails that the values of the sequences get closer to each other. Given
this definition, we may now write

Theorem 27 Let? be a Bernoulli space, and let X be a random variable. Define
as above the random variablg, X= 3", X' on the n—fold product dP with itself.
Then

(184) lim P(

nN—oo

ﬁ—EX‘Se):O
n
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In plain language this means that with langeéhe probability that in am—fold
repetition of the experiment the mean of the results deviates from the expectation
by any given margin is as small as we desire.



62 Limit Theorems

9 Limit Theorems

There is another way to establish boundsfand it involves a dferent technique
of approximating the values of the binomials. Recall that the probability té& get
out of ntimes the result 1 is

185 Pi0 = oL~ pr

We shall show here that for largethe value ofP,(k) can be approximated by a
continuous function. As we shall see, there are several advantages to these theo-
rems. One is that we have to know the values of only one function, naenef§

in order to compute these probabilities. However, the latter is quit@eudi func-

tion which cannot be calculated easily. This is why it used to be tabulated before
there were any computers. However, one might think that when computers evalu-
ate P,(k) they could do this without the help of the exponential function. This is
not quite correct. The trouble is that the numbers occurring in the expression are
very large and exceed the memory of a computer. For exampRig(712) we

have to evaluatg%. The numbers are astronomical! (These large numbers
can be avoided through sophisticated methods, but the problem remains essen-
tially the same: doing a lot of multiplications means accumulating errors.) Using
the exponential function we can avoid all this. Moreover, the error we are making
typically is quite small.

Theorem 28 (Local Limit Theorem) LetO < p < 1. Then
(186)  Py(K) ~ —— g k-np?/(anpo
\/2mpq

uniformly for all k such thatk — np| = O(~4/Npo).

We are not giving a proof of the theorem here. However, we shall explain the
phrase that the formula holds uniformly for &luch thatk — np = O(~/MNp0).

The claim is that the continuous function to the right approximBig) for large

n. This in turn means that for any errer- 0, as small as we like, and akyhere

is ann(g) such that for alh > n(e) we have

(187) Pa(k) — #e—(k—np)z/(anq) <

\2rnpq
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Moreover, it is claimed thai(¢) can be chosen independentlykads long as in the

limit k—npl < C+/Mpg (But evidentlyn(e) does depend onbecause the smaller

the error the larger we have to choose the val{#g.) In practice this means that

the approximation is good for values not too far apart fropn additionally, the
closerpis to 1/2 the better the approximation. It should be borne in mind that we
only have an approximation here. Often enough one will use these formulae for
finite experiments. The error that is incurred must be kept low. To do this, one has
to monitor the diferencek — np as well as the biap!

Now let us get back to the formula (186). Put

- K=np
~ y/Npq
Then (186) becomes

(188)

(189)  P,(np+ x+/Np z;e"@/z

\/2rnpq

Notice that whilek is a discrete parameter (it can only take integer values), so
isnp+ x+/Mpqin the left hand side of the equation. On the right hand side, how-
ever, we have a continuous function. This has in important consequence. Suppose
we want to compute the sum over cert&iwithin an interval. We shall replace
this sum by a corresponding integral of the function on the right. In general, this is
done as follows. There is a theorem which says thatig a continuous function
then for any two valueg; andx; there is & such thatx; < ¢ < x; and

(190) f(¢) = ” i X f l f(x)dx
X0

(This is known as the mean value theorem.) It is particular interest because if the
differencex; — xg gets small, alsd (¢) — f (o) becomes small, so that we can write

(191)  f(xo) ~ — f " f(dx

X1 — Xo Xo

We have used here to abbreviate the statement: for any 0 there is & such
that if x; — Xp < ¢ then

(192) ‘f(xo)— 1 lef(x)dx4<s

X1 — Xo Xo
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Equivalently, this is phrased as

1 X1
193 f = lim f f(x)dx
(193)  10a) = Jim ~= | 109

We now enter (191) into (189). Thefterencex,; — X« Is exactlyA = npq 1l
and so

e—xﬁ/z

1
Pa(np+ Xcy/NpQ = A

~ YIPe ka+A e 2dy
\/2rnpq

1 Xk+A _y2/2
T
Xk

As said above, this is justified for the reason that if large the function does not
change much in value within the intervad[x« + A], so we may assume that by
exchanging it for the constant function we are not getting a big error. (In fact, by
the limit theorems we can make the error as small as we need it to be.) This leads
to the following.

(195)  Qu(abl:= ) Pu(np+xyApg

a<x<b

]~

(194)

Xk

Theorem 29 (De Moivre—Laplace)

b
(196)  lim|Qu(a b] - 1 exz/zdxi =0
n—oo

Vor Ja

Thus, whatever the values are fo(andq), all we have to do is calculate a certain

integral of the functionv%re‘xz/z. In particular, putting

N e
(197)  ®(x) = «/ZLOG dy

we get

(198)  Qn(a.b] ~ d(b) - ®(a)
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Unfortunately, the function cannot be given an analytical expression, so one can-
not calculate it directly. Instead, must has to either use tables or the computer for
the values of the function.

There are results that give estimates on the deviatiab(gf from the actual
probabilities. Define first the following function.

(199)  Fu(X) = Py(—co0, %] = P(X:/;_;qp < x)

This is a function from real numbers to real numbers, but it assumes only discrete
values. For ifx, < X < X1 thenF,(X) = Fn(X), because the variable to the right
can only assume the valugg, 0 < m < n. As can be seen, this function can be
replaced by a sum:

(200)  Fo(®) = > Pa(K)

Xk<X

Notice that whileP, is a function from numbers to realB, is a function from
reals to reals, and uses the rescaled values.

Theorem 30 (Berry—Esseen)

P+
201 sup |Fa(X) — d(X)| <

In plain words this means that the greatedteience between the sufy(x)
(which is the actual probability) and the integral of the normal distribution is

less than or equal t@jg—%z. This is dtferent from the limit since we addition-

ally require that the value df,(x) — ®(x)| does not exceed the value %zf%
Thus, the error can be made uniformly smalhifs chosen large. However, no-
tice again that for small values for eitheror g the estimates are rather poor,
which in turn means that largehave to be considered. For example,pget 0.1.

Then pf/g = 0.811/ Vv0.09 = 0.811/0.3 ~ 2.7, while for p = g = 0.5 we have

pf;,if = Z—EZ = 2p = 1. The best bound is therefo%, which means that to get

error at most (L you needh > 100, to get error at most@L you neead > 10000.
It should be stressed that one normally comp&gs, b], which isF,(b) — F,(a).
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Again this number can be approximation ®{b) — ®(a). For the error the upper
bound is twice the value given above:

|(Fn(b) = Fn(a)) — (@(b) — @(a))
<IFn(@) — ®(a)| + [Fn(b) — ®(X)|
P+

vnpq

(202)
<2

Notice, however, that the functioi(x) has been obtained by transforming
the values ok using (188). It is customary to express this transformation using
expectation and standard deviation. Notice tinais the expectation oX,; and
that 4/Npqis the standard deviation of,. Let us drop the index here. Then
we may say the following. Let denote the expectation of ando its variance
(which we may either obtain directly or by doing ‘enough’ experiments). The
distribution of the variabl (for largen) is \/%e‘((x‘“)/“)z.

Let us return to our experiment of Section 8. We shall use the exponential
function to calculate the probabilities. To do this, notice that from (188) we cal-
culate as follows.

X = (0—10-0.7)/(V10- 0.7 - 0.3) = —4.8305
X1 = (1-10-0.7)/(V10-0.7- 0.3) = —-4.1404
% = (2-10-0.7)/(V10-0.7- 0.3) = -3.4503
X3 = (3—10-0.7)/(V10-0.7- 0.3) = -2.7603
X, = (4—10-0.7)/(V10- 0.7 - 0.3) = —2.0702
(203)  xs=(5-10-0.7)/(V10-0.7- 0.3) = -1.3801
X = (6 — 10-0.7)/(V10- 0.7 - 0.3) = -0.6901
x; = (7—-10-0.7)/(V10-0.7-0.3) = 0
Xg = (8 — 10- 0.7)/(V10- 0.7 - 0.3) = 0.6901
Xo = (9 —10-0.7)/(V10-0.7- 0.3) = 1.3801
X10 = (10— 10-0.7)/( V10- 0.7 0.3) = 2.0702
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|

K || Fio(k) [ (%) |
0[0 [0.000
10000 | 0.001
2| 0.001 | 0.002
3| 0.010 | 0.003
(204) | 4] 0.047 | 0.02
5
6
7
8

0.150 | 0.08
0.350 | 0.25
0.617 | 0.75
0.851 | 0.92
910.972 | 0.98

From our earlier estimates we expect that the error be less than

0.09+049 058
v10-0.7-03 v21

In effect, the precision is much better.

=040

(205)

To view the dfect via R, we define the following functions:

o
w

Hx <- function (n, p) (@®:n) - n *p)/((n * p
* (1 - p) ** 0.5
(206) Hy <- function (n, p) ((choose (n, 0:n) *
* (0.7 ** (0:n)) * (0.3 ** (n - (0:n)))
(2 *pi*n*p* (1-p)* 0.5

This defines for given andp the vectors consisting of the poir{{s-np)/ /Npg (’I‘) p'gq*' \/2rnpo).
If you call the first coordinate, the second coordinate will actually be approx-

imately e, To view the approximation, plot the function for increasmg¢put

identicalp).
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10 Estimators

Suppose you are tossing a coin but you are not sure whether it is biased. How
can you find out what the bias is? Evidently, there is no way to get a definitive
answer. We have calculated the probabilities before and noticed that no sequence
is impossible unlesp = 0 or p = 1. Still we might want to know with at least
great degree of confidence what the bias is. The way to this is as follows. Let
6 be the bias, so it has valuesdn= [0,1]. Letw = (w1, w,, - ,wyn), and put

a(w) = |{i : wj = 1}|, andb(w) := [{i : w;j = 0}] = n— a(w). Givend we define the
probability of an outcome as

(207)  Py(w) = 67 (1 - 6)*)

The probability is a function df. As a point of notation and terminology: we may
construe the situation in two ways. The first is that we have a fafRily 6 € 6}

or probability functions on the spa€®'. The other is that the space®' x H,
whereH is the following spaceH = (®, B(0®), u), whereB(®) is the set of Borel
sets ovel® andu is the measure of the set. To simplify matteB®) contains
all finite unions of intervals of the forma(b] plus all the setga}, 0 < a,b < b.
Moreover, for an intervalg, b] we putu((a, b]) := b—aandu({a}) := 0. u(X) is
known as thd_.ebesgue—measuref the setX.

In the latter case the outcomes are of the fgra(w, 8). Write 7,({) = w (the
first projection) andr,(£) = 6. Then a statement of the formy ‘e S’ now is short
for ‘m(w) € S’. Additionally, however, we may introduce the notatiély for
n2(¢) = 6. Thus,Hy is the statement ‘the biasé& In order to make the notation
perspicuous, we shall continue to uséor the first part and for the second. The
following become alternative notations, they are identical by the way things have
been set up:

(208)  Py(A) = P(AlHo)

It is quite frequent in textbooks to make the silent transition between families of
probabilities ovef" and the spac@" x H by writing statements such &A/Hy).

The latter are meaningless in the original space beddpgenot an event of that
space. On the other hand, if we perform an experiment we can only get at the
value ofw, so one likes to think that one is dealing with the sp&Eeand that

6 remains implicit in the definition of the probability. Since the numbers are the
same, both viewpoints can be used simultaneously.
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It is often the case that one does not n&d|H,) but ratherP(w). How does
one obtain this probability? Intuitivel\R(w) is the ‘sum’ of allP({w, 6)) where
0 € ©. Also, in general,

(209)  P((w,0)) = P(w|Hg)P(Hy)

If we have only finitely many, sayé;, - - - 6,, then we can simply write
n n
(210)  P) = ), Plw.0) = ) P(wlHs)P(Hs)
i=1 i=1
In the present case the set of values is the unit interval, or more generally, some
set® of real numbers. In general one assumes B{al;) does not depend af
(we have a Laplace space). Then we may Wtel;) = d6. The sum turns into
an integral:

(211) P) = f@ P(w|H,)do

Let us say that apstimator is a functionT,, on Q" with values in®. (Notice
that ® can be any set of reals, but for the present example we obviously have
® = [0, 1].) The following is an estimator:

(212) Th(w):=a(w)/n

This is known as thenaximum likelihood estimator. To see why, notice the
following. We claim thata(n)/n is actually the number that maximiz€¢H,|w).
To see this, notice that

P(w)
(213)  P(olHy) = P(Hilw) - s
Suppose that we have no prior knowledge about the probabifeg). Thus
we assume that all, are equally likely. Then the left hand side is maxinfél i
P(Hslw) is. That is, we have maximized the probabilityHyf under the hypothesis
thatw precisely when we have maximized the probabilitywainder the condition
thatHy. The latter probability is given by (207). Thus we aim to find khguch
that (207) is maximal. There are two ways of doing this. One is to calculate the
derivative of the function:

9 ) — g = [ ga@) . (1 gy 4 ga) [ D1 _ gy
d@(e (1-6)°) = 0| (=0 + O (1)

(214) = a(w)FOY(1 - )P + b{w)(~1)p(1 - g1

= (1 - )°“H(a(w)(1 - 6) - b(w)6)
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(Recall thatd (fg) = (%(f) g+ f (%g).) The maximum is attained at points where
the value is 0. Apart from = 0 or6 = 1 this is only the case when

(215)  a(w)(1 - 6) — b(w)d = 0
Equivalently,

(216)  a(w) = (a(w) + b(w))6
Sincea(w) + b(w) = nthis becomes

(217) 6= aw)

So, the maximum oP(w|Hy) is attained whera(w) equalsnd. To be exact we
would have to look at the casés= 0 andd = 1. They are however completely
straightforward: if¢ = 0 then the probability otv is O except ifa(w) = O; if

6 = 1 then the probability ofv is 0 except fora(w) = n. Both validate the law
thata(w) = nd. A last point is to be mentioned, though, and that is tigaheed
not be an integer. However, we are interested in obtaififrgm a(w) and not
conversely, and a real number is fine.

Another route is this. Instead of dealing with the eventwe think of the
probability P(Hg|X, = a(w)). Again this term is maximal iP(X, = a(w)Hy) is
maximal. It is

(218) P@(Xn = k) = (E)ga(w)(l _ Q)b(w)

The proof would go the same way as before. However, we can also make use
of the limit theorems and the functicer*/2. We have established that with the

. _ k—n6 . . . .
transformatiorx = Noa e it suffices for this to find the maximum of

(219)  f(x) = e*/2

This function is symmetric, that i§(—x) = f(x). Moreover, if 0< x < y then

f(xX) > f(y), so without further calculations we can see that the maximum is
attained atx = 0. Translating this back we find that=0 \/% ork = nd. This
means, giveld andn, k must be equal tod. Or, ask was given througla(w), and

we in fact wanted to estimatesuch thaH, becomes most probable, we must put

0 := a(w)/n to achieve this.
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It can also be phrasedftirently. Seen as a function fro@" to [0, 1] it is
actually identical toX,/n. In general, an estimator is a series of random variables
overQ" for everyn.

We say thafl, is consistentif for everye > 0
(220) lImPy(ITh -0 >¢)=0
n—oo

This means the following. For everyftirent outcome we get a possiblytdrent
estimate o. However, when we take as the true bias, the estimator shall not
diverge from it in the limit. Of course, we do not know the bé&adut we want

to make sure that with respect to the real bias we get there eventually with any
degree of certainty that we want. Since we know tgtn approaches in the

limit we also know that the result is unambiguous: our estimator will converge in
the long run and it will converge to the real bias.

Now call T, unbiasedif for all 6 € ®:
(221) E4T,=6

Here, E, is the expectation according to the probabiRy. Finally, we callT,
efficient among the clast of unbiased estimators if for ale ®

(222) VT, = inf V,U,
Unell

This simply says that the estimator produces the least possible divergence from
the sought value. Itis obviously desirable to havefigient estimator, because it
gives us the value af with more precision than any other. The following summa-
rizes the properties of the maximum likelihood estimator. It says that it is the best
possible choice in the Bernoulli experiment (and an easy one to calculate, too).

Theorem 31 X,/n is consistent, unbiased anglieient.
We have seen already that it is consistent and unbiased. Now,

(223)  VXa/n= 01— 0)

It has to be shown that the variance of any other unbiased estimate(1s-6)/n.
The proof is not easy, we shall therefore omit it.
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Let us return to (213). The probability &f, is actually infinitesimally small.
This is because there are infinitely many values in any close viciniéy which
also are good candidates for the bias (though their probability is slightly less than
that of Hy, a statement that can be made sense of even though all the numbers
involved are infinitesimally small!). Thus, we cannot claim with any degree of
certainty that the bias i& If we give ourselves a probability of error, then all
we can do is say that the bias is inside an interaab] with probability 1 - p.
Evidently, the values o andb depend om.

Definition 32 An interval[a‘(w), b*(w)], with & and b’ functions front2 to ©, is
called aconfidence interval of reliabilityl — § or significance leveb if for all
0 c0:

(224) Pyaw)<0<bw)>1-6

So, the confidence level and the significance level are inversely correlated. If the
confidence is ®95 then the significance is@D5. Very often in the literature

one finds that people give the significance level, and this may cause confusion.
The lower this number the better, so if the significance level. 09D then the
probability of the result being in the interval is. 9%ercent, or ®99!

We want to construct a confidence interval for a given confidence level. For a
setA C [0, 1] let us writeH, for the statement that € A. We are interested in
P(HAl X, = a(w)). Using the law of inverted probabilities we can calculate this by

P(Xx = a(w))

P(Ha)
This is less straightforward than it seems, for we now have to deterR{ifg)
andP(X, = a(w)|Ha). (Notice thatP(X, = a(w)) = P(X, = a(w)|He), So the value
is determined as well.) To make matters simple, we assumdtadt, b]. Then
P(HA) = b—a, as theH, are all equiprobable. Now, using (218) we get

(225) P(HalXn = a(w)) = P(Xn = a(w)Ha) -

(226)  P(X, = kIHa) = f i (E)Ha(w)(l _ g

This integral can be solved. However, there is a much simpler solution (though
the numbers might be less optimal). By Chebyshev’s Inequalityl foe V,/n,

VT, 6(1-6)
(227) Pl -Tol>0) < 5" = =
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Now, put

n

(228) 1:=6 T

Then

01-0)) 1
(229) PG[IH—Tn|>/1w/(n ))<ﬁ

or, equivalently,

6(1-0 1
(230) P9(|9—Tn|3/1\/ ( - ))zl—ﬁ

To make this independent 6f notice that

(231) 06(1-6)<1/4

so the equation can be reduced to

A 1
232)  Pyllo-Ti<—=|>1-=
(3) 9(|9 n|_2\/ﬁ)_ /12

Theorem 33 Let P be a Bernoulli experiment with unknown biasBased on an
n—fold repetition of the experiment with resultthe value &v)/n falls into the
interval [6 — s4=,6 + %Fn] with probability 1 — 1/42 (or with reliability 1/42).

24N’ 2
Or, put diferently,d is found in the intervald(w)/n - ﬁﬁ a(w) + ﬁﬁ] with prob-
ability 1 —1/2.
Thus, there is a correlation between certainty and precision. If we want to

know the value ob very accurately, we can only do so with low probability. If we
want certainty, the accuracy has to be lowered.
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11 Tests

Consider the following situation: you have an initial hypothe$isand you con-

sider another hypothesi$;. Now you run an experiment. What does the outcome

of the experiment tell you about the validity of the hypothesis? In particular, will
the experiment suggest changingHgor will it suggest to remain with the initial
hypothesis? The solution comes in form of a so—céakst A test is a method that
gives a recommendation whether we should adopt the new hypothesis or whether
we should stay with the old one. We shall first analyse the situation of the pre-
ceding section. We have repeated an experiméimes and received an element

w. The element is also referred to assample andQ" is the space ofample
points. We shall agree the following definition.

Definition 34 A testis a function d from the space of sample points to the set
{Ho, H1}. (d is also called adecision rule) The set d*(H,) is called thecritical
region of d. d isBayesianif for all w, «’ such that PHy|w) = P(Hplw’), d(w) =
d(w’).

It is clear that a test is uniquely determined by its critical region.

Very often one is not interested in the sample points as such but in some other
derived value that they determine. For example, when estimating the bias we are
really only interested in the val&w)/n, because it gives us an approximation of
the bias, as we have shown. If we had just takethe result would have been no
better. The numbea(w)/n contains all information we need. We shall generalize
this now as follows. Astatistic is a function onQ". A random variable 02" is
a statistic, since it is a function from that set into the real numbers. But statistics
can go into any set one likes.

Let us give a few examples of statistics. Before we can do so, a few definitions.
Supposev is a vector of numbers. Then ley; be theith element otv according
to the order. For example, ib = (0,9,7,0,2,1,7) thenwy) = 0, wp) = 0,
wa) =1, we =2, ws) =7, we) = 7 andwzy = 9. We can writew in ascending
order as follows.

(233)  (wa), we), > Wm)

wheren is the length otv. In R, the sorting is done using the functionder.
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0 Thesample meanw = : 31, w;;

[0 Thesample sum Y, w;;

[0 Thesample variance s(w) := n%l >0 (wi — @)%
0 Thesample deviation d(w) := VS(w);

O Theorder statistic: o(w) := {way, W@y, ** > Wm);

Wn+1)2 if nis odd

[0 Thesample median m(w) := L .
1/2(wmy2) + wasn2)) if nis even

[0 Thesample range wq) — wg).

Now, we have a spad@ of values which we want to estimate. The estimator has
been construed as a function on the sample space. But we can reduce the space to
the spaceX,/n)[2,]. This means that the estimator does not distinguish between
differentw as long as they receive the same value uxgeén. We shall generalize

this to the notion of a dficient statistic. This is a statistic that contains as much
information as is needed to get the value for the estimator. Given a statjdat

T =t denote the sdw : T(w) = t}.

Definition 35 LetP = {P, : § € ®} be a family of probabilities of®2" and T
a statistic. We say that Syfficient for P is for all 6,0’ we have Rw|T =t) =
Pg/(a)lT = t)

Trivially, the identity statistics is dficient. A less trivial example is provided by
the statisticl,(w) := a(w). To see that it is diicient note that.

Po(w N (Tn = K))
P@(Tn = k)
_ Py(w)
B Pe(Tn = k)
(234) o1 — o)™k

(R)e( - o)

Po(w|Tr(w) = 1) =
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This does not depend @h

Notice that in general tha®(T = tjw) = 1 if T(w) = t and 0 otherwise.
Likewise, if T(w) = t thenP(w N (T =t)) = P(w) and 0 otherwise. The latter has
been used in the derivation above.

We shall prove now that a fiicient statistic allows to estimate parameters (or
perform tests) with identical precision as the original sample. So, we assume that
P(wl(t = T N Hy)) = P(wl(t = T N Hy)).

From this we can deduce the following. Put
(235)  &(w) :=Py(T =1)

Then als&(w) = Py(T =t), by assumption.
P(w) = f P(w[Hy)de
(€]

- f P(w|(T = t) N Hg)P((T = t)|Hy)d6
®

(236) - f £()P(T = tiH,)do
(C]

= &(6) f@ P(T = t|H,)dg
= &E(w)P(T = 1)

Thus, the probability otv (independently ob) also is the same fraction of the
probability of T = t. This allows us to deduce the desired conclusion.

P(H,)
PHIt=T) = P(t = TH) 50—
_ E(w) " P(wlHg)P(Hy)
(237)  é(w)tP(w)
_ P(w|Hg)P(Hy)
- P(w)
= P(Hglw)

Thus the probabilities do not depend @ras long as the statistic is the same. We
derive from this discussion the following characterisation dfisiency.
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Theorem 36 A statistic T: Q" — A is syficient iff there are functions f A x
® — Rand g: Q" — R such that Rw|Hy) = f(T(w), 8)g(w).

Proof. We have seen above thafTifis suficient, P(w|Hy) = P(T = t|H)é(w) ™.
Hence, pug(w) = & and f(T(w),0) = P(T = t|H,), wheret := T(w). Con-
versely, suppose the functiomsandg can be found as required. Then detandt
be such thaT (w) = t.

P(T =tiH) = > P(wHy)
T(w')=t
> H(T(W),0)9w)
W €T-L(1)
f(T@).0): > o)
W eTL(1)
Notice namely that (T (w’),0) = f(T(«’),0) if T(w’) = T(w). Now,
P(w|T =t Hy) = %
_ (M (w), 0)g9(w)
~ P(T = tiHy)
(239) _ H(T(w).6)gw)
(T (@), 6) Zoer19 9(w)
9(w)
Ywet-1p 9(w)
This expression is independentéf .

(238)

Let us note that il is a suficient statistic andl a test, we may consider using
the test with critical regiod [C] := {T(w) : w € C}. Since it is not guaranteed
thatC = T-}T[C]) this may result in a dferent test. However, if the test is
actually based on probabilities then it canndfatientiate between members of
the partition. This is becaus&Hy|T =t) = P(Hy|lw) implies that if T (w) = T(«’)
then alsdP(Hy|w) = P(Hylw’). Now, by definition, ifd is Bayesiand(w) = d(w’).
So, tests can be applied to anyfsuient statistic. We shall see below that there
Is also a minimal such statistic, and therefore decisions can be based on just that
statistic.

With the tools developed so far we can fully analyse the situation. We need to
assume thall, is the case with probabilitp, so thatH; is true with probability
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g=1- p. Letw be a single outcome. We have

P(w) = P(w|Ho)P(Ho) + P(w|H1)P(H1)

(240) = pP(w|Ho) + (1 — p)P(w]|H,)

Therefore we have
P(Ho)
P(w)
p

= P(w]Ho) -
(241) (WIHo) - S RaiFy) + (2 = pP(@IHD)
1
=)

P P(wlHo)
and similarly forP(H;) we have
P(H1)
P(w)

P(Holw) = P(w|Ho) -

P(Hilw) = P(w[Hy) -

(1-p)
pPP(w|Ho) + (1 - p)P(w|H1)

(242) = P(wlHy) -
1

_P . P(wlHo)
1+ 15 pah

._ P(w|Ho) — b
Putr := Pl andc ;= To Then

(243) P(Holw) := P(Hi|w) :=

1
1+ (cr)~t’ ~ 1+ (cr)
Thus, we canfectively determine what probability the hypotheses have given the
experiment. But the crucial question is now what we can or have to deduce from
that. This is where the notion of a decision method comes in. Céiftesshold
testa test that is based on a single numbealledthreshold and which works as
follows. If R(w) := P(w|Hp)/P(w|H;1) < t then choose hypothesi$;, otherwise
chooseHy. (The casd’(w|H;) = 0 has to be excluded here; however, in that case
Ho must be adopted at all cost.) Based on the paranieter can calculate the
relevant probabilities.

Here is an example. Suppose the hypothesesHyethe bias is O andHj:
the bias is . We perform the experiment 5 times. ket (0,1,0,1,1). Then

_ P(wHo) _ 0.73-0.3

(244) R =50H) =~ 05
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If we were to base our judgment on the statistic that counts the number of 1s, we
get

(30.7°0.3
(os

which is exactly the same number. There are then only 6 numbers to compute.
For givenw, we have

(245)

0.7

(246)  R(w) = (—)a(w) 52

05

= 1.4 0.6
0.5 )

| Representative Likelihood Ratio |
(0,0,0,0,0) 0.6° 0.0778
(0,0,0,0,1) 1.4-0.6* | 0,1814
(247)  1(0,0,0,1,1) |1.4°-0.6°|0,4324
(0,0,1,1,1) 1.4%.0.6° | 0,9878
0,1,1,1,1) 1.4*.06 |2305

(1,1,1,1,1) 1.4° 5.3782

If we set the threshold to 1 then we adopt the hypothesis that the coin is biased
with 0.7 exactly when the number of 1s exceeds 3. Ifit is does not, we assume that
the bias is 0.5. Notice that if we get no 1s then the assumption that it is unbiased is
also not likely in general, but more likely than that it is biased with 0.7. However,
we have restricted ourselves to considering only the alternative between these two
hypotheses.

Of course, ideally we would like to have a decision method that recommends
to change tdH; only if it actually is the case, and that it suggests that we remain
with Hg only if it actually is the case. It is clear however that we cannot expect
this. All we can expect is to have a method that suggests the correct decision with
a degree of certainty.

Definition 37 A test is said to make &pe | error when it suggests to adopt;H
when H is actually the case. A test is said to makig@e Il error when it suggests
to adopt K when H actually is the case.

It is generally preferred to have a low probability for a type | error to occur. (This
embodies a notion of conservativity. One would rather remain with the old hy-
pothesis than change for no good reason.) We have actually calculated above the
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probabilities for a type | and type Il error to occur. They are

_pe 1
(248) probability of type | error 1. Lo, PEH)
P(BIHo)

g 1
(249)  probability of type Il error 15 o PEHY
1-p  P(BHa1)

Definition 38 The probability of a type | error is called thgignificance of the
test the probability of the nonoccurrence of a type Il error fh@wer of the test
Atest T ismost significantif for all test T whose significance exceeds that of T
the power of T is strictly less than that of T; T imost powerfulif for all tests

T’ whose power exceeds that of T the significance’a$ Ftrictly less than the
significance of T.

In statistical experiments the significance is the most common number used. It
describes the probability with which the test falsely recommends to change to the
new hypothesis. But the power is obviously equally important. Now let us define

(250) R(w) = H

This number describes the ratio of the likelihood thats the outcome under
condition thatH, divided by the likelihood thab is the case under condition that
H;. The functionR is called thdikelihood ratio statistic. We shall show that it
is suficient and moreover that it is minimally ficient.

Definition 39 A statistic T isminimally syfficientif for all sufficient statistics S
there is a function h such that(®) = h(S(w)).

Thus, further compression of the data is not possible if we have applied a mini-
mally suficient statistic.

Theorem 40 The likelihood ratio statistic is minimally gicient.

Proof. First we show that it is dticient. We use Theorem 36 for that. Define

R(a))l/z if 6= 90

(251) f(R(w).6) = {R(w)—l/z if 6=6
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Further, put
(252)  g(w) := (P(wlfo)P(wl61))"'?

Then
_ P(wl6o)
(253) f(R(w).6) = P(cu|01)(P(wleo)F)(w“gl))l/2
= P(wl6o)
and
_ P(wl6:) 1/2
(254) f(R(w), 61) = P (wlto) (P(wlbo) P(wl61))
= P(wl61)

So, the statistic is ghicient. Now take another fiicient statisticlT. Take a sample
w and putt := T(w). SinceT is suficient,

(255)  P(w|T =t N Hg) = P(w[T =t Hy)

Therefore,
_ P(wlfo)
Re)= i)
_ P(wNT =tnHg)/P(Ho)
(256)  PwnT =tnHy)/P(Hy)

_ P(wIT =tNnHop) - P(T =tn Hg)/P(Ho)

~ P(w|T =tnHy) - P(T =tnHy)/P(H)

_ P(T =1tHo)

~ P(T =1tlHy)

Now, if T(w) = T(«’) then it follows from this equation that alf{w) = R(w’),
and so the map : T(w) — R(w) is well-defined and we hawg(w) = h(T (w)). -

A threshold testwith thresholdt is a test that recommend, if R(w) > t.
We notice that the power and significance of the test depend on the valtie for
The highert the more likely the test is to recommeit] thus the highet the
greater the power of the test. The lovtghe more likely the test is conservative
and therefore the more significant it is. Again we see that there is an antagonism
between significance and power. However, we note that no mattet lwiosen,
the test is optimally significant within the set of tests of same (or less) power and
optimally powerful within the set of tests that have equal (or lesser significance).
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Theorem 41 (Neyman & Pearson)The threshold test is most significant and most
powerful.

Let us continue the previous example. We have calculated the valug@ohf
Now we wish to know for given thresholgd what the significance and power of
the test is.

Here is a useful table of probabilities.

|k [ P(T = KHo) | P(T = OH,) |

0| 0.03125 0.0025
1| 0.15625 0.02835
(257) 2| 03125 0.1323
3/ 0.3125 0.3087
411 0.15625 0.36015
5| 0.03125 0.16807

From this we draw the following values, assumiPgy) = P(H,) = 0.5:

Ho H,

t [R<t [R>t [R<t [Rx>t

0 [[o 0.5 0 0.5

0.1/ 0.0150625| 0.4849375 0.00125 | 0.49875
(258) | 0.4 0.09375 |0.40625 |0.015425| 0.484575

0.9 0.25 0.25 0.0816 |0.4184

2 | 040625 |0.09375 |0.235925| 0.264075

5 || 0.4849375 0.0150625 0.416 0.084

6 |05 0 0.5 0

The significance and power can be rediitbe second and the third column; the
second is the probability th&ty obtains but the test advises against it. The third

is the probability thatH; obtains and the test against it (so, take 1 minus the value
of the third column to obtain the power). Notice a few extreme cases=ID

then the rule never advises to addt. So, a type | error cannot occur. The
significance is optimal. The power on the other hand is 0.5, because that is the
probability thatH; obtains, and we are bound to be wrong then. Now assume that
t = 9. This value is never reached; we always addpt So the significance is

0.5, the worst possible value, becausklifobtains we get an error. On the other
hand, the power is 0.
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12 Distributions

We have discussed probability spaces in the first sections. In this section we shall
summarize some results on probability distributions and introduce some more,
whose relevance have proved essential in probability theory and statistics. We
begin with the discrete spaces.

Uniform Distribution  This distribution has only one parameter, the dizef
the space. The probability of each individual outcome is the same, and/Nis 1

Binomial Distribution  This distribution has three parametepsn andk. The
outcomes are the numbers from Intcand

@59) P =(Jpa- prt

This distribution arises from the-fold product of a Bernoulli space by introduc-
ing the random variabl¥({w, wy, - - - , wn)) := YL, wi and then turning the value
range into a probability space.

Geometric Distribution The underlying space is the set of natural numbers.
This distribution has one parameter,

(1-p*
p

(260)  P(K) =

Polynomial Distribution The underlying space is the set of natural numbers.
There is one parameter, and the probabilities are

41
(261) Pl =d(a) "7

where by definition

(269 c@)=)
k=1
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Now we turn to continuous distributions. In the continuous case the distribu-
tion is defined with the help of its densiti(x), and the probabilityP((a, b]) is
defined by

b
(263)  P((a.b]) = f f(x)dx

Uniform Distribution  The space is a closed interval p]. The density is

(264)  f(x) = ﬁ

Normal Distribution  The space i®, and the distribution has two parameters,
u ando, whereo > 0. The density is

1 2 2
265 f(X) = ——e (W72
(265) ) \2ro

If © = 0 ando = 1 the distribution is calledtandard normal.
Exponential Distribution The space i®*, the space of positive real numbers,
and there is one parametgr,which must be strictly positive (i¢ > 0).

(266)  f(X) = e

Gamma Distribution The space i® and the distribution has two real parame-

ters,a andA which must both be strictly positive. The density is @
Aax(t—le—/lx
267 f(X) = —
(267) 109 ="

This uses th&—function, which is defined as follows (for alb 0).

(268) I(t):= j; ) xle*dx

The Gamma distribution arises as follows. Suppose Xhat= 1,2,---,n, are
independent random variables which are distributed exponentially with parameter
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A. Then the sunY = Y X is a gamma—distributed random variable with pa-
rametersy = nandA. It follows that the exponential distribution is a special case
of the gamma—distribution by putting= 1.

We collect some useful facts about thefunction. By the method of partial
integration,

I'(t) = f xle*dx
0

o0 1 00
+ = f xteXdx
0 t o}

_It+1)
ot

t
(269) - ?e—x

In other words
(270) TI(t+1)=(t+ 21D

It is useful to note also thdi(1) = 1, becausgoc’o eXdx=-e*y =-0+1=1.
From this it follows thatl'(n) = n!, so this function generalises the factorial.
Interesting for purposes of statistics is

I(1/2) = f X Y2e*dx
0

o0 \/ée—yz/Z

0o V2x12
(271) 1

= &

To see this, notice that we have put= (2x)¥2, so thatx = y?/2. Further,
dy/dx = (2X)7%2, or dx = V2xdy. This explains the step from the second to
the third line. Now,v% f_"; e¥’/2dy = 1, and so the remaining equations easily
follow. We can derive from these the following result.

Theorem 42 The gamma function assumes the following values.
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0 r'(n) =n!

0 I(n/2) = @

220!

Chi-squared distribution This is a special case of tHé-distribution. The
space isR*. There is a single parameter, which assumes values M. This
number is also called th#egrees of freedom The density id"—distributed with
A=1/2 anda = n/2.

Xn/2—1

V2'eT(n/2)

This distribution arises as follows. L&, i = 1,2,--- ,n be independent random
variables which are all standard normally distributed. Ther Y, X? is a
random variable, whose distributionji$ with n degrees of freedom.

(272)  x;(¥9 =

We shall explain why this is so. First, take the simplest example X2. We
want to know the distribution of. Notice thatY can have only positive values;
and that ifY = a thenX may be either v/a or —vya. So, we get the following

probability. @

(273)  P(Y < a) = 2P(X < va)

Call the probability distribution o¥ F. Then we deduce

(274) f TE)dy = —2— f ¥ 2y
o N

Now, eX/2 = /2 but what aboutix? Here we use some magic (which never-
theless is rigorous mathematics!).

= de: ﬁdx: 2xdx

(275) dy I I

From this we getlx = dy/2x = dy/2+/y, and so we have

x=Vb dx 1 (YPev2

; 2
_ £ -y/2 _
@0 [ F= [ Ve e WY
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From this we deduce now that
e—y/2
V2r Y

This is precisely the value given above. To see this, we only need to recall that
e¥2 = 1/+/& and thaf(1/n) = /.

(277)  F(y) =

Now take the next cas&, = X? + X2. Here, matter get somewhat more in-
volved. We want to get the probability thét= a. This means thg¥,| < +/aand

that|X,| < {/a-— Xf. For bothX; andX; we can either choose a positive value or
a negative one.

a 4 (V& NG L
(278) f Fo(y)dy = Zf f eX1/2e7%2dx dx
0 0 0

This is a heavy weight to lift. However, notice first theati/2e /2 = g (+%)/2 =
e¥/2. So, we are integrating¥/2 for all valuesx; andx, such thaté + x5 = vy.

If we fix y then the valuegx,, X;) are on a quarter circle, starting with, /y)
and ending with( 1y, 0). The length of the line along which we are integrating is
exactly Zr +/y/4, because the radius of the circle{§. So, we switch to the new
coordinatesy andy, whereg is the angle from the—axis to the vector pointing
from the origin to(x;, X;) (these are calledolar coordinates). Now,

(279)  x; = yycosyp, X2 = 4ysing

From this we deduce that

Xm _ 1 dXz _
(280) qy - ﬁ COSp, qy - \ycosy
So we have
a 2 y=a p=m1/2
f Fo(y)dy = - eY2dx,dx
0 y=0 J¢=0
2 y=a p=1/2 5 2
=~ eV \yd \/ycosgovy cospedy
(281) y=0 Je=0
2 y=a =n/2 2
=2 ) f : Y2 cos pdedy
y=0 Jo=

2 ) /2
== f eV2dy f cog pdy
T Jo 0
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Now we have to solvqo’r/2 cog pdyp. Partial integration yields.

/2 /2
f cog pdg = cosy sing|/? —f (- siny) singdyp
0 0

/2
= f sin? pdy
0

/2
= f (1 - co p)dy
0

/2
_ —f cog ¢dy
2 Jo

(282)

And so it follows that

/2 T
(283) f cosedy = —
0 4

We insert this into (281) and continue:

a 2an 1 a
Fa(y)dy = —f eY2dy =z (-2)eV?
fo Wdy="-7 | y =3 (-2,

T

(284) o an
=1-¢e?¥?2

The formula dfered above is (withn = 2)
yo e—y/2
2VOT(2/2) 2

For higher dimensions the proof is a bit more involved but quite similar. We
change to polar coordinates and integrate along the points of equal distance to the
center. Instead alx, i = 1,2,--- ,nwe integrate ovey, ¢;, j = 2,3,--- ,n.

(285)  x3(y) =

F—distribution There are two parameters; andn,. If X is y? with n, de-
grees of freedom anw is y? with n, degrees of freedom, then the variale=
(X/ny)/(Y/np) = (n2X)/(n.Y) has a distribution calle@—distribution with de-
grees of freedonng, ny). Its density function is

_ (C((ny +ny)/2) N ni/2 - /2)_1( E()—(r11+nz)/2
286) 109 = /2)(n2) (1,
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The mean of this distribution |§21f—2 (independent off;!) and the variance is

2n2(ng + Ny — 2)

@87 e =27, = 4)

Student (or t-)distribution Like the y?~distribution, this one has a natural
number as its sole parameter. Suppose Xfahas an F—distribution with de-
grees of freedom (h) and thatX is distributed symmetrically around zero (we
need this condition because the square root may be positive or negative)XThen
is said to have—distribution with (1, n) degrees of freedom.

Fn+1) [ 2\ ™2
‘mﬁwa(+ﬁ)

The mean of this distribution is 0 (as it is symmetric), and the variangd is

(288) ty(x):=
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13 Parameter Estimation

In this section we shall generalize the problem and illustrate the general pattern
of reasoning in statistics. The problem is as follows. Suppose you have a certain
space of outcomes and events, and what you need is the probabilities. This task
is generally speaking quite impossible to solve. A similar problem is this. You
have a random variabl€ on a space and you wish to infer its distribution. That

is to say, your space may be considered the space of real numbers (or a suitable
part thereof), and you want to establish the probability density. That is to say, you
want to establish the functiof(x) such that the probability that is found in the
interval [a, b] is

(289) f ’ f(x)dx

The way to do this is to run an experiment. The experiment gives you data, and on
the basis of this data one establishes the distribution. There are plenty of examples.
For example, we measure the voice onset time of the sounds of the English sound
[b]. Most likely, this is not a fixed number, but it is distributed around a certain
numbert, and it is expected to decrease with increasing distante We may
measure grammaticality judgments of given sentences in a scale and find a similar
pattern. We may estimate the probability distribution of words according to their
rank by taking a text and counting their frequency. And so on.

Itis to be stressed that in principle there is no way to know which probability
density is the best. We always have to start with a simple hypothesis and take
matters from there. For example, suppose we measure the voice onset times of
[b] with many speakers, and many samples for each speaker. Then we get the
data, but which density function are we to fit? Typically, one makes a guess and
says that the voice onset time is normally distributed around a certain value, so
the probability density is

- i ~(X—11)? /20
(290) f(x) %e
We shall discuss this example, as it is the most widespread. What we need to
establish is just two numberg:ando. This radically simplifies the problem. We
shall see that there are ways to estimate both numbers in a very simple way. But
we shall also see that the proofs that this is so are quiteeult (and we shall
certainly not expose them in full here).
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First let us look aj:. If the normal distribution is just the limit of the binomial
distribution then we know whatis: it is the mean. Now, suppose that we are per-
form the experimeni times with results = (s, S, -+, S,). This is oursample
Now we define the number

(291) mY:=1 s
i=1

This is called thesample mean The sample mean, as we stressed before, does
not have to be the same as the numbdfowever, what we claim that the sample
mean is an unbiased anffieient estimator of the megn This means in words
the following:

[0 under the assumption that the mean,ihe sample mean converges towards
n asngrows large.

[0 among all possible estimators, the sample mean has the least variance.

We shall prove the first claim only. We introducéndependent random variables
X1, X2, ..., Xn, representing the values for the experiments 1, 2n. It says that
if the mean isu, and we draw a sample of size we should expect the sample
mean to be:.. The sample mean X = 1/nY, X.
(292) EX) = 12 E(X) = L=

= ﬁ i) = F] N-u=u

i=1

This is because each random variable is distributed according to the same distri-
bution, and the mean js If the variance of the distribution is known, then we can
actually compute the variance ¥fas well:

_ n X;
X) = =
V=3 v(3)
n
(293) :FV(X)

It is another matter to show that the sample variance also approaches that value, so
that the estimator is shown to bfieient. We shall skip that part. Instead we shall
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offer a way to quantify the certainty with which the sample allows to estimate
We base this for the moment on the assumption that we know the vaite of

The sample meaiX is also normally distributed. The same holds ¥or.=
V(X — u)/o. This is called thexdjusted sample mean What it does is the fol-
lowing. We adjust the distributions to standard normal distributions by subtracting
the mean and dividing by the standard deviation. If we do that, the new sample
mean isY. Moreover, the distribution oY is standardized: the mean is 0 and
the variance is 1. Now, suppose we want to announce our result with cenpainty
That is to say, we want to announce numkeeendb such thaj falls within the
interval [a, b] with probability p. Based orY, we must ask for numbees andb*
such thatP(Y € [a*, b*]) > p. Once we hava® andb* we geta andb as

B a‘o

(294) a= _be L x

+ X, b + X

Vn Vn

Since the value is expected to be 0 (¥r the interval is of the form{a*, a‘], so
that

—  a'o — b'o
295 a=X-—, b=X
(295) N Y

Now, to finda*, we need to use our tables. We want to solve

(296) f ! e ¥/12dx = d(a*) - O(-a")

There is a simpler solution. Observe that the funcgofY? is symmetric around
the origin. Hence

. o
f e /2dx = Zf e ¥/2gx
_a* 0

@or) 77 - 20(@) - 9(0))
= 20(a’) - 1

(Notice that®(0) = 1/2.) Recall that we have specifigdin advance. Now we
have

(298) p=20(a’)-1
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From this we get

p+1
2

(299) (@) =

So, the procedure is therefore this. Giverwe establista* by lookup (or with
the help of the computer), using the formula (299). This we enter into formula
(295) and establish the actual confidence interval:for

Similar considerations reveal thatufis known, then the sample variance is
an dficient unbiased estimator of the varianceHowever, this is in practice not
a frequently occurring situation. Very often we need to estimate paifdo. In
this case, however, something interesting happens. The sample variance based on
uis this:

(300) (s 4Y
i=1

But now that we also have to estimatethings become more complex. First, it
again turns out that is approximated by the sample mean. Consider the random
variable for the deviation:
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Let us calculate the expected value of the variance:

Es; = %E(Z(Xi —X)Z)

— % E Z((Xi — ) - (X —ﬂ))z)
=
- % (Z(xi —,u)z) +NE((X - )% - ZE((Y - 1) ) (X _“))
i=1 =1
_ 0-2 i n
(302) :% ”‘TZMF_ZE[(X_“)[(; xi)_nﬂ])
% [no? + 0 = 2nE((X - W)X = )|
% [n0' + o2 -2nE((X - ,U)Z)]
1' no? + o —2n- 0-—2]
n n
_(n—1)?
B n

It turns out that the sample variancenigt an unbiased estimator of the variance!
If it were, the result would have beerf. This suggests the following

Definition 43 Theunbiased sample varianc®r a sample of size nis

(303) &= rll D% = X)?
i=1

Of course, calling this estimator unbiased calls for a proof. However, notice that
& = s = L2152 = o2, so this is easily established. We skip tfgagency

part. We notice only that the calculations show thatis’ only asymptotically
efficient; this means that we cannot be guaranteed fomatmat its variance of

the sample variance is the least possible value, but for gromingpproaches the

least value with any given error.

It is perhaps good to reflect on the problem of the discrepancy between vari-
ance and sample variance. As seen, the factgkisWhere does it come from?
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Statisticians like to express this in terms of degrees of freedom. Suppose you draw
a sample of siza. Independently of the variance of the distribution, the mean can

be estimated by the sample mean. Now the variance, based on the mean, is calcu-
lated straightforwardly. However, now that we have used the data once to extract
the mean, we have eliminated one degree of freedom from it. We have fixed the
mean to be the sample mean, and we have used the data to do this. One says that
we have removed one degree of freedom. To see this in more clear terms, notice
that we my also present our data as follows:

(304) S :=(5S,%,S

This looks liken + 1 data points, but the truth is that the sum of the fattrms
is actuallyns. Thus, one of the terms completely depends on the others, and can
therefore be dropped. We decide to dsap

(305) S :=(5% - ,S

Finally, when we calculated the variance, we have to add the squares of all terms
with the mean subtracted. But the contribution of the first term is guaranteed to
be 0. So, our new data contains only 1 terms rather than.

If this argumentation sounds fishy, here is another one. In probabilities terms,
the situation can also be described as follows. We must rescale our expectations of
the variance by the knowledge that the sample mean is what it is. In other words,
once the sample mean is calculated, the expectation of the variance is tilted just
because the sample isn’t drawn freely any more: it has to have to have that mean.
We have to calculate the expectation of variance on conditioruthatX. This
ought to slightly diminish the variance, and it does so by the fagtor

Finally, let us return to our estimation problem. We have to address the ques-
tion of how we can extract a confidence interval for giyef his is not easy since
we must now estimate boghando simultaneously. The solution is to consider
the value

n(X — u)?
306) T:= w/A—
(306) 2

This number is known to be distributed according to thaistribution withn —
1 degrees of freedom. This is because it is the square root of the quotient of
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n(X — u)?/o? (adjusted sample mean) and+ 1)& /0% (adjusted sample vari-
ance). These numbers are independéatandom variables with degree of free-
dom 1 andn respectively. SoT? follows the F—distribution, and@ follows the
t—distribution. Hence we can do the following. Suppose we wish to have a confi-
dence interval fop. First,t,_1(X) = t,_1(—X) so that the 10pth confidence interval

for the mean is

X = taa((1+ p)/2) \/%,Y +12((1+ p)/2) Si]

(307) x

For the variance-? we get the following interval

(n- 1§ (n- 1§ ]

308 ,
B08) @+ mi2) 2 (@- /D)
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14 Correlation and Covariance

We begin by a general question. Let us have two random varidbéeslY, one

of which, sayX we consider as observable, while the other afiés hidden. How

much information can we obtain abodfrom observing<? We have already seen
plenty of such situations. For example, we may consider space to consist of pairs
(X, y), whereX is the result of am-fold iteration of a Bernoulli experiment with

p = y. The variableX is observable, whilg is hidden. We have ways to establish
the probability of(X,y) and they allow us to gain knowledge abgurom X. A
special case of this is when we have two random variaklasdY over the same
space. There is an important number, calleddeariance which measures the
extent to whichX reveals something aboMt It is defined by

(309) cov(X,Y):=E(X-EX)(Y-EY)
We notice thatov(X,Y) is symmetric and linear in both arguments:

cov(X,Y) = cov(Y, X)
cov(X, Y1 + Y1) = cov(X, Y7) + cov(X, Ys)
(310) cov(X,aY) = acov(X,Y)
cov(Xy + X, Y) = cov(Xy, Y) + cov(Xy,Y)
cov(aX Y) = acov(X,Y)

If cov(X,Y) = 0 thenX are said to bencorrelated. Notice that random variables
may be uncorrelated but nevertheless not be independent. An examfle=is
sina andY = cosa whereQ = {0, 7/2, n} with equal probability. We fin&K(0) =
X(m) = 0, X(n/2) = 1. Y(0) = 1, Y(x/2) = 0 andY(r) = -1. Now, EX =
1/3(0+1+0)=1/3andeY = 1/3(1+0-1) = 0. Finally,Z := (X-EX)(Y-EY)
takes the following values:

Z(0)= (0-1/3)(1-0) = -1/3
(311)  Z(r/2)=(1-1/3)(0-0)=0
Z(1)= (0- 1/3)(-1-0) = 1/3

The expectation of is

(312) EZ=1/3(-1/3+0+1/3)=0
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So,X andY are uncorrelated. But they are not independent. For example,
(313) P(X=1nY=0)=1/3% P(X=1)P(Y = 0) = 1/9.

The following connects the variance and the covariance:

(314) V(X+Y)=VX+VY+2cov(XY)

For a proof note that

VX+VY+2cov(XY)=EX?—(EX)?+EY?-(EY)*+

+2EX-EX)(Y-EY)

= EX?+ 2E(XY) + EY? — (EX)? - (EY)*-
—AEYEX+2E(EX)EY)

= E(X% + 2XY + Y?)-
- (EX)?+2EX)(EY) + (EY)?

= E(X +Y)? - (E(X + Y))?

=V(X+Y)

(315)

To see this, observe thB{XEY) = EYEY = EXEY.

Additionally, thecorrelation codficient p(X,Y) is defined as

E(X-EX)(Y-EY)
YVWX-VY
We find thatp(X, X) = cov(X, X)/ V X. Howevercov(X, X) = E(X - E X)? = V X,

so thato(X, X) = 1. Furthermore, it is easily seen thgiX, —X) = —1. These are
the most extreme cases.

(316)  p(X.Y) :=

Proposition 44 -1 < p(X,Y) < 1.

Proof. | shall give the argument in the discrete case. In that case, we have to show
that

(317) |EX-EX)(Y-EY) < WX-VY
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Now,

(318) E(X-EX)= ) (X(w) - EX)p(w)

w

(319) V(X) = ) (X(@) - EX)*p(w)

w

Let R® be the real vector space ove: Introduce the vector¥, and Y. by

X (w) = X(w) - E X)/ Vp(w) andY.(w) := (Y(w) - Y(w))/ Vp(w). Then (317)

becomes

(320)

Z X (w)V.(w)

< \/Z X, (w)? - Z Y. (w)?

(320) expresses the following:

(321) X.-V.< \/oé X)) = XY

In other words, this is the well known vector identity: the scalar produdt is

the length ofx times the length of times the cosine of the angle between them.
So the correlation cdicient is the cosine between the random variables viewed
as vectors. 4

We see from the proof also thafX,Y) is 1 or—-1 just in caseY is a linear
multiple of X. Thus the correlation cdigcient dfectively measures to what degree
X andY are linearly dependent. ¥ is not linear multiple ofX, but some other
function, sayY = X?, then the correlation is some number other than +br
(We have seen above that the correlationficoent can also be 0.) Also, from a
geometrical viewpoint it becomes clear that if the correlationficment is O the
vectors need not be independent. All this says is ¥has orthogonal toY..

A pair of variables is calle@Gaussianif its distribution is as follows:

(322) P(X=xNnY=y)= 1 [(X‘ml)z_

1
2no10+1 - p? exp{— 2(1-p?) 0'%
o, XMy —my) (- mz)z]}

g1072 O'%
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This definition can be extended to vectors of random variables of arbitrary length,
but this makes the picture no clearer. It turns out that p(X,Y). If p = 0 then

the function above reduces to
_ 2 _ 2
exp{_}[(x m)°  (y-m) ]}

2 2
2 o7 o5

(3823 PX=xnY=y)=5——

We also find that

e—(X—ml)z/Z(J'i

(324) P(X=x) =

271'0'1

1 A
(325) P(Y = y) = —e—(y—ml) /207
\/_O']_

And so we obtain that

(326) PX=xnY=y)=P(X=Xx)-P(Y=Y)

Theorem 45 Let X and Y be Gaussian random variables. If X and Y are uncor-
related they are independent.
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15 Linear Regression I: The Simple Case

The following sections draw heavily on [6], which is a rather well-written book on
regression. It can obviously cover much more than can be done here, so if further
clarification is needed, the reader is advised to consult this book.

Consider an experiment where data has been collected, for example, where
one measures fuel consumption. At the same time, one has same information
available, such as taxation, state where one lives in, age, income, and so on. What
one finds is that the null hypothesis, that the consumption is simply independent of
all these variables, seems quite unlikely. One is convinced that any of the variables
might be a factor contributing the th&ect that we are measuring. The question
is: what is the precisefiect of any of the factors involved?

We consider first a simplified example: we assume that all factors enter lin-
early. So, we are assuming a law of the following form. The variables that we
are given are calle;, X,, and so on. They all come fromfterent populations.
The variable that we wish to explain is call¥d The variables whose values we
consider given are callgaredictors, the variable we want to explain in terms of
the predictors is called indexresporesponse Ideally we would like to have the
correspondence

(327) Y =Lo+pf1Xe+ X+ + BaXn

In practice, such an exact correspondence is never found. Instead, we allow for an
additional errok, so that the equation now becomes

(328) Y =PBo+piXi+BoXo+  +BaXn+ €

The condition one is that it is normally distributed and has mean 0. That is,
the density of the distribution cf is Fe‘x /s7 This last condition may appear
arbitrary, but it is a way to ensure that we do not s#ses a garbage can foffects
that we are just unable to account for.

When we have made our measurements, it is our first task to find the numbers
Bi. This is done as follows. Look at Table 1 for definitions of terms. In that table,
nis the number of repetitions of the experiments. The running index for the sums
is i, and it runs from 1 tn. We assume to have only two variablésand,
from which we get the sample poirks= (X1, Xo, -+ , Xoy @ndy = (Y1, Y2, - , ¥n)-
These give rise to the statistics shown in the table. They are easily generalised to
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Table 1: Definitions of Sample Statistics

Symbol Statistic Description

X > x/n Sample average

SXX (% — X)? Sample sum of squares
SD? SXX/(n— 1) Sample variance

SDy VY, SXX/(n—1) Sample standard deviation
SXY (% =X)(Yi—Y) Sum of cross-products

Sxy SXY/(n-1) Sample covariance

Mxy Sxy/ SD«SDy Sample correlation

the case where we have more than one variables. We discuss first the case of a
single explanatory variable. In this case, we shall have to establish three numbers:
Bo, B1 ando. It is customary to put a hat on a number that is computed from a
sample. Thus, while we assume that there is a nugjadiat we have to establish,
based on a sample we give an estimate of the number and galFor example:

g XY (SXY vz
(329) ' sxx Y sxX
Bo =Y - Bi%

These numbers estimate our dependency oh X;. We estimate the error of fit
as follows:

(330)  RSSfo.71) i= ) (% — (yo+ y1%))°
i=1

This is called theesidual sum of squares Notice that even with the true num-
berspy andp; in place ofyy, andy; we get some residual. Now that we have
estimated these numbers we compute the residual sum of squares and estimate
thus the variance of the error. However, notice that we have taken away two de-
grees of freedom, as wa have established two numbers already. Thus the following
is an unbiased estimator fot:

. RSYBo.p)
331 2. Tl
(331) ¢ —

It is immediately clear that these are just estimates and therefore we must provide
confidence intervals for them. It can be shown that the estimators are unbiased.
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Moreover 3, and; can be shown to be normally distributed, since they are linear
functions of they;, which depend on the one hand on ttyeon the other hand are
normally distributed for giverx;, by assumption on the error. Be aware, though,
that we have not claimed anything for the real parameggysnds;. To give
confidence intervals, however, we can only judge the matter on the basis of the
data, and then the true values are assumed fixed. Thug, doedepend linearly

on thex; with a given normal error. Thus, to establish the confidence intervals, we
only need to estimate the variance:

n 1
V(B1) = 0’ —<
B1) =0 SXX
. 1 %
V(Bo) = 02| = + =—
(Bo) = & (n sxx)
These are the true values. To get estimates, we replace the byés estimate:

—~ A 1
V(B1) = 6% =<
B1) =0 SXX

=~ 1 ¥
V(Bo) = 62 =
(Bo) = & (n+sxx)

Notice that rather than the true variance, we now have the estimated variance, so
must also put a hat on the variance. Knowing that the parameters are standardly
distributed, we can now give confidence intervals in the standard way, based on a
distribution with mears; and varianc&/(3;).

(332)

(333)

What we would like to know now is how good this actually is in terms of
explaining the data. There are several test that describe the significance of the
data. We shall discuss them now, including a new one, the R value.

The first test is to establish whether or not adding the varixblas an ex-
planatory variable actually was necessitated by the data. The null hypothesis is
thatX; is not an explanatory variable; formally, this is the hypothesisghat O.

Thus the test we are applying is to decided between the following alternatives,
with (NH) referring to the null hypothesis and (AH) to the alternative hypothesis:

(NH)E(YIX = X) = Bo
(AH)for someg; # 0:E(Y|X = X) = Bo + S1X
To assess this, we use the F statistic:
(SYY-RSSY1

5-2

(334)

(335) F:=
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This number is distributed according to the F-distribution witm{2) degrees of
freedom. It is thus possible to compute th@alue but also thévalue (the square
root of F) as well as the value. The latter is, as observed earlier, the probability
of obtaining a data that hastaalue which is as extreme as the one we get from
our data.

Finally, there is an additional number which is of great interest. R iwhere

RSS
(336) R:=1- SV
The numbeR? is called thecodficient of determination. It measures the strength
of prediction ofX; for the valueY. Observe that

ol (XY,

(337) = SXX.SYy ™

Thus,Ris nothing but the correlation ot andY. Since the numbers are calculated
with correction by the mean, the correlation would be Xarif o = 0. This is
hardly ever the case, though.

A final check of the goodness of the approximation is actually a look at the
residuals. By definition, these are

(338) & :=Yi—(Bo—p1X)

Again, as we are now dealing with approximations, the only thing we can actually
compute are

(339) & :=Yi - (Bo—fix)

We have required that these values are normally distributed and that the mean is
0. Both assumptions must be checked. The mean is easily computed. However,
whether or not the residuals are normally distributed is not easy to assess. Various
ways of doing that can be used, the easiest of which is a plot of the residuals over
fitted values (they should look random), or a Q-Q-plot.

We provide an example. If you load the package "alr3” you will find a data set
called forbes. txt, which describes data found that correlates the boiling tem-
perature of water as a function of the pressure. It is a simple text file, containing
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three columns, labeled as "Temp”, "Pressure” and "Lpres”. The data is loaded
into R and printed by

For <- read.table("/usr/lib/R/library/
(340) alr3/data/forbes.txt", header=TRUE)
plot(For$Temp, For$Pressure, xlab="Pressure",

ylab="Temperature")

The result is shown in Figure 1. As a next step we compute the regression line.
One way to do this is to uskn as follows.

attach(For)
(341) forl <- Im(Temp ~ Pressure)
summary (forl)

This summary will give us a host of additional information, but for the moment we
are happy just with the values of the constants. ifitercept, 3o, is estimated to

be 155296 and the factgs; to be 1902. Let us do another plot, this time inserting
the regression line. For example, with Pressure equal.tb22 get Temperature:
155296+ 1.902-22.4 = 197.9008 (against 199) and with pressure 306 we get
1553+ 30.06- 1.9 = 2124701 against the measured 2ZA.2The fit appears to be
good.

X <- c(22.4, 20.06)
y <- 155.296 + 1.902 * x
pdf (file = "forbes-wl.pdf")
(342) plot(Temp, Pressure, xlab="Pressure",
ylab="Temperature")
lines(xy.coords(x,y), col="red")
dev.off O

This produced the graphics in Figure 2. To complete the analysis, we now plot the
error, shown in Figure 3. A close look at this plot reveals that there is one point
which is actually "odd”. It should probably be removed from the set because it
seems to be erroneous. Apart from this point, however, the error is not normally
distributed. We see that it starts below the line, increases and the decreases again.
Thus, the misfit, though at first slight, is actually systematic. We shall return to
this problem.
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Figure 2: The Temperature over Pressure with Regression Line
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Figure 3: The Temperature over Pressure with Regression Line
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16 Linear Regression Il

In this chapter we shall look at the general equation
(343) Y:B0+ﬁ1X1 +ﬂ2X2+"'+ﬂan+8

As before, the condition on is that it is normally distributed and has mean 0.
That is, the density of the distribution efis \/%e‘xz/&’. This allows us to give
the equation also another form, namely

(344)  E(YIX) = Bo + BrXa + BoXa + -+ + X

This means that the conditional expectationYobased on the predictors is de-
scribed by the law above. Taking expectations makes the random term disappear.

In fact, even though it is called linear regression, it is not necessaryXthat
equals an observable. Rather, it is allowedrémsformthe explanatory variables
in any way. Here is a very simple example. The ahkaaf a rectangle is given by
the formula

(345) A=¢-h
wheref is the length andh the height. Taking logarithms on both sides we get
(346) logA =log¢+logh

This is linear law, but it involves the logarithms of length and height. In general,
any equation that involves a product of numbers—and in physics there are very
many such laws—can be turned into a linear law by taking logarithms.

This leads to the distinction betwepredictorsandterms Thepredictors are
the variables that enter the equation on the right hand sidetefims are theX;.
Terms might among other be the following:

[0 Theintercept. Rewrite (347) as
(347) Y = ﬁoXo +/31X1 +ﬂ2X2 + .- +,8an + &
whereX, is a term that always equals 1.

[0 Thepredictors.
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0 Transformations of predictors. 1fX is a predictor, a transformation would
be any function thereof, for example 1¥g XP for some numbep, €%, sinX,
and so on.

[0 Polynomialsof predictors. IfX is a predictor, then we have a term of the
formag + a; X + @ X%+ - - -.

O Interactions of predictors. As seen above, we may have terms that involve
several predictors. A pure multiplicative law, however, can be rendered
linear by taking the log on both sides.

[0 Dummy variables and factors If the result depends on a factor rather
than a number we can artificially create room for tlkee of a factor by
introducing a variable that assumes only two values, normally 0 and 1, de-
pending on the presence or absence of the factor. The factors enters into the
equation in the form of that variable.

Additionally, we can also transform the response, as we have done above.

This in fact raises two separate questions: the first, which are terms that enter
the equation; the second, which are thefioents, their mean and variance;
and third, which predictors should be used. The answer to the last question is
deferred to the next section. Here we shall first briefly address the question about
codficients and then talk about transforms.

The determination of the cficients is basically done through linear algebra.
Suppose for simplicity that the terms are the predictors. Next assume thet we have
n+ 1 data pointsX = (X, X2, - - , Xin), @s well as theg;, then we end up with a
system of equations of the following form:

(348) ¥ =Bo+B1Xi1+BoXiz+ -+ PnXin + €

This requires linear algebra to solve for the Additionally, it is possible to
estimate not only thg; but also give estimates of the variance. This allows for
the estimation of error. The details of this go beyond the scope of these lectures,
however. Luckily, this can be left to the software, in our case R. It is however
important to understand what sort of computations R performs.

Significance: the test involves the following hypotheses: the null hypothesis
that there is only an intercept, and the alternative that there is a law of the form
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(347).

(NH) E(YIX) = o

349
359 (AH) E(YIX) = Bo + BiXa + -+ B

R also gives significance values for each individual variable. The is the column
Pr(>|t|). Here the alternative is the following.

(NH) E(YIX) = Bo + B1Xs + -+ + BaXn @andps; = 0

350
( ) (AH) E(YDZ) =Bo+B1Xy + -+ + BrXy

This can lead to the following problem: if the response can be predicted equally
well from two predictors, then none of them is significant, since any one of them
can be dropped if the other is kept. (A trivial example would be measuring the
temperature both in Celsius and in Fahrenheit. This gives two numbers in each
case, but each one is as informative as the other.) The tests would predict both
predictors to be insignificant, since any of them can be dropped from the ensem-
ble. But the test only reveals what happens if one of them is dropped. After it has
been dropped, the other predictors can rise dramatically in significance.

Instead, one can also look at the cumulative sinificance. Here the alternative
is the following:

(NH)E(YIX) = Bo + 1 Xe + -+ + Bia X1

351
. (AH) E(YIX) = Bo + BiXa + - + B

These numbers are returned in theaifova is called in R. The significance is
given in the columrPr (>F). This measures whether adding the term to the terms
up to number — 1 makes any dierence. Obviously, the order in which the terms
are presented makes atdrence. IfX; is as predictive ax, j > i, then the
cumulative significance oX; is zero, because all the information has been given
already. If one were to interchange thexnwould be judged insignificant instead.

16.1 General F test

The general theory behind the significance for predictors is as follows. We assume
to have two sets of predictobs,, throughX,_q4 and X, 4.1 throughX,. We ask
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whether after hacing added the first set of predictors the second set is still needed.
We formulate a hypothesis:

(352)
(AH)Y =Bo + X1+ -+ BpXp+ &

Doing this, we compute two regression lines and get RS8th degrees of free-

dom df for the null hypothesis, and Rg$with degrees of freedom glf for the
alternative hypothesis. Clearly, R@S- RSSy > 0. If they are actually equal,

the answer is clear: the additional variables are not needed. So, we may actually
assume that the fierence is not zero. We now compute the value

_ (RSQH — RSSH)/(dfyy — dfan)
RS&H/deH
This number id=(dfyy — dfan, dfan) distributed. Hence we can apply &rtest to

determine whether or not adding the predictors is needed, and we can do so for an
arbitrary group of predictors.

(353) F

16.2 Lack of Fit

Lack of fit can be diagnosed through the residual. Let us look at a particular case,
when the conditional variance ¥fis not constant. Then, if th& assume certain
fixed values, we should under (347) assume Yhaas fixed variance. Thus,

(354)  V(Y|IX=X) =02
Assume thav/(Y|X) is however a function oE(Y|X = X), that is, assume that
(355)  V(YIX =X) = o*g(E(YIX = X))

In that case the misfit can often be corrected by transforming the response. There
are a number of heuristics that one can apply.

O If g = ax useVY as a predictor in place of.
O If g = ax? use logY in place ofY.

O If g=ax* use 1Y in place ofY. This is appropriate if the response is often
close to 0, but occasional large values occur.
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O If Yis a proportion between 0 and 1, you may use’$inY) in place ofY.

Notice that this transformation makes the mean function nonlinear!
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17 Linear Regression Ill: Choosing the Estimators

We have previously talked about information theory in connection with word
length. Now we shall engage in a more general discussion of information. The
notion of information occurs in connection with two problem areas. The firstis the
question of how much information a sample contains and the second is the cross-
entropy of probability distributions, which is needed to estimate the goodness of
fit of approximations.

The Kullbach-Leibler Divergence. Lgi andq be two probability functions
on a spac&. Then

_gP_ Pw)
@56 KL= € £ = 3 ple)logs 5
In the continuous case:

N f(x)
(357) KL(f,qg) := Iw f(X) Iogz(@)dx

Theentropy of a distribution is

(358)  H(p):= > —Inp(w)In p(w)

omega

Thecross-entropyH(p, g) is defined by

(359) H(p.q):= ) —Inp(w)ingw)

omega

Notice thatH(p) = H(p, p). The equation (356) now becomes

(360)  KL(p.9) = H(p.q) - H(p)

The KL really is a distance function. It has the following properties.

Proposition 46

KL(p,g) >0

(361)
KL(p,aq) =0 p=q
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Proof. We do only the discrete case. Fist, observe thailegx — 1, and that
equality only holds whemx = 1. Now,

p(w ))
q(w)

_Zp( )(p(w) )

KL(p,q) = Z p(w) Iogz(
(362)

_|

Itis not symmetric, though, and therefore the original definition of [4] actually
works with the symmetrified version: Kp(q) + KL(qg, p). The latter has the
properties above and is additionally also symmetric. Neither of them is a metric,
since they do not satisfy the triangle inequality.

Consider now the following question. We have a dependent varhalaied
some explanatory variable§, 1 < m, and we wish to find the best possible linear
model that predict¥ from the X;. Goodness of fit is measured in terms of the
residual sum of squares. 1fis the estimator, and we have takemeasurements,
each leading to sample@s, i < n, for the variablesX;, and to values;, i < n, for
the variableY, then

(363)  RSS():= ) (n - f(@)?
i=1

This function measures the distance of the approximating fundtitnom the
actual, observed data. We want to find the best possible funé€tiarthe sense

that the RSSY) is minimal. Unless the explanatory variables are really useless,
it is always better to add the variable, because it may contribute to improve the
residual sum of squares. On the other hand, if we hmaveeasurements and

m variables, we can always fit a polynomial of degme- 1 through the data
points, and so the residual sum of squares will be 0. Although we are dealing here
with linear models, the question that the example raises is a valid one: simply
minimising RSS will result in the inclusion of all variables however small their
contribution to the functiorf is. Therefore it is felt that even variables that make
no contribution at all in the real distribution will be included because statistically

it is likely that they appear to be predictive. To remove this decificiency, it has
been proposed to measure not only the RSS but to introduce a punishment for
having too many explanatory variables. This leads toAkaike Information
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Criterion :
2k RS

In addition to the mean RSS what enters in it is the numlzgimeasurements and
the numbek of explanatory variables. Since we want to minimise the AIC, having
more variables will make matters worse unless the RSS shrinks accordingly.

The Schwarz-Information Criterion for Gaussian models:

K RS
(365) SIC= - In(n) + In (TS)
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18 Markov Chains

So far we have been interested in series of experiments that are independent of
each other, for example the repeated tossing of a coin. Very often, however, the
result of the next experiment depends on previous outcomes. To give an example,
the probability to find a given word in a text does depend on the words that are
found around it. The probability to find an adjective is higher after a determiner,
say the wordthe than it is before it. The probability that a given letteraiss

higher afterr than it is afteri. A casual count will reveal this. These restrictions
have their reasons and have been intensely studied, here we will confine ourselves
to the abstract study of a particular type of sequential experiment, cdadkav

chain. Let the space of simple outcomes@e= {1,...,n} and suppose that we

are looking at the spac®™. The probability ofw = (wi, w,, w3, -, wy) In the

case of a product of possiblyfterent probability spaces is simply

(366)  p(w) = pr(w1)p2(w2) - - - p(wn)

Now let us suppose that the spaces are not independent but that the probabilities
of theith component are dependent on the probabilities ofithelst component
so that we get the following formula.

(367)  p(w) = pr(w1) P2(w2, w1) Pa(ws, w2) - - - Pa(wWn-1, Wn)

where thep;(x,y) are certain ca@icients. Now, we introduce random variables
X' by X(w) = wi. Then, if (367) holds, we call the sequeng€, X?,--- , X"

a Markov chain. In what is to follow, we shall focus on the case where the
outcomes are all drawn from the 46t 1}, and that thep;(x, y) do not depend on

I. Thus we can rewrite (367) to

(368)  p(w) = pu(w1) P(wz, w1) P(ws, w2) - - - Plwn-1, wn)

The random variableX' can help to express the dependency of the probabilities
of the next state from the previous one. Notice namely that

(369) pw)=[ [ PX = w)
i=1

and moreover,

(370)  P(X"*! = wi4lX = wi) = p(wi, wis1)
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Denote bypi(j) the statemenP(X' = w;) and writemy; in place ofp(i, j). Then
we derive

B71) Pl = D mgp(i)

=1

(In accordance with normal practice in linear algebra we shall write the vector
to the right and the matrix to the left. This does not makeféedince for the
theoretical results, except that rows and columns are systematically interchanged.)
In other words, the probability & happening at: + 1 is a linear combination of

the probabilities at stage In general, in a Markov process the probabilities can
depend on any prior probabilities up to stage 1, but we shall look at this simpler
model where only the previous stage matters. It is by far the most common one
(and often enough quite gicient).

Now, there are two conditions that must be placed on théicantsm; (or
equivalently, on thegi(x, y) in the general case). One is that all thefGoents are
positive. The other is the following:

n
(372) > mg=1
k=1

following. Suppose thap, (i) = 0if i # j and 1 otherwise. Then

(373) Pur1(K) =

Now we must havg’;_; p..1(k) = 1 and thereforg’}_, uj = 1.

It follows thatw; < 1 for all k < n. The reason for this restriction is the

Now, with the help of linear algebra we can massage (371) into a nicer form.
We define a matrixM := (m;)i<ij<n and a vectod, := (p.(j))i<j<n- Then the
equation becomes:

(374) ﬁy+1 =M- ﬁu
We can derive the following corollary:
(375) P.=M'-Po

So, the probabilities are determined completely by the initial probabilities and the
transition matrixM.
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Definition 47 An nx n—matrix is calledstochasticf for all i, j < nm; > 0 and
k1 Me = 1.

Let us see an example. We have a source that emits two lettanglb. The
probability ofa in the next round is 0.4 if the previous letter waand 0.7 if the
the previous letter wals. The probability that the letter in the next round is 0.6 if
the previous letter was and 0.3 if the previous letters was The matrix that we
get is this one.

04 07
(376) M _( 06 03 )

Suppose now that the initial probabilities are 0.2 daand 0.8 forb. Then here
are now the probabilities after one step:

@77y 04 07).(02)_(04.02+07.08) (064
06 03)(08)7|06-02+03-08)7 | 036

So the probabilities have changed to 0.64d@nd 0.36 fob. Let us look at the
next stage:

04 07) (064
(378) ( 0.6 03 ) ' ( 0.36 )

The next probabilities are (up to four digits precision):

04-0.64+07-036)\ (0508
0.6-0.64+0.3-036 | | 0492

(379) 0.5518 0.5345 0.5397 0.5381 0.5386
0.4482 0.4655 0.4603 0.4619 0.4614

As one can see, the probabilities are getting closer and closer and do not change
very much after several iterations. This is not always so. Consider the following
matrix.

01
(380) M:(l 0)

Here the sequence is this:

@ (o) (02) (08) (0z) (oz) (o2)
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Let n{ be the {, j)—entry of the matrixM*. Two notions will be useful in the

analysis of Markov chains. Write — | if m; > 0. Let—* be the transitive
closure of—. Theni — j iff there isk > 0 such than{?’ > 0. M is said to be
irreducible if for all i, j eitheri —»* jandj —* i. Intuitively, it means that one

can with some nonzero probability go franto j and fromj toi. Ifonly i —* j

but notj —* i then all probability mass fromwill slowly disappear (and move

e. g. intoj, but not necesaarily only into there). If neither* jnorj —* i then

can simply never reach from one to the other and the two belong to disconnected
components of the network of states.

Now, write d; for the least numbek such that the probability afat stepk is
nonzero, where the process is initialized such that onei izigh probability 1. In
matrix termsgd; := min{k > 0 : m > 0}. (If the set is empty, pul; := c0.)This is
called theperiod of i. It means that the process cannot return fiadmless than
k step, but will return irk steps (though not necessarily with probability 1). If the
greatest common divisor af, i < n, is 1 the Markov process is callegeriodic.

Lemma 48 Let M be irreducible and aperiodic. Then there is a number n such
that M" has only nonzero entries.

Let us state some abstract properties of Markov chains. First, the set of probabili-
ties are vectors of real numbetsuch that'; x, = 1. The set of these numbers

is also called am—dimensional simplexand denoted by,. The mapx+— M - X
mapsA, into itself.

A vectorXis called areigenvectorof M to theeigenvalueA if X # 0 and
(382) M-xX=2a-X

If there is a real eigenvector to the eigenvaluben there is one from the simplex
A,. For a proof leta := Y1, X, and puty := (X/@)1<i<n. ThenX;yi = 1 andy
also is an eigenvector for the same eigenvalue:

(383) M-.-y=M-al - Xx=al(1-0=21-X

Now, as the matrices in a Markov chain have the additional property of mapping
Aninto A, we know thatM - ¥ € A,, which means thaty € A. This in turn means
A=1.

Theorem 49 A stochastic matrix has real eigenvectors only for the eigenvalue 1.
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Moreover, as we shall see shortly, there can be only one eigenvectgrand

no matter where we start, we shall eventually run into that vector. One says that
the process igrgodic if in the long run (that is, for large) the probabilities
P(X" = w;) approach a valug, which is independent of the initial vector. This can
be phrased as follows. The initial probabilities form a vedtor he probabilities
P(X" = wj) for a givenn form a vector, which igM"X. We have seen above an
example of a serieBI"X which approaches a certain value; this value, we claim,
is independent okK. We have also seen an example where this is not so. The
following theorem shows why it works in the first case and not in the second.
As a first step we shall show that the powers of the matrix consist in the limit of
identical columns:

Theorem 50 (Ergodic Theorem) Assume that M is a finite stochaspcx p—
matrix which is both irreducible and aperiodic. Then there exists numiers
1<i <p,suchthaty; r = 1and for all i, j:

(384)  lim m =,

Proof. By Lemma 48 there is & such than{?’ > 0 for alli, j < p. Putp :=
min; n{? andP{ := max n{". Now
(n+1) _

Pi

= min m

_ Q
= min ,
i Z ma m. j
O (mi

min minm,;

[t e
= pgk)
Notice namely thaf,, m" = 1, sinceM" is a stochastic matrix again. Similarly

P™Y < PM for all i < p and alln. So, we need to show only that thefdrence
Pl — p® approaches 0. Put:= min,;m® > 0. Then

(no+ﬂ) (1) (o)
Z Mo My
_ n) 7o) (n) (N) (n)
(386) Zm (M, —emy HSZ m,

_ () ((No) (n) (2n)
- Z ma (majo m(zl ) + 8

(385)
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Now, m® — em{) > 0. (To see this, notice that this follows from™ > em()
which in turn is true ifm?/e > m{. Sincem{ /s > 1 by choice ofe, this

inequation therefore holds.) Hence we get
(387) " > p Z(mg‘j") —ep™) + ep® = p(1 - &) + em™

Therefore,

388) p™™" > pV(1- &) + em™

(389) PV < PIO(L— ) 4+ onf®

From this we get

(390) P —p™™ < (PO~ p)(1 - &)

This completes the proof. |

Now let us at the following matrix:
(391) M= :=lim M"

Nn—oo

This matrix consists of identical columns, each of which contain the entyies
my, -+, m,. The sum of these values is 1. Assume now thatA,. Then theith
entry of the vectoM>X is as follows:

(392) > mx, =) mx,==m ) X, =7
In other words, it := (r;); then we have

(393) M™x=7

This immediately shows that there can be only one eigenvectdd°offor the
eigenvalue 1 im\,. Now, notice also that

(394) MK = (lim MMX = lim (M"X)
n—oo nN—oo

Furthermore, ifX is an eigenvector o for the eigenvalue 1, then it is an eigen-
value ofM" for the eigenvalue 1 for eveny. For notice thaM™!X = (M"M)X =
M"(MX) = M"X, so this establishes the inductive claim that i§ an eigenvector
for M" then it is an eigenvector favi™*!. Inserting this into (394) we get

(395) M¥X=Ilim M"X=lim X=X

Nn—oo n—oo

Thus,X also is an eigenvector favl*; whenceX = 7.
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Corollary 51 Let M be a stochastip x p—matrix satisfying the conditions of the
Ergodic Theorem. Then there is exactly one eigenvetfor the eigenvalue 1 in
An. Moreover, M° = (7); and for everyy: My = 7.

The vector# is also called atationary distribution . Call a Markov chainX' :

i < n)y stationary if for all i < n: g*! = g. In other words, the probability of

X+l = w; is the same aX' = w; for all i < n. A stationary solution does not
change with time. As a result of the previous theorem we get that a homogeneous
Markov process allows for exactly one stationary chain, and the probabilities for
the elementary outcomes are the ones to which every chain eventually converges!
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19 Probabilistic Regular Languages and Hidden Mar-
kov Models

Hidden Markov models have gained popularity because of their greater flexibility
than ordinary Markov chains. We shall approach Hidden Markov Models through
a seemingly dferent object, namelgrobabilistic regular languages

Definition 52 A probabilistic regular grammaiis a quintupleS, N, A, R, P), where
N and A are disjoint sets, the settefminal and nonterminal symbolsrespec-
tively, Se N thestart symbal R c (A x N) U N U {&} a finite set, the set aiiles,
and P: R — [0, 1] a probability assignmensuch that for all Xe N

(396) Y P(X-d)=1

X—a

Although the unary rule& — B can be dispensed with, we find it useful to have
them. Aderivation is a sequencg = {p; : 1 < i < n)y of rules such that (1)
p1 = A — @ for somea, andA € N, (2) fori > 1, if p_1 = A — aBfor some
A,B e Nandae Athenp; = B— bCforsomeC e N,be Aorp; =B — &. The
string derived by is defined by induction as follows.

(397) () = A
(398) o ({po, - ,pi)) :=a@bC,  wherer({po, - ,pi_1)) = @B
The probability assigned to a derivation is

(399)  P@) = [ Plo)
i=1

For a stringz, put
(400) P@):= ) P()

o(P)=a
This defines a probability distribution ok'. Here is an example.
S — aA 1/4
S — bB 3/4
A — bB 1/3
@oh) ALy 23

B — aA 1/2
B—a 1/2
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This grammar generates the languagig){a? U (ba)*b?. The stringababa has
the following derivation:

(402) (S — aA,A —>bB,B— aA,A — bB,B— a)

The associated probability ig4-1/3-1/2-1/3-1/2 = 1/96.

Definition 53 A probabilistic language ovelA is a discrete probability space
over A.

We ask first: under which conditions does the probability distribution define a
probabilistic language? Call a nontermiateachableif the stringXA is deriv-
able. Call a nontermina groundable if there is a derivatidqrg Y, for a terminal

stringy.

Theorem 54 Let G be a reduced probabilistic regular grammar with=N{A; :
1 <i < m}. Then G defines a probabilistic language overfAall reachable
symbols are also groundable.

Proof. Let H, be the set of derivations of length Then 1= 3 ., P(p). Let

C, be the set of complete derivations of length 1. ketbe the probability of
those derivations. Then léd, be the set of derivations of length 2. We have
11 = Yen,-c, P(P). This can be generalized. L€} be the set of derivations of
lengthn and let their probabilities sum tg,. Then we have

(403) l=y1+vyo+--+yn+ Z P(o)

rﬁoeHn—Cn

The claim is established once we have shown that
@ 1=y
i=1
Put
(405) =)

Suppose that every reachable symbol is groundable. We shall show that for some
mandc < 1, (1- mp-m) < ¢(1 — m,). This will show that lim_. 7, = 1. To
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this end, letg be a derivation of lengtm ending inXA. By assumptionA is
groundable, so thah +¢ ¥, for somey of length £; and with some probability

Pz > 0. Putm := max¢; : g € Hy, — Cp} andd := maxp; : g € H, — C,}. Then
every incomplete derivation ¢, is completed with probabilitg := 1—-d. Hence
(1-mnm) < ¢(1-mp). This shows the claim. Now suppose that there is a reachable
symbol A that is not groundable. Then a derivatjgrof the stringXA cannot be
grounded. This means that the sum of the probabilities of all derivations is at most

1-P(p). 4

Definition 55 A probabilistic language is calledegular if it is generated by a
probabilistic regular grammar.

We shall explore the relation with Markov processes. The states of the Markov
process shall correspond to the letters of the alphabet, so that every sequence that
the process traverses is actually a word. First, notice that while derivation of a
regular grammar are supposed to terminate, a Markov process goes on forever.
This can be remedied as follows. We add a state the Markov process and
stipulate that the probability of leavirgjs zero (so the transition probability ef

to sis 1). Such a state is calledsink. We assume to have just one sink, and it
corresponds to thielank. (Notice that the process is not irreducible.) The Markov
process is translated into rules as follows. Each state corresponds to a letter, and
the state corresponding to the letéeiis denoted bya. If m,, = p, anda # s, we

add arule := N; — aN,. If a = sthen we add the rulge := Ns — . Finally, we

add a start symbdb. Let P° be the initial probability distribution of the letters.
Then we add ruleS — N, with probabilityP(a). We shall establish a one-to-one
correspondence with certain random walks and derivations in the grammar.

Let X = (X, X, - -+, Xn) be a random walk. Since the are letters, we may
consider it a string oveA. Its probability in the Markov process is

n-1
(406)  P'(x1) ) My.ix
i=1

Since trailings does not change the probabilities, we may just eliminate them. It
is not hard to see thathas a unique derivation in the grammar, which is

(407) <S - NX1a NX1 - XlNX27 NX2 - XZNX3, Tt NXn_;L - Xn—lNXm
Ny, = XaNs, Ns — &)

n
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The associated probability is the same. It follows that the Markov process assigns
the same probability to the string. Now we wish to do the converse: given a
regular grammar, obtain a Markov process that generates the strings with identical
probability. This turns out be lead to a generalisation. For notice that in general a
nonterminal symbol does not develop into a fixed terminal symbol.

Definition 56 A Hidden Markov Model(HMM) is a pair (S, O, M, E), such that
S is a set, the set states O the set obbservablesM = (M, a)anes @ stochastic
matrix, and E a function from S to O.

We shall as usual assume tHad{1,2,--- ,n}. The addition over the Markov
process is a map that translates states into observables, though only with a certain
probability. Random walks are walks in the set of states. However, one thinks
of the random walk as something that is hidden. Instead, one can only observe
sequenceso,, 0y, - - - , 0,U, Which are obtained by applying the m&p It is not
possible to retrieve the random walk from the image uiijesinceE may conflate
several states.

We translate a regular probabilistic grammar into a Hidden Markov model in
two steps. First, we apply some reform to our grammar to establish a slightly
differennt grammaH. Ny := (N x A) U N, Ay := A. The start symbol i§. The
rules are all rules of the forl’A — (A, a), and(A,a) — aB, whereA — aBis a
rule; all rules of the formA — Bif A — Bis a rule of the grammar, ari8l — « if
B — gis arule of the original grammar. The probabilities are assigned as follows.

>’ P(A- aB)

acA,BeN
(409)  P.((A.a) — aB) = P(A — aB)/P(A — (A a))
(410) Pu(A = B) := P(A - B)
(411) Pu(A—- ¢):=PA— &)

(408) Pu(A— (A a)):

It is easy to see that (complete) derivations in the new grammar are in one-to-
one correspondence with derivations in the old grammar. We translateo a
Hidden Markov model. Pus := Ny, O := AU {|}, where| ¢ A. E(A) := | and

E((A, @) := a. Finally, the transition probabilities amgaa.a := Pu(A — (A @),

Mg aa = Pu((A, @) — B). As before, we add a sink, and for the rdle— & we
putmga := Py(a — €). The Markov process generates random walks of the form
(S, (S, X1), X1, (X1, X2), Xp, - - -), Which by applyingk are mapped to sequences of
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the formxy|xy|Xs| - - -. They correspond to stringgX,xs of the known sort. It is
easily established that the strings are generated by the Markov process with the
appropriate probability. (First it is shown of the derivations, and since derivations
are in one-to-one correspondence, this then derives the same result for strings.)

Theorem 57 A probabilistic language is regulayfiit can be generated by a Hid-
den Markov Model with some initial probability.

In the literature, it is common to assume a broader definition of a Hidden
Markov Model. The most common definition is the following. Instead of a
functionE : S — O one simply assumes a relation probability distribution
| : W — [0,1] such that} .o 1({s,0)) = 1. This means the following. Given
a states, the output symbol is no longer unique; instead, with some probability
[ ({(s, 0)) the symbolo will appear. An even more general definition is to make the
output symbol contingent on the transition. Thus, there is a probability assign-
mentJ from pairs of states and an output state such Yhat J((s, ', 0)) = 1 for
all s, s € S. We shall show below that these definitions are in fact not more gen-
eral. Anything that these models can achieve can be done with a Hidden Markov
Model in the sense defined above.

We shall show how to convert a Markov Model of the first kind into an HMM.
The reader will surely be able to caryr out a similar reduction of the second one.
LetM = (S, O, M, Iy be a Markov model. P8’ := SxO, E({s, 0)) := 0. Further,

(412) My g 5oy -= Me s 1((S,07))

We claim thatH = (S’, O, M’, E) is a HMM and that it assigns identical probabil-
ities to all sequences of observables. To that end, we shall do the following. Let
Us = {{(s,0) : 0 € O}. We claim that

(413)  P(U9) = P5(9)

(414)  P5((s0) = 1((s 0)P5(Uy)

This follows by induction. The first equation is seen as follows.

Z Pl&((& 0))Ms (5.0

0,0€0,5€S

SRS Ml (s O)

0,00€0,5eS

(415)  P5H(U)

(416)
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(417) = D, P5lUs)mssI((s 0)
(418) = E’t;(uamgg

(419) = ZS Ph(S)Mss

(420) - ;eﬁszl(s)

The second is shown analogously. Now, the probability thatemitted in state
sis 1({s 0)) in M. In 3, it is the probability ofP ((s, 0)|Us) = 1((s,0)), and the
claim is proved.

Now we shall state and prove a much more general result, from which the
previous can easily be derived as a corollary. The idea to this theorem is as fol-
lows. Suppose we ask about the distribution of a letter at poditieri. In an
ordinary Markov model this probability only depends on the probabilities of the
letters (includinga) atk. We generalize this to allow for any kind of dependency
of presvious histories, with the only condition that the histories are classified us-
ing regular languages. That is to say, the probabilita @fith history ¢ (a word
of lengthk) atk + 1 depends on whether or nétis a member of some regular
language. This allows to state dependencies that go arbitrarily deep, for example
vowel harmony. In what is to follow we write“*(a|c) to mean that the immediate
history ofa is C; differently put, ifc has lengttk then

(421)  P'(alc) = P(ca) - P(C)
whereP(C) is the probability that the process will generatehen initialized.

Theorem 58 Let S be a finite partition of Ainto regular languages. Let H be
a function fromS x A to [0, 1] such that} .o H(L,a) = 1. Define probability
distributions P over A as follows. IE is a word of length k and € L € S then
PX(ald) := H(L, a). Then the sequence of probability distributigi®: i € N) can
be generated by a HMM.

Proof. We notice that this definition fixes also the initial distribution; as there
IS a unique languagke’ € S containinge, the initial distribution is defined as
Pl(a) := H(L’, a).

LetS ={Lj: 1 <i < p}. Assume thatl; = (Q;, A ij, Fi, 6i) is a deterministic
finite state automaton recognizing. DefineS = Q; x Q, x --- X Qp X A.
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PutO := AandE(q,q,---,qP,a) := a. Finally, the transition matrix is as
follows. Leto := (q,¢,---,9P,a) ando’ := {r,r’,---,r® b). Then if for
alli: r® = 6(q",a), thenmy, = H(L;,b), wherej is the uniquej such that
q¥ e F;. (That it is unique follows from the fact that the languages are disjoint.)
If r® £ 5;(q") for somei, thenmy, := 0. We show that this defines a stochastic
matrix. Leto” = (s, s,---,sP, c). If My # 0 then in facts?) = r® for all i < p.
Thus

(422) Z Myo = Z H(L,a) =1

Thus we have a HMM. Next we show thit"1(a|c) = H(L, a), wherec has length

k. To this end notice that i€ is the history ofa, we can recover the state as
follows: let® be the unique state such that there is a run froim g® with the
word & and letr® be the unique state such that there is a run fraor @ with the
word Ga. Then the transition is frong, o/, - -- , P, ¢) to (r,r’,--- , r®, ay, with
probabilityH(L;, &) whereL; > C, by construction. This is as it should be. -
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