UNIVERSITY OF CALIFORNIA
7 LosAngeles

The S-Parameters:

A Minimalist Approach to Syntax

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in Linguistics
by

Andi Wu

1993

Contents

1 Introduction

2 The Spell-Out Parameters

2.1 The Notionof Spell-Out, e e,
2.1.1 The Minimalist Program. vt .
2.1.2 The Timingof Spell-Out
2.1.3 TheS-Parameters ittt e e

2.2 The S(M)-Parameter and Word Order,
2.2.1 An Alternative Approachto Word Order
2.2.2 The Invariant X-bar Structure Hypothesis (IXSH)
223 Modifying the IXSH i e

2.3 Interaction of S(F)- and S(M)- Parametersc.......

2.4 SUIMIDATY . . . o it i e e e e e e e e e e e e

3 An Experimental Grammar

3.1 The Categorial and Feature Systems
311 Categories. i e e e e e
312 Featires v v v e e e e e e e e e e e
3.1.3 Features and Categories 0 v it i ittt it e
3.1.4 TheSpell-Out of Features v v i v v it e e e e e e
3.2 The Computational System e
3.2.1 Lexical Projection i i e e
3.2.2 QGeneralized Transformation,
323 Move-or e e e e e e
3.3 SUMIMATY .« v v v v e e e e e e e e e e e e e e e e e e e
4 The Parameter Space
4.1 ‘The Parameter Space of S(M)-parameters
4.1.1 AnInitial Typology . . . & . . . i it e e e e e e e e
4.1.2 Further Differentiation e
4.1.3 Some Set-Theoretic Observations
4.2 Other Parameters« o o i ittt e e e e e e e e e e
4,21 HD-Parameters i i e e e e e e e e e e e e e
42,2 Value Combinations that Predict Auxiliaries
423 S(F)-parametersottt it e e e e
43 CaseStudies i e e e e e e e
4.3.1 English: An SVO Langnage 0 .
4.3.2 Japanese: An SOV language

iii

43.3 Berber: AVSO Language e 93

. 4.3.4 German: A V2 Language PR, RS * |
4.3.5 Chinese: A Head-Final SVO Language e e e 98
4.3.6 French: A Language with Clities 100

44 SUMINATY . . v v o r et e e e e e e e e e e e e e e e e e e 101
Setting the Parameters 102
5.1 Basic Assumptions e e e e e e e 102
5.1.1 Assumptionsabout theInput 102
5.1.2 Assumptions about the Learner, 104
5.2 Setting S(M)-Parameters. ot e e e e e e 105
5.2.1 The Ordering Algorithm e e e e e e e e e e 105
5.2.2 The Learning Algorithm Lo L. 109
5.2.3 Properties of the Learning Algorithm 110
5.2.4 Learning All Languages in the Parameter Space 112
5.3 Setting Other Parameters it it 114
5.3.1 Setting HD-Parameters 0 i i i it i i 114
5.3.2 Setting S(F)-Parameters “117
5.4 Acquiring Little Languages e 120
5.4.1 Acquiring Little English 121
5.4.2 Acquiring Little Japanese 122
5.4.3 Acquiring Little Berber oo 123
5.4.4 Acquiring Little Chinese 125
5.45 AcquiringLittle French 126
5.4.6 Acquiring Little German, 128
5. SUIMIMATY . . & v o h e i it e e e e e e e e e e e e e e e e e e e 134
Parsing with S-Parameters 135
6.1 Distinguishing Characteristics of the Parser 135
6.2 A Prolog Implementation 146
621 Tree-Building o e e 147
6.2.2 Feature-Checking L e 148
6.2.3 Leaf-Attachment e 150
6.24 TheParserin Action. i i it 151
6.2.5 Alternative Implementations 160
6.2.6 Universal vs. Language-Particular Parsers 161
6.3 SUMINAIY - -« o o o e e e e e e e e e e e e e e 162
Final Discussion 163
7.1 Possible Extensions L e e e e e 163
7.2 Potential Problems e 167
7.3 Concluding Remarks o L e 172
Prolog Programs . 173
Al e e e e e e e e 173
AT e e e e e e e e e 176
A e e e e e e 179
A e e e e e e e e e e e e 180
A e e e e e e 183
B e e e e e e e 184

iv

A8 i e e e e e e e e e e e e e o« 201

Parameter Spaces 205
5 205
3 209
B . e e e 211
B.d . e e e e e e e 214
B e e e e e e e e e, 219
B e e e e 222
BT e e e e e e e 226
Partial Ordering of Parameter Settings 229
D Learning Sessions 238
Dl e e e e e e e e e 238
D e e e e e e e e e e e 240
1 242
5 245
3 252
X 256

ABSTRACT OF THE DISSERTATION

The S-Parameters;

A Minimalist Approach to Syntax
by

Andi Wa
Doctor of Philosophy in Linguistics
University of California, Los Angeles, 1893

Professor Edward P. Stabler, Jr., Chair

This thesis explores a new parametric syntactic model which is developed from the notion of Spell-
Out in the Minimalist framework (Chomsky 1992). The main hypothesis is that languages are
identical up to the point of Spell-Out: the sets of movements and morphological features are universal
but different languages can have different word orders and morphological paradigms depending on
which movements or features are visible. We can thus account for a wide range of cross-linguistic
variation by parameterizing the spell-out options.

The model proposed in this thesis has two sets of Spell-Out parameters. The values of S(M)-
parameters determine which movements occur before Spell-Out in a given language. Different set-
tings of these parameters may generate differernt word orders. The values of S(F)-parameters deter-
mine which features are morphologically realized. Different value combinations of these parameters
may produce different morphological paradigms. The values of these two sets of parameters can also
interact, resulting in such syntactic phenomena as auxiliaries, grammatical particles and expletives.

Computational experiments are conducted on a minimal version of this model in terms of lan-
guage typology, language acquisition and language processing. It is found that the parameter space
of this model can accommodate a wide variety of languages. In addition, all these languages are
found to be learnable via a linguistically motivated parameter-setting algorithm. Finaily, this new
parametric system can also lead to the construction of a parser which is more universal. The ex-
perimental results, though preliminary in nature, indicate that the line of research suggested in this

thesis is worth pursuing.

Chapter 1

Introduction

The goal of this thesis is to explore a new parametric system within the theoretical framework of
Principles and Parameters (P&P theory hereafter) which is represented by Chomsky (1981, 1982,
1986, 1989, 1992) and many other works in generative syntax. The basic assumption of this theory

is the following:

Children are endowed at birth with a certain kind of grammatical knowledge called
Universal Grammar (UG) which consists of a number of universal principles along with
a number of parameters. Each of the parameters has a number of possible values and
any possible natural language grammar results from a particular combination of those
parameter values. In acquisition, a child’s task is to figure out the parameter setting of

a given language on the basis of the sentences he/she hears in this language.

At the present stage, the P&P theory is still more of a research paradigm than a fully-developed
model. No final agreement has been reached as to what the principles are and how many parameters
are available. In this thesis, I will propose a set of parameters and investigate the consequences
of this new parametric system in terms of language typology, language acquisition and language
processing.

The syntactic model to be explored in this thesis was inspired by some recent developments
in syntactic theory exemplified by Chomsky (1992} and Kayne (1992, 1993). In his A Minimalist
Program for Linguistic Theory, Chomsky introduced the notion of Spell-Out into our theory. Spell-
Out is a syntactic operation which feeds a syntactic representation into the PF (phonetic form)
component where a sentence is pronounced. The ideal assumption is that languages have identical
underlying structures and all surface differences are due to Spell-Out. In my view, the notion of
Spell-Out applies to both movements and features. When a movement is spelled out, we see overt
movement. We see overt morphology when one or more features are spelled out. Diflerent languages
can have different word orders and different morphological paradigms if they can choose to spell out

different subsets of movements or features. Since so many cross-linguistic variations have come to

be associated with Spell-Out, it is natural to assume that most parameterization is to be found this
syntactic-operation:-‘'We need -a set- of-parameters-which determine - which movements are overt and
which features are morphologically visible. The main objective of this thesis is to propose and test
out such a set of parameters.

The new parameters to be proposed in this thesis are all related to Spell-Out. We will thus call
those parameters S-parameters. There are two types of S-parameters: the S(M)-parameters which
control the spell-out of movements and the S(F)-parameters which control the spell-out of features.
We will see that the value combinations of these parameters can explain a wide range of cross-
linguistic variation in word order and inflectional morphology. They also offer an interesting account
for the distribution of certain functional elements in languages, such as auxiliaries, expletives and
grammatical particles. In terms of language acquisition, this new parametric system also has some
desirable learnability properties. As we will see, all the languages generated in this new parameter
space are learnable. There exists a parameter setting algorithm whereby every language can have its
correct parameter value combination identified. The new parameter system is interesting in terms of
language processing as well. It will be demonstrated that the new model proposed here may enable
us to construct a universal parser which can be used to parse any language in our parameter space
by setting the parameters accordingly.

All the experiments on this parametric syntactic model were performed by a computer. The
syntactic system and the learning algorithm are implemented in Prolog. The parameter space was
searched exhaustively using a Prolog program which finds every language that can be generated by
our grammar. The learning algorithm has also been tested against every possible language in our
parameter space. It should be pointed cut here that in this thesis the term language will offen be
used in a special sense to refer to an abstract set of strings. In order to concentrate on basic word
order and basic inflectional morphology and study those properties in a wide variety of languages,
I will represent the “sentences” of a language in an abstract way which shows the word order and

overt morphology of a sentence but nothing else. An example of this is given in (1).
(1) s-[c1]l o-[c2] v-[tns,asp]

The string in (1) represents a sentence in some SOV language. The lists attached to S, O and V
represent features that are morphologically realized. The “words” we find in (1} are therefore

(a) a subject NP which is inflected for case;

(b) an object NP which is inflected for a different case; and

{c) a verb which is inflected for tense and aspect.

A language then consists of a set of such strings. Here is an example:

(@) € Sret) v-Lons,aspd,”
s-[c1] o-[c2] v-[tns,asp],
o-[c2] s~[c1] v-[tns,asp]

}

What (2) represents is a verb final language where the subject and object NPs can scramble. The
NPs in this this language are overtly marked for case and the verb in this language is inflected for
tense and aspect. Such abstract string representation makes it possible to let the computer read
strings from any “language”. In many situations we will be using the term “language” to refer to
such a set of strings. To remind ourselves that this is not a real language, we will often put this term
in quotes. The fact that we will be conducting computer experiments with these artificial languages
does not mean that we will be detached from reality, however. Many real languages will also be
discussed in connection with these simplified languages. Although the representation in (2) is fairly
abstract, it is not hard to see what natural language it may represent. As a matter of fact, most
languages generated in our parameter space can correspond to some natural languages, The results
of our experiments are therefore empirically meaningful. In the course of our discussion, we will
often furnish real language examples to illustrate those abstract languages.

The rest of this thesis is organized as follows.

Chapter 2 examines the notion of Spell-Out in detail and considers its implications for linguistic
theory. After a brief description of the Minimalist model and a critique of some existing parameter
systems, I propose an alternative syntactic model where cross-linguistic variations in word order
and morphology are mainly determined by two sets of S-parameters: S(M)-parameters and S(F)-
parameters. Arguments for this new model are given and the potential of the new system is illustrated
with examples from natural languages.

Chapter 3 describes the syntactic model to be used in the experiments. In order to implement
the new system in Prolog and use computer search to find out all the consequences of this system,
our grammatical model must be specified in every detail. Since a full specification which defines
every aspect of a syntactic model is impossible at the present stage, I will define a partial grammar
which 1s sufficient for deriving the basic word order and basic morphological system of any language.
The partial grammar includes a categorial system, a feature system, a parameter system, and a
computational system whdse basic operations are Lexical Projection, Generalized Transformation
and Move-oe. The specification follows standard assumptions in most cases, but some innovations
are incorporated.

In Chapter 4, we consider the consequences of our experimenfa.l grammar in terms of the language
typology it predicts. It is found that our new parameter space is capable of accommodating a wide

range of linguistic phenomena. In terms of word order, we are able to derive all basic word orders

(SVO, SOV, VS0, VOS, OSV, OVS and V2) as well as many kinds of scrambling. In terms of
inflectional morphology, we can:get a. variety of inflectional paradigms... Wé .also-find -parameter
settings which can account for the appearance of auxiliaries, grammatical particles and clitics. Many
value combinations in the parameter space will be illustrated by examples from natural languages.

The topic of Chapter 5 is learnability. We consider the question of whether all the “languages”
in our parameter space can be learned by setting parameters. As we will see, the languages can
be identified through the learning paradigm of Gold’s (1967) identification by enumeration if the
hypothetical settings are enumerated in a certain order. It turns out that this ordering of hypotheses
can be deduced from some general linguistic principle, namely the Principle of Procrastinate. Qur
experiments show that, with this linguistically motivated ordering algorithm, the learner can con-
verge on any particular grammar in an incremental fashion without the need of negative evidence
or input ordering.

In Chapter 6, we discuss the implications of our parametric syntactic model for language pro-
cessing. We will see that this new model can result in a parser which is more universal in nature.
The parser to be presented in this chapter is capable of processing every langnage in the parameter
space without a single change in the parser itself. The only thing that changes from language to
languages is the value combinations of parameters which the parser consults throughout the parsing
process. The reason why we are able to do so is that the new model has made tree-building and
chain-building almost invariable across languages. The only important language-particular decision
the parser has to make is where to attach the leaves,

Chapter 7 concludes the thesis by considering possible extensions and potential problems of the
present model. One extension to be discussed is how our approach can be applied to the word
order variation within DP/NP and PP. It seems that we can account for the internal structures
of these phrase using a similar approach. The main potential problem to be considered is the
depedency of our model on certain gystactic assumptions. We realize that the particular model we
have implemented does rely on some theoretical assumptions which are yet to be proved. However,
the general approach we are taking here can remain valid no matter how the specific assumptions

change. Our model can be updated as the research in linguistic theory advances.

Chapter 2

The Spell-Out Parameters

In this chapter, we examine the notion of Spell-Out and consider its implications for cross-linguistic
variations in word order and morphology. We will see that a considerable amount of word order
variation can be explained in terms of the Spell-Out of movements, while the Spell-Out of features
can account for much morphological variation. Two sets of Spell-Out parameters are proposed: the
S(M)-parameters which determine the Spell-Out of movements and the S(F)-parameters which are
responsible for the Spell-Out of features. We shall see that the parameter space created by these
two sets of parameters can cover a wide range of linguistic phenomena.

This chapter will only present a very general picture of how things might work in this new model.
The full account is given in Chapter 3 and Chapter 4. In the brief sketch that follows, we will start
by looking at the notion of Spell-Out in Chomsky (1992). This notion will then be applied first
to movement and then to infectional morphology. Finally, we will have a quick glance at how the

Spell-Out of movements and the Spell-Out of features might interact.

2.1 The Notion of Spell-Out
2.1.1 The Minimalist Program

Spell-Out as a technical term is formally proposed in Chomsky’s (1992) Minimalist Program for
Linguistic Theory (MPLT hereafter), though the notion it denotes has been around for some time.
The most salient feature of the Minimalist framework! is the elimination of D-structure and S-
structure. Chomsky reduced the levels of representation to nothing but the two interfaces: Phonetic
Form (PF), which interacts with the articulatory-perceptual system, and Logical Form (LF) which
interacts with the conceptual-intentional system. Consequently, grammatical constraints have come

to be associated with these two interface levels only. Most of the well-formedness conditions that

1 Throughout this thesis I will try to make a distinction between MPLT and the Minimalist framework. The former
refers to the specific model described in MPLT while the latter refers to the general approach to syntax initiated by
MPLT.

used to apply at D-structure (DS) and S-structure (SS) have shifted their domain of application to
either PF-and LF: In this new model;-structural descriptions (SDs) are generated: from.the:lexicon
and the SDs undergo syntactic derivation until they become legitimate objects at both PF and LF.
Given a SD which consists of the pair (x, A)%, “ ... a derivation D converges if it yields a legitimate
SD; otherwise it crashes; D converges af PF if 7 is legitimate and crashes at PF if it is not; D
converges at LF if X is legitimate and crashes at LF if it is not” (MPLT p7). The legitimacy of PF
and LF representations will be discussed later.

The derivation is carried out in the computational system which consists of three distinct opera-
tions: lezical projection (LP),® generalized transformation (GT), and move-c.

LP “selects an item X from the lexicon and projects it to an X-bar structure of one of the forms
in (3), where X = X° = [;X].” (MPLT, p30).

@ @ X
(ii) [z'X]
(iii) [z[=X]]

The generation of a sentence typically involves the projection of a set of such elementary phrase-
markers (P-markers) which serve as the input for GT.

GT reduces the set of phrase-markers generated by LP to a single P-marker. The operation
proceeds in a binary fashion: it “takes a phrase-marker K! and inserts it in a designated empty
position ¢ in a phrase-marker K, forming the new phrase-marker K*, which satisfies X-bar theory”
(MPLT, p30). In other words, GT takes two trees K and K!, “targets” K by adding ¢ to K, and
then substitutes X! for g. The P-markers generated by LP are combined pair-wise in this fashion
until no more reduction is possible.

Move-a is necessary for the satisfaction of LF constraints. Some constituents in the sentence
have to be licensed or checked in more than one structural position and the only way to achieve
this kind of multiple checking is through movement. Unlike GT which operates on pairs of trees,
mapping (K, K') into K{*, move-a operates on a single tree, mapping K to K*. It “targets K, adds
@, and substitutes « for @, where o in this case is a phrase within the targeted phrase-marker K
itself. We assume further that the operation leaves behind a trace ¢ of & and forms the chain (e, t).”
(MPLT, p31).

There is an additional operation called Speil-Out in the computational system. This operation
feeds the SD being derived into the PF component. The derivation of a sentence can consist of a
number of intermediate SDs but only one of them is actually pronounced or heard. The function of
Spell-Out is to select such an SD. According to Chomsky, Spell-Out can occur at any point in the J
course of derivation. Given a sequence of SDs in the derivation, < $D1, 85Dy, ...,SDy >, each $D;

21 stands for the PF representation and A for the LF representation.
3Chomsky did not use the term lexical projection, but the operation denoted by this term obviously exists.

representing a derivational step, the system can in principle choose to speil out any SD;,1 < i < n*.
This-notion. of..Spe_llfout_is..-iilust_r_ated»-in-,,(4_)_.-:_srhere-'-th'_e_-'-qurlyn_-b_ra,cket-'is ‘meant-to- indicate that
Spell-Out can occur anywhere along the line.

(4)

Lexicon
-

LEXICAL PROJECTION

p ~SPELL-OUT |1 o1 opERATION

MOVE-ALPHA

~

LF

However, not every SD that we choose to spell out is acceptable to the PF component. Only
those 5SDs which are legitimate objects at PF can be pronounced. In other words, the SD being fed
into PF must at least satisfy the PF requirements. Once these requirements are met, an SD can be
spelled out regardless of how many LF constraints have been satisfied.

One of the PF constraints that Chomsky has proposed requires that the input to PF be a single P-
marker. If the representation being spelled out “is not a single phrase marker, the derivation crashes
at PF, since PF rules cannot apply to a set of phrase markers and no legitimate PF representation
7 is generated.” (MPLT, p30). In other words, a given P-marker cannot be spelled out until all its
subtrees have been projected and reduced to a single tree. In normal cases, therefore, Spell-Out
must occur after the completion of LP and GT.® This leads to the conclusion that Spell-Out can

only apply in the process of move-a. So (5) is a more realistic picture of the derivational process.

(8)

Lexicon

LEXICAL PROJECTION
Elementary Phrase Markers

GT OPERATION
Single Phrase Marker

PFM MOVE-ALPHA

LF

#The derivation may proceed in more than one way. In that case, we can have different intermediate SDs depending
on which particular derivational procedure is being used.
S'We might get sentence fragments or a broken sentence if Spell-Out occurs before the completion of GT.

This diagram may seem to suggest a sequencing of the computational operations, with LP pre-
ceding GT which-in-turn-precedes move=er. Such sequencing is possible. but not.always-necessary.
The picture is intended to be a logical description of linguistic theory rather than a flow chart for
procedural computation. In actual language production and language comprehension, these com-
putational operations can be co-routined. For instance, GT operations may be interleaved with
movement operations. The real message the diagram is supposed to convey is the fact that only
single trees can be accepted by PF and the logical consequence that Spell-Out can only occur after
GT is complete.

2.1.2 The Timing of Spell-Out

Now let us take a closer look at Spell-Out which, as we have argued, normally occurs in the process of
move-c where this operation is free to apply at any time, What is the consequence of this freedom?
Before answering this question, we had better find out exactly what happens in move-a. In the
pre-Minimalist P&P model, some movements are forced by S-structure requirements and some by
LF requirements. The ones that are forced by SS constraints must take place in overt syntax.
In our current terminology, we can say that these movements must occur before Spell-Out. The
movements forced by LF requirements, however, can be either overt or covert. A typical example
is wh-movement which is forced by the scope requirement on wh-phrases. It has been generally
accepted since Huang (1982) that the scope requirement is satisfied at SS in languages like English
and at LF in languages like Chinese. This is why the wh-phrase is sentence-initial in English but
in situ in Chinese. Now that S-structure is gone, all movements are forced by LF requirements.
Consequently, every movement has become an LF movement which, like wh-movement, can be
either overt or covert. The Case Filter and the Stray Morpheme Filter (Lasnik 1981)¢ , for instance,
have become LT checking requirements and the A-movement and head movement they motivate do
not have to take place in overt syntax anymore.

It should be mentioned here that all LF requirements in the Minimalist framework are checking
requirements. An SD is a legitimate object at LF only if all its features have been checked. In
cases where the checking involves two different structure positions, movement is necessary. In fact,
movement takes place for no other reason than feature-checking in this model. The visibility of a
movement depends on the fiming of feature-checking. It is visible if the relevant feature is checked
before Spell-Out and invisible if it is checked after Spell-Out. Now the question is why some features
are checked before Spell-Out. According to Chomsky’s Principle of Procrastinate (MPLT, p43) which
requires that overt movement be avoided as much as possible, the optimal situation should be the
one where every movement is covert, There must be some other requirements that force a movement

to oceur before Spell-Out. In Chomsky’s model, overt movement is forced by a PF constraint which

BThis filter requires that morphemes designated as affixes be “supported” by lexical material at PF. It is the
primary motivation for V-to-I raising or do-support.

requires that “strong” features be checked before Spell-Out. “ ... ‘strong’ features are visible at PF
and..'weak’ features.invisible.at PF..These features-(i.e.--those-features that are visible, AWT) are
not legitimate objects at PF; they are not proper components of phonetic matrices, Therefore, if a
strong feature remains after Spell-Out, the derivation crashes.” (MPLT, p43) To prevent a strong
feature from being visible at PF, the checking of this feature must be done before Spell-Out. Once a
feature is checked, it disappears and no PF constraint will be violated. He cites French and English
to illustrate this: “the V-features of AGR are strong in French, weak in English. ... In French,
overt raising is a prerequisite for convergence; in English, it is not.” (MPLT, p43) The combined
effect of this “Strong Feature Filter” and the Principle of Procrastinate is a precise condition for
overt movement: a movement occurs before Spell-Out if and only if the feature it checks is strong.
This account is very attractive but it is far from perfect, as we will see later when we come to an
alternative account in 2.1.3.

The timing of feature-checking and consequently the timing of movement are obviously relevant
to word order. This is clearly illustrated by wh-movement which checks the scope feature. This
movement is before Spell-Qut in English and after Spell-Out in Chinese. As a result, the wh-
phrases in these two langnages have different surface distributions. Now that every movement has
the option of being either overt or covert, the amount of word order variation that can be attributed
to movement is much greater. As we will see in 2.2.2, given current syntactic assumptions which
incorporate the VP-Internal Subject Hypothesis® (Koopman and Sportiche 1985, 1990, Kitagawa
1986, Kuroda 1986, Speas and Fukui 1986, Sportiche 1990, etc.) and the Split-Infl Hypothesis®
(Pollock 1989, Belletti 1990, Chomsky 1991, etc.), it is possible to derive all the basic word orders
* (including SVO, SOV, VSO, V2, VOS, OSV and OVS) just from movement. This suggests that
movement can have a much more important role to play in word order variation than we have
previously thought. We may even begin to wonder whether all the variation in word order can be
accounted for in terms of movement. If so, no variation in the X-bar component will be necessary.
This idea has in fact been proposed in Kayne (1992, 1993) and implemented in a specific model by
Wu (1992, 1993). We will come back to this in 2.2.2.

There is another assnmption in the Minimalist theory which has made the prospect of deriving
word order variations from movement a more realistic one. This is the assumption that all lexical
items come from the lexicon fully inflected. In pre-Minimalist models, a lexical root and its in-
flectional morphology are generated separately in different positions. To pick up the morphology,
the lexical root must move to the functional category where the inflections reside. For instance, a
verb must move to Infl to get its tense morphology and a subject NP must move to the Spec of IP

to be assigned its case morphology. Without movement, verbs and nouns will remain uninflected.

"Comment added by Andi Wu

8This hypothesis assumes that every argument of a VP (including the subject) is generated VP-internally.

8This hypothesis assumes a more articulated Infl structure where different functional elements such as Tense and
Agreement count as different categories which can head their own projections.

This assumption that lexical roots depend on movement for their inflectional morphology runs iato
difficulty whenever- we-find a case- where the verb or noun is inflected ‘but no.movement seems to
have taken place. It has been generally accepted since Pollock (1989) that the English verb does not
move to the position where agreement morphology is supposed to be located. To account for the
fact that verbs are inflected for subject-verb agreement in English, we have to say that, instead of
the verb moving up, the inflectional morphology is lowered onto the verb, In the Minimalist theory,
however, lowering is prohibited. The requirement that each move-o operation must extend the tar-
get has the effect of restricting movement to raising only. At first sight, we seem to be in a dilemma:
lowering is not permitied, but without lowering the inflectional morphology will be stranded in
many cases. But this problem does not exist in the Minimalist model. In this model, words come
from the lexicon fully inflected. Verbs and nouns “are drawn from the lexicon with all of their mor-
phological features, including Case and ¢-features” (MPLT, p41). They no longer have to move in
order to pick up the inflections. Therefore, whether they carry certain overt morphological features
has nothing to do with movement. Movement is still necessary, but the purpose of movement has
changed from feature-assignment to feature-checking. The morphological features which come with
nouns and verbs must be checked in the appropriate positions. For instance, a verb must move to
T(ense) to have its tense morphology checked and a noun must move to the Spec of some agreemeni:
phrase to have its case and agreement morphology checked. These checking requirements are all LF
requirements. Therefore, the movements involved in the checking can take place either before or
after Spell-Out. The cases where lowering was required are exactly those where the checking takes
place after Spell-Out. As far as the empirical coverage is concerned, this checking story is equivalent
to the lowering story, but the former is conceptually more appealing since movement operations are

now restricted to raising only.

2.1.3 The S-Parameters

We have seen that the timing of Spell-Out can vary and the variation can have consequences in
word order. We have mentioned Chomsky’s account of this variation: a movement occurs before
Spell-Out just in case the feature it checks is “strong”. Now, what is the distinction between strong
and weak features? According to Chomsky, this distinction is morphologically based. He did not
make this claim very explicit, but the idea he wants to suggest is clear: a feature is strong if it is
realized in overt morphology and weak otherwise.l® Let us assume that there is an underlying set
of features which are found in every language. A given feature is realized in overt morphology when
this feature is spelled out. Then the PF constraint in Chomsky’s system simply says that a feature

must be checked before it is spelled out. Given the Principle of Procrastinate, a movement will

10Chomsky did not use the term “overt morphology” and used “rich morphology” instead. The agreement mor-
phology in French, for example, is supposed to be richer than that in English. In this way, French and English
can be different from each other even though both have overt agreement morphology. Unfortunately, the concept of
“richness” remains a fuzzy one. Chomsky did not tell us how the rich/poor differentiation is to be computed.

10

occur before Spell-Out just in case the morphological feature(s) to be checked by this movement is
overt:- This:bijection-between.overt:-movement and overt morphélogy is conceptually very-appealing.
If it is true, syntactic acquisition will be easier, since overt morphology and overt movement wiil be
mutually predictable in that case. The morphological knowledge children have acquired can help
them acquire the syntax while their syntactic knowledge can also aid their acquisition of morphology.
We will indeed have a much better theory if this relationship actually exists. Unfortunately, the
bijection does not seem to hold in every language.!! Counter-examples to this claim come in two
varieties. On the one hand, there are languages like Chinese where we find overt movement but
not overt morphology. As has been assumed in Cheng (1991) and Chiu (1992), the subject NP in
Chinese moves out of the VP-sheill to a higher position. But there is no morphological motivation
for this movement, for this NP carries no inflectional morphology at all. On the other hand, there
exist languages like English where we find overt morphology but not overt movement. In view of
the fact that agreement features are spelled out in English, the verbs in English are expected to
move as high as those in French.r This is not the case, as is well known. If we insist on the “iff”
relationship between overt movement and overt morphology, we will face two kinds of difficulties. In
cases of overt movement without overt morphology, the Principle of Procrastinate is violated. We
find movements that occur before Spell-Out for no reason. In cases of overt morphology without
overt movement, the PF constraint will be violated which requires that overt features be checked
before Spell-Out.?

There is an additional problem with this morphology-based explanation for overt/covert move-
ment. Apparently, not all movements have a morphological motivation. V-movement to C and
XP-movement to Spec of CP, for example, do not seem to be always morphologically related. They
are certainly related to feature-checking, but these features are seldom morphologically realized.!?
Why such extremely “weak” features should force overt movement in many languages is a puzzle.

Since the correspondence between overt morphology and overt movement is not perfect, I will not
rely on the strong/weak distinction for an explanation for the timing of feature-checking. Instead
of regarding overt morphology and overt movement as two sides of the same coin, let us assume
for the the time being that these two phenomena are independent of each other. In other words,
whether a feature is spelled out and whether the feature-checking movement is overt will be treated
as two separate issues. We will further assume that both the spell-out of features and the spell-out
of the feature-checking movement can vary arbitrarily across languages. I therefore propose that two
Spell-Out Paramelers (S-Parameters) be hypothesized. The first S-pa.rdmeter determines whether a

given feature is spelled out. The second one determines whether a given feature-checking movement

11Chomsky can of course say that the strong/weak distinction is just a higher idealization. In this sense, many
existing languages have deviated from the ideal grammar,
12 A1l the movements in the Minimalist theory involves raising. Therefore, no checking can be performed through

lowering.
13We do not want to exclude the possibility that these features can be realized in some languages or some special
visible forms, such as intonation and stress.

11

occurs before Spell-Out. Let us call the first one the S(F)-parameter (“F” standing for “feature”)
and_the_second_one.the: S(M)-parameter_(“M” standing. for. “movement”). Both parameters -are
binary with two possible values: 1 and 0. When S(F) is set to 1, the feature it is associated with
will be morphologically visible. It is invisible when S{F) is set to 0. The S(M)-parameter affects the
visibility of movement. When it is set to 1, the relevant movement will be overt. The movement
will be covert if S(M) is set to 0.

The S(F)-parameters determine the morphological paradigm of a language. A language has overt
agreement just in case the S(F)-parameter for agreement features are set to 1, and it has an overt
case system just in case the S(F)-parameter for the case features is set to 1. Given a sufficiently rich
set of features, the value combinations of S(F)-parameters can result in any inflectional system we
find in natural languages. All this is conceptually very simple and no further explanation is needed.
The exact correspondences between S(F)-parameters and morphological paradigms will be discussed
in Chapter 4 after we have defined the feature system in Chapter 3.

The S(M)-parameters, on the other hand, determine (at least partially) the word order of a
language. How this works is not so obvious. So we will devote the next section (2.2) to the
discussion of this question. In 2.3 we will consider the relationship between S(F)-parameters and
S(M)-parameters.

2.2 The S(M)-Parameter and Word Order

In this section, we consider the question of how word order variation can be explained in terms of
parameterization. We will first look at the traditional approach where word order is determined by
the values of head-direction parameiers'* (hereafter HD-parameters for short) and then examine an
alternative approach where S(M)-parameter values are the determinants of word order. The two
approaches will be compared and a decision will be made as to what kind of parameterization we

will adopt as a working hypothesis.

2.2.1 An Alternative Approach to Word Order

Traditionally, word order has been regarded mainly as a property of phrase structure. It is assumed
that different languages can generate different word orders because their phrase structure rules can
be different. In the Principles and Parameters theory, cross-linguistic variations in basic word order
are often explained in X-bar-theoretic terms. The basic phrase structure rules of this theory are all

of the following forms:
(6) XP = { X, (specifier) }

X = { X, (complement) }

14 Varjous names have been given to this parameter in the literature. The cne adopted here is from Atkinson (1992).
Other names include X-parameters (e.g. Gibson and Wexler (1993)) and heed paremeiers (e.g. Ref??)

12

The use of curly brackets indicates that the the constituents on the right-hand side are unspecified
for:linear “order.: . Which:.constituent. precedes..the:other in. a particular language-depends-on the
values of HD-parameters. There are two types of HD-parameters: the specifier-head parameter
which determines whether the specifier precedes or follows X and the complement-head parameter
which determines whether the complement precedes or follows X. (cf Jackendoff (1977), Stowell
(1981), Koopman (1983), Hoekstra (1984), Travis (1984), Chomsky (1986), Nyberg (1987), Gibson
and Wexler (1993), etc.) The values of these parameters are language-particular and category-
particular. When acquiring a language, a child’s task is to set these parameters for each category.

It is true that the parameter space of HD-parameters can accommodate a fair range of word
order variation. The parameterization can successfully explain the word order differences between
English and Japanese, for instance. However, there are many word order facts which fall outside this
parameter space. The most obvious example is the VSO order. If we assume that a direct object
is the complement of a verb and therefore must be adjacent to the verb at D-structure, we will not
be able to get this common word order no matter how the HD-parameters are set. The same is
true of the OSV order. A more general problem is scrambling, It has long been recognized that
this word order phenomenon cannot be accounted for in terms of HD-parameters alone (ref??). All
this suggests that the HD-parameters are at least insufficient, if not incorrect, for the explanation of
word order variation. To account for the complete range of word order phenomena, we need some
additional or alternative parameters.

The observation that not all word order facts can be explained in terms of phrase structure is by
no means a new discovery. Ever since Chomsky (1957), linguists have found it necessary to account
for word order variation in terms of movement in addition to phrase structure. In fact, this is one of
the main motivations that triggered the birth of transformational grammars. All the problems with
HD-parameters mentioned above disappear once movement is accepted as an alternative explanation
for word order issues. The VSO order can be derived, for example, if we assume that the verb and
the object are adjacent at D-structure but the verb has moved to a higher position at S-structure.
(Ref??) Scrambling can also receive an elegant account in terms of movement. As Mahajan (1990)
has shown, many scrambled word orders (at least in Hindi) can be derived from A and A-movements.
As a matter of fact, most linguists agree that movement is at least partially responsible for cross-
linguistic differences in word order. As has been mentioned in the previous section, some attempts
(e.g. Huang 1982) have already been made to parameterize movement options. However, movement
has seldom been considered a major source of cross-linguisitc word order variation. Until Kayne
(1992, 1993), no one had proposed that word order be explained mainly in terms of movement, let
alone a model where movement options are systematically parameterized. Why this should be the
case is not hard to explain. In the standard P&P theory, very few movements have the option of
being either overt or covert. The parameterization of movement, even if it were implemented, would

not be able to account for a sufficiently wide range of word order phenomena.

13

Things are different in the minimalist framework, as we have seen in the previous section. In
this model, every movement has the option of being either overt or covert. We have proposed that
an S(M)-parameter be associated with each of the movements and let the value of this parame-
ter determine whether the given movement is to occur before Spell-Out (overt) or after Spell-Out
(covert). The word order of a particular language then depends at least partially on the values of
S(M)-parameters.

Now that we can account for word order variation in terms of S(M)-parameters, we have to
reconsider the status of HD-parameters. Since HD-parameters by themselves are insufficient for

explaining all word order phenomena, we only need to consider two possibilities:

(7) (i) S(M)-parameters can account for all the word order facts that HD-parameters are able to

explain. In this case, HD-parameters can be replaced by S(M)-parameters.

(ii) S(M)-parameters cannot account for all the word order facts that HD-parameters are able

to explain. In this case we will need both types of parameters.

To choose between these two possibilities, we have to know wheilker all the word orders that are
derivable from the values of HD-parameters can be derived from the values of S(M)-parameters as
well. To find out the answer to this question, we must first of all get a better understanding of
the parameter space created by S(M)-parameters. We will therefore devote the next section to the

exploration of this new parameter space.

2.2.2 The Invariant X-bar Structure Hypothesis (IXSH)

If S(M)-parameters can replace HD-parameters to become the only source of word order differences,
variations in phrase structure can be assumed to be non-existent. We will be able to envision a model
where X-bar structures are invariant and all word order variations are derived from movement. Let
us call this the énvariani X-bar structure hypothesis (IXSH). This hypothesis has already been put
forward by Kayne {1992, 1993). He argues that X-bar structures are asymmetrical. In the model
he proposes, the specifier invariably precedes the head and the complement invariably follows the
head. The structure is right-branching in every langnage and linear order always corresponds to
C-command relations. According to this hypothesis, there is a single set of X-bar trees which are
found in all languages. All variations in word order are results of movement, HD-parameters are
thus non-existent.

Kayne’s proposal has been explored in Wu (1992, 1993) where the new approach is tried out in the
Minimalist framework. Wu (1993) experimented with the IXSH in a restricted model of syntax and
showed that a surprising amount of variation in word order can be derived from a single X-bar tree.
Since the results of this experiment will give us a more concrete idea as to what S(M)-parameters

can do and cannot do, we will take a closer look at this model.

14

The invariant X-bar tree that the model assumes for a simple transitive sentence is given in (8).1®

cP
VAN
SPEC &l
N\
C AgrSP
RN
SPEC AgrSi
N
AgrS TP
N\ '
T AgrOP
N
SPEC AgrOi
AN
AgrQ VP
NP vi
N
Subject b) NP
Velrb 0l:>j|ect

The set of LF requirements which force movements in this model are listed in (9).

(9) (A) The verb must move to AgrO-0 to have its ¢-features checked for object-verb agreement.
(B) The verb must move to T0 to have its tense/aspect features checked.
(C) The verb must move to AgrS-0 to have its ¢-features checked for subject-verb agreement.
(D) The verb must move to C0 to have its predication feature checked.
(E) The subject NP must move to Spec-of-AgrSP to have'its case and ¢ features checked.
(F) The object NP must move to Spec-of-AgrOP to have its case and ¢ features checked.

(G) The XP which has scope over the whole sentence or serves as the topic/focus of the

sentence must move to Spec-of-CP to have its operator feature checked.

15The tree for an intransitive sentence is identical to (8) except that the verb will not have an internal argument.
It is assumed that AgrO exists even in an intransitive sentence, though it may not be active.

15

Each of the seven movements listed above, referred to as 4, B, C, D, E, F and G, is sup-
posed to be associated: with an S-parameter-whose-value determines whether the movement. un-
der question is to be applied before or after Spell-Out. The seven S-parameters are referred to as
S(A), S(B), 5(C), 8(D), S(E), S(F), and S(G). All the parameters are binary (1 or 0) except S(G)
which has three values: 1, 0 and 1/0. The last value is a variable which can be either 1 or 0. The
overtness of movement will be optional if this value is chosen.

The application of those movements is subject to the two constraints in (10).

(10) (i) Head Movement Constraint.'®

(ii) An NP must move to an Spec-of-Agr to have its case/agreement features checked before

moving to Spec-of-C.17

It was shown that with all the assumptions given above, the parameter space consists of fifty possible
settings.!®. These settings and the corresponding word orders they account for are given in (11).

16This constraint requires that no intermediate head be skipped during head movement. For a verb to move from
its VP-internal position all the way to C, for instance, it must land successively in AgrQ, T and AgrS. This means
that, if D occurs before Spell-Out, 4, B and C' will also occur before Spell-Out. Consequently, setting S(D) to 1
requires that S(A), S(B) and S(C) also be set to 1. So there is a transitive implicational relationship between the
values of S(A), S(B), S(C) and S(D): given the order here, if one of them is set to 1, then the ones that precede it
must also be set to 1.

17 This means that $(G)} cannot be set to 1 unless S(E) is set to 1.

18With 6 binary parameters and one triple-valued one, logically there should be 192 possible settings. But most of
these settings are ruled out as syntactically impossible by the two constraints in (10)

18

Values of S-parameters Word Order

#
5(A) S(B) S(C) S _S(F} SF) S(G)

B, [N U o FO [R | - Q-- 0~ - 0- —| 8V (O) Al

2 | 1 0 0 0 0 0 0 | VS (0)

3| 0 0 0 0 1 0 0 | SV{(0)

T | 0 0 0] 0 1 0 | (0)SV

5 | 1 1 o 0 0 0 0 | VS (0)

6 | 1 0 0 0 1 0 0 _|SV(0)

i 1 0 0 0 0 1 1] (O) VS

8| 0 0 0 0 1 1 0 [S(O)V

5 | 1 1 1 0 0 0 0 | VS (0)

10| 1 1 0 0 1 0 0 |5V (0)

11| 1 1 0 0 0 1 0 | V(0)S

12 | 1 0 0 0 1 1 0 [S(O)V

13| 1 1 1 1 0 0 0 | VS (0)

14| 1 1 1 0 1 0 0 | SV (0

| 1 1 1 0 0 T 0 | V({0)S

16 | 1 1 0 0 T 1 0 | S V{0

| 1 1 1 1 1 0 0 | VS (0) .

18 | 1 1 1 1 0 1 0 | V(O)S

19| 1 1 1 0 1 1 0_|3V(0)

20 | 1 1 1 1 1 1 0 | VS (0)

21| 0 0 0 0 1 3 1T _|SV(0)

32] 0 9 0 0 1 1 1 [S(0)V,08V
23] 1 0 0 0 1 i) 1 _|[SV(0)

(1) 22 0 D 0 1 1 1 [S{O)V,05V

3% | 1 1 0 0 1 0 1 SV (O

%6 | 1 1 0 0 1 1 1 [§V(0),08V . _
27 | 1 1 1 0 1 0 1 |85V (0)

28 | 1 1 1 0 1 1 1 [SV(0),08V
29 | 1 1 1 1 1 0 1 | SV (0)

30] 1 1 1 1 1 1 1 [SV(0),0VS
311 0 0 0 0 0 9 1/0 | SV (0)

3T 1 0 0 0 0 0 1/0 | VS (0)

33| 0 0 0 0 1 0 1/0 | SV (0)

32| 0 0 0 0 0 1 /0 | (0)S V

3B | 1 1 0 0 0 9 1/0 | V(0)8

36 | 1 0 0 0 1 0 1/0 | SV (0)

7| 1 0 0 0 0 1 1/0 |(O) VS

381 0 D 0 0 1 1 1/0 |S(O)V,08V
39] 1 1 1 0 0 0 1/0 | VS (0)

0 | 1 1 i 0 1 0 1/0 | SV (0)

a1 1 1 0 0 0 1 1/0 | V(0)S5,0VS
a2 | 1 0 0 0 1 1 1/0 |S(0)V, 08V
3| 1 1 1 0 1 0 1/0 | S V (0)

| 1 1 1 0 0 1 1/0 | V(0)S,0VS
5| 1 1 0 0 1 1 1/0 |SV(0),08V
% | 1 1 1 1 0 0 1/0 | VS (0)

47 1 1 1 0 1 1 1/0 SV(0),08SV
B | 1 1 1 1 1 0 1/0 | VS (0),8V(0)
49 1 1 1 1 0 1 1/0 V(0)S,0VS
50| 1 1 1 1 1 1 1/0 [VS{0),5V(0),0VS

17

As we can see, the word orders accommodated in the parameter space include SVO, SOV, V50, V2,
VOS, O8V, and OVS. In other words, all the basic word orders seem to have been covered. The
parameter space also permits a certain degree of scrambling.

In addition to this new word order typology, Wu (1993) also showed that the S-parameters
assumed here can be successfully set. He proposed a parameter-setting algorithm which has the

following properties.'®
¢ Convergence is guaranteed without the need of negative evidence.

o The learning process is incremental: the resetting decision can be based on the current setting

and the current input string only.

¢ The resetting procedure is delermenistic; at any point of the learning process, there is a unique

setting which will make the current string interpretable.

¢ Data presentation is order-independent. Convergence is achieved regardless of the order in

which the input strings are presented, as long as all the distinguishing strings eventually appear.

It has been shown in Wu (1992) that the IXSH can also make the parser more universal. With the
assumption that languages are invariant in terms of X-bar structure and LF movements, the parser
will build the same trees and same chains no matter what language is being parsed. As a result,
the number of possible trees is greatly reduced. The only language-particular decision the parser
has. to. make.is to determine, on the basis of the S-parameter values, where in the chain (head or

19The parameter-setting algorithm is based on the Principle of Procrastinate (MPLT) which basically says “avoid
overt movement as much as possible” and Principle of Greed (MPLT) which says “do not move unless the movement
can achieve a purpose”. Following these principles, Wu assumes that all the S.parameters are set to 0 at the initial
stage, The parameter-setting algorithm is basically the failure-driven one described in Gold (1967) (induction by
enumeration}. The learner always tries to parse the input sentences with the current setting of parameters. The
setting remains the same if the parse is successful. If it fails, the learner will try parsing the input sentence using
some different settings until he finds one which resulis in a successful parse. The interesting part is the algorithm
that determines the order in which alternative settings are to be tried. Because of the existence of subset relations,
the order must not violate the Subset principle, i.e. the order should ensure that, given two languages L1 and L2, L1
a proper subset of L2, the setting for L1 must be tried before the setting for L2. The ordering algorithm is as follows:

Sort the possible settings into an ordered list where precedence is determined by the following sub-
algorithms:

i) Qiven two settings P1 and P2, P1 < P2 if S(G) is set to 0 in P1, but it is set to 1 or 1/0 in P2.
g . =
{The setting where there is no overt movement to Spec-of-C is to be tried first.) Go to (ii) only if
(i) fails to distinguish P1 and P2.

(ii) Given two settings P1 and P2, P1 < P2 if S(G) is set to 1 in P1, but it is set to 1/0 in P2. (If
overt movement to Spec-of-C is required, the setting where the movement is obligatory is to be
tried first.) Go to (iii) only if (ii) fails to distinguish P1 and P2, ‘

(iii) Given two settings P1(i) and P2(;) where i and j are the number of 1's in the respective seitings,
P1 < P2 if i< j. (The setting where there are fewer overt movements is to be tried first.) Go
to (iv) only if (1ii) fails to distinguish P1 and P2.

(iv) Order the settings freely. (All settings that remain ordered correspond to languages which are
disjoint or intersecting with one anoiher. Their learnability is guaranteed.)

The resulting order is the one given in (11), What the leamner does in cases of failure is try those settings one by one
until he finds one that works. The learner is always going down the list and no previcus setting will be tried again.

18

tail) a lexical constituent should appear. Technically, this means that the parser only has to decide
for each terminal node whether it must. contain spelléd ‘out lexical material or .not.. Consequently,
different word orders can be parsed with a single parser which is universally given. Since all the
parameterization is in the grammar, no learning will be needed in terms of parsing.

The fact that the S-parameter account of word order variation can make acquisition easier and
the parser more universal is not a surprise. In the traditional model where the syntactic tree can
vary in shape cross-linguistically, the parser and the learner may have to construct a new set of
trees for every new language. This kind of tree construction can be a costly operation in both
parsing and acquisition. X-bar theory has made tree-building easier by providing a universal set of
“prefabricated” subtrees which are to be “assembled” by the parser or learner. Nonetheless, the ways
of assembling those trees can vary so much that a different “assembly line” may have to be designed
for each different language. In Kayne’s or Wu’s model, however, the assembly line is universal. The

learner thus has much fewer decisions to make and the parser needs fewer adaptations.

2.2.3 Modifying the IXSH

So far the IXSH approach to word order has appeared to be very promising. We have an S-parameter
space which can accommodate all the basic word orders and a parameter-setting algorithm which
has some desirable properties. Many word order facts that used to be derived from the values of
HD-parameters have proved to be derivable from the the values of S(M)-parameters as well. In
addition, there are facts which are explained by the S(M)-parameters by not by HD-parameters.
What we have seen has certainly convinced us that movement can have a much more important role
to play in the derivation of word orders. However, we have not yet proved that HD-parameters can
be eliminated altogether. In other words, we not yet sure whether S(M)-parameters can account for
everything that HD-parameters are capable of accounting for.

Both Kayne (1992,1993) and Wu (1992, 1993) have assumed a base structure where the head
invariably precedes its complement. This structure is strictly right-branching. One consequence of
this is that linear precedence now corresponds to C-command relations in every case. Given two
terminal nodes A and B where A asymmetrically C-commands B, A necessarily precedes B in the
tree. In current theories, functional categories dominate all lexical categories in a single IP/CP,
with all the functional heads asymmetrically C-commands the lexical heads. This means that all the
functional heads precede the lexical heads in the base structure. This is apparent from the tree in
(8). Let us assume that a functional head can be spelled out in two different ways: (i) asanaffixona
lexical head or (ii) as an independent word such as an auxiliary, a grammatical particle, an expletive,
etc. (This assumption will be discussed in detail in 2.3.) In Case (i), the lexical head must have
moved to or through the functional head, resulting in the “amalgamation” the lexical head and the
functional head. The prefix or suffix to the lexical head may look like a functionai head preceding or

following the lexical head, but the two cannot be separated by an intervening element. Case (ii) is

19

possible only if the lexical head has not moved to the functional head, for otherwise the functional
head- would have merged:into the lexical head. Consequently, the lexical head such as a verb must
follow the functional head such as an auxiliary in a surface string, since the former must be lower
in the tree and asymmetrically C-commanded by the latter in this case. What all this amounts to
is the prediction that we should never find a string where a functional element follows the verb but
is not adjacent to it. In other words, the sequence in (12) is predicted to be impossible where F
stands for any overtly realized functional head such as an auxiliary or a grammatical particle and

X stands for any intervening material between the verb and the functional element(s).
(12) [ep - [ip . Verb X F7]

One may argue that this sequence is possible if excorporation (Koopman 1992) can occur. In excor-
poration, a verb moves to a functional head without getting amalgamated with it, and then moves
further up. In that case, the verb will end up in a position which is higher than some functional
heads. When these functional heads are spelled out as auxiliaries or particles, they will follow the

verb. But this does not account for all cases of (12). Consider the Chinese sentence in (18)2°.

(13) Ta kan-wan nei-ben shu le ma
you finish reading that book Asp Q/A
‘Have you finished reading that book? / He has finished reading that book, as you know.’

This sentence fits the pattern in (12). The aspect marker le?! and the question/affirmation particle
ma®? are not adjacent to the verb, being separated from it by a full NP. This order does not seem
to be derivable from excorporation. The aspect particle le is presumably generated in AspP (aspect
phrase) and the question/affirmation particle ma is generated in CP (Cheng 1991, Chiu 1992). In
order for both the verb and the object NP to precede le or ma, the verb must move to a position
higher than Asp® or C°, and the object NP must also be in a position higher than Asp® or C°.
This is impossible given standard assumptions.?® Therefore the sentence in (13), which is perfectly
grammatical, is predicted to be impossible in Wu’s model. This shows that there are linguistic facts
which the Invariant X-bar Structure Hypothesis is unable to account for. By contrast, these facts
can receive a very natural explanation if some HD-parameters are allowed for. We can assume that
CP and IP {including AspP) are head-final in Chinese. The verb does not move overtly in Chinese,

20This sentence is ambiguous in its romanized form, having both an interrogative reading and a declarative reading.
(They are not ambiguous when written in Chinese characters, as the two senses of ma are written in two different
characters: * " and “).

2 Fhere are two distinctive les in Chinese: an inchoative marker and a perfective marker (Teng 1973). These two
aspect markers can co-occur and they occupy distinct positions in a sentence. The inchoative /e is always sentence-final
in a statement while the perfective ¢ immediately follows the verb. The le in (13) is an instance of the inchoative
marker. The other aspect marker in (13), guo, is called an experiential marker, It indicates that the event did happen
in the past.

22Whether it is the interrogative me or affirmative ma depends on the intonation.

23The fact that ma is sentence-final might be explainable if we accept Kayne's (1993) hypothesis that the whole IP
can move to the Spec of CP. But it will not be justified for us to swallow this new hypothesis just to save this single
construction. Moveover, the position of le would still be a mystery even if this hypothesis were taken.

20

so the heads of AspP and CP are spelled out as an aspect marker and a question/affirmation marker
respectively. Since-they-are generated to the right of the whole VP, they must occur-in:sentence-final
positions.

The assumption that CP and IP can be head-final is supported by facts in other langunages. In
Japanese, for example, we find the following sentences.

(14) Yamada-sensei-wa kim-ashi-la ka
Yamada-teacher-Topic come-Hon-Past Q
‘Did Professor Yamada come?

(15) Kesa hatizi kare benkyoosi-te i-ru
this-morning 8 from study-Cont be-Nonpast
‘I have been studying since eight this morning.’

In (14), we find the question particle ka following the verb. This particle is clearly a functional
element.?* As assumed in Bach (1970), Bresnan (1972) and recently Cheng (1992) and Fukuda
(1993), question particles in Japanese are positioned in in C°. In (15), the verb is followed by i-ru
which is most likely located in T. In both cases, a functional head appears after the verb, which is
to be expected if CP and TP (which is part of IP) are head-final in Japanese. The IXSH will have
difficulty explaining this unless we assume that these particles and auxiliaries are in fact suffixes
which come together with the verb from the lexicon. But there is strong evidence that ka and i-ruare
not suffixes. We could also argue that the verb has managed to precede ka and i-ru by left-adjoining
to Tp and Cp through head movement. But in that case the verb would be in Cy and the word order
would be VSO instead of SOV. The excorporation story is even less plausible, for the verb in (14)
would have to move to a position higher than C in order to precede ka.

Arguments for the existence of HD-parameter in IP are also found in European languages. In

German, an auxiliary can appear after the verb, as we see in (16).

(16) dat Wim dat boek gekocht heeft

that Wim that book bought has

‘that Wim has bought that book.’
The clause-final heeft is located in the head of some functional projection. It is not a suffix which
can be drawn from the lexicon together with the verb.?® If we stick with the IXSH, the word order
in (16) would not be possible. For the verb to get in front of heeft, it must move to a position at least
as high as heefi. But the word order in that case would be SVO or VSO instead of SOV. However,
(16) will not be a problem if we say that IP is head-final in German.

It has become evident now that a strong version of IXSH, where no HD-parameter exists, is

very difficult, if not impossible, to maintain. We have seen that, although the S(M)-parameters can

24 A number of other particles can appear in this position, such as no, sa, yo, 20, etc. There is no doubt that they
are functicnal elements, though the exact functions they perform are controversial.
25The fact that heeft can appear in positions not adjacent to the verb is enough to show that it is not an affix.

21

explain things that HD-parameters fail to explain, there are also facts which are best explained by
HD-parameters. In other words, we have come to the conclusion that the second possibility in (7)
is more pIa.usib]e. We have seen that that the word order facts covered by S{M)-parameters and
HD-parameters intersect each other. While some facts can receive an explanation in terms of either
S(M)-parameters or HD-parameters, there are word order phenomena which can be explained by
S(M)-parameters only or HD-parameters only. The situation we have here is graphically illustrated

n (17). Therefore we need both types of parameters.

(17

A = facts covered by S(C)-parameters
B = facts covered by head-direction parameters

C = facts covered by both parameters

The next question is how to cocrdinate these two kinds of parameters in an account of word
order variation. As (17) shows, the empirical grounds covered by these two types of parameters
overlap a lot. If we keep both parameters in full, there can be too much redundancy. The number of
parameters we get will be greater than necessary. Ideally the parameter spaces of these parameters
should complement each other. There should be a new division of labor where the two kinds of
parameters duplicate each other’s work as little as possible. There are at least two ways in which

this can be tried:

(i) Let word order be derived mainly through movernent, with variations in phrase structures cov-
ering what is left out. In other words, the facts in the A and C areas of (17) are accounted for

by S(M)-parameters and those in B by HD-parameters.

(ii) Let word order be mainly a property of phrase structure, with movement accounting for what
is left out. In other words, the facts in the B and C areas of (17) are accounted for by

HD-parameters and those in A by S(M)-parameters.

The choice between the two can be based on several different considerations, The model to be
favored should be syntactically simpler and typologically more adequate. In addition, it should be
a better model in terms of language acquisition and language processing. In order to have a good
comparison and make the correct decision, we must have good knowledge of both approaches. The

approach in (ii) has already been explored extensively. This phrase-structure-plus-some-movement

22

account has been the standard story for many years. The results are familiar to almost everyone.
The approach in (i), however, has not-received enough-investigation-yet: -This is-an-area where more
research is needed. For this reason, the remainder of this thesis will be devoted mainly to the first
approach. We will examine this approach carefully in terms of syntactic theory, language typology,
language acquisition, and language processing. It is hoped that such an investigation will put us in
a better position to choose between different theoretical approaches.

Having decided on the main goal of the present research, we can now start looking into the
specifics of a model which implements the idea in (i). One of the obvious questions that is encountered
immediately is “how many S(M)-parameters are there and how many HD-parameters”. This question
will be addressed in Chapter 3 when we work on a full specification of the model. It will be proposed
that the HD-parameters be restricted to functional categories only. In particular, there will be only
two HD-parameters: a complement-head parameter for CP and a complement-head parameter for
IP. The former determines whether CP is head-initial or head-final and the latter determines whether
IP is. With the assumption that IP consists of a number of functional categories each heading its
own projection, the number of heads in IP can be more than one. Instead of assuming that each of
these functional projections has an independent parameter, I will assume that the complement-head
parameter applies to the IP as a whole. This is to say that the value of this parameter will apply
to every projection in IP. In other words, we will not consider the situation where, say, AgrP is

head-initial while TP is head-final. This decision is based on the following considerations:
(i) All previous-models incorporating HD-parameters have treated IP as a single unit,.

(i) There has been no strong evidence that IP can be “bidirectional” in the sense that some of its

projections are left-headed and some right-headed.

(iii) The organization of IP-internal structure is still a controversial issue. There has not been
enough consensus as to how many IP-internal categories there are and how they are hierarchi-

cally organized. It is risky, therefore, to attach a parameter to any specific “sub-IPs”.

Similar arguments can be made for CP which is treated as a single unit in spite of the fact that some
other CP-like categories, such as FP (Focus Phrase) (Brody 1990, Horvath 1992, etc.) and TopicP,
have been proposed.

By reducing the number of HD-parameters to two, we have not destroyed the Invariant X-bar
Structure Hypothesis completely. What are we are left with is a weaker version of the IXSH where
the directions of specifiers are still fixed and the directions of complements are fixed except those
in IP and CP. Compared with the standard model, the degree of invariability in X-bar structure
is much higher. As a result, the number of possible tree structures has decreased considerably.
The significance of this modified version of IXSH for language typology, language acquisition and

language processing will be studied in Chapters 4, Chapter 5 and Chapter 6.

23

2.3 Interaction of S(F)- and S(M)- Parameters

In this section, we come back to the relationship between overt morphology and overt movement. We
have assumed that these two phenomena are independent from each other, It has been proposed that
each feature has two S-parameters associated to it: the S(F)-parameter that determines whether
the feature is spelled out morphologically and the S(M)-parameter that determines whether the
movement responsible for checking the feature occurs before Spell-Out. It is interesting to note that
both the S(F)- and S(M)- parameters are feature-related. Given that both the S(F)-parameter and

S(M)-parameter are binary (1 or 0)*, there is a parameter space of 4 possible settings for each

feature:

(18) S(F) S(M)
(i) 1 1
(ii) 1 0
(ii) 0 1
(iv) 0 0

The question that follows is what linguistic facts these four settings are supposed to account for.
Before answering this questions, let us have a closer look at how feature-checking works.

In the Minimalist framework, we can entertain the assumption that any feature that needs to
be checked is generated if two- different places, one in a functional category and one in a lexical
category. Let us call these two instances of the same feature F-feature and L-feature respectively.
For instance, the tense feature is found in both T and V. To make sure that the two tense features
match, the verb (which carries the L-feature} must move to T (which carries the F-feature) so that
the value can be checked. If the checking (which entails movement) occurs before Spell-Out, the
F-feature and the L-feature will get unified and become indistinguishable from each other®”. As
a result, only a single instance of this feature will be available at the point of Speil-Out. If the
checking occurs after Spell-Out, however, both the F-feature and the L-feature will be present at
Spell-Out and either can be overtly realized. This assumption has important consequences. As
will be discussed in detail in Chapter 4, this approach provides a way of reconciling the movement
view and base-generation view of many syntactic issues. The checking mechanism we assume here
requires both base-generation and movement for many syntactic phenomena. Many features are
base-generated in two different places but related to each other through movement. I will not go
into the details here. The implications of these assumptions will be fully explored in Chapter 4.

Now let us examine the values in (18) and see what can possibly happen in each case.

26We will see later on that the S(M)-parameter can have a third value: 1/0.
27 This is similar to emalgamaiion where the functional element becomes part of the lexical element.

24

In (18(i)), both the S(F)-parameter and the S(M)-parameter are set to 1. This means both the
feature-itself-and-the-movement that checks this feature will be overt.. .In thi§ case, thé.F-feature
and L-feature will become one and be spelled out on the lexical head in the form of, say, an affix. In
addition, this lexical item will be in a position no lower than the one where the F-feature is located.
If the features under question are agreement features, for example, we will see an an inflected verb
in I/ AgrS or a higher position, with the inflection carrying agreement information. This seems to be
the “normal” case that occurs in many languages. One example is French where the verb does seem

to appear in I/AgrS and it has overt morphology indicating subject-verb agreement (see (19)).28

(19) Mes parenis parlent souveni espagnol
my parents speak-3P often Spanish
‘My parents often speak Spanish.’

If the feature to be considered is the case feature of an NP, this NP will move to the Spec of IP/AgrP

and be overtly marked for case. Japanese seems to exemplify this situation, as can be seen in (20).%°

(20) Tuaroo-ga Hanako-o yoku mi-ru

Taroo-nom Hanako-ace often see-pres

“Taroo often sees Hanako’
If the feature to be checked is the scope feature of a wh-phrase, the wh-phrase will move to the Spec
of CP, with the scope feature overtly realized in some way. English might serve as an example of
this case, though it is not clear how the scope feature is overtly realized. S

In (18(ii)), the S(F)-parameter is set to 1 but the S(M)-parameter is set to 0. This means

that the feature must be overt but the movement that checks this feature must not. Since the
checking movement takes place after Spell-Out, both the F-feature and the L-feature will be present
at the point of Spell-Out and at least one of them must be overtly realized. There are three logical
possibilities for spelling the feature out: (a) spell out the F-feature only, (b) spell out the L-feature
only, or (c) spell out both. (a) and (b) seem to be exemplified by the agreement/tense features in
English. The English verb does not seem to move to I before Spell-Out. Since the features appear
both in I and on the verb, we can pronounce either the L-features or the F-features. When the L-
features are pronounced, we see an inflected verb, as in (21). When the F-features are pronounced,
we see an auxiliary, as in (22) where does can be viewed as the overt realization of the I-features.
(In other words, Do-Support is a way of spelling out the head of IP.) The third pessibility where the

feature is spelled out in both places does not seem to be allowed in English, as (23) shows.

(21) John loves Mary.

(22) John does love Mary.

28The fact that the verb precedes the adverb souvent in this sentence tells us that the verb has moved to I/ AgrS.
29We can assume that the subject NP in this sentence has moved to the Spec of AgrSP and the cbjeci has moved
to Spec of AgrOP. This is supported by the fact that the adverb yoku is preceded by both NPs.

25

(23) * John does loves Mary.

In Swedish, however, “double” spell-out seems to be possible. When a whole VP is fronted to first
position, which probably means that the verb did not have a chance to undergo head movement
to T(ense), the tense feature is spelled out on both the verb and an auxiliary which seems to have
moved from T to C. This is shown in (24).

(24) Oeppnade doerren gjorde han
open-Past door-the do-Past he
‘He opened the door.’

The value in (18(ii)) can also be illustrated with respect to case/agreement features and the scope
feature. It seems that in English the features in Spec of IP/AgrSP must be spelled out. When overt
NP movement to this position takes place, the features appear on the subject NP. In cases where no
NP movement takes place, however, Spec of AgrSP is occupied by an expletive (as shown in (25))

which can be viewed as the overt realization of the case/agreement features in Spec of AgrSP.
. (25) There came three men.

The situation where the scope feature is overtly realized without overt wh-movement is found in
German partial wh-movement. In German, wh-movement can be either complete or partial, as
shown in (26), (27), (28) and (29).

(26) [mit wem | glaubst dul, t; dass Hans meint{, t; dass Jakob t; gesprochen hat]]

with whom believe you that Hans think that Jakob talked has
(27) was; glaubst du [, [mit wem); Hans meint{, t; dass Jakob t; gesprochen hai]]

WHAT believe you with whom Hans think that Jakob talked has
(28) was; glaubst du {, was; Hans meint [, [mit wem)i Jakob t; gesprochen hat]]

WHAT believe you WHAT Hans think with whom Jakob talked has

29) *was; glavbst du [,, dass Hans meint [, mit wem |; Jakob t; gesprochen hai
p p
WHAT believe you that Hans think with whom Jakob talked has
‘With whom do you believe that Hans thinks that Jakob talked?’

These four sentences have the same meaning but different movement patterns. In (26) the wh-phrase
._ (mit wem) moves all the way to the matrix CP. In (27) and (28), the wh-phrase also moves, but
only to an intermediate CP. The Spec(s) of CP(s} which mit wem has not moved to are filled by
was which is usually called a wh-scope marker. (29), which is ungrammatical, is identical to (28)

except that the specifier of the immediately embedded CP does not contain was. It seems that the

26

into consideration, that some of these settings can generate non-empty languages. But we will first
investigate a parameter space without S(F)-parameters.

The requirement that an NP must move to an Agrspec before moving to Cspec can alsc make
certain value combinations produce an empty language. Consider the settings for S(M(specl)),
S(M(spec2)) and S(M(cspec)). If S(M(cspec)) is set to 1, Cspec must be filled at Spell-Out. To
satisfy this requirement, some XP must move there. Suppose that the only XP that can move to
Cspec in a particular sentence is the subject NP or object NP. When S(M(c¢spec)) is set to 1, at least
one of them must move to Cspec. Since no NP can move there unless it has moved to an Agrlspec
or Agr2spec, NP movement to these positions must not be blocked. But consider what will happen
if we have the setting in (95).

(95) [. . .0 0 1]

In (95), S{M(cspec)) is set to 1 while both S(M(specl)) and S(M(spec2)) are set to 0. On the one
hand, some NP is required to move overtly to Cspec; on the other hand, however, no NP is allowed
to move Agrlspec or Agr2spec before Spell-Out. Since no NP can move to Cspec unless it has moved
to Agrlspec or Agr2spec, the required movement is blocked. The derivation thus crashes and no
string is generated.

It turns out that, with the two constraints on movement discussed above and our temporary
restriction of A-movement to NPs only, the number of value combinations which can generate lan-
guages other than the empty one is 156 rather than 864. These settings and the corresponding sets
of strings they generate are shown in Appendix B.1l. In this list, each entry consists of a vector of
S(M)-parameter values and the set of strings generated with this value combinations. We call each
vector a setting and each set of strings a “language”.

If we examine these setting-language pairs carefully, we will find that the correspondence between
settings and “languages” is not one-to-one. For instance, both the setting in #1 ({0 0 0 0 0 0 0
0]) and theonein #3 ([0 0 0 0 0 1 0 0]) can generate the language [s v, s v o].? In fact, the
correspondence is many-to-one in most cases. We see in Appendix B.1 that many settings generate
identical languages. The language [v s, v s o], for instance, can be generated with 14 different
settings including #4, #8, #12, #16, #20, etc.. There are 158 settings in the list, but the number
of distinet languages that are generated is only 31. These 31 languages and their corresponding
settings are listed in Appendix B.2. The significance of such many-to-one correspondences will be
discussed in 4.1.2.

Looking at the languages listed in Appendix B.2, we find that our current parameter space
is capable of accommodating all the basic word orders: SV(O) (#1), S(O)V (#4), VS(0) (#2),
V(0)S (#8), (O)SV (#3), and (O)VS (#5). We also find a V2 language (#11). One of the settings

21t is important to note the distinction between strings and languages. A language comprises a set of strings, and
two languages are identical only if they have exactly the same set of strings. For instance, [sv,svoland[sv,s0
v] are not the same language in spite of the fact they both contain string *s v".

71

with which a V2 language can be generated is[1 1 1 1 1 1 1 1) where every movement is overt.
According to this setting; the verb must move overtly all the way to C0, the NPs to their respective
Agrspecs, and one of the NPs must move further on to Cspec. In an intransitive sentence, there
is only one NP and this NP must move to Cspec. The resulting word order is SV. In a transitive
sentence, either the subject NP or object NP can fill Cspec. We have SVO when the subject is in
Cspec and OVS when the object is. This may well be what is happening in Gerrnan root clauses.
If so, the German sentences in (96(a)) and (97(a)) will have the structures in (96(b)) and (97(b))

respectively.

(96) a. Der Mann sah den Hund
the(nom) man saw the(acc) dog
“The man saw the dog.’

b, [ep Der Mann; (o1 [c sahy] (agrip €i [agri-1. - - [agr2p den Hundy lagra—1 [ag72 €5} [up €1 &5 e J]]]]]]
(97) a. Den Hund sah der Mann

the(acc) dog saw the(nom) man
“The dog, the man saw.’

. b. [cp Den Hund; [s [sah;] [agr1p der Mann; [agr1-1. . . [agrzp €x [agrz-1 [agr2 ;] [up &: €5 €x]]]1]]]]

In addition to basic word orders and V2, the current parameter space also allows for a considerable
amount of scrambling. Scrambling is a general term referring to word order variation in a single
language, usually the variation that results from clause-internal movements of maximal projections.
In our present discussion, a “language” will be considered a scrambling one if it has more than one
way of ordering S, V and O. For example, [o8v, sv, svo]and[sov, osv, sv]arescrambling
languages.

We can see that many of the “languages” in Appendix B.2 are scrambling languages. We do not
know whether each of those langnages is empirically attested, but at least some of them are. Let us
take a look at the languages in #9, #16 and #30.

The “language” in #9, [so v, os v, s v], seems to be exemplified by Japanese and Korean.
They are verb-final language where the subject and object can be put in any order as long as they

precede the verb. The Japanese sentences in (98) and (99) illustrate this.

(98) Taros-ga Hanako-o nagui-ia
Taroo-Nom Hanako-Ace hit-Past
‘Taroo hit Hanake’

(99} Hanako-o Taroo-ga nagul-ta
Hanako-Ace Taroo-Nom hit-Past
. ‘Taroo hit Hanako’

The “language” in #16 is[os v, sov, sv, s v o] where the subject must precede the verb

but the object can appear anywhere in the sentence. Chinese seems to be an example of this, as we
can see in (100), (101) and (102).

72

(100) wo jian guo neige ren
I see Perf that. person
‘T have seen that person before.

(101) we neige ren jian guo
I that person see Perf
‘T have seen that person before.

(102) neige ren wo jian guo
that person 1 see Perf
“That person, I have seen before.’

The “language” in #30 has very extensive scrambling, permitting all the following orders for a
transitive sentence: [ovs, svo, sov, osv, vso]. All those orders are found in Hindi. For
instance, the Hindi sentence in (103) has the alternative orders in (104)-(108).

(103) raem-ne kelaa khaayaa (SOV)
Ram-Erg banana ate
‘Ram ate a banana.’

(104) raam-ne khaayaa kelaa (5VO)
(105) kelea ream-ne khaayaa (OSV)
(106) kelea khaayaa ream-ne (OVS)
(107) khaayaa raam-ne kelaa (VSO)
(108) khaayaa kelaa raam-ne (VOS)

The only order which is found in Hindi but not in #30 is VOS,

All the languages mentioned above — Japanese, Korean, Chinese and Hindi — have been described
as “non-configurational” in the literature (77ref). They are supposed to be problematic for any strong
version of X-bar theory where phrasal projections are assumed to be universal. This problem does
not seem to exist in our present model. As we have seen, all the scrambled orders can be derived
from a single configuration if some A and A movements are allowed to be optional at Spell-Out.

This is in fact one of the current views of scrambling (e.g. Mahajan 1990).

4.1.2 Further Differentiation

One thing in Appendix B.2 that may cause concern is the fact that a single language can be derived
with many different parameter settings. Those settings generate weakly equivalent languages® which

cannot be distinguished from each other on the basis of surface strings. One reason why we cannot

3Two languages are weakly equivalent if they have identical surface strings but different grammars.

73

distinguish them is that many of the movements are string-vacuous. For example, in cases where the
subject NP has moved- to Agrlspec-while the object NP remains in situ, there is no way of telling
from an SVO string whether the verb is in Agrl-0, T0, Asp0, Agr2-0 or its VP-internal position.
There is simply no reference point by which the movement can be detected. But this seems to be
an accidental rather than an intrinsic property of the current model. The apparent indistinction
between different settings is due at least in part to the artifact that only nouns and verbs have been
taken info consideration in our grammar so far. But nouns and verbs are not the only entities in
natural languages. There are other constituents which may serve as reference points for movement
by virtue of the fact that some movements have to go “over” them. It has been widely assumed since
Pollock (1989) that negative elements and certain adverbs are constituents of this kind. Once these
reference points appear in the string, many movements will cease to be string-vacuous and many
otherwise indistinguishable langnages/settings will become distinct from each other. To illustrate
this, I will introduce just one reference point into our grammar: an adverb of the “often” type. For
easy reference I will simply call it offen, meaning an adverb in any language which means “often”.
Furthermore I will assume that this temporal/aspectual adverb is a modifier of T and therefore

left-adjoined to T1. The partial tree in (109) shows the part of the structure where ofien appears.

Agri-1
Agri-0 TP
T

1

/N

often Ti

N\

TO AspP
(109) A

In terms of linear order, ofien appears between Agrl-0 and T0. This position can serve as a diagnostic
for verb movement from T0 to Agrl-0 or NP movement to Agrlspec, both of which relates a position
following often to a position preceding often. Any verb before often must have moved to Agrl-0 or
higher and any NP before it must be in Agrlspec or a higher position. Given a string such as 0 §
often V, for instance, we can tell that O is in Cspec and 5 in Agrlspec, since these are the only two

NP positions before often. Moreover, we know that the verb cannot be in C0 or Agri-0.

74

Appendix B.3 shows what the setting-language correspondences will be if the position of often
is taken into consideration. The number of value combinations that produce non-empty languages
did not change.* There are still 156 settings. However, the number of distinct languages that are
generated with these settings has increased from 31 to 66. The addition of often into the strings
has helped to differentiate many “languages” that are otherwise indistinguishable from each other.
Take SVO “languages” as examples. In Appendix B.2, there is only a single SVO language which
can be generated with 32 different settings. In Appendix B.3, however, four SVO languages are
differentiated:

#1 [(often) s v, (often) s v o] (2 settings)
#2 [s (often) v, s (often) v o] {20 settings)
#12 [s v (often), s v (often) o] (8 settings)
#20 [s (often) v o, 3 (often) v, (often) s v, (often) s v o\] (2 settings)

We are now able to distinguish between English and French which seem to correspond to #2 and
#12 respectively, In English ofien precedes the verb while it follows the verb in French, as shown
in (110) and (111).

(110) John often visits China.

(111) Jean wvisile souvent la Chine
John visits often China
‘John often visits China.’

We can expect that, with more reference points (such as Neg and other adverbs) taken into account,
even finer differentiation is possible. However, it is neither likely nor necessary that we should have
enough reference points to differentiate every setting from every other setting. There seems no
principled reason against having more than one way of generating the same language, as long as all
the different languages are identifiable. The existence of weakly equivalent languages may just be a
fact of life, |

A natural question to ask at this moment is whether the reference points that have been assumed
are always reliable. So far we have assumed that constituents such as Neg and adverbs do not move,
However, this assumption does not seem well supported, although it has been around since Pollock
(1989). The adverb often, for instance, does seem to move around in English. It can appear clause-

initially as in (112), clause-medially as in (113), and clause-finally as in (114).
(112) Often she plays the piano.

(113} She often plays the piano.

47To have a fair comparison, we have kept the restriction that only NPs can move to Cspec. The number of settings
will be greater if the AdvP offen is allowed to move to Cspec as well. If Cspec can be filled by an AdvP, as it should
be, then a non-empty language can be generated even if both S(M(specl)) and S{M(spce2)) are set to 0.

75

(114) She plays the piano very ofien.

In (112), often seems to have moved to Cspec. This is possible if S(M(cspec)) is set to 1 or 1/0
in English. To account for (114), we have to assume that ¢fien may be adjoined to either T1 or
V1 (i.e. it can be either a T modifier or V modifier). The order in (114) can be derived if offen is
attached to V1 while the verb has moved to TO and the object NP to Agr2spec. This shows that
the so called “reference points” may not always serve as a good indicator for the movement of other
constituents. There might be a canonical position for each adverb and only this position serves as
a reference point. But how a certain position can be identified as being canonical by the learner is

a question that remains to be answered.

4.1.3 Some Set-Theoretic Observations

In this section, we consider the set-theoretic relations between the “languages” in our parameter
space. We will also consider the parameter settings that are responsible for those relations. The
languages to be examined will be those in Appendix B.2. There are only 31 distinct languages there
and it does not take long to compute all the relations between those languages. (The Prolog program
which does the computation is in Appendix A.2.) The number of languages we will have when all
other parameters are taken into consideration is much greater than 31, but the properties we find in
this small number of languages will hold when the parameter space is expanded with the addition
of other parameters. ‘

The set-theoretical relations can be considered in a pair-wise fashion. We take each of the 31
languages and check it against each of the other 30 languages.5 The total number of pairs we get this
way is 465 (30*31/2). There are three possible set-theoretic relations that can hold between the two
languages in each pair: disjunction, intersection and proper inclusion.® Two languages are disjoint
with each other if they have no string in common. An example of this is the relation between #1 [
sv, svoland #2[vs, vso] Two languages intersect each other if they are not identical but
have at least one string in common. For instance, #1 [sv, svo]and #4 [s o v, s v] intersect
by virtue of the fact that (i) each of them has a string that the other does not have ((s vo]isin
#1 only and [s o v] in #4 only.), and (ii) both of them contain the the string [s v]. A language
L1 is properly included in another language L2 if the strings generated in L1 forms a proper subset
of those generated in L2. This relationship is found, for example, between #1 [s v, s v o] and
#10[osv, sv, svo] Each string in #1 is in #10, but not vice versa. Our computation shows
that the subset relationship holds in 162 of the 465 pairs. The fact that subset relations do exist
in a substantial number of cases will have important implications for the learning algorithm to be

discussed in Chapter 5. We will not get into the learnability issues here. What we want to discover

$We are not interested in pairing each language with itself, since every language is identical to itself.
8No languages in any pair can be identical to each other, since all 31 languages in Appendix B.2 are distinct.

76

here is the source of those subset relations. It will become clear that these relations are attributable
to some specific parameter values.

For convenience we will refer to a language which properly includes some other language(s) a
superset language and a language which is properly included in some other language(s) a subset
language. These notions are of course relative in nature. We may have three languages L1, L2 and
L3 where L1 properly includes L2 which in turn properly includes 1.3, In this case, L2 will be a
subset language relative to L1 but a superset language relative to L3. Examining the languages
in Appendix B.2, we find that all superset languages show scrambling.” Since only two types
of sentences, (transitive and intransitive) are produced in our system, any language in Appendix
B.2 that contains more than two distinct strings is a scrambling language. Now, what do those
scrambling languages have in common with regard to their parameter values? An examination
of the “languages” in Appendix B.2 reveals that the superset languages either have S(M(specl)),
S(M(spec2)) and S(M(cspec)) all set to 1 or have at least one of them set to 1/0. In other words,
there is either overt A-movement of both the subject and the object or there is at least one optional
A or A movement.

When S(M(specl)), S(M(spec2)) and S(M(cspec)) are all set to 1, either the subject NP or the
object NP must move to Cspec. As a result, each transitive sentence will have two alternative orders,
depending on which of the two NPs is in Cspec. Take the first setting in #9 as an example. In this
setting, all the S(M)-parameters for head movement are set to 0. The verb therefore remains VP-
internal at Spell-Out. The subject and object NP must move to Agrlspec and Agr2spec respectively,
and one of them must continue to move to Cspec. When a sentence is transitive, the word corder is
SOV if the subject is in Cspec and OSV if the object is. Hence the scrambling phenomenon. Similar
situations are found in the 2nd setting for #9, the 1st, 2nd and 3rd settings for #10, and the the
1st setting for #11.

We now consider the second source of scrambling: optional movement. That optional movement
can create scrambling is fairly obvious. If the movement is not string-vacuous, we will have one
word order if the movement does occur and another one if it does not occur. In terms of parameter
settings, any setting that has 1/0 as the value for one of the parameters is equivalent to the merge
of two different parameter settings, one with that parameter set to 1 and the other with that set to
0. For instance, the setting ([0 0 0 0 0 1/0 1 OJisequalto[0 0 0 0 0 1 1 0]plus[0 0 0

"The only exceptions are the superset languages for #6 [0 s v] and #7 [0 v s]. For instance, #3 [0os v, s v
] is & superset langnage for #6 [o 8 v | but there is no scrambling in 3#3. However, the languages in #6 and #7 are
odd in the sense that they do not contain any string which consists of one NP only. In other words, no intransitive
sentences can occur in these languages. Such patterns do not seem to occur in natural languages. Looking at the
parameter settings for #6 and #7, we see that they share the property of having S{M(specl)) set to 0, S(M(spec2))
set to 1 or 1/0, and S(M(cspec)) set to 1. In other words, they all require that Cspec be filled before Spell-Out but
only the object can move there. There is no overt subject NP movement to Agrlspec and hence no movement of
the subject to Cspec. This situation will not arise if our grammar has a constraint that says *no overt movement to
Cspec is possible unless at least the subject NP can move to Agrlspec before Spell-Out.” (i.e. S(M(cspec)) cannot be
set to 1 unless S{M(specl)) is .) In any case, the languages in #86 and #7 can probably be ignored. If so, all superset
languages are scrambling languages. .

77

0 0 0 1 0]. The language generated with this setting is the union of the language generated with
[00-00001 10](e #4[sov, sv])and the one generated with[0 0 0 0 0 0 1 0]
(i.e. #3 [0 s v, sv]). Thisis why the languagefor {0 0 0 0 0 1/0 1 O]is#9[sov, osv,
s v]. This is also why #9 is a superset language for #3 and #4. In general, the parameter value
1/0 is a variable which can be instantiated to either 1 or 0 and a setting with n parameters set to
1/0 can be instantiated to 2" settings. For instance, a setting with two parameters set to 1/0 - [...

1/0 1/0 ...] - can have the following four instantiations:

C...1 1...13 [...1 0...]
L0001 ...] L...0 0...]1

If none of the movements controlled by these parameters is string-vacuous, a language with n optional
movements can then have 2" subset languages. In Appendix B.2 there are many cases where the
setting has one or more parameters set to 1/0, but the the language generated is not a scrambling
one. These are all cases where the optional movement is string-vacuous. The subset languages are
thus string-identical. Consider the setting [0 0 0 0 0 1/0 0 0] which is equivalent to [0 0 0
0010O0]plus([0O 0000 0 0 0] The movement which is optional here is subject NP
movement to Agrlspec. Since both the verb and the object remain in situ (in the order of VO), we
will have SVO whether the subject is in Vspec or in Agrlspec.

To sum up, there are two sources for scrambling or superset languages: overt A-movement and
optional movement. This observation is important for learnability issues. The significance of this

observation will show up in Chapter 5.

4,2 Other Parameters

In 4.1 we investigated the parameter space of S(M)-parameters, We kept the values of HD-parameters
and S(F)-parameters constant in order to concentrate on the properties of S(M)-parameters. Now
we will start taking those other parameters into consideration. In what follows, we will bring in the

HD-parameters first, then some S(F)-parameters, and finally ail the S(F)-parameters.

4.2.1 HD-Parameters

Only two HD-parameters are assumed in our system: one for CP and one for IP. There is no specifier-
head parameter for any category and there is no complement-head parameter for lexical categories.
The parameter for CP (HD1) determines whether CP is head-initial or head-final. The parameter
for IP (IID2) determines for every segment of IP (i.e. AgrlP, TP, AspP and Agr2P) whether the
head precedes or follows the complement. If the parameter is set to “I”, all those segments will be
head-initial and the whole IP will have the structure in (115(a)). The whole IP will be head-final if

the parameter is set to “F”, as shown in (115(b)).

78

,///A\\\ AgriP

Spec Agri- /\
/\ : Spec Agri-1
Agrl TP
| TP Agri
Ti

A]
T Ae.lpP /\

AspP T
Aspl
AN Aspi/\Asp

Asp Agr2P |

> R
Spec Agr2-
/N

Spec Agr2~{
Agr2 VP
A Vp/>gr2
(115) AN

(3) (b)

It is evident that the values of HD-parameters can affect the linear order of a sentence. In our
systemn, they work in conjunction with the values of S(M)-parameters in determining the word order
of a language. Given a certain value combination of S(M)-parameters, the order may vary according

to the values of HD-parameters. Qur parameter vector now has 10 coordinates:

[s(M(agr2)) s(M(asp)) S(M(tns)) S(M(agri)) s(M(c))
S(M(spec1)) S(M(spec2)) S(M(cspec)), HD1 BD2]

We can keep the values of S(M)-parameters constant and get different word orders by changing the
values of HD1 and HD2. Consider the following two settings (a) {1 1 1 0 0 1 0 0 ,I I]and (b)
[11100100,F F) Both settings require that the verb move to T0, the subject NP move
to Agrlspec, and the object NP stays VP-internal before Spell-Out, but T0 precedes the VP in (a)
and follows the VP in (b). As a result, the language generated with (a) is SVO and the one with

79

(b) is SOV. It should be noted that the value of a HD-parameter has an effect on word order only
if the relevant head is the final-landing site of an overt head movement. In (a) and (b), overt head
movement reaches TO which is a head in IP but not C0 which is the head of CP. Consequently, the
value of HD1 plays no role in determining the word order. The languages generated with [1 1 1
00100 ,II]Jand[1 1100100 ,IF]ereidentical. So are the languages generated
with(11100100,FFland[1 1100100 ,F I) Inasettinglike[0 0 0
0 0 . . .] where there is no overt head movement, the language will be the same no matter what
values HD1 and HD2 may receive.

We observed earlier that, modulo our current grammar, there are 156 settings of S(M)-parameters
with which some non-empty language can be generated. Each of these settings can be combined
with any of the four settings of HD-parameters: [I1 I],[F F],[I F], and [F I]. The number
of settings is therefore 624. The languages generated with these 624 settings are given in Appendix
B.4. As in Appendix B.2, I have grouped together all the settings that generate the same language.
It is a surprise to see that, in spite of the four-fold increase in the number of value combinations,
the number of distinct languages generated did not increase at all. We had 31 languages when both
HD1 and HD2 are fixed to I. We expected to get more languages when the values of HD1 and HD2
are allowed to vary, but there are still exactly 31 languages. In other words, the languages generated
when HD1 and HD2 are set to [I F],[F I]and [F F] respectively all form subsets of the languages
generated with [I I]. As we can see in Appendix B.4, every language that can be generated by
setting HD1 and HD2 to [I F],[F I]or [F F]can also be generated with the parameters set
to [I I} This might suggest that the parameterization of head directions is superfluous. What is
the point of varying the directions if the variation accounts for no more word order facts? Why not
eliminate the parameters and assume that all projections are universally head-initial? These will
certainly be arguments in favor of the views in Kayne (1992, 1993) and Wu (1993).

However, the superfluity of HD-parameters is more apparent than real. The parameterization
does not seem to increase the generative power of the grammar because the strings in Appendix B.2
and Appendix B.4 are too simple. They contain nothing more than S, O and V. As soon as other
constituents are allowed to appear in the strings, the difference in generative power will show up. We
can add often to the strings and see what happens.® When often is added while the HD-parameter
values are fixed to [I I], 61 languages are distinguished. When the HD-parameter values are allowed
to vary, we can distinguish 86 languages if often appears in the strings. (Due to space limitation,
the list of settings and languages are not given in the Appendix.) The increase in number is not
dramatic, but it does show that there are things that can fail to be generated if HD-parameters
are eliminated altogether. Omne of the languages that cannot be generated if all projections are
head-initial is [often s v, often s 0 v]. To get the SOV order while maintaining a strictly head-
initial structure, the subject NP must move to Agrlspec and the object NP to Agr2spec. But the

8We assume as before that often is left-adjoined to T1.

80

movement to Agrlspec must go beyond often, putting the subject on its left side. Thus [s often o
v] is possible while [often s o v] is impossible. However there is no problem in generating the latter
if head direction is permitted to vary. We can get this order with the setting [1 1 1 0 0 0 0
0 , F F), for instance. This setting makes the verb move overtly to TO while keeping everything
else in situ. Since TP is head-final, the verb that lands in T0 will follow every other elements in the
string. The string that results is [often s o v].

There are other languages which cannot be generated in the absence of HD-parameters. In
Chapter 2, we mentioned languages with sentence-final auxiliaries and grammatical particles. In the
next section, we will look at them again. We will find that the addition of the two HD-parameters

can make a big difference in terms of generative power.

4.2.2 Value Combinations that Predict Auxiliaries

So far we have put all S(F)-parameters aside. This has several consequences. First of all, no
“language” that has been generated exhibits morphology. Morphological variation has been kept
out of the picture. Secondly, no functional heads are spelled out. The head of a functional category
consists of a set of features but it has no lexical content. We assume that, unlike the head of a lexical
category which is visible regardless of the value of S(F)-parameters, the head of a functional category
is not visible unless its features are spelled out. When all S(F)-parameters are set to 0, no functional
heads are visible and the only head that can undergo overt head movement is the verb. Once some
functional heads are spelled out, however, the situation will be different. We have assumed earlier
that the feature matrix of a functional head can be spelled ocut as auxiliaries, grammatical particles
or expletives. Apparently, auxiliaries can also undergo head movement. This will have an important
consequence on the number of non-empty languages that can be generated. We have noted in 4.1
that, due to the head movement constraint and our temporary assumption that the only kind of
head movement is verb movement, many settings generate empty lariguages because some required
movement is blocked. If functional heads can be spelled out and participate in head-movement, the
picture will be different.

Let us consider the case where S(M(tns)) is set to 1-0. Recall that each S(F)-parameter can have
two sub-parameters in the form F-L. The value of F tells us whether the F-feature (i.e. the feature
residing in a functional category) is spelled out and L tells us whether the L-feature is spelled out.
The value 1-0 for S(M(tns)) therefore means that the tense feature is spelled out in TC but not
on the verb (This is possible only if the verb does not move to TO before Spell-Out. Otherwise,
the F-feature and the L-feature will have merged into a single one which can appear on the verb
only.) Let us assume that, when spelled out, TO appears as an auxiliary. We will use ”Aux” to
represent such an auxiliary. Therefore the strings produced by our grammar may now contain Aux
in addition to 8, O and V. As & visible head, Aux can undergo head movement just as a verb does.

This has the consequence of making it possible to generate non-empty languages with settings which

81

are previously capable of generating empty languages only. Look at [0 ¢ 0 1 1 . . .] again. This
setting requires-that-the-verb remain in situ but something must move to Agrl-0 and then to CO.
This is impossible when the only head that moves is the verb. Now that we have another head that
moves, this setting is no longer impossible; the verb can stay in situ whereas the overt movement
from TO to Agrl-0 and CO can be performed by Aux.

There are six value combinations of S(M(agr2)), S(M(asp)), S(M(tns)), S(M(agrl)) and S(M(c))
¥ which can start generating non-empty languages once T0 is spelled out as an auxiliary. They are
[ooo1o0...,[00011...,{20010...},Jt0011...,[110
10...,and[1 101 1. ..] Thenumber of distinct languages that can be generated in
this particular parameter space (with HD-parameter constantly set to I} is 83 instead of the original
31. Those 83 languages is listed in Appendix B.5. To save space, only one possible setting for each
language is given, but this should be enough for the illustration of how each of the languages could
be derived.

Now we try varying the values of HD-parameters. With S(F(tns)) set to 1-0 and all other
S(F)) parameters to 0-0, the number of distinct “languages” that can be generated with all possible
value combinations of HD-parameters and S(M)-parameters is 117. These languages are listed in
Appendix B.6. As in Appendix B.5, only one setting is given for each language for the purpose of
saving space. The result of this experiment shows again that there are languages that cannot be
generated without HD-parameters. When we ignored the HD-parameter by allowing for head-initial
constructions only, 83 languages were generated. Thirty-four additional languages are generated
when the two HD-parameters are brought into play. There are languages which can be generated
only if CP is head-initial and IP is head-final (e.g. #14). There are also languages which are possible
only if CP is head-final and IP is head-initial (e.g. #18). So far there is no language which cannot
be generated unless both CP and IP are head-final. But there will be such cases when more than
one functional head is spelled out, as we will see.

The incorporation of auxiliaries into our system has given us a richer typology. In Appendix B.2
or Appendix B.4, where there is no auxiliary due to the fact that all S(F)-parameters are ignored,
only one pure SVO language!? is distinguished: [s v, s v 0]. As a result of setting S(F(tns)) to 1-0
and thus allowing for the appearance of one auxiliary, we now have four different SVQ languages:
#l[auxsv, auxsvo],#2[svaux, svoaux), #4[sauxv, sauxvo]and #20(sv, svo].

Certain predictions are made in this partial typology of SVQ languages. Among other things it
is predicted that no TQ auxiliary can appear between the verb and the object in an SVO language.
The sequence [v aux o] is impossible because of the following contradiction. The fact that the T0
Aux precedes O shows that IP must be head-initial. In this case the verb must be higher than T0
in order to appear to the left of the TO Aux. However, if the verb is higher than T0, it must have

9These are the 5 5(M)-parameters that are responsible for the spell-out of head movements.
10By “pure" I mean there is no scrambling.

v

82

moved through TO and become unified with it. In this case, TO will not be able to be spelied out
by-itself-as' an Aux.- Now what-if we do find the sequence [s v aux o] in natural languages? One
potential example can be found in Chinese:

(118) Ta mai le nei ben shu
he buy Past that book
‘He bought that book.’

The past tense marker le!! looks like a TO auxiliary that appears between V and O. However, this
may not be a counter-example to the prediction under question. We may analyze le as a suffix of
the verb, i.e. a tense feature which is spelled out on the verb. The sequence we are looking at here
is therefore [s v-[tns] o | rather than [s v aux o]. The former can be generated if S(F(tns)) is set
to 0-1 (spell out the L-feature only) instead of 1-0.

In some cases a tense marker can be analyzed either as an auxiliary or an affix, Take the Japanese

sentence (117) as an example.

(117) Taroo-ga Hangko-o mi-ta

Taroo-nom Hanako-acc see-past

“Taroo saw Hanako’
The tense marker fa can be treated either as a suffix to the verb (the string being [s o v-[tns]]) or
as a T0 auxiliary (the string being [s o v aux]). The former is possible in a setting, for example,
where S(M(tns)) is set to 0-1 and the S(M) and HD-parameters are set to [0 0 0 0 0 1 1 0
, 1 1]. In this case, both CP and IP are head-initial. The subject and object move to Agrlspec
and Agr2spec respectively and the verb remains in situ with its tense feature (the L-feature) spelled
out. The latter sequence ([s o v aux]) is possible, for instance, when S(F(ins)) is set to 1-0 and
the S(M) and HD-parameters set to[1 1 0 0 0 0 0 0 , f f]. In this case, both CP and IP
are head-final. The subject and object remain VP-internal while the verb moves to Asp0. T0 has
not merged with the verb and it is spelled out as an auxiliary. On the basis of (117), we cannot
tell if Japanese is [s o v-[tns]] or [s 0 v aux]. The interesting observation is that a language like
Japanese which has been regarded as a typical head-final language can be generated with either a
head-initial or a head-final structure in our system.

We have so far only touched upon one type of auxiliary: an overtly realized T(Q. Qther types
of auxiliaries can be obtained by spelling out other functional heads such as C0 and Asp0. I will
not explore these possibilities exhaustively as I did with the spell-out of T0. Some of them will be
mentioned later on in this chapter when we consider the settings for some real languages, but it will
basically be left for the reader to figure out what will happen when, say, S(F(pred)) or S(F(asp)) is
set to 1-0. '

11 Ie has traditionally be treated as an aspect marker. See Chiu (1992) for arguments for the treatment of /e as a
tense marker.

83

One desirable property of the present account of auxiliaries is that no extra machinery is needed
to get a much richer typology. The S(M)-parameters and S(F)-parameters are not specifically
designed to account for auxiliaries. We need them for independent reasons: S(M)-parameters for
word order variation and S(F)-parameters for morphological variation. It just happens that certain
value combinations of those two types of parameters predict the occurrence of auxiliaries. In other
words, we are able to accommodate auxiliaries in our parameter space at no extra cost.

We conclude this section by pointing out that, no matter whether there are auxiliary movements
or not, the verb always moves all the way up to CO at LF. For reasons relating to the principle of
Full Interpretation (Chomsky 1991, 1992), auxiliaries are assumed to be invisible at LF. Given a
setting like [0 0 0 1 1 . . .] where there is no overt verb movement but TO moves overtly to
C0 as an auxiliary, the Aux along with the movement it has undergone will disappear at LF where
the verb will move to Agr2-(, Asp(, T0, Agrl-0 and C0.

4.2.3 S{F)-parameters

Up till now we have examined the parameter space created by S(M)-parameters, HD-parameters
and one S(F)-parameter (S(F(tns))). When we take the all other S(F)-parameter into consideration,
combining their values with S(M)- and HD-parameters, the number of possible settings is huge and
the number of languages that can be generated will be in the order of tens of thousands. It is
impossible fo list all those languages in the Appendix, not to mention the settings each of those
languages can be generated with. The best we can do here is to look at a small subset of them and
get some idea of what kinds of languages can be generated when all the S(F)}-parameters enter the
parameter space. One way to do it is to keep the values of S{(M)-parameters relatively constant while
varying the values of HD- and S(F)-parameters. In the following experiment, we will restrict the
possible settings of S(M)-parameters to justtwo: [0 0 0 1 01 00 . . .Jand[1 111010
0 . . .]. The first setting represents the case where there is auxiliary movement but no overt verb
movement; the second is a case where there is overt verb movement and no auxiliary shows up. The
two HD-parameters will work as usual, with four possibie settings. Of the six S(F')-parameters that
have been assumed — S(F(agr)), S(F(case)), S(F(tns)), S(F(asp)), S(F(pred)} and S(F(op)) - two
will be kept constant and the other four allowed to vary. The two S(F)-parameters whose values will
be kept constant in the experiment will be S(F(pred)) and S{F(op)). They will always be set to 0-0.
As a result, we will not see in this experiment any language where C0 or Cspec is spelled out. The
other S(F)-parameters will have some of their values considered. S(F(agr)) will vary between three
values 0-0 (no agreement features spelled out), 1-0 (agreement features spelled out on the auxiliary),
and 0-1 (agreement features spelled out on the verb). S(F(case)) will vary between 0-0 (no case
feature spelled out) and 0-1 (case feature spelied out on the noun). S(F(tns)) varies between 0-0 (no
tense feature spelled out), 1-0 (tense feature spelled out on the auxiliary), and 0-1 (tense feature

spelled out on the verb). The auxiliary which spells out T0 will continue to be called Aux. Finally,

84

S(F(asp)) varies between (-0 (no aspect feature spelled out) and 0-1 (aspect feature spelled out on
the verb).!? Each parameter setting will now be a vector of 14 coordinates:

[s(M(agr2)) S(M(asp)) S(M(tns)) S(M{agrl))

S(M(c)) S(M(spec1)) S(M(spec2)) , HD1 HD2 ,

8(F(case)) S(F(agr)) S(F(tns)} S(F{asp))]
As we can see, even the S(F)-parameters which are active will not have its full range of value variation
tried out in the experiment. Only a subset of their possible values is to be considered. All this is
done for the purpose of'illustra.ting the range of variation by looking at a very small sample of the
“languages” that are generated-. This small sample should be enough to give us some idea as to
what languages can be accommodated in our parameter space when all parameters are fully active.

The value combinations and the languages that are generated in this very restricted parameter
space is given in Appendix B.7 (only one of the possible settings is shown for each language). Forty-
eight distinct languages are generated. These languages form a small subset of the SVQ and SOV
languages that can be generated in our system.
Looking at the strings in each language, we notice that every terminal symbol in these strings has

a list attached to it. The list contains information about inflectional morphology. The appearance of
a feature in the list indicates that this feature is morphologically visible (spelled out). Any symbol
that has an empty list attached to it has no overt inflectional morphology. The list can contain more
than one feature when the terminal symbol is inflected for more than one feature. The feature list
is unordered, which means that the order in which the features are listed has no implication for the
order of affixation or whatever other ordering. A symbol like v-{agr,tns] does not necessarily mean
v-agr-tns where ‘agr’ and ‘tns’ are actual morphemes attached to the verb. It only indicates that
the verb is inflected for those two features. How the inflection is morphologically represented is not
our concern here.

The symbols that appear in Appendix B.7 and the syntactic entities they represent are displayed
in (118).

(118) s-] a subject NP with no case-marking
s-[c(1)] a subject NP overtly marked for Case 1
o] a object NP with no case-marking
o-[c(2)] a object NP overtly marked for Case 2
v- a verb with no inflection
v-[agr] a verb inflected for agreement
v-{tns] a verb inflected for tense
v-[asp] a verb inflected for aspect
v-[agr,tns] . a verb inflected for both agreement and tense
v-[agr,asp] a verb inflected for both agreement and aspect

12The value 1-0 is impossible with the two settings of 5(M)-parameters we are restricted to here.

85

v-[tns,asp] a verb inflected for both tense and aspect

v-[agr,tns,asp]- a verb inflected for agreement, tense and aspect
aux-(tns] the TO auxiliary
aux-[tns,agr] the TO auxiliary inflected for agreement

From the sample in Appendix B.7, which mainly illustrates the range of morphological variation
in our system, and Appendix B.4, which illustrates word order variation, we can tell how many
typological distinctions can be made in the parameter space. With all the parameters working
together, we can get languages with almost any basic word order and with many different types of
inflectional morphology. We should list all the “languages” that can be generated in this parameter
space and try to match each of them with a natural language. Given the huge number of languages
in the parameter space, such listing is impossible in a thesis of the present size. However, to get a
better understanding of the generative power of our present system, we will try to fit at least some
real languages into the space. In what follows, therefore, we will choose some languages for case
study. These case studies will put us in a better position to judge the potential and limitations of

the present model.

4.3 Case Studies

In this section, we will look at a few natural languages and see to what extent they can be ac-
commodated in the parametef space we have assumed. If is unrealistic to expect our parameter
space to account for everything of any real langnage. There are many reasons why this should be
so. The grammar we have been using is only a partial UG. There are other modules of UG which
have not been taken into consideration so far. We are therefore bound to run into facts that cannot
be explained until our model is interfaced with those other modules. The present module is only
concerned with basic word order and basic inflectional morphology. Even in these domains we have
further restricted ourselves to simple declarative sentences whose only components are S, V, O, Aux
and possibly some adverb. Consequently, the “languages” generated in our parameters cannot be
exact matches of natural languages. However, this does not prevent those “languages” from resem-
bling certain natural languages or some subsets of natural languages. When we say that a certain
language is accommodated in our parameter space, we mean that there is a parameter values com-
bination that generates a “language” which is a rough approximation of this natural langnage. We
have a long way to go before we can account for everything with our model, but there is no reason
why we should not find out how much can be done in the the current partial model. In what follows,
we will be considering some subsets of English, Japanese, Berber, German, Chinese and French. For
convenience we will refer to these subsets as English, Jananese, etc., meaning some small subsets of

those languages.

86

4.3.1 English: An SVO Language

The first question we have to deal with is how to represent English as a set of strings in the format -
we have been using here. In terms of word order, English is SVO. In additions, adverbs of the often
type appears before the verb. The order OSV is found in topicalization. Morphologically, English
pronouns are overtly marked for case. The verb in English shows overt tense and subject-verb
agreement. We may therefore tentatively describe English as (119).
(119) s-fc(1)] (often) v-[agr,tns,asp)

g-[¢(1)] (often) v-[agr,tns,asp] o-[c(2)]

o-[¢(2)] s-[e(1)] (often) v-[agr,tns,asp)

The language in (119) can be generated with many different parameter settings. One of them is
(120).

(1200 {1 1000 11 1/0,ii, 01 0-1 0-1 0-1]

Other settings include:

(121) (@ Lo o o 0 0 1+ 1 1/0,4i i, 0-1 0-t O-1 0-11]
() L1 o0 0 0 0 1 1 1/0,4i i, 0-1 0-1 0-1 0-1]
(cYL1 11 0 0 1 1 1/0,41i i, 0-4 0-1 0-1 0-1]
(& o 0 o 0 o ¢ 1/0 1/0, 4 i, 0-1 0-1 0-1 0-1]
(e E1 0 0 0 0 1 1/0 1/0,4i i, 0-1 0-1 0-1 0-1]
(¢[L1 1 0 0 0 1 1/0 1/0,4i i, 0-+ 0-1 0-1 0-1]
gy L1 11 0 0 1 1/0 1/0,4i i, 0-1 0-1 0-1 0-11]
)[o 0o 0 0 0 1 1 4,i i,01 01 0-1 0-1]

(i) L1 o 0 0 0 1 1 4 ,4i i, 0-1 0-1 0~1 0-1]
>+ 10 001 1 1t,4i i, 0-1 0-1 0-1 0-11]
k)[(1 1100 11 1,4i i, 0-1 0-1 0-1 0-1]
(Lo o 0 0 0 1 1/0 1 ,4i i, 0-1 0-1 ¢-1 0-1]
(m) L1 00 0 0 1 1/0 1 ,4i i, 0-1 0-1 0-1 0-1]
() L1 ¢t 00 0 1 1/0 1 ,4i i, 0-1 0-1 0-1 0-1]
(L1 11 00 & 4/0 1 ,4i i, 0-1 0-1 0-1 0-1]
etc.

According to the setting in (120), English is a strictly head-initial language. At Spell-Out, the verb
moves to Asp0, the subject NP to Agrlspec and the object NP to Agr2spec. Furthermore, one of
the XPs may optionally move to Cspec. We have the SVO order when Cspec is unfilled or filled
by the subject. The OSV order occurs when the object moves to Cspec. If often appears in the

87

sentence, it may go to Cspec instead of the subject or object. We then have the strings in (122) in
addition to the ones in (119).

(122) often s-[c(1)] O v-[agr(1),tns,asp]
often s-[c(1)] O v-[agr(1),tns,asp] o-[c(2)]

Morphologically this setting requires that the agreement features be spelled out on the verb, the
case features spelled out on the noun, and the tense and aspect features spelled out on the verb.
Several questions arise immediately. First of all, the SVO and OSV orders are given equal status
in (119). This seems undesirable for it fails to reflect the fact that the SVO order is more basic and
occurs far more frequently than the OSV order. But this problem is more apparent than real. With
our current setting, the OSV order occurs only if the object has undergone the optional A-movement
to Cspec. We know from the Principle of Procrastinate that, given the option of whether to move
overtly or not, the default choice is always “do not move”. Therefore the object will not move to
Cspec unless this default decision is overridden by some other factor such as discourse context. As a
result, we will find SVO most of the time and find OSV only in those situations where topicalization

is required. Things would be very different if we have the setting in (123) or any of the settings in

(121(h))~(121(c)).
(128) [1 1000111, ii, 01010101, 1]

This setting can also account for the strings in (119), but it requires that one of the XPs must move
to Cspec. If this is the setting for English, we will have to find some other explanation for the
peripheral nature of the OSV order. For this reason, the settings in (121(h))-(121(0)) are less likely
to be the correct settings for English.

The second question concerns inflectional morphology. The values of S(F)-parameters are cur-
rently assumed to be absolute. Each parameter is set to a single value and no alternation between

different values are permitted. This seems to create a number of problems:

(124) We have set S(F(case)} to 0-1 but not every NP in English is overtly marked for case. Only

the pronouns are.
(125) S(F(asp)) is set to 0-1 but not every verb seems to inflect for aspect.

(126) S(F(agr)) and S(F(tns)) are set to 0-1, indicating that agreement and tense are to be spelled
out on the verb only. This seems contrary to the fact that these features can also be spelled
out in an auxiliary in English. This actually leads to the more general problem that the setting

in {120) does not let auxiliaries occur in this language.

We will deal with these problems one by one.

88

The problem in (124) may be solved by refining our parameter system. So far we have not
tried- to differentiate various types-of NPs.—'The-S(F{case)) parameter, which is associated with the
whole class of NP, is blind to the distinction, for example, between pronouns and other NPs. Since
the value of this parameter does not seem to apply across the board to all types of NPs (at least
in English), we may need to distinguish two S(F(case)) parameters, one for pronouns and one for
other NPs. Once this distinction is made, the absolute nature of the S(F)-parameter values is no
longer a problem. In fact, alternation of parameter values should not be permitted, for pronouns
must be case-marked in English and other NPs must not be case-marked. The S(F(case)) parameter
for pronouns is always set to 0-1 and that for other NPs always to 0-0. If the learner is able to
distinguish between pronouns and other NPs, the parameters can be correctly set. How the learner
becomes aware of this distinction is of course a different learning problemn that needs to be addressed
separately.

The problem in (125) is not a problem if we assume that a verb is inflected as long as it is
morphologically different from other verbs. With regard to aspect marking, the progressive aspect
is spelled out as -ing and the perfective aspect as -ed. When a verb has neither -ing nor -ed attached
to it, we know that this verb has an aspect feature which is neither progressive nor perfective. In
this sense, this verb has had its aspect features overtly marked through zero inflection.

Now we look at the problem in (126). The setting in (120} does not allow for the following set

of strings which are actually found in English.
(127} s-[e(1)] a.ux-[a:gr,tns] (often) v-[asp]

s-[c(1)] aux-[agr,tns] (often) v-[asp] o-[c(2)]

o-[¢(2)] s-[c(1)] aux-[agr,tns] (often) v-{asp]
Each of these strings contains an auxiliary where the agreement and tense features are spelled out.
Verbs are inflected for aspect only. For this set of strings to be generated, S(F(agr)) and S(F(tns))
must be set to 1-0 rather than 0-1. In addition, S(M(agrl)) may have to be set to 1 so that the T0
auxiliary can move to Agrl to pick up the agreement features. In other words, we need the following
setting.
(128 (1101011 1/0,1%i, 1-0 0-1 1-0 0-1]
To generate the strings in both (119) and (127), we seem to need a setting which is a merge of (120)
and (128), such as the following:
(1290 (11010011 1/0,1ii, 10 1-0/0-1 1-0/0-1 0-1]

This setting raises several questions. First of all, the fact that S(M(agr)) is now set to 1/0 means
that head movement can be optionally overt as well. This option is not available in our minimal

model, but what we have seen here suggests that we may have to let S(M)-parameters for head

89

movement have the value 1/0 just like S(M(cspec)), S(M({specl)) and S(M(spec2)). There is other
evidence.in English. which_shows that head. movement can also be optional. So far we have limited
our attention to declarative sentences only. As soon as we look at questions, we find that S(M(c))
must be set to 1/0 in English: head movement from Agrl-0 to C0 occurs overtly in questions but not
in statements. If so, this movement will be covert unless the Principle of Procrastinate is overridden
by some other requirement, such as the need of checking the predication feature (which is in C0)
before Spell-Out when this feature has the value “+Q”. In any case, it seems necessary that optional
head movement should be incorporated into our parameter system.

Another question concerns the fact that S(F(agr)) and S(F(tns)) are set to 1-0/0-1. This setting
is intended to represent the fact that (a) agreement and tense features must be spelled out in English,
and (b) we can spell out either the F-feature or the L-feature, but not both. When the F-feature is
spelled out, an auxiliary appears and this auxiliary may move to Agrl-0 or C0, When the L-feature
is spelled out, the agreement and tense features appear on the verb and there is no auxiliary. The
question is why we have to spell out the F-feature ir some cases but the L-feature in some others.
We do not find an answer to this question in our minimal model here. However, once this model
is interfaced with other modules of the grammar, the choice may become explainable. It may turn
out that negation requires the spell-out of F-features. This might explain why (130) and (131) are
grammatical while (132) and (133)) are not.

(130) John does not love Mary.
(131) John did not see Mary.
(132) John not loves Mary.
(133) John not saw Mary.

It is also possible that the F-features of agreement and tense must be spelled out when the aspect
feature is “strong” or “marked” in some sense. In English, this seems to happen when the aspect is

progressive or perfective, as shown in (134) and (135).
(134) John is writing a poem.
(135) John has writlen a poem.

The auxiliaries be and have here are treated as some overtly realized functional heads and can be
represented as “aux-[agr,tns]” in our system. Why “aux-[agr,tns]” is spelled out as be in some cases,
have in some other cases, and do in most of the other cases has to be explained by theories which

have not yet been incorporated into our system.

90

4.3.2 Japanese: An SOV language

Japanese is a verb-final language with a considerable amount of scrambling. The subject and the
object must precede the verb but they can be ordered freely, resulting in SOV or OSV. Japanese
NPs are always case-marked'? and Japanese verbs come with tense markers.!* There does not seem
to be any overt agreement whose function is grammatical.l®

In terms of surface strings, Japanese can be described as either (136) or (137) depending on
whether we treat the tense marker as a suffix or grammaitical particle. In (136) the tense marker
ta is treated as a verbal suffix while in (137) it is treated 2s an auxiliary which spells out the tense

feature in TO.
(136) s-[c(1)] v-ftns]
s-[c(1)] o-[¢(2)] v-[tns]
o-(c(2)] [s-[e(1)] v-[tns]
(137) [s-[e(1)] v-[] aux
[s-[e(1)] o-{e(2)] v-[I aux
o{e(@)] [le(1)] v-[aux
These patterns are illustrated by the Japanese sentences in (138), (139) and (140).

(138) Tarco-ga ki-ta
Tarco-Nom come-Past
*Taroo came.’

(139) Taroo-ga tegami-o kai-ia
Taroo-Nom letter-Acc write-Past
‘Taroo wrote a letter.’

(140) {egami-o Taroo-ga kai-la
letter-Ace Taroo-Nom write-Past
‘Taroo wrote a letter.’

The languages in (136) and (137) can be generated with the settings in (141) and (142) respectively.
(141) [0 0000 11 1/0, ii, 00 0-1 0-1 00]

(142) [0 0000 11 1/0, ff, 00 0-1 1-0 0-0]

13Except in very casual speech.
1471t is controversial whether there is aspect markers in Japanese. What we mean by tense marker here will include

the aspect marker.
15There is, however, agreement with respect to levels of honorificness and politeness.

61

It is required in (141) as well as (142) that both the subject and object move to their case positions
(Agrlspec. and Agr2spec-respectively) and.the verb remains in situ, However, CP and IP are head-
initial in (141) but head-final in (142). In addition, the value of S(F(tns)) is different in the two
settings. In (141) it is set to 0-1 which requires the tense feature to be spelled out on the verb as
an affix (spelling out the L-feature). In (142), on the other hand, this feature is to be spelled out in
TO by itself (spelling out the F-feature). The two settings produce very different tree structures, as
shown in (143(a)) and (143(b)).

92

AgriP

/\
NP{) Agri~ /\
| /\ NP() Agri-
Tarco-ga Agri TP
| Tarolo-ga TP/\

Tt ’

P
| /\

AspP T
Aspl
/\ Aspl Asp ta
Asp Agr2P |
/\ Agr2P
NP(2) Agr2-{ /\
| VAN NP(2) Agro-1

tegami-o Agr2 VP I /\
/\ ‘ tegami-o VP Agr2
el) kai-ta e(2) /\

(143) el kei e(2)
(a) Tree generated with (141) (b) Tree generated with (142)

It is not possible to tell on the basis of (138), (139) and (140) which of the two structures is
more likely to be the correct one for Japanese. If (143(a)) is the correct one, Japanese will not be a

head-final language at all, contrary to common belief. What this shows is that a verb-final language

is not necessarily a head-final one. When we look at more data from Japanese, however, we begin
to see evidence that (143(b)) is probably the right choice. The following two sentences are examples

in support of the setting in (142).

(144) Taroo-wa ki-ta ka
Taroo-Topic come-Past Q-marker
‘Did Taroo come.’

93

(145) Hanako-ga asoko de nai-te i-ru
~..Hanako-Nom.. there....at- .cry-Cont . be-Nonpast
‘Hanako is crying there.’

The question marker ka in (144) comes at the end of the sentence. The only way to account for it in
(143(a)) is to treat ka as a verbal suffix attached to ki. In other words, two features are spelled on
this verb, ta being the tense feature and ka a predication feature which will be checked in C0 at LF.
However, this analysis does not seem to accord with the intuition of native Japanese speakers who
usually regard ka as a separate word. If ka is indeed not part of the verb, we will have to adopt the
analysis in (143(b)) where fa is an auxiliary or grammatical particle in T0 and ka in CO. Turning
to (145), we again see the plausibility of (143(b)). To maintain (143(a}) we would have to say that
nai-te-i-ru forms a single big verbal complex, which is again a bit far-fetched. In (143(b)), however,
everything is comfortably accounted for: nai-te is in VO and i-ru is in TO. It is also possible that
nai is in V0, fe in Asp0 and i-ru in TO.

4.3.3 Berber: A VSO Language

Berber is usually considered a VSO language, but other orders are also found. The most com-
mon alternative order is SVO which is usually used in topicalization.(Sadiqi 1986). Here are some

examples:

(148) i-ara hmad tabrat
3ms-wrote Ahmed letter
‘Ahmed wrote the letter.’

(147) hmad i-ara tabrat
Ahmed 3ms-wrote letter
‘Ahmed wrote the letter.’

In terms of morphology, there is no overt case marking in Berber, but verbs are inflected for
tense/aspect and agreement, as we can see in (146) and (147). This language thus have the fol-
lowing set of strings in our abstract representation:!®
(148) v-[agr,tns,asp] s-[]

v-[agr,tns,asp] s-[] o-[]

s-[] v-[agr,tns,asp]

s-[] v-[agr,tns,asp] o]

This set of strings can be generated with the parameter setting in (149).

18The fact that the feature list is attached to the verb on the right in our representation does not have any implication
as to whether the features are spelled out as prefixes or suffixes, It simply means those features are realized on the
verb. They can appear as any kind of affix (prefix or suffix) or other forms of verbal conjugation.

04

(149) [1 1110 1/0 0 1/0, i i, 0-1 0-0 0-10-1]
There are many alternative settings that are compatible with these strings. Here are some examples:

L1 0 0 0 0 1/0 0 1/01] [1 1 060 0 0 1/0 0 1/0]
[1 11 ¢ 0 t/0 0 1/01] f1 114 1 1 1 0 1/0]

According to the setting in (149), the verb must move overtly to Agrl and the object must stay in
situ. The subject, however, can optionally move to Agrispec and then to Cspec. If the principle
of procrastinate is not overridden by other considerations, the subject will not move and the word
order is VSO. When other factors call for overt movement, the subject can move to Agrispec or
Cspec. In either case the order is SVO. The tree structures for (146) and (147), according to (149),
are (150(a)) and (150(b)) respectively.

/\ Ag!-iP

Spec Agri-1
/\ NPm/\Agri—i
VN

Agri TP
| hmad Agrl TP
i-ara T1 I I
"\ jara() T

T AspP /\

T AspP
Aspl |
/\ Aspl
Asp Agr2P

/\ Asp AgroP

Spec Agr2-1
/\ Spec/\AgrQ-i

/\ Agr2 VP
hmad e tabrat /\

(150) el) e(2) tabrat

(a) (b)

95

One general question that can be raised at this point is whether the order in which the inflectional
features appear in' the list can imply anything about the actual sequence of affixes. We may be
tempted, at least iﬁ Berber, to let our feature list have this extra ordering information. For instance,
we may let v-[tense,agr] or [agr tense]-v mean that the affix representing agreement appears outside
the affix representing tense, as in the case of (146) and (147). Our string representation would
certainly be more informative if the ordering is encoded there. If the Mirror Principle holds, this
kind of encoding will not only be desirable but easy as well. Unfortunately, the Mirror Principle
does not seem to hold everywhere, not in Berber at least. If we look at (146) and (147) only, we may
conclude that agreement occurs outside tense. The verb is inflected for tense and the agreement
affix is added to the tensed verb. However, we also find Berber sentences where the order is reversed.

(151) is such an example.

(151) ad-y-segh Mohand ijn teddart

will(Tns)-3ms-buy Mohand one house

‘Mohand will buy a house.’
In (151) tense clearly occurs outside agreement. To avoid such problems, we will insist that the
feature list attached to each terminal symbol is unordered. They only tell us what features are
spelled out in some form of verbal inflection. The order of affixation has to be handled separately.
As a matter of fact, we cannot exclude the possibility that the ordering is arbitrary and the learner

has to acquire it independently.

4.3.4 German: A V2 Language

German is a language where root clauses and subordinate clauses have different word orders. In
root clauses, the verb must appear in second position, the first position being occupied by a subject
NP, an object NP, an AdvP, or any other XP. This is illustrated in (152), (153) and (154).

(152) Karl kaufte gestern das Buch
Karl bought yesterday that book
‘Karl bought that book yesterday.’

(153) das Buch kaufle Karl gesiern
that book bought Karl yesterday
‘That book Karl bought yesterday.’

(154) gestern kaufte Karl das Buch

yesterday bought Karl that book

*Yesterday Karl bought that book’
Assuming that German NPs are inflected for case!” and German verbs are inflected for tense, aspect
and agreement, we can abstractly represent German root clauses as the set of strings in (155) (where
‘adv’ stands for an AdvP like yesterday which is presumably left-adjoined to T1.)

17 The case marking shows up on the determiner, though.

96

(155) s-[¢(1)] v-[agr,tns,asp] (adv)
" advTv-[agE, tnsasp] E-[c(1)]T T T

s-[c(1)] v-[agr,tns,asp] (adv) o-{c(2)]

o-fe(2)] v-[agr,tns,asp] s-[c(1)] (adv)

adv v-[agr,tns,asp] s-[c(1)] o-[c(2)]
This set of strings can be generated with the following parameter setting:
(s6) (11 111111,if, 0-1 0-1 Q-1 0-1]

This setting requires that every movement be overt. By Spell-Out, the verb must move to C0, the
NPs to Agrspecs, and one of the XPs to Cspec. We have (152) if the subject NP moves to Cspec,
(153) if the object does, and (154) if the AdvP does. The setting also specifies that CP is head-initial
and IP is head-final.

Incidentally, the structures predicted by this setting can also account for the fact that gestern
(vesterday) can appear right after the verb in (152) but not in (153). We have assumed that a time
adverb like yesterday can be left-adjoined to T1. In (152) the object has moved to Agr2spec but not
to Cspec. This is why we can have the order SV(Adv)O. In (153) the object has moved to Cspec and
the subject to Agrlspec. The resulting order can only be OVS(Adv), while OV(Adv)S is impossible.
The tree structures for (152) and (153) are in (157(a)) and (157(b)).

97

cP

/\ p
NP Cl /\

| /\ NP ct

Karl € AgriP l /\
| /\ das Buch C AgriP

keufte Spec Agri-l | /\

| kaufte NP Agri-i
TP | |

/\ Karl TP
Ti Agri /\

gestern T /\
/\ AspP T
Aspl Asp

Agr2P

Agr2pP
NP Agr2-1
| N\ Spec/A\gl'Z—I
das Buch VP Agr2
A Vp/>gr2
b)

(157)

(a) (

German is similar to English in that the tense and agreement features are spelled out on the verb
in some cases but in an auxiliary in others. When an auxiliary exists in a sentence, the auxiliary is
in second position and the verb in final position. Here is an example:

(158) Gestern hat Karl das Buch gekauft
yesterday has Karl that book bought
‘Karl bought that book yesterday.’
Obviously, the setting in (156) will fail to account for the word order found in this sentence. This

problem may need to be handled in the same way as we handled the English case. We can assume

98

that tense and agreement features must be spelled out in German, either in an auxiliary (spelling
out-the F-feature) or on the verb (spelling out-the L-feature); but-not both. When the F-feature
is spelled out, an auxiliary appears. This auxiliary moves to C0 and the verb moves to Asp0 only.
When the L-feature is spelled out, there is no auxiliary and the verb will move to C0. Why we choose
to spell out the F-features in some cases but the L-feature in some others is again an open question
which cannot be answered until our model is interfaced with other components of the grammar.

We have so far only discussed the word order in German root clauses. The order in subordinate
clauses is SOV rather than V2, as shown in (159) and (160).

(159) dass Karl gestern dieses Buch kaufte
that Karl yesterday this book bought
‘that Karl bought this book yesterday.’

(160) dass Karl gestern dieses Buch gekaufi hai
that Karl yesterday this book bought has
‘that Karl bought this book yesterday.’

This fact again forces us to consider the possibility that some S{M)-parameters for head movement
(in this case S(M(c))) must be allowed to have the value 1/0. If S(M(c)) is set to 1/0 in German,
then the verb can move to Agrl-0, resulting in an SOV order, or move to C0 resulting in a V2 order.
Apparently, the Principle of Procrastinate is overridden in the root clause. We may conjecture
that the predication feature must be checked before Spell-Out in the root clause but not in the
subordinate clause. This checking requirement overrides the Principle of Procrastinate and forces
the verb to move to CO overtly in the root clause.

4.3.5 Chinese: A Head-Final SVO Language

We have seen in (100), (101) and (102) that Chinese is a scrambling language, its possible word
orders being SVO, SOV and OSV. All these orders can be generated with a parameter setting like
(161) where both CP and IP are head-initial.

(161) [0 0 0 0 0 1 1/0 1, i i, 0-0 0-0 0-1 0-1]

Bat this setting is not able to account for the following sentence where we find sentence-final particles

which cannot possibly be spelled out on the verb.

(162) Ni kan-wan nei-ben shu le ma
you finish reading that book Asp Q/A
‘Have you finished reading that book? / You have finished reading that book, as I know.’

In this sentence le and ma are not attached to the verb, since the object intervenes between the
verb and those functional elements. A fair assumption is that le and ma are some overtly realized

functional heads, the former being the head of AspP and the latter the head of CP. (This presupposes

99

that S(F(asp)) and S(F(pred)) are both set to 1-0.) These elements cannot appear in sentence-final
positions unless both IP and CP are head-final. What this suggests is that Chinese is a head-final
language (in terms of CP and IP).The structure for (162) should be (163) which illustrates how an

SVO string can be generated in a head-final structure.

CP
Spec/\CI
/\
AgriP C

kan-wan NP vi

_—

(163) nei-ben shu V

100

4.3.6 French: A Language with Clitics

In this case, we are not interested in the French langﬂagé as a x-\-r_l-lole, but just its cliticization. Since
we are only dealing with simple sentences with two arguments, only sentences like the one in (164)

will be considered.

(164) Je le-visitais

I him-visited

‘I visited him.’
There is a huge amount of literature on the analysis of clitics like le here, but we will not try to ga
through it in this short section. What I want to point out is that our current model may offer an
alternative account of this well-known phenomenon. Recall that we observed in Chapter 3 that case
and agreement features can be spelled out either on NPs or on the verb. { See Borer (1984) and Safir
(1985) for similar ideas.) The parameter S(F(case)) has four values: 0-0 (no case feature spelled
out), 0-1 (case features spelied out on the NP), 1-0 (case features spelled out on the verb)!8, and
1-1 {case feature spelled out on both the NP and the verb). We have further assumed that, when
spelled out on the verb, the case-features together with the agreement features show up as clitics.

Now let us suppose that the S(F(case)) parameter has a value which is operative only when
the object NP is a pronoun. Then the four values of this parameter will have the following effects.
When it is set to 0-0, no case features are spelled out. Since a pronoun is nothing more than a
set of case and agreement features, no pronoun will be visible in this case. We call this pro-drop.
When S(F(case)} is set to 0-1, the features are spelled out as a pronoun. In cases where the value
1s 1-0, the features appear as a clitic instead of a pronoun. The features spelled out here are some
F-features of Agr2. The verb acquired those features when it moved through Agr2-0 on its way to
Agrl-0. In this sense, clitics are affixes of the verb which spells out some case/agreement features
of the verb. This explains why clitics must be adjacent to the verb. Finally, we may have the value
1-1 which requires that the features be spelled out on both the verb and the NP. As a result, we
may see the clitic as well as the pronoun, a case of clitic doubling. The value of S(F(case)) seems to
be 1-0 in French.

In the GB literature there are basically two different accounts of cliticization. The base-generation
account has the view that clitics are based generated on the verb. The movement account argues
that clitics are generated in NP positions and later get attached to the verb through movement.
Recently syntacticians have been trying to reconcile the two approaches and have proposed the
view that cliticization involves both base generation and movement (e.g. Sportiche 1992). This
is intuitively very similar to our present analysis. Clitics are base generated in the sense that the
features are verbal features and they show up wherever the verb goes. They also involve movernent

because the verb has to move through Agr2-0 and the object NP has to move to Agr2spec. While

18The features to be spelled out in this case are the F-features which the verb can pick up and carry along when it
moves through the functional categories.

101

the verb is in Agr2-0 and the NP in Agr2spec, the verb will get its case/agreement features checked
against the-object NP through spec-head agreement. It will take more work to see, however, whether
the present account can cover all the empirical data that traditional approaches have succeeded in

providing an explanation for.

The case studies above have given us some rore concrete ideas as to what linguistic phenomena
can be accommodated in our parameter space. The studies are incomplete, however, because the
list of languages that can be studied this way is an open-ended one. We should have locked at many

more languages but a complete survey is beyond the capacity of the present thesis.

4.4 Summary

In this chapter we have laid out the parameter space in cur model. We have had a bird’s-eye view at
all the possible languages in this space as well as a worm’s-eye view at some specific languages. We
have seen the present parameter space is capable of accounting for a wide range of linguistic facts.
In terms of word order and inflectional morphology, most natural languages can find a corresponding
“language” in this parameter space. We have also discovered, however, that our present system has
its limitations. In order to provide a more complete account of any natural language, the system

must be enriched in the future,

102

Chapter 5

Setting the Parameters

This chapter will be devoted to the issue of learnability. We have defined an experimental grammar
with a set of parameters. We have also seen that the parameter space thus created is capable of
accounting for a wide range of cross-linguistic variation. The next question is how a learner can
acquire different languages by setting those parameters. Is every language in our parameter space
learnable? Is there a learning algorithm whereby the parameters can be set correctly? If so, what
properties does this learning algorithm have? These are the questions that will be addressed in this
chapter. We will see that there exists at least one algorithm which not only results in successful

learning but has some desirable learnability properties as well.

5.1 Basic Assumptions

The study of language acquisition is an enormous project which involves many sub-areas of research.
We are not trying to look at every aspect of language learning, however. The area we will focus on is
a sub-part of syntactic acquisition. It is assumed that there are learning modules that are responsible
for the acquisition of other linguistic knowledge such as phonology, morphology and semantics. The
learning activities to be discussed here will thus take place in an idealized situation where other kinds
of learning are supposed to be taken care of. We will take a number of things as given, and the the
success or failure of the learning algorithm we will work out is to be viewed against the backgroud

of those given assumptions. It is therefore important to state those assumptions explicitly at the

beginning.

5.1.1 Assumptions about the Input

The input to the learning module we are concerned with comprises strings which are abstract rep-

resentations of Degree-1 declarative sentences.! Each input string is assumed to be a CP (i.e. a

1A Degree-1 sentence is a sentence with no embedding. See Wexler and Culicover 1980 and Lightfoot 1991 for
definitions of the degrees of input.

103

sentence) and every symbol in the string consists of a category label plus a feature list. Such input
strings are-usually referred to as labeled strings (ref?77?). It is assumed that some other learning
mechanisms can enable the learner to segment a string correctly and figure out the grammatical
category of each individual symbol. In addition, the learner is supposed to be able to identify the
argument structure of each sentence. He/she can differentiate transitive verbs from intransitive ones
and distinguish between subject and object NPs. How such “tagging” is achieved is not the concern
of our present study. Finally, it is assumed that the learner can analyze the morphological structures
of the target language. She can find out, for instance, that the word does in English is overtly marked
for the tense and agreement features.

The input strings for our learner are more abstract than the prototypical labeled strings in that
() no real words appear in the strings, and (ii) the inflections of the words are represented in a

feature list. The category labels that can appear in the input strings include the following:

e s (subject NP)

o (object NP)

iv (intransitive verb)

¢ tv (transitive verb)

o aux {(auxiliary or grammatical particle)
¢ often (adverb of the “often” type)

Each category label has a list of features attached to it. The features that appear in the list represent
overt morphology, i.e. features that are spelled out. For instance, a string like [s-[c1] aux-[agr,tns]
v-[asp] o-[¢2]] represents a sentence where the subject and object are overtly marked for different
cases, the auxiliary overtly inflects for agreement and tense, and the verb has overt inflection for
aspect. The full array of possibilities has been illustrated in 4.2.3. It is taken for granted that the
learner is able to identify the inflectional morpheme(s) in each word and the feature(s} encoded in
each morpheme.

The language to be acquired by a learner is composed of a set of strings. These strings are to be
presented in an unrordered fashion. The learner can encounter any string at any time. It is assumed
that every string in the set will eventually appear in the input and each string (which represents a
certain fype of sentences) can be encountered repeatedly.

All the input strings are supposed to be grammatical sentences in the target language. No
sentence is marked “ungrammatical”, telling the learner that this is not a sentence he/she should
generate. In other words, no negative evidence is available (cf. Brown & Hanlon (1970), Wexler &
Hamburger (1973), Baker (1979), Marcus (1993), etc.).

104

5.1.2 Assumptions about the Learner

The learner is equipped with Universal Grammar which has a set of parameters, each having two
or more values. In our case, the UG is the experimental grammar defined in Chapter 3. Whenever
an input sentence is encountered, the learner tries to parse it using the grammar and the current
parameter setting. At the initial stage, the parameters can be either preset or unset. In the latter
case, a setting has to be chosen before the parsing starts. As we will see, whether the parameters
are preset or unset does not make a big difference in our model.

We adopt the hypothesis that the learner is failure-driven or error-driven (Wexler & Culicover
(1980)). He/she will not change his/her current parameter setting unless he/she encounters a sen-
tence which is not syntactically analyzable with the current settihg. We also assume the Greediness
Constraint (Gibson and Wexler 1993) according to which the learner will not adopt a new setting
unless it can result a successful parse of the current input sentence. Finally, we share with most re-
searchers in the field the assumption that the learner has no memory of either the previous parameter
settings or the sentences previously encountered.

An ideal learning paradigm within which parameter setting can be experimented with the above
assumptions is Gold’s (1967) identification by enumeration. This is a failure-driven algorithm
whereby the learner goes through a number of hypotheses until the correct one is found. In our
case, the algorithm can be described as follows. Given a list of parameter settings, the learner
attempts to parse an input sentence S with one of the settings in the list. If S can be successfully
parsed, then the setting is retained. If S is unparsable, however, the current setting will be discarded
and the next setting in the list will be tried. The settings are tried one by one until the learner
reaches a value combination that results in a successful parse. A language is said to be learned or
identified in the limil when the learner has come to a point where he/she can parse any S in the
language without ever changing the parameter setting again.

A well-known property of this algorithm is that the enumeration of hypotheses {in our case the
parameter settings) must follow the Subset Principle (Angluin 1978,1980, Williams 1981, Berwick
1985, Manzini and Wexler 1987, Wexler and Manzini 1987). Given two languages L, and Ly and
their respective parameter settings P; and P;, P; must come before P, in the enumeration if L;
constitutes a proper subset of Ly. We have seen in 4.1.4 that superset and subset languages do exist
in our parameter space. This fact has significant implications for the enumerative process of our
learning algorithm.

There are three types of parameters to be set in our model: S(M)-parameters, S(F)-parameters
and HD-parameters. S(M) and HD parameters account for word order variation. They are reset if
and only if the current setting fails to accept the word order of an input string. S(F)-parameters,
on the other hand, are responsible for the morphological paradigm of a language. They are reset
on the basis of visible morphology only. Thus the values of S(M)- and HD- parameters respond

to word order only and the values of S(F)-parameters respond to morphology only. Since word

105

scope-feature in German has the value in (18(ii)) which requires that this feature be made overt. In
(26) the wh-phrase has moved through all the-Specs-of CP; which-means_all the. scope.features have
been checked before Spell-Out. So the F-features and L-feature have all gotten unified and we see
the wh-phrase only. In (27) and (28), the checking movement is partial and all the unchecked scope
features are spelled out as was. (29) is ungrammatical because one of the unchecked features is not
spelled out, which contradicts the value of S(F) that requires that all scope features be spelled out.

The last example to illustrate the value in (18(ii)) is from French. Previous examples have shown
that the specifiers of CP and AgrSP can be spelled out by themselves. The French example here
is intended to show that the head of CP can also be spelled out in that way. Let us suppose that
C? contains a certain predication feature which determines, for instance, whether the sentence is a
statement or a question. Let us further suppose that this feature must be spelled out in a question
in French. When I-to-C movement takes place, as in (30), this feature is not spelled out by itself. It

is merged with the verb in C°.

(30) Apprener wous le russe
learn you Russian
‘Do you learn Russian?’

In cases where no overt I-to-C movement takes place, however, the predication feature must be
spelled out on its own. This is shown in (31) where est-ce que can be regarded as an overtly realized

head of CP.

(31) Est-ce que wous appremez le russe
you learn Russian
‘Do you learn Russian®?’

In (18(iii)), the S(F)-parameter is set 0 while the S(M)-parameter set to 1. This means the
feature is checked through movement before Spell-Out but not overtly realized. We will see overt
movement but not overt morphology. This seems to happen to the case/agreement features of the
subject NP in Chinese, as (32) shows.

(32) Zhangsan bu zihuan Lisi
Zhangsan not like Lisi
‘Zhangsan doesn’t like Lisi.’

This NP does seem to move to the Spec of IP/AgrSP (Cheng 1991, Chiu 1992). One argument
for this is the following: with the assumption that the subject is base-generated within VP and Neg
is generated outside VP, the subject could not precede Neg had it not moved to Spec of IP/AgrSP.
However, there is no case/agreement marking on this NP at all, which shows that the S(F)-parameter
for case/agreement features is set to 0. More examples demonstrating the value in (18(iii)) can be
found in Chapter 4.

27

In (18(iv)), both the S(F)-parameter and the S(M)-parameter are set to 0. In this case, there
is neither overt morphology nor overt movement. The-object-verb—agreement: features in many
languages seem to exemplify this value: there is no overt agreement marker and the object does not
seem to move. Examples of this will be given in Chapter 4.

The examples we have seen so far is sufficient to show that the interaction between S(F)-
parameters and S(F)-parameters can give rise to a wide variety of syntactic phenomena. It has

added a new dimension to our parameter space.

2.4 Summary

In this chapter, I have proposed a syntactic model which is built on some of the new assumptions
in the Minimalist framework. By fully exploiting the notion of Spell-Out, we discovered a model
where a wide range of linguistic facts can be accounted for in terms of two sets of S-parameters. The
values of S(F)-parameters determine which features are morphologically realized; the values of S(M)-
parameters determine which movements are overt. It is found that so much variation in word order
can be derived from movement that the number of HD-parameters can be reduced. It is also found
that the interaction between S(F)-parameters and S(M)-parameters can make interesting predictions
for the distribution of functional elements, such as affixes, auxiliaries, expletives, particles and wh-
scope markers. In short, we have found a parameter space which has rich typological implications.
So far the model has been presented in a very sketchy way with many details left out. But the
details are important. In the chapters that follow, we will make the model more specific and put it

to the test of language typology, language acquisition and language processing.

28

Chapter 3

An Experimental Grammar

In the previous chapter I proposed a new approach to syntax where cross-linguistic variations in word
order and inflectional morphology are attributed to three sets of parameters: the S(F)-parameters,
the S{M)-parameters, and the HD-parameters. So far the discussion has been very general, with
many details unattended to. To fully explore the consequences of this new hypothesis in language
typology, language acquisition and language processing, we need to work with a more concrete model.
We must have a grammar which is specific enough so that the consequences can be computed. The
goal of this chapter is to specify such an experimental grammar.

Obviously, the presentation of a syntactic model which is complete in any sense is an unrealistic
goal here. In the first place, the Minimalist theory has not been fully specified. Many issues that the
standard P&P model has addressed have not been accommodated in the new program yet, not to
mention those areas that even the standard model has left unexplored. In addition, I will not follow
MPLT in every detail, though the theory I am proposing is in the Minimalist framework.! This
leaves more issues open, for even those things that are supposed to have been discussed in MPLT
may have to be reconsidered here. The best we can do at this moment is to come up with a partial
model and use it as a test ground. The conclusions we draw from the test will not be definitive, but
they can at least provide us with some way of evaluating the new theory. Such evaluation will give us
some idea as to whether this line of research is worth pursuing at all. For this reason, the syntactic
model to be presented in this chapter will be minimal. In particular, we will be concerned only
with those parts of the grammar which are responsible for the dasic word orders and morphological
characteristics of langnages. The discussion in later chapters may go beyond the grammar described
here, but the extensions will be introduced as we go along.

We will start with a grammar which is restricted in the following ways.

1As has been stated in the last chapter, I will try to make a distinction between MPLT and the Minimalist
Jramework. The former refers to the specific model described in MPLT while the latter refers to the general approach
to syntax initiated by MPLT, .

29

¢ Declarative sentences only. We will focus on cross-linguistic variations in statements first. In

many languages, the word orders found in questions are different from those in statements.
We do not want to get into this complication before we have a better understanding of how
the parameters work in the “basic” type of sentences, i.e. declarative sentences. Therefore, I
will put other sentence types aside in this chapter, though some of them will be picked up in
Chapter 4.

Matrix clauses only. We will start with simple sentences with no embedding. In other words, we
will be concerned mainly with Degree-0 sentences.? There are two reasons for this temporary
exclusion of embedded clauses. First, main clauses and subordinate clauses have different
word orders in some languages {(e.g. German, Dutch, and many other V2 languages). Why
there is this difference deserves some special discussion. We will come to that after matrix
clauses have been analyzed. Second, the inclusion of embedded clauses will make it necessary
to deal with “long-distance” movement whose application involves the notion of “barriers” or
“minimality”. How these notions are defined in the Minimalist framework is not clear yet. It
is very likely that the standard definitions can be transplanted in the present model without
too much tinkering. But I prefer to put these issues aside until we have worked on aspects of

the grammar which are more directly related to basic word order and morphology.

Two types of verbs only. Since I will be mainly concerned with the ordering of S(ubject),
O(bject) and V(erb) in this experimental study, I will only look at two types of verbs: (a)
intransitive verbs with a single NP argument (e.g. swim) and (b) transitive verbs with two
NP arguments (e.g. love).

IP/CP only. I will experiment with the ordering in IP /CP first and leave the internal structures
of NP/DP aside for the moment. There have been many observations on the parallels between
IP/CP and DP (Stowell 1981,1989, Abney 1986, Sabolsci 1989, Valois 1991, etc.). The new
approach considered here can definitely apply to the word order phenomena within DP. It is
very likely that the movement patterns in IP/CP and NP/DP are related (Koopman, 1993). .
However, I will single out IP/CP for analysis first, All NPs/DPs will be treated as unanalyzed
wholes for the time being. Their internal structures and internal word orders will be given a

very preliminary analysis in Chapter 7.

No binding theory. Binding theory is one of those components of the grammar that needs
major re-working in the Minimalist framework. In order not to get distracted from my main

topic, I will not go into a Minimalist account of binding theory.

What is listed above does not exhaust the topics which are left out in this chapter. Other things

?Discussions on the “degrees” of sentences can be found in Wexler and Culicover 1980, Morgan 1986 and Lightfoot
1989, 1991,

30

will be noted in the course of presentation. We will see that, in spite of these simplifications and
omissions; the model will be rich enough' to 'spell ‘out. the: basic. properties..of thé present-approach.
The typology, the parser and the acquisition procedure based on this minimal model will not be
complete, but they will be sufficient for the illustration of these properties.

It must be emphasized again that the model to be described below does not follow MPLT in
every detail. The model is in the Minimalist framework in the sense that it keeps to the spirit of the
Minimalist approach. The actual specifications are often different from what Chomsky has said. I
will try to point out the differences as we go along. It should also be emphasized that the grammar
to be described is not the only one where the new approach will work. I am simply trying out a
particular instantiation of the theory to show that my proposal can be put to practice in at least one
given version of the model. By the time when we have completed the experiment, we will realize that
the main results of our experiment do not have to rely on this particular grammar. The approach
should apply in general to many different specifications of the theory.

We now start on our particular model. To compute the relationships between the parameter
values on the one hand and the variations in word order and morphology on the other, we must

specify at least the following,
(i) The categorial system of the model. This provides the building blocks of linguistic structures.

(ii) The feature system of the model. Since both the S(F)- and S(M)- parameters are associated
with features, we will not know how many S-parameters are needed unless we know what

features can be spelled out and what features need checking.
(iii) The computational system of the model. This includes the following sub-systems:

¢ Lexical Projection (LP) which determines the phrasal projections of all categories.

¢ Generalized Transformation (GT) which determines how the phrasal projections are

joined to form a single tree.

¢ Move-a@ which is responsible for feature-checking.
(iv) The PF constraints.
(v) The LF constraints.

The PF and LF constraints can be easily defined in this model. We will therefore specify (iv) and
(v) first.

There is only one PF constraint in this model which requires that the input to PF be a single
tree. Presumably, the violation of this constraint might result in “broken” sentences. This does not
mean, however, that we are not allowed to produce sentence fragments. A single NP or PP can also

constitute a single tree and thus be a legitimate object at PF. In MPLT there is another constraint

! 31

which rejects strong features that survive to PF, as I have mentioned in 2.1.2. Since we have chosen
not-to Tesort-to the strong/weak -distinction ‘as a possible explanation.for.overt. movement, this
constraint does not exist in the present model.

The only LF requirement in this model is that all the features must be checked. Since checking
requires movement, it actually requires a set of movements to take place in the derivation. The
nature of these movements will become clear in 3.2. In what follows, we will look at these systems

one by one.

3.1 The Categorial and Feature Systems

The categorial system and the feature systern will be discussed in the same section, because they
are closely related. Every feature is associated with one or more categories and every category is
basically a bundle of features.

3.1.1 Categories

The categories to be used in this mini-grammar will be limited to the ones in (33).
(33) { C(omp), Agr(eement)1, Agr(eement)2, T(ense), A(spect), V(erb), N }

Agrl and Agr2 is equivalent to what we usually call AgrS and AgrO. We prefer not to use AgrS
and AgrO because AgrS is not always associated with the subject, nor is AgrO always associated
with the object. The use of Agrl and Agr2 will facilitate our discussion on ergative constructions,
passive constructions, unaccusatives, etc.

We see that all categories except N are verbal in nature while some nominal categories like
D(eterminer) are missing. This is because for the time being we will not look into the internal
structures of NP or DP, all of which will be treated as a single unit. For instance, John, the boy and
the boy who smiled will be treated identically as NPs. This is why the traditional term NP is used
instead of the more up-to-date DP in referring to such phrases. Other common categories that are
absent in the list include P(reposition), Adv{erb), Adj(ective) and Neg(ation). Some of them will
be introduced into our system in succeeding chapters when they become relevant to our discussion.

We assume that the set of categories in (33) is universal. In other words, the categories are given
as part of UG. The fact that some categories do not seem to show up in some languages can be

explained in two different ways:

(i) Only a subset of those categories is used in each particular language. After the critical period

of language acquisition, the categories that are not used are “trashed”.

(ii) All the categories are present not only in UG but in every individual adult grammar as well.

The fact that some categories are invisible simply means they are not spelled out.

32

The explanation to be accepted in our present model is the one in (ii). There are several arguments
against- (i), First-of -all;- the -assumption that:some categories can:be trashed “after .the.critical
period implies that different languages can have very different X-bar structures. If we assume (ii),
however, the structures will be more uniform. Secondly, the “trashing” of categories is not a simple
computational operation. It may mean a partial or total rehash of selectional relations among
categories. Suppose that in UG C selects Agr as a complement, Agr selects T, and T selects Asp. If
a language does not have overt tense and agreement, we have to remove all those selectional rules and
replace them with a new rule which may let C select Asp as its complement. How this complicated
operation can be triggered and accomplished is a question. Finally, even in languages where certain
categories seem to be missing, the concepts represented by those categories appear to be present.
Many people have analyzed Mandarin Chinese as a language where the category T is missing (e.g.
Cheng 1991). This by no means indicates that speakers of this language are tense-insensitive. As
a matter of fact, every Chinese sentence is interpreted in some tense frame. This is true even in
cases where no time adverbial is present. The simplest explanation for this fact is that T is present

though it is not overtly realized.

3.1.2 Features

The arguments we made above about the universal nature of categories can be applied to features
in a similar way. The features to be assumed in this model are also supposed to be universal.
They are given in UG and they remain in the grammar of every individual language. The fact
that only a subset of those features is visible in a given language means that only this subset is
spelled out. Therefore, we can assume the existence of a feature as long as this feature is visible in
some languages. We have hypothesized that the visibility of a feature depends on the value of its
S(F)-parameter rather than the availability of this feature itself. Some people may argue that the
distinction we are making here has no empirical import. After all, what is the difference between
invisible existence and non-existence? But there ¢s a difference in terms of language acquisition and
language processing. As we will see, both of them can be simplified with our assumptions.

Now let us specify the features of our model. It is commonly accepted that the basic features
are of two types: the V-features and the NP-features. What these features should exactly be is an

open question, but we can start with the tentative set in (34).

(34) V-features: #-grid, case, tense, aspect, ¢-features, predication features

NP-features: 0-role, case, ¢-features, operator features

This set is by no means complete but it will be enough for experimental purposes. In what follows,
I will give some justification for the inclusion of those features in our model, and specify for each
feature whether there is a S(F)-parameter associated with it. The set of S(F)-parameters to be

assumed will again be minimal in nature. We are not trying to attach an S(F)-parameter to every

33

feature whose spell-out can vary cross-linguistically, Instead, only a subset of such features will have
their spell-out options parameterized: .

The existence of #-grids is relatively non-controversial. Whether this feature can be spelled out,
however, is open to debate. On the one hand, we can say that it is always overtly realized in the
argument structure of a sentence; on the other hand, there does not seem to be a language where the
f-grids are morphologically realized on the verb. But one thing is almost certain: the spell-out of
f-grids does not vary from language to language. We can think of this features as being either always
spelled out (in the argument structure) or never spelled out (in verbal morphology). Therefore there
is no reason to assume an S(F)-parameter for this feature.

It is also well accepted that NPs carry #-roles, though their realization is mixed up with that of
case features. There are suggestions (ref ?7) that #-roles and cases are two sides of the same coin,
morphological case being the overt realization of §-roles. If we accept this view, we could eliminate
the case feature and regard case-markers as spelled out #-roles. However, we will stay with the
standard view that f-roles and cases are two different animals. The arguments for this assumption
are so familiar that I will not review them here (See ??). One implication of this assumption is that
f-roles are never morphologically realized. In other words, they are understood but never spelled
out. Consequently, there is no reason to suppose that they have an S(F)-parameter associated with
thern.

The ¢-feature is used as a cover term for all agreement features, such as Person, Number and
Gender. It is both a V-feature and an NP-feature. As far as overt agreement is concerned, however,
the Spell-Out of V-features is more impdrtant than that of NP-features. A language is considered to
have overt agreement as long as the V-features are overt, regardless of the status of the NP-features3,
In this experimental model, we will only be interested in those features which are invelved in overt
agreement. For this reason, the spell-out of NP ¢-features will be ignored for the time being. When
we say a ¢-feature or an agreement feature is spelled out, we mean the V-feature is overt. Another
fact we will temporarily ignore is that different ¢-features can be speiled out independently. We
could let each ¢-feature be associated with an independent S(F)-parameter. This is justified because
each feature can be overt or covert regardless of the status of other ¢-features. For instance, we can
find a language where person and number features are spelled out on the verb but the gender feature
is not. However, such details do not affect the general approach we are taking. They can be easily
added to the system after the big picture has been made clear. To simplify our parameter space so as
to concentrate on the more interesting aspects of the theory, we will agssume a single S(F)-parameter
for the whole set of ¢-features. Its value is 1 (spelled out) if any subset of the ¢-features is overt.

The existence of the tense and aspect features is again non-controversial. They are overt in

some languages and covert in others. We could put these two features in a single bundle and let

*Functionally speaking, case-marking and agreement perform the same role, i.e. identifying the grammatical
functions of NPs. This function is realized on the NP when case is spelled out and realized on the verb when
agreement is spelled out.

34

them be associated with a single S(F)-parameter, as we have done to the ¢-features. However,
the: differentiation.of .these two-features-is-more important-than-that of ¢-features in the present
model because we are focusing on the verbal system, How tense and aspect features can be realized
on their own is of interest to us. We have decided in 77 that T(ense) and Asp(ect) constitute
two different categories, each having its own features. Therefore we will let tense and aspect be
associated two independent S(F)-parameters. This will enable us to have a more detailed analysis
of the tense/aspect system.

The case feature is usually regarded as an NP-feature, for it is often overtly realized as case-
markers on NPs. There is no doubt that there should be at least one S(F)-parameter for the case
features. Potentially we can associate a parameter with each different case, but we will assume a
simpler system where the spell-out of all case features is determined by a single S(F)-parameter.
This parameter will have the value “1” in a language if there is any kind of morphological case.

It is not so obvious, however, whether case is also a V-feature. Most people would think, at least
initially, that verbs do not have case features. But there is evidence that the verb does carry case
features and these features are sometimes visible. One example is found in Tagalog (Schachter 1976).

. In this language, the verb can have a case marker and the case feature varies according to which
NP in the sentence is being topicalized. Consider the sentences in (35), (36), (37) and (38). (The
topic marker is ang while ng marks agent and patient, sa marks locative and para sa beneficiary.)
We could treat those markers as speiled out theta-roles, but we will stick with our assumption that

theta-roles are never spelled out. Whatever is spelled out is always the case feature.

(38) Mag-salis ang babae ng bigas sa sako para sa bata
A-will:take woman rice sack child
“The woman will take rice out of a/the sack for a/the child.’

(36) Aalisin ng babae ang bigas sa sako pera sa bata
O-will:take woman rice sack child
‘A/The woman will take the rice out of a/the sack for a/the child.’

(87) Aalisan ng babae ng bigas ang sako para sa baia
Loc-will:take woman rice sack child
‘A/The woman will take some rice out of the sack for a/the child.’

(38) Ipag-salis ng babae ng bigas sa sako ang bate
A-will:take woiman rice sack child
‘A/The woman will take some rice out of a/the sack for the child.’

. These examples suggest that the case feature exist in both nouns and verbs.
Another possible example of verbal case features is cliticization. We can think of cliticization as
a process where case features are spelled out on the verb. This view has been expressed by Borer
(1984) who calls this process Clitic Spell-Out. It is also reminiscent of the treatment of subject

35

clitics in Safir (1985). Clitics can be viewed as something between a pronoun and an affix. In fact,
they-are more like affixes-than pronouns.-If we are-allowed to treat-them as affixes; as in the lexical
analyses of clitics, * they will start to look like case and agreement markers affixed to the verb.
In the following French sentence, for example, me and lz can be viewed as the overt realization of
case and agreement features on the verb, the former being the feature matrix of [case:dat, person:1,

number:s] and the latter [case:ace, person:3,number:s, gender:f].

(39) Jean me-la-monire

John me-it-shows

‘John shows me it.’
Since languages can differ with respect to whether the verbal case feature is spelled out, we assume
that this feature has an S(F)-parameter associated with it.

The feature “predication” is supposed to contain information about sentence type. It tells us,
for instance, whether the verb (or the “predicate”) is used in a statement or a question ([-Q] or
[+Q]). Is this feature visible in some languages? The answer seems to be positive. One way in
which this feature can be said to be realized is through intonation. It is very common for statements
and questions to have different intonational contours. The fact the verb seems to be the main
bearer of the clausal intonation suggests that there is a verbal feature which can be overtly realized.
This feature also seems to show up morphologically sometimes. The English word whether can be
regarded as a spell-out of [+Q] in an embedded CP. In Chinese, this feature can be morphologically
realized as a question/affirmation particle, as shown in (13) repeated here as (40), or in the A-not-A

construction, as in (41).

(40) Ta ken-wan nei-ben shu le ma
you finish reading that book Asp Q/A
‘Have you finished reading that book? / He has finished reading that book, as you know.’

(41) Ni he-bu-he pijiu
you drink-not-drink beer
‘Do you drink beer?

The verbal complex he-bu-he (‘drink or not’) in (41) can be viewed as an instance where the [+Q]
feature is spelled out on the verb. It seems that this feature must be spelled out in Chinese either in a
verbal form or as a grammatical particle.’ We will assume that there is an S(F)-parameter associated
with this predication feature, as languages can vary as to whether this feature is morphologically

realized.

4Lexical analyses claim that a clitic is in effect 2 derivational affix medifying the lexical entry of a predicate. For
instance, the alternation between lire un livre and le lire is taken to be an altermation between a transitive verb fire

and an intransitive le+fire.
*The A-not-A construction never co-occurs with the question particle me, which suggests that “double spell-out”

is prohibited in Chinese.

36

The last feature we will discuss is “operator”, This feature is used as a cover term for such features
as “scope”; “topic™-and- *focus™ ‘The status of thesefeatures-is.open _to discussion.. We will .assume
that quantifier-raising (QR), topicalization and focalization involve similar syntactic operations, i.e.
putting a constituent in a prominent position. This is the view expressed by Chomsky: “The natural
assumption is that C may have an operator feature (which we can take to be the Q or wh- feature
standardly assumed in C in such cases), and that this feature is a morphological property of such
operators as wh-. For appropriate C, the operators raise for feature checking to the checking domain
of C: [SPEC,C], or adjunction to specifier (absorption), thereby satisfying their scopal properties.
Topicalization and focus could be treated the same way.” (MPLT p45) However, there seems to be
evidence that these operations are syntactically distinct. In Hungarian, for instance, a quantified

NP, a topic and a focus can apparently co-occur in a single sentence. Consider (42).

(42) Mari mindenkinek Pelit mutaita be

Mary-Nom everyone-Dat Pete-Acc showed in

‘Mary introduced Pete to everyone.’
In this sentence, Mari is the topic, mindenkinek the raised quantified NP, and Petit the focus. All
three of them are raised to the beginning of the sentence and they must appear in the order of
Topic < QP < Focus. To account for these facts, we will assume that there are distinct operator
features but they are checked through the same syntactic operation, namely, by raising a constituent
to the Spec of CP through A-bar movement. The fact that more than one constituent can be raised
in this way simply means that there is more than one operator. The multiple A-bar movements that
seem to be involved may be handled in a way analogous to the treatment of multiple wh-movement.
We can have a layered CP where the specifier position of each layer contains one operator. The
different layers might be named Topic-P, Focus-P, etc. We can also let the operators adjoin to CP
one after another. We can even put an ordered list of operators in Spec of CP. For the purpose of
our preliminary experiments, however, there is no need to commit ourselves to any of those options.
Being minimal again, we will currently limit ourselves to those cases where only one operator feature
is checked. This may be the scope feature, the topic feature, or the focus feature.

The next question is whether the operator feature is ever morphologically realized. The answer

seems to be “yes”. The wh-scope marker was in German, for instance, can be taken as an overt
scope feature, while the topic marker -we in Japanese can be considered an overt topic feature. A

German example is given in (43) (same as (28)) and a Japanese example is given in (44).

(43) was; glaubst du [, was; Hans meint [op [mit wem]; Jakob t; gesprochen hat]]
WHAT believe you WHAT Hans think with whom Jakob talked has

(44) Tarvo-wa sensei da
Taroo-Topic teacher is
‘Taroo is a teacher.’

37

We will associate an S(F)-parameter to the operator feature to account for the fact it is overt in
some languages but not in others. . , D

In sum, we will have six S(F)-parameters which are associated with the following features: case,
agreement, tense, aspect, operator and predication. They will be called S(F{case)), S(F(agr)),
S(F(tns)), S(F(asp)), S(F(op)) and S(¥(pred)) respectively.

3.1.3 Features and Categories

So far we have been talking about V-features and NP-features as if only verbs and nouns had features.
This is not true, of course. Every category, whether lexical or functional, has a set of features.
Moreover, many features are found in more than one category. Typically, a feature appears in two
different places, one in a lexical projection and one in a functional projection. The tense feature, for
instance, exists in both T and V. Let us call features in functional projections F-fealures and those
in lexical projections L-fealures, Whenever a feature resides in both a functional projection and a
lexical projection, feature-checking is required. To make sure that the F-feature and the L-feature
agree in their values, the lexical element bearing the L-feature must move to the position where
the F-feature is located. The only features that seem to have L-features only are the f-features.
The #-grid is found in the verb only and the é-roles are found in NPs only. All other features are
generated in more than one position. The following table lists the features and the categories that

contain them.

(45) functional lexical
#-grid v
f-role N
tense: T v
aspect: A v
#(1): Agrl V, NP1
#(2): Agr2 V, NP2
case(1): Agrl V, NP1
case(2): Agr2 V, NP2
predication: C A"
operator: C Xp

There are two sets of ¢-features. ¢(1) consists of the features involved in subject-verb agreement.
#(2) is related to object-verb agreement. NP1 and NP2 usually correspond to Subject and Object,
but not always so, Technically, NP1 is just the higher NP and NP2 the lower one. Parallel to the
¢-features, there are also two sets of case features. Case(1) is the case assigned/checked in Agrl,
and case(2) the one in Agr2. The XP with which the operator feature is associated can be any full

projection, such as an NP or AdvP.

38

Conceptually, we can think of the F-features as representing the information the speaker intends
to-convey-and-the-L-features as the features to-be physically realized... To ensure.that “we-say what
we mean”, so to speak, the lexical features must be checked against the functional features.? As we
will see, the dual presence of F-features and L-features can account for many interesting linguistic
phenomena.

Each feature has a set of values. For instance, the value of the tense feature can be instantiated
to present, past, future, etc. However, we are not interested in those specific values in this abstract
model. What we will be focusing on is the spell-out those features: whether they are morphologically
realized in a given language, whatever their values may be.

3.1.4 The Spell-.Out of Features

In 3.1.2, we have assumed six S(F)-parameters. Here is review of those parameters and the features

they are associated with.

(46) S(F)-Parameter Feature
S(F(case)) case
S(F(agr)) agreement
S(F(tns)) tense
S(F(asp)) aspect
S(F(op)) operator
S(F(pred))- : predication

When the S(F)-parameter of a given feature is set to 1, this feature will be spelled out in overt
morphology. What is actually spelled out, however, can vary in different cases. First of all, there
is a distinction between pre-Spell-Out checking and post-Spell-Out checking. When a feature is
checked before Spell-Out, the lexical element carrying the feature will have moved to the functional
position where this feature is checked. As a result, the L-feature and F-feature will get unified before
Spell-Out and become indistinguishable from each other. We may say that the F-feature disappears
after checking and what is available for spell-out is the L-feature only. Thus the feature is always
spelled cut on a lexical head which shows up inflected. By “inflected” we mean the lexical element
has an affix, a special tone, or any other forms of conjugation. In cases where the feature is checked
after Spell-Out, the L-feature and the F-feature will co-exist in the representation that is fed into
PF. Consequently, both of them will be available for potential phonological realization. Logically
speaking, then, there are four possibilities for the spell-out of features, as we have mentioned in the

previous chapter:

6 The fact that the §-features need not be checked this way does not mean that they are not checked. They do get
checked but the checking takes place in the process of lexical projection.

39

(47) (i) Only the F-feature is spelled out;
*(ii):-Only-the L-feature is-spelled-out; ' E S e e
(iii) Both the F-feature and the L-feature are spelled out;
(iv) Neither the F-feature nor the L-feature is spelled out.

The possibilities in (i) and (iii) are available only if the feature is checed after Spell-Out.

All the four possibilities can be illustrated by examples from real languages. Let us take the tense
feature as an example. In English, this feature must be spelled out and what is overtly realized can
be either the F-feature or L-feature. In (48) the F-feature is spelled out. The verb does not move
to TP and the head of TP is overtly realized by itself as will. In (49) the L-feature is spelled out as
a suffix to the verb.

(48) John will visit Paris.
(49) John visit-ed Paris.

It seems that double spell-out, i.e. spelling out both the F-feature and the L-feature, is prohibited

in English, for (50) is ungrammatical.
(80) *John did visit-ed Paris.

In Swedish, however, both the F-feature and L-feature can be spelled out, as we have seen in (24)

repeated here as (51).

(61) Oeppnade doerren gjorde han
open-Past door-the do-Past he
‘He opened the door.’

In fact, the sentence will be unacceptable if the L-feature is not spelled out. In (52), the infinitive

form of the verb oeppna is used instead of the past tense form oeppnade, and the sentence is out. 7

(52) *Oeppna doerren gjorde han
open (inf) door-the do-Past he
‘He opened the door.’

On the other hand, there are also languages where neither the L-feature nor the F-feature are spelled

out. Chinese offers examples of such null spell-out:

(53) Ta meitian gqu zuerido
he/she everyday go school
‘He/she goes to school everyday.’

7This sentence and the judgment on it is from Platzack,

40

(54) Ta mingtian qu Tuexigo
~.hefshe. tomorrow..go -school ... = ...
‘He/she will go to school tomorrow.’

(53) is in the present tense while (54) is in the future tense, but there is no overt tense marking at
all.®

We have thus seen that all the four logical possibilities in (47) are empirically attested. This
suggests that the S(F)-parameter can have two sub-parameters, one for the spell-out of L-features
and one for the F-features. We will represent these two sub-parameters by splitting the value of each
S(F)-parameter in the form X-Y. The value of X determines whether the F-feature is spelled out
and Y the L-feature. Then the four possibilities in (47) will correspond to the following parameter

values.
(57) Features Spelled Out Values of S(F)-parameter
(i) F-feature only 1-0
(it) L-feature only 0-1
(iii) both F and L feautres 1-1
(iv) neither F nor L features 0-0

The values in (i) and (iii) are possible only if feature-checking takes place after Spell-Out because
only in these cases will both the L-feature and F-feature be available at the time of Spell-Out. The
significance of these sub-values will be further discussed in Chapter 4 where more examples will be
given to illustrate those possibilities.

3.2 The Computational System

There three major operations in the computational system: lexical projection (LP), generalized

transformation {GT) and move-a. We will specify them one by one.

3There are ceriain things in Chinese that are arguably tense markers. For example, fiang and hui can be treated
as future tense markers, and the perfective marker le can be treated as a past tense marker (Chiu 1992), as we can
see in (55) and (56).
(55) Ta mingtian jiang gu TueTiao
he/she tomorrow JIANG go school

‘He/she will go to school tomorrow.’

(56) Ta zuotian gu le zueriao
he/she tomorrow go LE school
‘He/she went to school yesterday.'

But even if these are tense markers, it still remains true that at least in some sentences the tense feature is not overt,

41

3.2.1 Lexical Projection

3.2.1.1. Basic Operation

In our system every category X projects the tree in (58).
Xp

ZP) xt

N\

(58) x (YD)

This is different from the lexical projection deseribed in MPLT. We assume that the projections are
invariable, with every projection resulting in an XP (i.e. X2). In MPLT, however, the projection only
goes “as far as it needs to” and what is projected can be an X0, an X1 or an XP, as has been illustrated
in (3) in Chapter 2. In addition, the specifier and complement positions do not appear in the initial
projection in MPLT. They are added later in the GT process. Consequently, the distinction between
substitution and adjunction is in fact gone. In our system, however, this distinction is maintained.
Generally speaking, any position which is ebligatory is to be generated in the process of lexical
projection. Attachment or movement to these positions is therefore substitution. All positions that
are optional is not base-generated. They are to be added to the structure in the process of GT or
move-¢.,

Now let us take a closer look at (58) which will be called an elementary X-bar tree. The fact that
ZP and YP appear in upper case letters indicate that they are empty when the tree is projected.
They contain a set of features but no lexical content. In the process of syntactic derivation, they
will either be filled by a subtree or be licensed to remain empty. In the former case, they serve as
attachment poinis for GT or move-o operations. The parentheses around ZP and YP indicate their
optionality: not every projection contains them. The actual status of ZP and YP is determined by
X. ZP can appear as a specifier of X if and only if X selects a ZP specifier. This selectional rule can

be represented as (59).
(59) specifier(X,Z)

Similarly, YP can appear as a complement of X if and only if X selects YP as a complement. This

can be represented as (60).

(60) complemeni(X,Y)

The specifier can be absent if the rule in (61) exists and the complement can be absent if (62) exists.
(61) specifier(X,e)

(62) complement(X,c)

42

The rules in (59) and (60) do not tell us the directionality of the specifier or complement. Ir any
actual-implementation of these rules;-however; the direction-has to be specific.~To generate. the tree
in (58), for example, we must make clear that the specifier is to occur to the left of the head and
the complement to the right of the head. We have decided in 2.2.4 that we will adopt a weaker
version of the Invariant X-bar Structure Hypothesis where there are only two HD-parameters: a
head-compiement parameter for CP and another one for IP. The specifiers always occur to the left
of their heads. The complements always occur to the right of their heads except those in functional
categories. The positions of heads in functional categories are determined by two HD-parameters:
HD1 and HD2. The value of HD1 determines the position of head in CP and the value of HD?2
determines the head-position in IP. HD1 and HD2 each have two values: I (head-initial) and F
(head-final).

It is assumed here that each categoi-y can take at most one specifier and one complement. As
a result, the tree to be generated will never be more than binary branching. The assumption that
each category can take no more than one specifier (Spec) is well accepted. (Ref??) The single-
complement assumption, however, may seem to be unsupported at first sight. There are obviously
structures where two or more complements are found. The double-object construction is an example
of this. However, the fact that some categories need more than one complement does not mean that
any single elementary X-bar tree has to contain more than one complement position. Adopting the
layered-VP hypothesis of Larson (1988), we can let a category project more than one elementary
X-bar tree, with each tree taking only one complement. For instance, instead of (63(a)), we can
have the tree in (63(b)) where both UP and WP are generated without sacrificing binary branching.

xp
/N
zp X
7\
Xp X xp
/\ /\
zp x1 up x
PN
(63) X up WP X WP
(2) (b)

The structure in (63(b)) will be discussed further when we come to the projection of VP.

43

3.2.1.2. Selectional Rules (Simplified)
Now we define-the selectional rules for -each category.- We will tentatively assume. that. UG

contains the rules in (64).

(64) specifier(e,x) (1)
specifier(agri,n} (i)
specifier(t,¢) (iif)
specifier(asp,e) (iv)
specifier(agr2,n) (v)
specifier(v,n) (vi)

complement(c,agrl) {vii)
complement(agrl,t) (viii)
complement(t,asp) (ix)
complement(asp,agr2} (x)
complement(agr2,v) (xi)
complement(v,v) (xii)
complement(v,e) {xiii)

Sorne notes on these rules are in order here.

There are no ED-parameters associated with the specifier rules: the specifier selected by the
head always occurs to the left of the head. The complement rules which are sensitive to the values of
HD-parameters are (vii), (viii), (ix), (x) and (xi). The head in (vii) precedes the complement when
HD1 is set to “I” and follows the head when HD1 is set to “F”. The heads in (viii), (ix), (x) and
(xi) precede their complements when HD2 is set to “I” and follow their heads when HD?2 is set to
“F”. The fact that the values of HD2 applies in all the three rules reflects what we have assumed in
2.2.4: IP is treated as a whole regardless of how many independent projection it contains. In other
words, Agrl-P, TP, AspP and Agr2-P are to be treated as segments of a single IP. Therefore they
share the value of a single HD parameter. The application of (xii) is not subject to the value of any
HD-parameter. A verb always precedes its complement,.

The Spec of CP (Cspec hereafter) can be any maximal projection. We use “x” to represent this.
The Specs of Agrl, Agr2, and V are all NPs in these rules. (From now on, we will refer to these
positions as Agrlspec, Agr2spec, and Vspec respectively.) This is again a simplification. In a more
complete system, CPs or IPs should also be able to éppear in those Spec positions.

We notice that T and Asp do not have a Spec position. This does not mean that there is
any principled reason against these categories having a specifier. There have been many syntactic
arguments which rely crucially on the presense of this position. It is not present in this grammar

simply because we are trying to keep the system as small as possible.

44

The rules in (64) are applicable to both transitive and intransitive sentences. In other words,
both-Agrl-P and:Agr2:P-will be projected .no.mather whether there is an. object or-not- When a
sentence is intransitive, one of the agreement phrases may be inactive. I will basicalily follow Bobaljik
(1992), Chomsky (1992), and Laka (1992) in assuming that there is an Obligatory Case Parameter
whose value determines which case-assigner (Agrl or Agr2) is active in an intransitive sentence.
According to this assumption, we get a nominative/accusative construction if Agrl is active and
an ergative/absolutive construction if Agr2 is active. There is evidence that both Agrl and Agr2
exist in a single intransitive sentence. In some languages case marking identifies the patient of a
transitive verb with the intransitive subject, while agreement identifies the agent of a transitive verb
with the intransitive subject. It seems that, in these situations, the case system is ergative while
the agreement system is nominative. We have to conclude then that both Agrl and Agr2 can be
partially active in an intransitive sentence,

3.2.1.3. Selectional Rules {Featurized)

So far the selectional rules and the projection trees have been presented in a simplified form with
a lot of information left out. The nodes in (58) contain nothing but the category label, and the
selectional rules in (64) only tell us the categorial status of a specifier or complement. It is obvious
that the nodes do not consist of category labels only. Each node is a set of features, the category
label being just one of them. Take the verb caiches as an example. It has at least the syntactic
features in (65).

(65) Category: v
8-Grid; [agent, patient]
Tense: present
¢-features: [person:3,numer:s]

The specifier or complement selected by the category is also a bundle of features. For instance,

Agrlspec may have the following features: '

(66) Category: n
Case: 1
¢-features: X

The value of the ¢-features, represented here as a variable, is selected by the head of Agrl. This

selectional relation can be seen in (67) which is the maximal projection of Agrl.

45

agri-p([
case:d,
phi:X))

npl(agri-1
case:],

phi:X])

agri-O([tp([

case:l, tense:Y])
(87) ' phi:X]
The variable “X” is found in both the specifier and the head. This indicates that the two nodes
must have unifiable ¢ features.” This is the way Spec-head agreement is achieved. The actual value
of this feature is not an intrinsic property of Agrl. They depend on (a) the verb that moves to
~ Agrl-0 and (b) the NP that moves to Agrlspec. What Agrl plays is a mediating role. It ensures
that, whatever the value may be, it must be shared by the specifier and the head.

The structure in (67) also tells us that the NP specifier must have Case 1, i.e. the case assigned
by Agrl. The NP to be attached or moved to this position must have the same case. In this way
the case-marking of nouns will get checked. Notice that the case feature also appears in the Agrl-0
and the Agri-P node. This means that case is an intrinsic feature of Agr. The specifier of Agr gets
the value of its case feature via Spec-head agreement. The presence of the case feature in Agr also
explains why case is a V-feature as well. A verb acquires the case feature or have a case feature
checked when it moves to Agr-0 through head movement.

The complement in this projection tree is a TP whose tense feature has a variable “Y” as its
value. The value will be instantiated when a TP is attached to this position.

To generate the tree in (67), we need two“featurized” selectional rules, such as the ones in (68).
(68) specifier(agri(case:1,phi:X), n(case:1,phi:X),1}
complemeni(agrl,i,r}
Obviously, all the rules in (64) need to be featurized this way. But there is one more point to
be elaborated on before we do this, I have mentioned earlier that, in order to preserve binary
branching, we will adopt the “Layered-VP” hypothesis of Larson (1988). The VP structure assumed

in this experimental grammar is a pseudo-Larsonian one which in a way carries Larson’s idea to the

extreme. In addition to the general layered-VP structure, we also assume the following:

9 “Unifiable” is used here in the standard sense of unification. (Ref??) Intuitively, two sets of features are unifi-
able if they do not have incompatible values. For instance, the feature matrices [person:X,number:p,gender:m]
and [person:3,number:p, gender:Y] are unifiable (X and Y are variables meaning “any value"), while [per-
son:2,number:p,gender:f] and [person:3,number:p,gender:f} are not unifiable, The values of person clashes with each
other.

46

{i) The number of VP layers corresponds to the number of arguments a verb takes or the number

. of f-roles: it assigns.. In other words, each.layer of VP will contain exactly one argument.
(if) The argument in a given VP layer appears uniformly in Vspec.

The assumption in (i) in fact follows from (ii). Each layer of VP can have only one specifier and
therefore we need as many layers as the number of arguments. The VP tree for a transitive verb
will look like the following:

vp

/N

npli] vi

/\

v vp
/\
np{2] vl

(69) v

These assumptions have the following consequences.

First, the distinction between internal and external arguments are eliminated. What remains
is just a thematic hierarchy. An argument can just be relatively “higher” or “lower” than some
others. What is traditionally called the “subject” is simply the highest argument in the VP-shell.
The Extended Projection Principle is now translated into the requirement that every sentence must
contain at least one argument. There is no longer the need to explain, for example, why an NP with
a “Theme” role can be both an internal and external argument. The kind of argument promotion
observed in (70a), (70b) and (70¢) now receives a natural account.

(70) (a) The man opened the door with the key.
(b) The key opened the door.
{c) The door opened.

Passive and unaccusative constructions are also accounted for. The passive verb has had its first
f-role “absorbed”. (Ref 7?). Therefore the VP projected from a passive verb will not have the layer
which is the top one in its active counterpart. The remaining arguments are thus promoted one
layer up. The argument which is originally in the second layer is now in the first one and treated
like a subject. The unaccusative verb has only one f#-role to assign, so only one layer of VP is
projected. Since this single layer is also the top layer, the argument of an unaccusative verb can

enjoy subjeethoed.

47

®

Secondly, the VP structure assumed here lets 8-role assignment be performed uniformly in the
Spec-Head configuration. This is conceptually appealing because #-role assignment, case-checking
and agreement-checking now involve the same type of operation, namely Spec-head agreement, We
thus have & more general and more-consistent notion-of the Spec position being the checking domain:
of each category.

The structure in (69) consists of two elementary X-bar trees but they are in fact projected from
a single head. The verb exists as a chain, each V0 being one of its links. The two links are identical
except for the number of a #-roles they contain. The higher one has two while the lower one has
only one. This does not mean that two different verbs are involved here. The difference is nsed
as a computational device which makes sure that the correct number of layers are projected. We
have seen in (64) that there are two complement rules for V: it can take either a VP complement or
no complement. The choice is determined by the f-feature. If the #-grid contains only one §-role,
this V will have no complement and the current VP will be the last layer. If the f-grid contains
n+1 (for any n > 0) f-roles, this V will take a VP complement. The 6-grid of this VP complement
will contain n @ roles, with the understanding that the other role has been assigned in the higher
layer. In each layer, the #-role being assigned is always the first one in the list. This role is removed
from the list after the assignment so that the next role can be assigned in the next layer. The
layer-by-layer stripping of #-roles also ensures that eventually there will be only one role left so that
the VP projection will terminate. In the case of {69), the verb has two #-roles to assign. No more
VP complement is permitied after the second layer because there is no more theta-role to assign.

Now we are ready for a “featurized” version of (64). The new lexical projection rules are given

in (71). The structure “F:V” means that the feature F has V as its value.

(71)

specifier(c,n{op:+)) (i)
specifier(agrl(case:1,phi:X),n(case:1,phi: X)) (ii)
specifier(t,e) (iii)
specifier(a,€) (iv)
specifier(agr2(case:2,phi:X),n(case:2,phi:X)) (v)
specifier(v(#-Grid:{Th,...],n(#-role:Th) (vi)
complement(c,agrl) (vii)
complement(agrl,t) (viii)
complement(t,asp) (ix)
complement(asp,agr2) (%)
complement(agr2,v) (xi)
complement(v(6-Grid:[Th1,Th2,...]),v(#-Grid:[Th2,...]) (xii)
complement(v(6-Grid:[Th]),c) (xiii)

48

The §-grids in these rules contain variables like “Th1”, “Th2”, etc. instead of names like “agent”
and*“patient”.'?. This:is:done for.the.sake.of.generality.. The notation means- that, given any two
f-roles, “Th1” is higher than “Th2” in the thematic hierarchy and is to be assigned in a higher layer
of VP.

The op(erator) feature in Cspec has the value “+”. This means that the NP or any XP to be
substituted into this position is going to be the operator, i.e. it will receive the wide-scope, topic,

or focus interpretation.

3.2.2 Generalized Transformation

The LP operation described in the previous section produces a set of elementary X-bar trees. The
function of Generalized Transformation(GT) is to put those trees into a single tree. In MPLT, there
is only one type of GT operation which subsumes both substitution and adjunction. In both cases,
we add an empty position to the target tree (which looks like adjunction) and then substitute a
subtree into this position. This will not be the version of GT to be assumed in the present model.
As I have stated earlier, we will maintain the distinction between substitution and adjunction, the
former associated with obligatory constituents and the latter with optional ones.

In GT substitution, a subtree K is substituted into an empty position ¢ in the target tree K’,
resulting in K*. The empty position ¢ in K’ is either a specifier position or a complement position
which has already been generated in the process of Lexical Projection. The position is empty in the
sense that it has features but no lexical content. It is an attachment site into which another tree
may be substituted. The substitution is possible only if the attachment site and the subtree to be
attached have compatible (i.e. unifiable) features. For instance, the subtree to be attached to the
Apgrlspec in (67) must be an NP whose case feature has the value 1 and whose ¢-feature has the value
X. If X has already been instantiated to [person:3,numer:s] in Agrl, only a third person singular NP
can be attached to this point. If the X in Agrl is instantiated to [person:3,number:N] where N is a
variable, however, either a singular or a plural third person NP can be substituted. (72) and (73)
illustrate the two basic cases of GT substitution. In (72a), an NP is being substituted into Agrlspec.
The tree that results is (72b). Notice the unification of feature values in the substitution process.
(“3sm” is a short-hand form of [person:3,number:s,gener:m].) In (73a), a TP is being substituted

into the complement position of Agrl-P. The result is (73b).

19The “..” in the fgrids represents the rest of the theta-roles which can be empty.

49

agri~p{l

case:i,
phizX])
np([agri-1
case:l,
phi:X])
2::::5:1,/ oart0l Bl
s case:l, t H
/phl< phi:X]) ense
(72)
(a)
agrl-p{[
case:l,
phi:X])
np([agri-1
case:l,
phi:X]) /\
agri-0([tp([
cased, tense:Y])
phi:X))
tpll

tense:pres])

(73)
(a)

agri-p([
case:],
phi:3sm])
np([agri-{
cage:d,
phi:3sm]}
agrl-O([tp([
case:l, tense:Y1)
phi:Zsm])
(b)
agri-p([
cased,
phi:X))
np({ agri-i
cage:],
phi:X))

agri-O([tp([
case:d, tense:pres])
phi:X))

(b)

In GT adjunction, a subtree is added or inserted into a constituent. In this experimental model,

we will only be concerned with adjunction to X1. In other words, we will only consider the adjune-

tions whose function is adding modifiers into the structure. The subtree to be adjoined to an X1

must be a maximal projection. In this GT process we create an additional segment of X1 which

50

contains an empty position ¢ and then attach a subtree to . In (74), an extra segment of X1 is

created-and-AP is substituted-into-the empty position-contained in this extra-X1. ..

VAN

-

P

a9 AN

We assume that all adjunctions are left-adjunctions. We also assume that the attachment point
created during the adjunction has certain selectional properties, so that each category will only
accept a certain class of modifiers. For instance, the adjunction site in a V1 may require the adjunct
to be an AdvP. Therefore we will not be able to adjoin an NP to a V1. If an adjunct is acceptable to
two or more X1’s, it can then choose to adjoin to any of them. I will not try to specify a full theory
of modifier adjunction here. Some further discussion on this will be given when the need arises.

GT operations are applied recursively on pairs of trees until there is only a single tree left. If
there are two or more subtrees left and no GT operation can apply to reduce them to a single tree,
the derivation crashes.

At this point, we might be interested to see what structures are produced by LP and GT in
our system. Given the rules in (71), we can get 4 different CP structures for each type of verb by
varying the values of HD1 and HD2. For iilustration, we will look at one of the 4 structures where
both HD1 and HD2 are set to “I”. We will demonsirate it with two types of verbs: a transitive verb
that takes two NP arguments and an intransitive verb that takes one argument. The former will
be illustrated by the English sentence Mary caught him and the latter by Mary is swimming. The
structures generated by LP and GT for these two sentences are given in (75) and (76) respectively.
{All the nodes in these trees should have features other than the category label, but to save space

the other features are omitted in all but the terminal nodes.)

51

/\

(-
0pi 4] /\
Qap }1"’\
2, /\
agri-0(tp
casel
ohi:X}

/\

tense past]) enp
aspl
Speko) TP
ap([agr2~1
3R
2-0
gigeﬁyp\
2{([
, gh—:ilfeiagentl) /\
M
ary vO([A, vp
m exf
tense:p:

(75)

th-gnd fﬂgent pat:ent]]]

eaught np{lo B W vi
case
gh-roie :patient])
him vO([
aspect;A,
index:l, '
tense; ast

th-gr1d (patient]])

52

23([+n /\
e R
np([)gn agri-
agri-O([tp
cage:]
phi:XD)
tense pres]) e
/aspl\
asp0([agr2-p
aspect progl)
npi[agr2-1
se:
phi:Y]}
agr2-0([
5359
np([fW vi
gh-role:agent])

Mery vO((
nspect rog,
th—gnd [agent]])

(76) gwimming

There are some specific points about these trees which are worth mentioning.
Firstly, We see that all the lexical items appear VP-internally. Each of the NPs is in a position to
which a @-role is assigned, but none of them , however, is in a position where its case can be checked.

This is different from the traditional view that internal arguments are assigned cases VP-internally

53

under government. In our system, there is no internal arguments and government does not play a
role in case-checking at all. Every NP is drawn from the lexicon together with.its case.feature, but
it cannot be checked VP-internally. To satisfy the checking requirement, it must move to the Spec
position of one of the agreement phrases. This kind of movermnent will be discussed in 3.2.3.

Secondly, the copula s in Mary is swimming does not appear in the tree. This follows from
our assumption that ¢s is an expletive which is not base-generated. It is inserted in the Spell-Out
process as a way of overtly representing the features in Agrl-0 and TO.

Finally, we find in those trees all the features we have assumed. The values of these features are
constants in some cases and variables in others. (All the uppercase letters stand for variables.) The
variables all represent unspecified values, but they can have different syntactic status depending on
whether the feature is an F-feature (feature in a functional category) or an L-feature (feature in a
lexical categories). The variables in functional projections are all used for agreement. Two nodes
are supposed to have the same value for a certain feature if the same variable appears in both. For
instance, the values of ¢-features in both Agrl-P and Agr2-P are variables. The fact that ¢ has X or
Y as its value in both the head and the Spec of AgrP ensures that the subject/object and the verb
will agree in their ¢-features. The values of these features will be instantiated when the VP-internal
NPs move to the Specs of AgrPs and the verb moves to the heads of AgrPs.

The variables in the lexical projections indicate that the features in question are morphologically
unspecified. In other words, there are no morphemes in the lexicon that represent the values of
those features. In (75), for examples, the NP Mary is morphologically unspecified for the case
feature and the verb caught is unspecified for the aspect feature. The features will get instantiated
when movement takes place for feature-checking. In (76), swimming is specified for the aspect feature
which is morphologically realized as the suffix -ing. But it is not morphologically specified for the
tense feature. Hence the variable for the tense feature. The values of operator features in the two
NPs (Mary and him) are also variables. When the sentence is used in a real situation, however, one

of them can get the “+” value and only this NP can eventually move to Cspec.

3.2.3 Move-c

In our present system, movement takes place for no other reason than feature-checking. Following
Chomsky’s Principle of Greed (MPLT) which requires that no movement take place unless it is the
only way to save a derivation from crashing, we will assume that a movement occurs if and only if
there is an LF checking requirement whose satisfaction depends soly on this movement. We should
be reminded at this point that the movements we are discussing here are LF movements which are
universal. They take place in every language by LF, though only a subset of them may be visible in

a particular language.

54

3.2.3.1. Movement as a Feature-Checking Mechanism

The necessity-of- movement-in-feature-checking -can be-viewed - from- two-different -perspectives.
From the point of lexical items, we see that a given word may have two or more features, each of
which must be checked in a different structural position. Take NP as an example. UG requires that
it be assigned a f-role and have its case checked. However, f-roles are assigned in Vspecs only and
cases are checked in Agrspecs only. To meet both requirements, an NP must move from one position
to the other, which forms a chain linking the two positions. Once this occurs, the NP exists as a
chain rather than a single node. It enters a structural relation whenever one of its links is in the
required position for that relation. From the viewpoint of features, we see that most features are
found in more than one node. In (75) and (76), for instance, the tense feature appears in both TP
and VP. To make sure that a given feature has the same value throughout the whole structure, we
have to form chains to link nodes which are related by feature-checking movements but are not in
the same projection. All the chains in our system are formed in this way.

Since movement occurs for feature-checking only, we can find out all the movements by locating
all the features whose checking requires movement. As we have seen, only those features which
appear in more than one projection need to be checked through movement. Furthermore, in all the
cases where a feature appears in two different projections, one of them is in a lexical projection and
the other in a functional projection. This is clear in (45), (75) and (76). To see what movements are
required, we only have to list all the features that are both L-features and F-features. According to
(45), they include the following: tense, aspect, ¢(1), ¢(2), case(1), case(2), predication and operator.

The tense feature is found in both T and V. In order for the feature in V to be checked against
the feature in T, the verb must move to T. The aspect feature is found in both Asp and V. Therefore,
the verb must move to Asp for feature-checking. The predication feature is found in both C and
V. Forced by the feature-checking requirement, the verb must move to C. The operator feature is
found in both Cspec and NPs. For feature-checking, one of the NPs must move to Cspec. Since the
value of the operator feature is always “+” in Cspec, only the NP which is the operator can move
there. The case feature is found in both Agrspecs and NPs. Therefore, each NP must move to some
Agrspec to have its case feature checked. NP1 must move to Agrlspec and NP2 to the Agr2spec.
We assume that, when both NP1 and NP2 are present in the VP projection, NP1 cannot move to
Agr2spec, nor can NP2 move to Agrlspec. There are various ways to account for this restriction. In
MPLT, this restriction is supposed to be derived from the notion of equidistance. I will not go into
the the mechanisms that implement this notion. At an intuitive level, we can view the restriction
as a special way of observing the Principle of Economy which requires, among other things, that
short moves be preferred over long moves. If we move NP1 to Agrispec and NP2 to Agr2spec, both
movements will be relatively short. If we move NP1 to Agr2spec and NP2 to Agrlspec, however, the
NP1-to-Agr2spec movement will be very short but the NP2-to-Agrlspec movement will be longer
than any of the two movements in the previous case. This economy-based argument is not well-

58

understood yet and it will not be incorporated into our model. We can get the same effect from
some simpler principles. In.our-model we assume that the case hierarchy and thé thematic hierarchy
in a sentence must agree with each other. Given two NPs, NP, and N Pai1, and two O-roles 4,
and fn41 with 8, preceding f,4; in the é-grid of the verb, NP, must have its case checked in a
higher case position if NP, is assigned 8, and NP,, assigned f,4. (A case position (Agrspec)
is higher than another one if the former asymmetrically C-command the latter.) Intuitively, this
assumption simply means that the subject must be assigned the subject case and the object the
object case. In passive constructions, the first f-role in the 6-grid is suppressed and the one that
follows it will become the the first. As a result, the NP assigned this promoted 8-role is free to move
to the highest case position. In unaccusative constructions, the “subject” f-role is missing from the
¢-grid. Consequently, some other role will be the first in the grid and the NP assigned this role can
go to the highest case position,

The ¢-features are similar to the case features in that they are both NP-features and V-features,
In terms of the NPs, the ¢-features are found in both Agrspecs and the NPs. During feature-
checking, NP1 must move to Agrlspec and NP2 must move to Agr2spec. The movement patterns
are identical to those involved in case-checking. In terms of the verb, the ¢-features are found in
Agrl-0, Agr2-0 and V0. The verb therefore must move to Agri-0 and Agr2-0 to have the features
checked. During the movement, the verb will also pick up the case features in Agrl and Agr2, This
implies that case and agreement are two sides of the same coin. They have the common function of
identifying grammatical relations.

To sum up, we list in (77) all the movements forced by feature-checking.
(77) A. The verb must move to Agr2-0 to have its ¢ & case features checked for object-verb
agreement.
B. After moving to Agr2-0, the verb must move to Asp0 to have its aspect feature checked.
C. After moving to Asp0, the verb must move to TO to have its tense feature checked.

D. After moving to T0, the verb must move to Agrl-0 to have its ¢ & case features checked

for subject-verb agreement.

=

. After moving to Agrl-0, the verb must move to C0 to have its predication features checked.

=

NP1 must move to Agrispec to have its ¢ & case features checked.

NP2 must move to Agr2spec to have its ¢ & case features checked.

o

. After moving to an Agrspec, one of the NPs must move to Cspec to have its operator

features checked.!!

11This jmplies that every sentence has an underlying topic or focus or an NP that receives a wide-scope
interpretation.

56

From now on, we will refer to these movements as M(agr2) , M(asp), M(tns}), M(agrl), M(c),
M(specl); M cgspe_CQ)--- and-M (espec) -respectively.— These-movements_are_illustrated .graphically in
(78) with tlyEanh sentence Mary caught him where Mary is NP1 and him is NP2.

1
gg([m ¢
{r
T
Y np([_ agri-1
554
- agri-0({ tp
PRk
MoD
) tl
0 -
%er(ltse:past]] ash~P
aspl
WY
=<
npl[agr2-1
>\ PR
agr2-0((vp
E%??ﬁy\
ME)
np([;z:U vl
o
i:dst,
%ircﬁe:agent]] /\
M .
ary vO([GA, vp
A
h-grld [agent,patlent]]]
“ caught np(lo BW vi
case
Eh-roﬁe :patient])
i (b
ua him 4 g[ect A,
ten
(78) h—gnd [patlent]])

57

We can see that M (agr2), M (asp), M(tns), M(agrl) and M(c) are head movements, M (specl) and
M (spec2) are A-movements, and M(cspec) is A-movement. There are two instances.of M(cspec)
in the diagram. One involves NP1 moving to Cspec while the other involves NP2. In a particular
sentence only one of the movements can occur. Which one occurs depends on which of the NPs is

the topic or focus of the sentence.

3.2.3.2. Movement in Operation

Having identified the set of movements involved in feature-checking, we will now take a closer
look at the computational operation involved in these movements. It has been assumed that all the
movements are raising movements in our system. Lowering is prohibited. Therefore, it is illegal to
have any “yoyo” type of movement where a constifuent moves up and then down or down and then

up. Other operational constraints on movement are discussed below.

Movement as Substitution All the movements discussed here are substitution operations. The
landing site of every movement is an existing attachment point which is an empty node created in
lexical projection. The substitution is possible only if the moved element and the landing site have
identical categories and compatible feature values. It is not possible, for example, to move an X0 to
an XP or vice versa. Nor is possible to move an NP to a position where a different value is required
for the case or ¢ feature. This guarantees that all the movements are strucfure-preserving.

The substitution operation is obvious in the cases of A-movement and A-movement. The landing
sites. of these movements are all Spec positions projected in LP: Agrlspec in the case of M(specl),
Agr2spec in the case of M(spec2), and Cspec in the case of M(cspec). In cases of head movement,
however, this is less obvious. At first sight, substitution seems to be impossible. How can a V0
substitute for a TO or CO0, for instance? For a node to serve as the landing site of a movement, it
mmust be (a) empty, and (b) have feature values which are unifiable with those of the moved element.
The condition in (a) seems to hold. The landing sites of V-movement are all heads of functional
categories which are feature matrices without lexical content. The condition in (b), however, looks
a little problematic. For one thing, the landing site and the moved element do not seem to have the
same categorial features. We seem to be substituting a V for a T, an Agr, a C, etc., which should
be impossible. This is why head movements have been standardly treated as adjunction rather than
substitution operations, But a second thought on the status of C, Agr, T and Asp suggests that
the substitution story is plausible. These categories are after all extended V-projections. Since none
of these functional categories has a lexical head, all of them can be said to have been projected
ultimately from the verb. In other words, they are just some additional layers of the V-projection.
Viewed in this way, C, Agr, T, Asp and V all belong te the same category and there should be no
reason why substitution is impossible. We therefore assume in this experimental grammar that head
movement involves substitution instead of adjunction. When a verb is substituted into the head of

a functional category, the two heads will merge into one. We will call this new head “V”, with the

b8

understanding that all the features of the original functional head have been preserved. We choose
to call-it- “V-rather than-“T” or-“Asp”-because-the-features of this new. head: are spelled. on_the
verb in the form of verbal inflection. The diagram in (79) illustrates the substitution involved in a
head movement where a verb moves to the head of Agr2-0. (79a) shows the pre-movement structure

and the movement which is taking place. (79b) shows the post-movement structure.

I agrZp-p

agr2p-p
np agr2-1
np agr2-1 /\
/\ vOI[vp
agr2-0([vp aspect:A,
case:2, case:2,
phi:Y1} phizY,

" tense:past,
th-grid:lagt,pat]])

np vl ,
/\ verb np vl
vO((. ‘ vp /\
aspect:A,
tense:past, vO({[vp
th—-grid:{agt,patll) aspect:A,
tense:past,
th-grid:[agt,pat]}
(79) verb
(a) (b)

The kind of head movement assumed here fails to make some of the predictions that are made
by the standard version of head movement. In head movement by adjunction, the moving head gets
attached to the target head either from the left or from the right, so the head and the affix will
appear in a certain linear order. In (80), for instance, the verb has moved to C0 through Agr2-0,
Asp0, TO and Agrl-0.

59

N\
/\

s \

,' c0 agri-p
AN L\
,‘ agri—O <0 ; agri-1
t0 agrl-0 i—/agd-o tp
/\ |
asp0 "l
/\ /\
,:" agr2-0 aspl ’, asp-p
/ agr-2—0 asp]
| N\
\‘\ xerb ’,:" asp0 agr2-p
s agr2-1
AN
agr2-0 vp

| (80) \JA

The successive adjunction results in a big verbal complex which is boxed in the diagram. Suppose
that in this language agreement features and tense features are morphologically realized as suffixes.
Then the structure of this verbal complex predicts that the inflected verb will be speiled out as
V-T(ense)-Agr(eement) rather than V-Agr(eement)-T(ense). This prediction is based on the Mirror
Principle (Baker 1985) which requires that morphological derivations reflect syntactic derivations
(and vice versa). In the substitution story of head movement, this prediction is gone. The movement
just results in a complex feature structure where no linear order is implied. This result can be good or
bad depending on whether the Mirror Principle is really valid. If it is, our version of head movement
will be less desirable because it has missed an important generalization. However, counter-examples
to the Mirror Principle do exist. In terms of the T-suffix and the Agr-suffix, both orders seem to be
possible. In Italian (81) and Chichewa (82), for example, we find T inside Agr while in Berber (83)

60

and Arabic (84), we find Agr inside T.

(81) legge-va-no-
read-imp(Asp/Tns)-3ps(Agr)
"They read’

(82) Mitsuke u-na-guw-a
waterpot SP(Agr)-past(Tns)-fall-Asp
*The waterpot fell’

(83) ad-y-segh Moha ijn teddart
fut(Tns)-3ms(Agr)-buy Moha one house
‘Moha will buy a house.’

(84) sa-ya-shiarii Zayd-un dar-an

fut(Tns)-3ms{Agr)-buy Zayd-Nom house-Acc

‘Zayd will buy a house.’
In order to preserve the Mirror Principle, some people (e.g. Ouhala 1991) have proposed that the
hierarchical order of AgrP and TP be parameterized, i.e. in some language AgrP dominates TP
while in other languages TP dominates AgrP. But the price we pay here to save the Mirror Principle
seems too expensive. In our system, such reshuffling in the tree structure is not necessary. What
syntax provides for each node is a feature matrix. The linear order in which the features are spelled
out can be treated as an independent matter which probably falls in the domain of morphological
theory. Different-languages may simply choose to spell cut the features in different orders. In
acquisition the linear order can be learned in the same way that other ordering rules in morphology

are learned.

Some Barriers to Movement I have mentioned earlier in this chapter that the bounding theory
may need some revision in the Minimalist framework. In the standard model, there is the distinction
between SS movement and LF movement. It is assumed that some of the barriers which constrain
S5 movements do not apply to LF movement. Now that all movements are LF movements, it is
no longer clear what the barriers are. Fortunately, this status of affair does not seem to affect our
experimental model very much, since we are currently only concerned with simple sentences. Some
barriers do exist within a single clause, but we can for the time being describe them in a case-by-case
manner without attempting a general account. In what follows, we will lock at head movement,
A-movement and A-movement one by one and discuss the constraints on each of them.

For head movement, we will assume the Head Movement Constraint (HMC) which requires that
no intermediate head be skipped during the movement. Given three heads, H;, H and Hj, where
H; asymmetrically C-commands H3 and Hy asymmetrically C-commands H3, no X0 can move from
Hj to H; without moving to Hs first. For a verb to move from its VP-internal position to C0, for

example, it must move successively to Agr2-0, Asp0, T0O and Agrl-0 first.

61

For A-movement, there will be no clause-internal barriers, We usually assume that A-movement
has to be local. According to Sportiche (1990), for instance, A-movement has.to.go.in a Spec-to-Spec
fashion. A movement is blocked whenever it has to go through a Spec position which is already
filled by some other XP or one of the links of an XP chain. Obviously there would be problems if
the locality constraint were imposed on the A-movements in our present system. For NP1 to move
to Agrlspec, it would have to go through Agr2spec, but this is impossible.!? A similar problem
exists for NP2 which would have to go through NP1 to reach Agr2spec. To account for the fact
that M (specl) and M (spec2) are possible, we will assume that the domain of XP movement can be
extended by head movement. As a result, all the projections that a single head has moved through
will be transparent to each other. In our system, the verb moves all the way to C through Agr2,
Asp, T and Agrl. So the whole CP tree is transparent for XP movement. Within this single CP
tree an NP can move to any Spec position without crossing any barriers,

This extended domain for XP-movement also applies to A-movement. As a result, any NP within
a single CP can move to Cspec without crossing any barriers. But there is an independent constraint
which prevents an NP from moving from its VP-internal position directly to Cspee. It is required
in our grammar that every NP move fo a Agrspec to have its case & agreement features checked. If
an NP moves directly to Cspec, skipping all Specs of AgrPs, the the case & agreement features will
fail to be checked. Once in Cspec, an NP will not be able to move to an Agrspec any more, since
lowering is prohibited. Consequently, an LF constraint is violated and the derivation will crash. To
avoid the crash, an NP must move to a position to have its case & agreement features checked before
moving to Cspec. In other words, NP1 must move to Agrlspec first and NP2 to Agr2spec first.

If we go back to (78) now, we will realize that all the constraints discussed above are observed
there. In fact, the movements illustrated there represent not only all the possible movements in
our system but also all the possible paths for these movements. In particular, each movement has a
unique path and resulis in a unique chain,

Before we close this section, 1 will mention an apparent problem related to head movement.
‘We have assumed that the verb always moves all the way up to C0. Superficially, however, there
seem to be many cases where the verb only moves half-way up and what moves to Agrl or Cisan
auxiliary. It looks as if the checking movement were broken up into two parts, one performed by
verb movement and one by auxiliary movement, resulting in two separate chains. I will argue that,
even in these cases, what moves to C0 at LF is still the verb and there is only a single chain. After
Spell-Out the verb will move further up to the positions which the auxiliaries seem to have moved
through. The movement is not blocked because auxiliaries are invisible at LF and their features are
incorporated into the verb. Why the movement seems to be split at Spell-Out will be explained in

Chapter 4. We will see that there are particular settings of S(M)-parameters which are responsible

12This is impossible because (i) the NP moving to Agrlspec must have Case 1 and will not be able to unify with
Agr2spec which has Case 2, and (ii) Agr2spec belongs to the chain headed by NP2 and therefore it is already filled
and should serve as a barrier for the movement of NP1.

62

for this superficial phenomenon.
3.2.3.3. The S(M)-Parameters

In 3.2.3.1, we identified a set of 8 movements: M(agr2), M(asp), M(tns), M(agrl), M(c),
M (speel), M(spec2) and M(espec). We assume that each of these movements can occur either
before or after Spell-Out. In other words, each of them has an S(M)-parameter associated with
it. We will call those parameters S(M(agr2)), S(M(asp)), S(M(ins)), S(M(agrl)), S(M(c)),
S(M(specl)), S(M(spec2)) and S(M(cspec)) respectively. When S(M (X)) is set to 1, M(X) will
be overt. It is covert when S(M (X)) is set to 0.

Now the question is whether an S(M)-parameters can have a third value, namely 1/0, which is
a variable. What this says is that the relevant movement can be either overt or covert, hence the
optionality of the movement. Cur immediate reaction to this idea might be negative. According to
the Principle of Economy in general and the Principle of Procrastinate in particuiar, no movement
should be optional. If a movement can be either overt or covert, it should always be covert. In ad-
dition, there are both acquisitional and processing arguments against optional movement. Optional
rules are more difficult to acquire. They also make the parsing process less deterministic. How-
ever, there is empirical evidence which shows that the “no optionality” assumption is too strong.
It runs into difficulty whenever a language has alternative word orders. If we insist on the binarity
of S(M)-parameters values, any given movement will be either always overt or always covert. As
a result, only a single word order will be permitted in any language. The fact most languages do
have alternative word orders shows that the binarity is too restrictive. We can of course say that
any given language has a canonical word order. This order is determined by the obligatory move-
ments and all the optional movements are “stylistic” or “discourse-driven”. But this leads to the
assumption that there are two independent sets of movements: one syntactic and one stylistic. This
assumption is not totally implausible, yet the necessity of identifying a different set of movements in
addition to the checking movements we now have makes the theory more complicated. We will have
a simpler theory if we assume that there is only a single set of movements and the “syntactic” and
“stylistic” movements are overt manifestations of the same set of movements. In this way, we will
not need to define a separate set of movements in addition to the movements we have defined here..
All the “stylistic” movements correspond to movements whose S(M)-parameters are set to 1/0. This
value is a variable which can be instantiated to either 1 or 0. As far as the S(M)-parameter values
are concerned, therefore, both overt and covert movements are allowed. In stylistically neutral or
unmarked cases, the Principle of Economy will dictate that the variable be instantiated to 0. As
a result, the movements are invisible and the “canonical” order surfaces. In contexts where other
factors call for overt movement, the Principle of Econorny may be overridden. Consequently, the
variable will be instantiated to 1 and the movement is visible. In short, when an S(M)-parameter is

set to 1/0, the movement with which the parameter is associated will be covert unless there are some

63

stylistic or discourse factors calling for overt movement. So the movement is not really optional.
Once-we have a stylistic or discourse-theory which defines precisely. when. overt movement is.needed,
the choice will be clear. In any given context, the variable can only be instantiated to a single value.
However, the model we are describing here is a purely syntactic one which does not include a stylis-
tic or discourse module. This other module is absolutely necessary, but it falls outside the scope of
the present study. The issues involved there need to be addressed in a separate project. What we
can do in syntax is providing all the options. The choice will be made when the syntactic module
is interfaced with other modules. For this reason, we will allow some movements to be optionally
overt in our grammar. In particular, we will let the three S(M)-parameters associated with XP/NP
movement — S(M(specl)), S(M(spec2)) and S(M(cspec)) — have three values: 1, 0 and 1/0. This by
no means implies that head movement cannot be optional. We have simply chosen to experiment
with optional movement on A-movement and A-movement first. There are two motivations for this
choice. First, we want to try out some opticnal movements and find out their basic properties
before generalizing optionality to all movements. Second, the main purpose of permitting optional
movement in our grammar is to account for those scrambling facts which involve A-movement or
A-movement. Optional head movement will be discussed briefly in this chapter but will be be put
aside in the full discussion of parameter space.

To give the above argument more substance, we will look at two specific cases where the S(M)-
parameters seem to be set to 1/0, one involving optional A-movement and one A-movement.

For optional A-movement we can find an example in English. In (85) and (86) (same as (25)),

we see an alternation between overt and covert NP movement.

(85) Three men came.
(86) There came three men.

In (85), M(specl) (NP movement to Agrlspec) is overt. It is covert in (86). We thus conclude that
S(M(specl)) is set to 1/0 in English. This explains why both orders are possible. However, in a
particular context only one of them will be appropriate. (86) seems to'be the unmarked case where
there is no reason for overt movement. In (85), however, the Principle of Economy has apparently
been overridden by some discourse considerations.

An example of optional A-bar movement can also be found in English where topicalization

produces a word order other than SVOQ.
(87) John likes apples.

(88) Apples, John likes.

In our system we assume that topicalization involves XP-movement to Cspec. Then it seems that
apples has moved to Cspec in (88) but not in (87). We can conclude then that M (¢spec) is optional

64

in English and S(M (espec)) is set to 1/0. In unmarked cases the movement does not occur overtly
due to the Principle of Economy. When a constituent.needs to.be.overtly-topicalized, however, the
Economy principle is overridden and the movement becomes visible.

Although we will put optional verb movement aside for the time being, we will assume that it is
possible in principle. An example of this kind of optionality can be found in French. There we find
the word order alternation between statements and questions, as shown in (89) and (90).

(89) Nous allon & la bibliothéque
we go to the library
“We are going to the library.’

(90) Allez vous & la bibliothéque
go you to the library
‘Are you going to the library?’

(89) is a statement where the verb is presumably in Agrl-0 while (90) is a question where the verb
is supposed to have moved to C0. It seems that the verb movement from Agri-0 to CO0 is optional in
French, since both orders are possible. We can therefore assume that S(M(c)), the S(M)-parameter
for verb movement to C0, is set to 1/0. This is why the verb can either precede or follow the
subject. However, the movement is non-optional in any particular case. Let us suppose that the
declarative sentence constitutes the unmarked case where there is no special motivation for Agrl-
to-C movement. Thus the Principle of Economy will apply and the sentence will be ungrammatical
if the movement is overt. In the case of interrogative sentences, there seems to be a special need
for overt movement. We will not discuss what the need is here, but apparently it can override the
Principle of Economy and require that the movement be overt. The Principle of Economy thus looks
like a default principle. It applies only if no other principle is being applied.

In terms of the values of S(M{c)), French can be contrasted with V2 languages on the one hand
and Chinese and Japanese on the other. In V2 languages, the Agrl-to-C movement seems to occur
overtly regardless of whether the sentence is a statement or question. This shows that S(M(¢)) is
set to 1 rather than 1/0 in these languages. This is why the movement is always obligatory. In
Chinese and Japanese, on the other hand, the Agrl-to-C movement is never visible. This suggests
that S(M(c)) is set to 0 in these languages. In this case, the verb does not have the option to move
to C even if this movement is motivated in some way.

We will see in Chapter 4 that the value 1/0 for S(M(specl)), S(M(spec2)) and S(M(cspec)) can
account for many interesting facts which would otherwise be left unexplained. The addition of this
value will of course make the task of acquisition and parsing more challenging, but the challenge

will give us a better understanding of the acquisitional and parsing processes.

65

3.3 Summary

In this chapter we have defined an experimental grammar upon which our study in syntactic typology,
syntactic acquisition and syntactic processing in later chapters will be based. We defined a categorial
system, a feature system and a computational system. The feature system includes a set of features
and a set of S(F)-parameters which determine the morphological visibility of those features. The
computational system is composed of three sub-components: lexical projection (LP), generalized
transformation (GT), and move-a. For LP we defined a set of selectional rules which determine
the specifier and complement each category takes and two HD-parameters which determine the
position of heads in functional projections. No parameterization exists in GT which is performed
in a universal way. For move-o we defined a set of feature-checking movements, each of which has
a S(M)-parameter that determines the visibility of the movement. In the next chapter we will put
this grammar to work. We will examine the parameter space created by the parameters and the

language variations accommodated in the parameter space.

66

Chapter 4

The Parameter Space

In this chapter we consider the consequences of our experimental grammar in terms of the langnage
typology it predicts. The parameters we have defined in the previous chapter can have many value
combinations, each of which making the grammar generate a particular language.! Those different
value combinations form our parameier space and the languages that are generated in this parameter
space form a particular language typology. We will explore the parameter space and try to find out
its main properties and the languages it accommodates. '

We should be reminded here that the term “language” is used in a special sense here. In most
cases we will be using the quoted form of this term to mean a set of strings which are composed of
abstract symbols like S(ubject), O(bject) and V{erb). A string such as § V O represents a sentence
where the subject precedes the verb and the object follows the verb. In addition, each symbol can
carry a list of features. The features in this list represent overt morphology, i.e. the features that
are spelled out. For instance, V-[agr,tns] represents a verb which is inflected for agreement and
tense. A typical “language” in our system looks like (91) which tells us the following facts: (a) this
“language” has an SOV word order; (b) the NPs in this “language” carry case markers; (c) the verbs
in this “language” are inflected for agreement and tense; (d) this “language” has both transitive
and intransitive sentences; and (e) this is a nominative-accusative language where the subject in an

intransitive sentence has the same case-marking as the subject in a transitive sentence.

(91) { s-lc1] wv-[agr,tns],
s=[ci] v-[fagr,tns] o-[c2]
}

This set of strings may resemble some subset of a real language, but it is far from a perfect repre-
sentation of any natural language. It is only an abstract representations of certain properties of a
human language. The properties we are interested in are word order and inflectional morphology.

When we say a set of strings corresponds to an existing language, we mean that it reflects the word

1The language generated can be empty, i.e. it contains no string,.

67

order and morphology in this language. All the languages that are generated in our systems are
such abstract languages. In spite of their abstractness, however, it. will not.be hard to see what
languages they may represent. We will see in this chapter that many “languages” accommodated in
our parameter space have real language counterparts and most real languages can find an abstract
representation in ocur parameter space.

Let us start the exploration by reviewing the parameters we have assumed.

(i) S(M)-parameters. These parameters determine what movements are overt in a given language.
There are eight S(M)-parameters corresponding to the eight movements assumed in our theory:

S(M(agr2)) [V-to-Agr2] S(M(c)) [Agrl-to-C]

S(M(asp)) [Agr2-to-Asp] S(M(specl)) [NP1-to-Agrlspec]
S(M(tns)) [Asp-to-T] S(M(spec2)) [NP2-to-Agr2spec]
S(M(agrl)) [T-to-Agrl] S(M(cspec)) [XP-to-Cspec]

The movement in brackets is overt (before Spell-Out) if the corresponding S(M)-parameter
is set to 1 and covert (after Spell-Out) if the parameter is set to 0. We have assumed in
Chapter 3 that A and A movements (M(specl), M(spec2) and M(cspec)) can be optional
before Spell-Out. Therefore the value of S(M(specl)), S(M(spec2)) or S(M(cspec)) can be a

variable ~ 1/0 — which indicates that the associated movement can be either overt or covert.

(ii) S(F)-parameters. These parameters determine what morphological features are overt in a lan-
guage. Six of them are assumed: S(F(agr)), S(F(case)), S(F(tns)), S(F(asp)), S(F(pred)) and
S(F(op}). Each of these parameters can have four values: 0-1 (spell out the L-feature only),
1-0 (spell out the F-feature only), 1-1 (spell out both the L-feature and the F-feature), and
0-0 (spell out neither the L-feature nor the F-feature). Recall that most features in our sys-
tem are base-generated in two positions, one in a lexical category (the L-feature) and one in
a functional category (the F-feature). The two features are checked against each other via

movement.

(iii) Two HD-parameters: HD1 which determines whether the head of CP precedes or follows
“its complement, and HD2 which determines whether the heads in IP precede or follow their
complements. These two parameters can be set to either I {(head-initial) or F (head-final). The
value of HD?Z applies to every segment of IP: AgrlP, TP, AspP and Agr2P.

Putting these parameters together, we have 8 binary-valued parameters, 3 triple-valued ones, and §
quadruple-valued ones. They make up a parameter space where there are 14,155,776 (i.e. 27 x 33x 4%)

value combinations. Two questions arise immediately:

(92) Does every existing human language has a corresponding “language” in our parameter space?

68

(93) Does every “language” in our parameter corresponds to some natural language?

If the answers to these questions are all “yes”, our system will be more than just plausible. Any ideal
parameter space should those properties. As we will see in this chapter, the answers are basically
positive.

In order to get the answers to these questions, we must first of all get all the value combinations,
try to generate some langnage with each setting, and collect the languages that are generated
together with their corresponding settings. This is a straight-forward computational task and it
can be accomplished using the Prolog program in Appendix A.l. There is obviously an expository
problem as to how the results of this experiment can be presented and analyzed, since simply listing
all the settings and the languages they generate may take a million pages. In order to describe
the whole parameter space in a single chapter, I will break down the parameter space into natural
sub-spaces and look at them one at a time. This can be done by varying the values of certain
parameters while keeping the others constant. Some properties of the parameter space are local
In the sense that they are properties of a particular sub-space or a particular type of parameters.
We can get a very clear idea about those properties by examining the relevant sub-spaces. In areas
where different types of parameters interact, we will concentrate on some representative cases instead
of exhaustively listing all the possibilities. Such sampling will hopefully enable us to envision the
potential of the entire parameter space.

In what follows, we will look at the space of S(M)-parameters first and then expand it to in-
clude the HD-parameters. After that we will bring some S(F)-parameters into the picture and
consider their interaction with S(M)-parameters. As we will see, the interaction provides us with
an interesting account of auxiliaries. Other S(M)-parameters will eventually enter the scene. Many
natural language examples will be cited in the course of discussion to illustrate the relevance of our

experimental results to empirical linguistic data.

4.1 The Parameter Space of S(M)-parameters

In this section, we will single out the S(M)-parameters and explore the range of language variation
they can account for. To do this we need to lock at all the value combinations of S(M)-parameters
while keeping the values of all other parameters constant. In the following experiment, the HD-
parameters are always set to “I” (head-initial). In other words, we will be restricted to the tree
structures in (76) and (75) (Chapter 3) where every head precedes its complement. We will not be
concerned with morphology at this moment. The settings of S(F)-parameters will be temporarily
ignored. The “words” that appear in strings will therefore be simplified as s (subject) o (object)

and » (verb) which are to be interpreted as NPs and verbs with any inflectional morphology.

69

4.1.1 An Initial Typology

We have assumed- eight S(M)-parameters and we will represent their values in a vector of eight

coordinates:

[s(M{agr2)) S(MCasp)) S(M(tna)) S(M(agri)) S(M(c)) S(M(specl)) S(M(spec2}) S(M{cspec))]

A setting like[1 0 0 0 0 1 0 0] means that S(M(agr2)) is set to 1, S(M(asp)) set to 0, S(M(tns))
set to 0, and so on.

With 5 binary-valued parameters (S(M(agr2)), S(M(asp)), S(M(ins)),S(M(agrl)), S(M(c))) and
3 triple-valued ones (S(M(specl)), S(M(spec2)), S(M(espec))), we have a parameter space of 864
settings. However, not all those settings can result in a non-empty language. Some of the value
combinations may make the grammar generate no strings. Exactly what settings produce empty
languages depends on our syntactic assumptions. In our current sub-space where only the S(M)-
parameters are active, a setting may generate an empty langnage because of the two syntactic
constraints discussed in 3.2.3: the Head Movement Constraint (HMC) and the constraint that an
NP must move to an Agrspec before moving on to Cspec.

The HMC requires that no intermediate head be skipped during head movement. For a verb to
move from its VP-internal position to C0, for example, it must move succeséively to Agr2-0, Asp0, TO
and Agrl-0 first. In other words, verb-movement to C must consist of 5 short movements: M(agr2)
(V-to-Agr2), M(asp) (Agr2-to-Asp), M(tns) (Asp-to-T), M(agrl) (T-to-Agrl) and M(c) (Agrl-to-
C). The verb cannot be in CO0 if any of those successive movements fails to occur. If the only X0
in a grammar that can undergo head movement is the verb, there will be a transitive implicational
hierarchy in the form of M(agr2) < M(asp) < M(tns) < M(agrl) < M(c). No movement on the right-
hand side of an “<” can occur without the one(s) on the left-hand side occurring at the same time. If
any of the intermediate movements are blocked, the movement as a whole will be blocked. However,
there do exist settings where some of the intermediate settings seem to be blocked. Consider the
setting in (94).

(9 [0000 1 ...]

This setting requires that the verb move from Agrl-0 to C0 before Spell-Out. But the verb cannot
be in Agrl-0 unless it has moved through Agr2-0, Asp0 and T0. Since S(M(agr2)), S(M(asp)),
S(M(tns)) and S{M(agrl)) are all set to 0, the verb is not allowed to move to Agrl-0 before Speli-
Out. Consequently, no verb can move from Agrl-0 to C0 and the required movement will fail to
occur overtly. The fact that some movement is required to be overt but cannot occur overtly makes
the derivation crash. Thus the language generated is empty. Other settings which can result in
empty languages due the HMC include [0 0 0 1 0 . . .],[0 0100 .. .],[01 00 0.
.. [10101 .. .]etc. We will see later on, when the values of S(¥)-parameters are taken

70

order and overt morphology are assumed to be independent of each other in our model, there is no
dependency between the values of S(M)/HD parameters and S(F)-parameters. In other words, the
former and the latter can be set independently, We can therefore consider them separately. In what
follows, we will look at the word order parameters first. We will start with S(M)-parameters, adding

HD-parameters to the parameter space later on, and finally get to the setting of S(F)-parameters.

5.2 Setting S(M)-Parameters

In this section we consider the setting of S(M)-parameters. The values of other parameters will
be held constant for the moment, with all HD-parameters set to “i” and S(F)-parameters set to
0-0. Since no feature is spelled out when all S(F)-parameters are ser to 0-0, the feature list will be
temporarily omitted in the presentation of strings. The string [s v o], for example, is understood
to be abbreviated form of [s-[] v-[] o-[]]. In addition, the symbol “v” will often be used to stand

for both “iv” and “tv”.

5.2.1 The Ordering Algorithm

As we have seen in 4.1.4, some languages in the parameter space of S(M)-parameters are properly
included in some other languages. This implies that the learning algorithm we have assumed can
fail to result in convergence for some languages if the enumeration of parameter settings is random.
In order for every language in the parameter space to be learnable, the hypothetical settings must
be enumerated in a certain order. In particular, the settings of subset languages must be tried before
the settings of their respective superset languages. Let us call the parameter setting for a subset
language a subset seiting and the one for a superset language a superset seiting. A superset setting
must then be crdered after all its subset settings. To ensure learnability for every language, we can
simply calculate all subset relations in the parameter space, find every superset setting and its subset
settings, and enumerate the settings in such a way that all subset settings comes before their relative
superset settings. Such an ordering is not hard to obtain. In fact, the enumeration can be made
to satisfy this ordering condition in more than one way. However, arbitrary ordering of this kind
is not linguistically interesting. Tt can certainly make our learning algorithm work, but we cannot
expect a child to know the ordering unless it is built in as part of UG, We are thus in a dilemma:
the learning may not succeed if there is no ordering of parameter values, but the assumption that
the ordering is directly encoded in UG seems extravagant.

However, there is a way to get out of this dilemma. The child can be expected to know the
ordering without it being directly encoded in UG if the following is true: the ordering can be
deduced from some linguistic principle in UG. Such a principle does seem to exist in our current
linguistic theory. One possible candidate is the Principle of Procrastinate (Chomsky 1992) which

requires that movement in overt syntax be avoided as much as possible. This principle has the

106

following implications for the parameter setting problem considered in our model.

(16'5') ‘All S(M)-parameters should be set to 0 at the initial stage. Let us suppose that the Principle
of Procrastinate is operative in children’s grammar from the very beginning, According to
this principle, an “ideal” grammar should have no overt movement. Therefore, children will
initially hypothesize that no movement takes place before Spell-Out in their language. They
will consider overt movement (i.e. setting some S(M)-parameters to 1) only if they have

encountered sentences which are not syntactically analyzable with the current setting.

(166) In cases where children are forced to change their hypothesis by allowing some movement(s)
to occur before Spell-Out, they will try to move as little as possible. They will not hypothesize
more overt movement(s) than is absolutely necessary for the successful parsing of the current
input sentence. As a result, given two settings, both of which can make the current input
parsable, the setting with fewer S(M)-parameters set to 1 should be preferred and adopted as
the new hypothesis.

(167) If the Principle of Procrastinate is adhered to rigorously, there should not be any optional

. overt movement. Given the option of moving either before or after Spell-Out, the principle
will always dictate that the movement occur after Spell-Out. Setting an S(M)-parameter to

1/0 is therefore no different from setting it to 0. So why should the value 1/0 be considered in

the first place? If a movement kas to occur before Spell-Out, then its S(M)-parameter must

be set to 1 rather than 1/0. Consequently, the value 1/0 should not be tried unless it is the

only value which can make all the strings in a given language parsable.

(168) In cases where overt movement is absolutely necessary, the Principle of Procrastinate will
require thaé the movements which are more “essential” be considered first. Now which move-
ments are more essential? According to Chomsky, the Principle of Procrastinate can be over-
ridden to let a movement occur before Speil-Out only if the feature to be checked by this
movement is “strong” i.e. realized in overt morphology. In view of the fact that A-movement
and head-movement often occur for morphological reasons while A-movements do not, the for-
mer are more essential than the latter. In our model, overt movement is independent of overt
morphology, so the morphological explanation may not be available. But there is a common
assumption that A-movement and head-movement are more closely related to the basie word
order of a language than A-movements which are more likely to be associated with interroga-
tion, focusing and topicalization. In this sense, A-movements and head movements are more
essential than A-bar movements. If overt movement is to be considered at all, priority should

. be given to the former rather than the latter.

To sum up, the Principle of Procrastinate provides certain constraints on or preferences for the

choice of the next parameter setting to be tried in the learning process. In particular, the following

107

ordering rules seem to be deducible from this general principle:

(169) (i) Given two parameter settings P; and Py, with Ny and N2 (0 < N,0 < N3) being the
respective numbers of S(M)-parameters set to 1/0 in P, and Py , Py < Ps if N1 < No.
In other words, the setting which allows for fewer optional overt movements is to be
considered first.

(ii) Given two parameter settings P and Py, Py < Pp if S(M(cspec)) is set to 0 in P, and
1in P;. In other words, the setting which does not require overt A-movement is to be

considered first.

(iii) Given two parameter settings P and Py, with Ny and N; (0 < Np,0 < No) being the
total numbers of S(M)-parameters set to 1in Py and Py , P, < Py if Ny < N,.

These ordering rules are to be applied in the sequence given above. The second rule is applied only
if the first one fails to decide on the precedence, and the third applied only if the second fails o do
so. This order of rule application is not directly deducible from the Principle of Procrastinate, but
it is not totally stipulative, either. Comparing optional overt movement and overt A-movement, we
find the latter “less evil” than the former which, according to the principle, should not exist at all.
In our particular parameter space, optional movements afweys result in subset relations while overt
A-movements do so only in some contexts. This also suggests that optional movement should be the
last choice. Here is a situation where linguistic and computational considerations seem to agree with
each other. The ordering of (ii) and (iii) is less justified by the Principle of Procrastinate, though.
We assume here that a setting without overt A-movement is to be preferred over a setting with it
even if the total number of overt movements in the former is greater than that in the latter. The
decision here is made on qualitative rather than quantitative grounds. Overt non-A-movements are
assumed to be “less evil” than overt A-movements. Therefore the latter should be avoided even at
the cost of having more other movements. So far this choice has been motivated by computational
considerations more than linguistic arguments. Subset relations may arise from settings with overt
A-movement while they never arise from settings without it. By putting off overt A-movements
+as much as possible, learnability can be guaranteed. The linguistic intuition in support of our
preference here is that A-movements seem to be more “peripheral” than A-movements and head
movements on the whole. Whether this intuition is correct or empirically justifiable is an open
question. In any event, we will suppose for the time being that there are qualitative differences
between different movements. We assume that quantitative arguments apply only in cases where
qualitative considerations yield no result. In this sense, (iii} acts as a default rule which applies
only if nothing else works. It should be pointed out that there are many settings which will remain
unordered to each other after all the precedence rules have been applied. Fortunately, these settings
are never in subset relations and they can be enumerated in any order without affecting learnability.

Sorting all the settings in our parameter space, using the precedence rules above, we get an

108

ordered list of S(M)-parameter settings. This list is given in Appendix C. The Prolog program
which implements the ordering rules as well as. the.sorting function-is given in Appendix A.3. The
settings in Appendix C are listed in 50 groups and numbered in the order in which they are to be
tried in the parameter setting process. We notice that the first setting in the list is [0, 0, 0, 0, 0,
0, 0, 0] which requires no overt movement, and the last setting is [1, 1, 1, 1, 1, 1/0, 1/0, 1/0]
which allows for the maximal number of optional movements in addition to requiring every other
movement to be overt. Each group number is accompanied by three digits. The first shows the
number of parameters set to 1/0, the second indicates whether S(M(cspec)) is set to 1, and the last
is the total number of parameters set to 1 or 1/0 in a setting. The settings which appear in the
same group have no precedence determined among themselves. They are therefore unordered with
respect to each other within that group.

It turns out that the Subset Principle can be observed if our enumerative learner goes through
the hypothetical settings in the order given in Appendix C. This is not a surprise. We noted in 4.1.4
that subset relations arise from two types of settings. The first type consists of settings where one
or more S{M)-parameters are set to 1/0. Given two settings Py and P, which are identical except
that some parameter(s) are set to 1/0 in P, but not in Py, Py is a subset setting of Py. In order not
to violate the Subset Principle, P} must be enumerated before P». This condition is obviously met
in the ordering we have obtained. We can see in Appendix C that all the settings with the value
1/0 come after the settings without this value. In addition, for parameter settings where the value
1/0 does exist, a setting with n parameters set to 1/0 always comes before a setting where n 41
parameters are set to 1/0. We can thus rest assured that no subset relations arising from optional
movement will cause any problem for the learner.

The second type of superset settings share the characteristic that they have S(M{spec1))}, S(M(spec2))
and S(M(cspec)) all set to 1. Given two settings P; and P, which are identical except that these
three parameters are all set to 1 in P; but not in Py, P; can be a subset setting of P;.2 According
to the Subset Principle, Py must occur before P: in the enumeration. This condition is again met
in our ordering. For settings which have identical values for S(M(agr1)), S(M(asp)), S(M(tns)),
S(M(agr2)) and S(M(c)), the setting [. . . 1, 1, 1] is always encountered before [. . . 1,1,0], [.
..Lo01L[...00,1,[...,00)[...0,,0][...0,0,1]orf[...0,0,0]. Take
the settings where the first 5 parameters are all set to 0 as an example. The setting [0, 0,0, 0, 0, -
1,1, 1] is found in Group 11 while the other settings are found in Group 1, Group 2, Group 9 and
Group 10. This ordering is achieved by the joint effect of (ii} and (iii) in (169).

We may wonder what happens to the settings within a single group where there is no ordering,.
Are there subset relations in any group? The answer is negative. The languages generated with
settings in the same group are either disjoint or intersecting with each other. To illustrate this, let
us look at Group 5. There are 35 settings in this group. When the all HD-parameters are set to

2The use of “can” indicates that this is a necessary but not sufficient condition for the subset relation.

109

“i” and all S(F)-parameters set to 0-0, three distinct non-empty languages can be generated with
the-settings-in-this:group. These languages are (a) [s (often) v (o)], (b) [{often) v (o) s] and [v
(often) s (o)]. As we can see, none of these languages is properly included in any other. Therefore
it does not matter how the settings of those languages are ordered relative to each other. Interested
readers may check the other groups to see that this holds in every group. It may happen that two
settings in a single group generate languages that are identical to each other. This is no problem

because the language can be acquired no matter which setting is selected.

5.2.2 The Learning Algorithm

We can now describe our learning algorithm as follows.

(170) (I) Get all vaiue combinations in a given parameter space and place them in a list P.
(II) Sort P according to the precedence rules in (169) and get the ordered list P,.q as output.
(III) Start learning language L.

(i) Select any string S from L and try to parse S.
(if) If S is successfully parsed, go back to (i).

Otherwise, reset the parameters to the first value combination P; in P,,4 and remove
Py from Porq. Go to {i).

If L is in the given parameter space, the learning process will eventually stay in (i) and never leave
it. At this point, we can generate L7 which is the set of strings that can be successfully parsed with
the current parameter setting. If Ly = L, then L is learnable, We have converged on the correct
value combination. If L C L/, then L is not learnable, We have converged on a superset setting
for the grammar of L. If L is not in the given parameter space at all, P,.q will eventually becomes
empty and the learning process will get stuck in (ii).

The Prolog program that implements the algorithm in (170) is given in Appendix A.4. The
ordered list of parameter settings is computed off-line using the get_settings/0 predicate.? (The
next setting to be tried at each point can alse be computed on-line, and the result will be the
same. The off-line computation just makes the calculation simpler and the execution of the learning
procedure more efficient.) The learning session is initiated by calling sp/0 which keeps putting out

the “Next?” prompt at which we can type in
a. a string from a language for the learner to process;
b. “current_setting” to have the current setting displayed;

c. “generate” to get the complete set of strings that can be generated with the current setting;

3The predicates in Prolog are referred to by the form X/Y where X is the predicate name and Y is the number of
arguments in the predicate.

110

d. “initialize” to put the learner back to the initial stage; or
e. “bye” to terminate the session.

Appendix D contains a number of Prolog sessions, D.l and D.2 illustrate the process in which the
language [s (often) iv, s (often) tv o, s (often) o tv, o s (often) tv] (which can be Chinese) is
acquired with the program in Appendix A.4. The input strings are numbered “%1”, “%2”, ... in
the two sessions. The successive settings are numbered “%a”, “tt %b”, etc. In D.1, the strings %1
and %2 can be parsed with the initial setting, so the parameter values remained unchanged. Each of
the strings in %3-%18 triggered a resetting of the parameters. After each resetting, the “generate”
command is given to have all the strings accepted by the current setting generated, so that we can
see the langnage that the learner “speaks” at that particular point. The learner converged on the
correct setting at %18, after which all of the possible strings in the language (%19, %20, '/.21; %22,
%23, %24 %25 and %26) became analyzable and no further resetting is triggered. As the output of
“generate” shows, the current language is exactly the language we have tried to acquire, there being
neither overgeneration nor undergeneration. In the .2 session, the input strings were presented in

a different order, but the final result is the same.

5.2.3 Properties of the Learning Algorithm

Several comments can be made on the learning sessions described above.

(171) (i) The learner converged on the correct setting on the basis of positive evidence only. Every
input string presented to the learner is a grammatical sentence in the language.

(ii) The learning procedure is incremental. All resetting decisions are based on the current
setting and the current input string only. The learner does not have to remember any of
the previous strings, nor does she have to memorize the previous settings.*

*au

iii) The convergence does not depend upon any particular ordering of the input strings. The
string to be presented at the next prompt can be selected randomly. The sessions in
D.1 and D.2 differ in terms of the order in which the input strings are presented, but
their final outcome is the same. The learner does require, however, that (a) all the

possible (types of) strings in the language be presented in a finite amount of time, and

4One may argue that the learner has to memorize the previous settings in the sense that no setting that has been
tried in the past can be tried again. But in most cases the learner can tell from the current setting which settings have
been previously tried. As the settings being tested have progressively more overt movements, all previous seitings
should have fewer S{M)-parameters set to 1. The only previously-tested settings she may have to remember are those
in the same group. Those settings have the same number of parameters set to 1, so she cannot tell from the current
setting which of the other settings in that group have been tried before. But even there memorization may not be
necessary. As the settings in the same group generate disjoint or intersecting languages, the settings can be selected
randomly, If one of the settings results in a successful parse, she can keep that setting and forget about all the other
" settings in that group. H none of the seitings in that group succeeds, however, she may grope in the dark for a while,
but eventually she will realize that no setting in that group can be the target one and decide to consider the next
group of settings which requires more overt movement.

111

(iv)

(b) the presentation of some (types of) strings be repeated. In D.1 the stfing [stvo]
was presented ten times and eight of them triggered resetting, These requirements are
empirically plausible. Children do get exposed to all sentence types in a finite amount of

time and common sentence patterns do get repeated over and over again in the input.

The learner has to go through a number of intermediate grammars before she arrives at
the correct setting, The intermediate settings that are traversed in the learning process
can vary according to the way input strings are presented. At a given point in the learning
process, different input strings can cause the parameters to be reset to different values.
A comparison of the sessions in D.]1 and D.2 shows this. For example, after arriving
at the setting { 0, 0,0, 0,0, 1, 1, 0] (%b in both sessions), the learner was presented
different strings in the two sessions. In D.1, she was given [s tv o] which triggered the
setting [1,0, 0,0, 0, 1,0, 0]; in D.2, she was given [0 s tv] which triggered a different
setting: [0,0,0,0,0, 1, 1, 1]. Due to the fact that the presentation of input strings is
different in the two sessions, the intermediate settings are different. While most settings
appeared in both sessions, some settings were traversed in one session only. We notice
that there are fewer intermediate settings in D.2 and the learner converged on the same
correct setting with fewer input strings. The general picture seems to be the following:
given a set of input strings, there is a definite set of intermediate settings that can be
traversed. In a particular learning situation, however, only a subset of the settings will
be reached and the members in this set can vary according how the input strings are

presented sequentially.

(v) No Single Value Constraint (Clark 1988, 1990, Gibson and Wexler 1993) is imposed on

(vi)

the parameter setting process. As we can see in the sessions, two successive settings can
differ by more than one parameter values. In D.1, for instance, the settings in %a and %b
differ by two values while %e and %f differ by 5 values. It is not the case, however, that
the learner can arbitrarily choose the next setting. Nor is the learner non-conservative.
In fact, the learner always tries to make the current input string analyzable by making
the smallest change in the parameter values. Bigger changes are attempted only afier
the smaller changes have failed to result in a successful analysis. This is clear from the
ordered list in Appendix C. In this list, all adjacent settings differ minimally, While
resetting the parameters, the learner tries the settings one by one and she will adopt a
more drastic change only if the less drastic ones have failed to produce any result.

No Pendulum Problem (Randall ?77) exists for the current learning algorithm. Why
this is so is obvious. The learner proceeds through the list of hypothetical settings in
a unidirectional way. Once a setfing is considered incorrect, it will not be considered
again. Such determinism is made possible by the fact that the learner is conservative and

would never entertain settings with more overt movements if settings with fewer overt

112

movements had not been considered yet. Therefore, once a setting is reached, there is no

need-to consider settings that require fewer overt movements.

5.2.4 Learning All Languages in the Parameter Space

The sessions in D.1 an D.2 have only shown that at least some language is learnable in our present
system. To prove that every language in our parameter space is learnable, we need to run a session
for each of the languages. This exhaustive testing can be performed by calling 1earn_all langs/0
which is defined in the Prolog program in Appendix A.4. We first use get._pspace/0 to get (a)
the ordered list of parameter settings (done by calling get_settings/0) and (b) all the possible
languages in the parameter space (done by calling get_languages/0). The learn.all/1 predicate
then feeds the languages one by one into learni/1 which conducts a learning session for each
particular language. The real work is done by learn/1 which keeps resetting the parameters until
all the strings in the language become parsable. At this point, generate/1 is called to get the
complete set of strings generated with the current setting. A language is learnable if the set of
strings generated is exactly the target language presented to the learner and not learnable if it
is a superset of the target language®. Note that this Prolog program and all the other programs
mentioned so far presupposes the existence of a parser which implements our experimental syntactic
model. This parser will be discussed in Chapter 6.

In Appendix D.3 and D.4, we find two Prolog sessions run with learn.all langs/0. The two
sessions differ in that in D.3 often does not appear in the input strings while it does appear in
D.4. In D.3, all languages are learnable except two: [o tv s J and [o0 s tv]. We have observed in
Chapter 4 that these are the two languages whose superset languages has neither optional movement
nor overt A-movement. We have decided that these two languages, which are odd in that they do
not allow for intransitive sentences, can probably be ignored. Our syntactic model can be made
more restrictive so that such languages are not generated at all. In D.4, however, all the languages,
including these two odd languages, are proven to be learnable. The appearance of ¢ffen has made
some otherwise indistinguishable languages distinct from each other. One result of this is that the
two odd languages are found to be not properly included in any other language.

One thing we notice in these sessions is that, while all the languages in the parameter space are
learnable, not every setting in the parameter space can become a final setting for some language.
This is not a surprise, though. We have seen in Chapter 4 that the relationship between settings
and languages can be many-to-one. A single language can be generated with more than one setting.
In the learning process, however, only one of the possible setting will be converged on as the final
setting for a language. As we can see in Appendix B.2, the language [s iv, s tv o] can be generated

with 32 different settings. The setting which the learner has converged on in the D.1 session is the

5A language is also not learnable if no setting in the parameter space can make every string in this language
analyzable. But this will not happen here because such a language would fall outside the given parameter space thus
not considered a possible language to be acquired in the first place.

113

initial setting. Once this setting is in place, all the strings in the language will be parsed successfully
and.no.resetting-will-be considered any more. In D.4, the appearance of ofien made four pure SVO
languages distinct from each other: { (often) s v (o)], [s (often) v (o)], [s v (often) (o)], and [s
(often) v (o), (often) s v (0)]. The final settings reached for these languages by the learners are
respectively [0, 0,0, 0,0,0,0,0),[0,0,0,0,0,1,0,01,{1,1,1,1,0,1,0,0] and [0, 0, 0, 0,
0,1/0, 0, 0]. Looking at all the possible settings for these languages (shown in Appendix B.3), we
see that the final setting reached for each language is always the setting which is to be ordered first
among alternative settings by the precedence rules in (169). In general, the learner always tries to
select the setting with fewest overt movements possible to fit the current data. Further movements
are considered only if there is evidence that the current setting is inadequate. Given the string | s
iv] or [s tv o], the learner will stay with the initial setting, but a new string like [s tv often o]
will make her reset the parameters to [0, 0,0,0,0,1,0,0].

Similar tests to those in D.3 and D.4 have also been run on parameter spaces where some S(F)-
parameters are set to 1-0 so that auxiliaries appear. Due to space limitation, these sessions are not
given in the appendices. Those tests show that our current learning algorithm works just as well in
acquiring languages with auxiliaries and grammatical particles.®

We wilil conclude this section by observing a special property that the current learning algorithm
has with regard to noisy input. As we have seen, the learner in our model takes every piece of input
data seriously and treats it as a grammatical sentence in the language. This in principle should
cause problems when the input is degenerated. However, those problems are sometimes accidentally
remedied in our current system. Ungrammatical input may trigger wrong settings, but as long as
those settings are ordered before one of the possible target settings,” the learner still has a chance to
recover from the error. This is illustrated in D.5. The target language to be acquired in this session
is the same as the one in D.1 and D.2, i.e. [s (often) iv, s {often) tv o, s (often) o tv, o s (often)
tv). The learner was presented those strings plus a number of strings which are not in the language
(A2, %4, %e, %13, %18, %21, Y28, %33, %37, %42, %46 and %47). The first 8 deviant strings triggered
some wrong settings, but the learner still managed to converge on one of the correct settings (the
setting at %z). This is however the last target setting the learner can ever reach. If she for any
reason leaves this state and tries some settings further down the list, there will be no more chance of
convergence. In the D.5 session, the learner was presented more deviant strings after %z was reached.
These strings made the learner adopt the settings %b1 and Yc1 which generate superset languages
of the target languages. The deviani strings that appear after %c1 made things even worse. The
learner eventually ran out of further hypotheses and the learning ended in failure.

The implications of this peculiar property of the learning algorithm are not clear. It may mean

that the current system can provide a mechanism for language change. When the input data is

SThe test sessions are available upon request.
TRecall that there can be more than one setting which is compatible with a given language.

114

perfect, only one of the possible settings for a language will be reachable. When the input contains
deviant strings;-however, ‘alternative settings will be considered, as we have seen in D.5 where four
of the possible settings (%1, %p, %w and %a1) are reached at some point of the learning process.
The languages generated with these settings are just weakly equivalent to the target language.
Underlyingly, each of those settings can potentially generate a different Janguage. At this stage, this
account for language change is purely speculative. Much more careful work has to be done before it
can be taken seriously. What is certain, however, is that the learning algorithm as it stands now is

not robust enough. Further research has to be done to make it more empirically plausible.

5.3 Setting Other Parameters

In this section we discuss how the other two types of parameters — HD-parameters and S(F)-
parameters — can be set together with S(M)-parameters. HD-parameters interact with S(M)-
parameters in determining the word order of a language. We want to know whether the learning
algorithm presented in the previous section can be modified to set HD-parameters as well as S(M)-
parameters without losing its basic properties. The S(F)-parameters can be set independently using
a separate algorithm, though their values can interact with the values of S(M)- and HD-parameters,

resulting in such linguistic phenomena as auxiliaries, grammatical particles and expletives.

5.3.1 Setting HD-Parameters

When HD-parameters are kept out of the picture, there is only one kind of parameters to reset
when an input sentence is found to be syntactically unanalyzable in terms of word order. Now that
both S(M)- and HD-parameters are available, we are given a choice. Upon failing to parse an input
string, we have to decide which type of parameters to reset. This may seem to be a problem. In
Gibson and Wexler (1993) (G&W hereafter) which addresses a similar problem, some target settings,
cailed local mazima, are found to be unlearnable. The main contributor to this problem is the fact
that there are two types of word order parameters that can be set when a parsing failure occurs.
The parameters in their parameter space are X-parameters, which are called HD-parameters in our
model, and the V2-parameter which is similar to our S(M)-parameter in that it also determines
whether a certain movement is overt. When an input sentence fails to be analyzed by the current
grammar, the learner can reset either the V2-parameter or one of the X-parameters, but not both.
It is discovered in G&W that, with the Single Value Constraint, the Greediness Constraint, but
no parameter ordering in any sense, the learner can get into an incorrect grammar from which she
is never able to escape. We may wonder if the same problem will occur in our system, since we
also have to set two types of parameters either of which may be responsible for the word order of a
language.

Upon closer inspection, however, we find that the situation here is very different from the one

115

in G&W where local maxima occur. First of all, we only have one kind of X-parameter — the
complement-head parameter — while both the specifier-head and complement-head parameters are
present in the model G&W assumes. They discovered that local maxima can be avoided if the
value of the specifier-head parameter can be fixed before the V2-parameter and the complement-
head parameter are set. But this condition is satisfied by default in our system, since there is no
specifier-head parameter in our model at all. It is as if the specifier-head parameter were set before
the other parameters are considered. According to G&W, this should be sufficient to prevent local
maxima. Secondly, the Single Value Constraint is not assumed in our system. G&W has shown
that local maxima can also be avoided by removing the Single Value Constraint. This is another
reason why local maxima should not occur in our model. We do assume the Greediness Constraint.
G&W show that the removal of this constraint can help avoid local maxima as well, but will leave
the learning algorithm so unconstrained that the correct grammar can only be found by chance.
The solution G&W finds most plausibie for the prevention of local maxima is parameter-ordering.
There are several ways of ordering the parameters and they favor the one where X-parameters are set
before the V2-parameter. We agree with them on that movement operations are costly and should
not be considered unless a simple flip of the X-parameter fails to solve the problem. We will therefore
basically adopt this ordering hypothesis. When a change of parameter values is required, the learner
is to try HD-parameters first. Resetting of S(M}-parameters is attempted only if the resetting of
HD-parameters has failed to make the input string syntactically analyzable. However, the actual
implementation of the ordering has to be more sophisticated than the one suggested in G&W. While
there is only one “movement parameter” — the V2-parameter — with two possible values in G&W’s
model, we have eight movement parameters with 864 possible value combinations. The vaiues of the
two HD-parameters in our system can interact with any of the 864 value combinations, producing
a total of 3456 possible settings. In particular, we must allow the four possible value combinations
of HD-parameters, [1,1], [1, f], [f, 1] and [{, {], to interact with each value combination of
S(M)-parameters. To do this we need the following algorithm.
(172) Given: an ordered list of S(M)-parameter settings Porq.
(i) Initially set all S(M)-parameters to 0 and HD-parameters to any values.
(ii) Select any string 5 from the target language L and try to parse S.
(iil) If S is successfully parsed, go to (ii);
Otherwise, go to (iv).
(iv) Reset HD-parameters and try to parse § with the new setting.
If S is successfully parsed, retain the new HD-parameter setting and go back to (ii);
If none of the settings of HD-parameters results in a successful parse of S, reset S(M)-

parameters to the first value combination P; in P,.4, and remove Py from P,r4. Go
back to (ii).

116

Intuitively, what the above algorithm does is the following, For each of the S(M)-parameter settings,
try combining it with any of the four- HD-parameter-settings:- If none of the-four makes the input
string analyzable, then pick the next S(M)-parameter setting from the ordered list and try the
combinations again. In other words, each setting in the ordered list is expanded into four different
settings, The setting [1, 1,0, 0,0, 1, 1, 0], for example, will become the following four settings:

(173) [1,1,0,0,0,1,1,0,4,i]
[1,1,0,0,0,1,1,0,if]
[1,1,0,0,0,1,1,0,fi]
[1,1,0,0,0,1,1,0,f]

This being the case, we can have an alternative algorithm which is equivalent to (172) in consequence
but computationally simpler. We can expand the ordered list of S(M)-parameters in Appendix C by
turning each setting in the list into a group of four settings, each having a different value combination
of HD-parameters. The ordering of settings in the original list now becomes the ordering of groups
of settings, with the original order maintained. Within each group, the four settings can be ordered
in any way. For the moment, we will order them arbitrarily in the order shown in (173). This
ordering has the implication that the default setting for HD-parameters is head-initial. This does
not have to be correct, however, and the success of our learning algorithm does not depend on this
arbitrary choice. The learning algorithm will work the same way no matter how these settings are
ordered within each group, because the four languages generated with the four settings of a single
group never properly include each other.

The outcome of the above expansion is obvious. Due to the length of this expanded list, we
will put it in the appendices. But the beginning of the list is given below to give the reader some

concrete idea of what the new list looks like.

(174) [0,0,0,0,0,0,0,0,i,i]
0,0,0,0,0,0,0,0,1i,f]
(0,0,0,0,0,0,0,0,%,i]
f0,0,0,0,0,0,0,0,%,1]
[1,0,0,0,0,0,0,0,i,i]
[1,0,0,0,0,0,0,0,i,%]
(1,0,0,0,0,0,0,0,%,i]
{1,0,0,0,0,0,0,0,f,%]
(0,1,0,0,0,0,0,0,i,i]
[o0,1,0,0,0,0,0,0,i,f]
r¢,1,0,0,0,0,0,0,%,il
(¢,1,0,0,0,0,0,0,%,1]

117

(0,0,1,0,0,0,0,0,i,1i]
[0,0,1,0,0,0,0,0,i,f]
[0,0,1,0,0,0,0,0,%,i]
[0,0,1,0,0,0,0,0,f,1]

With this list in place, we can use the simple algorithm in (170) to set both the S(M)-parameters
and HD-parameters. As a result, the Prolog program in Appendix A.4 can be used, with very little
modification, to set both types of parameters.

Testing sessions have been run with this new list of parameter settings. The session in D.6
illustrates how an individual language can be acquired using the sp/0 predicate. The target language
in this case is [5 iv aux, s o tv aux, o s tv aux . The parameters being set here are the eight
S(M)-parameters and two HD-parameters. All S(F)-parameters are constantly set to 0-0 except
S(F(tns)) which is constantly set to 1-0 to allow the occurrence of some auxiliaries. We can find in
this session all the properties listed in (171). The only thing new is the setting of HD-parameters.

The learnability of all the languages in this expanded parameter space has been exhaustively
tested using the learn.all langs/0 predicate. Some sessions are run with all S(F)-parameters
constantly set to 0-0 and some with one of the S(F)-parameters (S(F(tns)) set to 1-0. Auxiliaries
appear when S(F(tns)) is set to 1-0. The results are again very similar to those obtained when HD-
parameters have fixed values. There are a few languages which are not learnable. These languages
are again {o tv s] and [o s tv] which are odd in not having intransitive sentences. When S(F(tns))
is set to 1-0, the unlearnable languages are [0 s tv], [0 s tv aux] and [o tv s aux). No language
is unlearnable, however, when the position of often is taken into consideration. Apparently, the
appearance of often can make these odd languages so distinet that they are not properly included
in any other language, The log files of those sessions are not included in the appendices for reasons
of space, but they are available to anyone who wants to see the actual process.

In sum, the fact that there are two kinds of word order parameters in our system does not seem
to create any problem for learnability. The success of parameter setting may be attributable to
parameter ordering, the absence of the Single Value Constraint, or the non-existence of specifier-
head parameters. It is important to note that the parameter ordering here is not artificially or
arbitrarily imposed on the learning system. It is deducible from some general linguistic principle,
namely the Principle of Procrastinate. This principle not only tells us how the S(M)-parameters
should be ordered but also explains why we should try resetting HD-parameters before resetting

S(M)-parameters. Thus the ordering is linguistically motivated.

5.3.2 Setting S(F)-Parameters

As mentioned above, the S(F)-parameters can be set independently on the basis of morphological

evidence only. We have assumed that each S(F)-parameter can have two sub-parameters, represented

118

as F-L, with the value of F (1 or 0) determining whether the F-feature is spelled out and the value
of-L- (1 or 0) determining whether the L-feature is spelled out. There are therefore four value
combinations for each S(F)-parameter: 0-0, 0-1, 1-0 and 1-1. The two sub-parameters in each
parameter can again be set independently. The value of F is based on the morphological properties
of function words (such as auxiliaries) only and the value of L on the morphology of content words
(such as nouns and verbs) only. What we have to do in parameter setting is the following. We
have to look at the function words, if there are any, and examine their morphological make-up.
Since no auxiliary can appear unless F is set to 1 in at least one S(F)-parameter, the appearance
of an auxiliary in the input string tells us that at least one S(F)-parameter is set to 1-X. (“X” isa
variable indicating that L can have any possible value.) Exactly how many S(F)-parameters should
be set to 1-X depends on how much information the auxiliary carries. If it is inflected for tense and
agreement, for instance, then both S(F(tns)) and S(F(agr)) should be set to 1-X. We also have to
look at the content words and see what features are morphologically represented. For example, a
noun inflected for case will tell us that S(F(case)) is set to X-1.

It has been assumed that there is a separate learning module which is responsible for finding
out whether a word is morphologically inflected and what features are represented by the inflection.
The learner in our system takes the output of this module as its input. The input strings in our
case consist of symbols which are of the form C-F where C is a category label such as s, o, iv, tv
and aux, and F is a list which contains zero or more features.® A feature appears in the list only
if it is morphologically realized in the language under question. Words that carry no inflectional

morphology will have an empty list attached to it. Here is a sample string,
(175) [s-[} aux-[agr,tns] iv-[asp]]

The string in (175) represents a sentence which consists of the following “words” from left to right:
a subject NP with no inflection, an auxiliary inflected for agreement and tense, and an intransitive
verb inflected for aspect. The features that are in the feature list of “aux” are overt F-features and
the one in the feature list of “iv” is an overt L-features. We assume that the learner is able to get the
representation in (175) using some independent learning strategies. For instance, she is supposed
to be able to conclude from words like de, does, did and have, has, had that English auxiliaries are
inflected for agreement and tense. Thus the main auxiliary in English should be represented as aux-
[agr,tns]. Once representations like the one in (175) are available, the setting of S(F)-parameters is
straight-forward. For instance, the string in (175) can tell us that, in this language, S(F(agr)) and
S(F(tns)) are set to 1-X while S(F(asp)) is set to X-1.

At first sight, we might think that there exist relations of proper inclusion in the morphological
patterns presented here. For instance, “aux-{tns]” may seem to be properly included in “aux-
(agr,tns]”. A second thought tells us that this is not true. A feature appears in the list if and only

2The only exception is often which will appear by jtself without a feature list attached to it.

119

if this feature is morphologically visible. Therefore, “aux-[tns]” is acceptable to the parser only if
S(F(agr)) is set to 0-X, and “aux-[agr,tns]” is acceptable only if S(F(agr)) is set to 1-X. There is no
setting with which both “aux-[tns]” and “aux-[agr,tns]” can be grammatically a.naljzed. If S(F(agr))
is originally set to 1-X, the analysis of “aux-[tns}” will end in failure which will trigger the resetting
of this parameter to 0-X; Likewise, “aux-[agr,tns]” cannot be analyzed with S(F(agr)) set to 0-X,
which will cause it to be reset to 1-X. No setting in the parameter space of S(F)-parameters is a
proper subset of another. Because of this, the failure-driven learning algorithm we have assumed will
always succeed in setting the S(F)-parameters on the basis of positive evidence only. No parameter-
ordering or defauit setting is necessary. However, in view of the fact that inflectional morphology
is generally absent in children’s speech at the initial stages of language acquisition, we will assume
that all S(F)-parameters are initially set to 0-0. They will retain this value if no overt inflectional
morphology is found in the target language. If the target language does have overt morphology,
they will be reset to 0-1, 1-0 or 1-1 when the inflections are detected and analyzed by children
in the acquisition process. Notice that this “initial-0” hypothesis is empirically-based rather than
computationally-based. We assume this in order to make our learning algorithm more natural, but
the success of our algorithm does not depend on this hypothesis,

Now that we have both the morphological parameters (i.e. S(F)-parameters) and word order
parameters (i.e. S(M)- and HD- parameters), we have to decide which parameters to reset first in
the event of a parsing failure. A parsing failure may occur because (a) some S(F)-parameter has the
wrong value value, (b) some S(M)- or HD- parameter has the wrong value, or both (2) and (b). In
order to make the input sentence interpretable, we may have to (a) reset S(F)-parameter(s) only, (b)
reset S(M)/HD parameters only, or (c) reset both types of parameters. Since S(F)-parameters can
always be set to the right values in one step once the morphologically pattern is correctly identified,
their values should be checked first. If no S(F)-parameter is found to have the wrong value, then
some S(M)/HD parameters must be reset. If some S(F)-parameter does have the wrong value,
we will first reset this parameter and see if the resetting can result in a successful parse. If so, no
S(M)/HD parameters need to be reset. Otherwise, we will have to reset some S(M)/HD parameter(s)
in addition to the S(F)-parameter(s).

The algorithm that checks S(F)-parameter values can be described as follows.

(176) Go through the feature list of every word in the input sentence and do the following whenever
a feature is encountered. For an F-feature (which is found in an auxiliary in our system), leave
the S(F)-parameter value of this feature untouched if it is already set to 1-X; otherwise reset it
to 1-X. For an L-feature (which is found on nouns and verbs), leave the S(F)-parameter value

of this feature untouched if it is already set to X-1; otherwise reset it to X-1.

Embedding this sub-algorithm in our general acquisition procedure, we now have the following

learning algorithm:

120

(177) Given: an ordered list of value combinations of S(M)- and HD- parameters Popq.
(i) Initially set-all S(M)-parameters-to 0, all HD-parameters to i, and all S(F)-parameters to
0-0.
(ii) Select any string S from the target language L and try to parse S with the current setting.
(iii) If S is successfully parsed, go to (ii);
Otherwise, go to (iv).
(iv) Check the values of S(F)-parameters using the sub-algorithm in (176) and parse S again.

If S is successfully parsed, go to (ii);
Otherwise, go to (v).

(v) Reset S(M)-/HD- parameters to the first value combination P; in P,.4 and remove P;
from Pyrq. Go back to (ii).

The Prolog program that implements this new algorithm can be found in Appendix A.6. We can
again use sp/0 to set the parameters on-line for a given language, 1earni/1 to find out if a given
language is learnable, and learn all langs/Q to check out if all the languages in the parameter
space are learnable. The search space in this case is huge, comprising tens of thousands of possible
languages. Exhaustive testing by computer has shown that all the languages in this big parameter
space are learnable,® but we do not have to depend on the computer search in order to know that
it is true. We know that the S(M)--and HD- parameters can set correctly by themselves for every
language in the parameter space. We also know that the S(F)-parameters can be set correctly
on its own as well. Since there is no value dependency between S(F)-parameters and S(M)-/HD-
parameters, the combination of those parameters does not result in any additional complexity. We
can thus conclude that learnability is guaranteed for all the languages that can be generated in our

experimental model.

5.4 Acquiring Little Languages

In this section we see how the complete set of parameters is set in some little languages. Due to the
huge number of languages in the parameter space, it is not possible to put the log file of running
learn.all_langs/0 in the appendices. To see the behavior of the learner in this bigger parameter
space, we will look at some Prolog sessions where the learnability of several individual languages is
tested. The languages being tested are Little English, Little Japanese, Little Berber, Little Chinese,
Little German and Little French, which are small subsets of the corresponding real languages. We
will run learni/1 on Little English, Little Japanese, Little Berber and Little Chinese to test their
learnability and then run sp/0 on Little French and Little German to see the on-line processes

whereby these two languages are acquired.

9 Again there are those odd languages which are learnable only if often appears in the input strings.

121

5.4.1 Acquiring Little English
The portion of English to be acquired is (178).

(178) Little English:

{ s-[c1] aux~[agr,tns] (often) iv-[asp],
s-[c1] aux-lagr,tns] C(often) tv-[asp]l o-[c2]

These strings are instantiated by the English sentences He was reading and He was chasing her,
The copula BE is treated as an auxiliary carrying agreement and tense information. It is a visible
TO0 which has moved to Agrl-0 before Spell-Out. “Aux-[agr,tns]” can be spelled out as FAVE, BE
or D in English, The choice of auxiliary in a particular sentence seems to be associated with the
aspect feature of the sentence. It is spelled out as BE with progressive aspect, HAVE with perfective
aspect, and DO with zero aspect.

Here is the Prolog session where Little English is acquired.

| ?- see(english),read(L),seen,learni(L).
Trying to learn [[s-[c1l],aux-[agr,tns],iv-[aspll, [s-[c1],aux-[agr,tns],tv-{asp]
,0-[c2]], [s-[c1],aux-[agr,tnsl,often,iv-[aspl], [s~[c1],aux-[agr, tns],often, tv-[
aspl,o-[c2]1] ...
s(f(case)) is reset to 0O-1
s(f(agr)) is reset to 1-0
s(f(tns)) is reset to 1-0
s(f(asp)) is reset to 0-1
Final setting: [0 ¢ 0 1 0 1 0 O i i§
agr(1-0) asp(0-1) case(0-1) pred(0-0) tns(1-0}]
Language generated:
[s-[c1l,aux-[agr,tns],iv-[asp]l]
[s-[c1],aux-(agr,tns], tv-[asp],o-[c2]]
[s-[c1],aux-[agr,tnsl,often,iv-Laspl]
[s-[ci],aux-[agr,tns],often, tv-[asp],o~[c2]]
The language [[s-{cl1],aux-[agr,tns],iv-[aspl], [s-[c1],aux-[agr,tns],tv-[aspl,o-
[c2]], [s-[c1],aux~[agr,tns],often,iv-[asp]], [s~{c1],aux-[agr,tns],often, tv~[asp
1,0-[c2]1] is learnable.

yes

| ?-

122

According to the final setting reached by the learner, Little English is a head-initial language where
the-subject NP moves to Agrlspec.and T0 moves.to Agrl-0.. Agreement.and.tense.features are

spelled out on the auxiliary, aspect feature on the verb and case features on NPs.

5.4.2 Acquiring Little Japanese
The subset of Japanese to be acquired is (179).

(179) Little Japanese:

{ s-{el] (often) iv-[tns],
g-[c1] C(often) o-[c2] tv-[tns],
o-[c2] s-[lc1] (often) tv~[tns]

Instances of these strings can be found in (138), (139) and (140), repeated here as (180), (181) and
(182).

(180) Taroo-ga ki-ia
Tarco-Nom come-Past
“Taroo came.’

(181) Taroo-ga tegami-o kai-ig
Taroo-Nom letter-Acc write-Past
“Tarco wrote a letter.’

(182) tegami-o Taroco-ga kai-la
letter-Acc Taroo-Nom write-Past
‘Taroo wrote a letter.’

Let us test its learnability by running learni/1:

| ?- see(japanese},read(L},seen,learni(L).

Trying to learn [[s-{ci],iv-[tns]], [s~[c1],o-[c2],tv-[tnsll, [o-[c2],5-[c1],tv~[
tngll, [s-[c1],cften,iv~[tnsl], [s-[c1],0ften,o~[c2],tv-[tns]], [o-[c2],s~[c1],0ft
en,tv-Itnsl]] ...

s(f(case)) is reset to 0-1

g(f(tns)) is resat to 0-1

Final setting: {0 0 0 0 0 1 1 1 i i

agr(0-0) asp(0-0) case(0-1) pred(0-0) tns(0-1)]

Language generated:

[[s-[c1],iv-[tns]]

[s-[ci],0~[c2],tv-[tns]]

123

[o-[c2],8-[c1],tv-[tnsl]

[s~[ci],often,iv-{tnsl]

[s-[c1],often,o~[c2],tv~[tns]]

fo-[c2],s-[c1],0ften, tv-[tns]]

The language [[s-[c1],iv-[tns]],(s=-[c1],0-£c2],tv-[tns]], [o-[c2],s-[ci],tv-[tns
11, [s-[c1l,0ften,iv-[tns]], [s-[c1],0ften,o-[c2],tv-[tns]], [o~[c2],s-[c1],often,
tv-[tns]]] is learnable.

yeos

| 7=

According to the final setting, Little Japanese is a head-initial language where the subject NP and
object NP move to Agrlspec and Agr2spec respectively. In addition, one of them must move further
up to Cspec. The fact that Little Japanese is identified as a head-initial rather than a head-final one
shows that a simple SOV string is not sufficient for the identification of a head-final language. There
are alternative settings for Little Japanese among which are (183) and (184) where IP is head-final.
But (183) is not chosen because it requires more overt movements, and (184) is not chosen because

it requires optional movement.

(183) L1 0 0 0 0 £ 1 1 i ¢
agr(0-0) asp(0-0) case(0-1) pred(0-0) tns(0-1)
]

(184 Lo o0 ¢ 0 0 1 1 1/0 i £
agr(0-0) asp(0-0) case(0-1) pred(0-0) tns(0-1)
]
5.4.3 Acquiring Little Berber
Little Berber consists of the strings in (185).
(185) Little Berber:
{ iv-[agr,tns] (often) s-[1,
3=[] iv-[agr,tns] (often)

tv~[agr,tns] (often) s~[] o-[],
s=[1 tv-[agr,tns] (often) o~[]

The 3rd and 4th strings in this set are exemplified by (146) and (147), repeated here as (186) and
(187):

124

(186) i-are hmad tabrat
3ms-wrote Ahmed letter.
‘Ahmed wrote the letter.’

(187) hmad i-aras tabrat
Ahmed 3ms-wrote letter
‘Ahmed wrote the letter.’

I have no data on the position of offen in Berber. Its position in Little Berber is purely hypothetical.!?

Let us see how the parameters are set for this language:

| 7- see(berber),read(L),seen,learni(L).
Trying to learn [[iv-[agr,tns],s-[]],[s={],iv-[agr,tns]], [tv-[agr,tnal,s-[1,0-[
11, [s-[1,tv-[agr,tns],o~[1], [iv-[agr,tns],often,s-[1], [s-[],iv-[agr,tns],often]
,[tv-[agr,tns],often,s-[1,0~{1]1, [s=[],tv-[agr,tns],often,o~-[11] ...
s(f(agr)) is reset to O-1
s(f(tns)) is reset to 0-1
Final setting: [1 1 1 1 0 1/0 0 0 i i
agr(0-1) asp(0-0) case(0-0) pred(0-0) tmns(0-1)]
Language generated:
[iv-[agr,tns],s-[1]
fa8-[],iv-[agr, tnsl]
[tv-[agr,tns],s-[1,0-[]]
(s-[],tv-[agr,tns],o~[]]
[iv-[agr,tns],often,s~[]]
[s-[],iv-[agr,tns],often]
[tv-Lagr,tns],often,s-[],0-[]]
[s-[1,tv~{agr,tns],often,o-[]1]
The language [[iv-~[agr,tns],s-[1]1,[s-{],iv-[agr,tnsl], [tv-{agr,tns],s~[],0-[1],
[s-[1,tv-[agr,tns],o-[1], [iv-[agr,tns],often,s-[1], [s-[],iv~[agr,tns],often], [t
v-{agr,tns],often,s-[],0-[1],[s-[],tv-[agr,tnsl,often,o~[11] iz learnable.

yes
| -

In this session, Little Berber is identified as a language where the verb must move to Agrl-0 and
the subject NP can optionally move to Agrlspec, The verb is required to have its agreement and

tense features spelled out.

10The grammar employed in these learning sessions assumes that offer can optionally appear in every language.
Consequently any language without often will be found to be unlearnable. This is why I have to let often appear in
Little Berber,

125

5.4.4 Acquiring Little Chinese

Little Chinese consists of the following strings:

(188) Little Chinese:

{ s-[1 (often) iv-[]1 aux-fasp] aux-[pred],
s—{1 (often) tv-[J o-[1 aux-{asp] aux-[pred],
3-[1 (often) o-[] tv-[1 aux-lasp] aux-[pred],
o-[1 a-[] (often) tv-[1 aux-[asp] aux-[pred]

Here are some actual instances of those strings. The grammatical particle ma in the following
sentences can be either a question marker or an affirmative marker depending upon the intonation.
So they are all ambiguous in their romanized forms, having both an interrogative reading and a
declarative reading. (They are not ambiguous when written in Chinese characters, as the two senses

of ma are written in two different characters: ¢ ” and “).

(189) Ta lai le ma
he come Asp Q/A
‘Has he come? / He has come, as you know.’

(190) "Ta kan-wan nei-ben shu le ma
you finish reading that book Asp QA
‘Have you finished reading that book? / He has finished reading that book, as you know.’

(191) Ta nei-ben shu kan-wan le ma
you that bock finish reading Asp Q/A
‘Have you finished reading that book? / He has finished reading that book, as you know.’

(192) Nei-ben shu ta kan-wan le ma
that book you finish reading Asp Q/A
‘Have you finished reading that book? / He has finished reading that book, as you know.’

Here is the session where Little Chinese is acquired.

| ?- see(chinese),read(L),ssen,learni(L).

Trying to Learn [[s~[1,iv-[1,aux-(asp],aux-[predl], [s-C1, v-{1,0-[] ,aux-[asp],a
ux-[predl], [s-[1,0~[]1,tv-[],aux-lasp]l,aux-[predl], [o-[],s-[1,tv-[],aux-asp],au
x~[predl],[{s-[],0ften,iv~[],aux~[asp],aux~[predl], [s~[1,often,tv~[]1,0-[1,aux-[
aspl ,aux-[predll, [s-[],often,o~[1,tv-[]1,aux-[aspl,aux-[pred]], [o~[],s~[],0ften,
tv-[],aux-[asp],aux-[pred]]] ...

s(f(asp)) is reset to 1-0

126

s(f(pred)) is reset to 1-0

Final setting: [0 0 0 ©0 0 1 1/0- 1 £ £

agr(0-0) asp(1-0) casa(0-0) pred(1-0) tns(0-0) J
Language generated:

[s-[1,iv-[],aux-[aspl,aux-[predl]

[s-[],tv-0],0-[1,aux-[aspl,aux-[pred]]

[s—[],o-[],tv—[],aux—[aspﬂ,aux—[pred]]

[o~{]1,s~[1,tv-[],aux-[asp], aux~[pred]]

[ls-[],0ften,iv-{],aux-[asp],aux~Ipredll
[s-[1,0ften,tv-[],0~L],aux-[asp]l,aux-{pred]]
[s-[]1,0ften,o-[1,tv-[],aux-{asp], aux-[pred]]
[o-[1,8-([],0ften,tv-[],aux-[asp],aux-[pred]]
The language [[s-[],iv-[],aux-[asp],aux-[pred]], [s-[],tv-[],0-[1,aux-[asp],aux-
(predl], [s~[]1,0~[1, tv-[],aux-Laspl, aux-[predll, [o-[],s~[1,tv-[],aux-[asp]l,aux-[
predl], [[s-[],often,iv-[],aux-[asp],aux-[pred]l, [s-{],0ften, tv-[],0-[], aux-lasp
1,aux-[pred]], [s-[1,0ften,o-[1,tv-[],aux-[asp], aux-[pred]], [o~[],s-[],often, tv-
[1,aux~[aspl,aux—[predl]] is learnable.

yes
| ?-

The learner identified Little Chinese as a head-final language where overt movement to Agrspec is
obligatory for the subject NP and optional for the object. Cspec must be filled at Spell-Out by the
subject or by the object if it has moved to Agr2spec. The verb remains VP-internal while Asp0 and

C0 are spelled out in situ,

5.4.5 Acquiring Little French
Here is the subset of French to be acquired.

(193) { s-{c1]l iv-[tns,asp] (often)
s-~{c1] tv-[tns,asp] (often) o-[c2]
}

It differs from Little English in that (i) there is no auxiliary, and (ii) ofien appears post-verbally.
The strings in (193) are exemplified by (194) and (195).

(194) Il nage souvent
he swims often
‘He often swims.’

127

(195) Il wvisite souvent Paris
he wvisit often Paris
‘He often visits Paris.’

The following session shows how Little French is acquired on-line,

| 7= sp.

The initial setting is

[0 o0 000 00 i i

agr(0~0) asp(0-0) <case(0-0) pred(0-0)} tns(0-0)]
Next? [s-[1,iv-[]].

Current setting remains unchanged.

Next? [s-[c1],iv-[1]. 1
Unable to parse [s-[ci1],iv-[]]

Resetting the parameters ...

g(f(case)) is reset to 0~1

Successful parse.

Next? [s-[c1],iv-[tns]]. 42
Unable to parse [s-([cl],iv-[tnsl]

Resetting the parameters ...

s(f£(tns)) is reset to 0-1

Successful parse.

Next? [s-[ci1]),iv~[tns,aspl]. %3
Unable to parse [s-[c1],iv-{tns,aspll

Resetting the parameters ...

s(f(asp)) is reset to 0-1
Successful parse.

Next? [s-[c1],tv-[tns,aspl,o-[c2]]. %4
Current setting remains unchanged.
Next? [s—[c1],iv-[tn=,aspl,often]. %5

Unable to parse [s-[cil],iv-[tns,aspl,often]

Regetting the parameters .

Word order parameters reset to: [1 1 1 1 0 1 0 0
Successiul parse.
Next? [s-[c1],tv-[tns,aspl,often,o-[c2]]. ¥e

128

Current setting remains unchanged,

Next? current_setting.
11110140044

agr(0-0) asp(0-1) case(0-1) pred(0-0) tns(0-1)]
Next? generate.
Language generated with current setting:
[a-[c1],iv-[tns,asp]]

[s-[c1],iv-[tns,aspl,often]
[s-[c1],tv-[tns,aspl,often,o-[c2]]
[8-[c1],tv-[tns,asp],o-[c2]]

Next? bye.

yes

| ?-

The presentation of input strings here is inconsistent with regard to overt morphology: %1 has no
overt morphology whatsoever; %2 has overt case only; %3 has overt tense in addition to overt case;
and %4 has all the overt morphology in Little French. This is done intentionally in order to mimic
children’s gradual acquisition of morphological knowledge. It is a common observation that children
usually fail to notice or ignore inflectional morphology at the early stages of acquisition. When this
happens, the sentence which is actually being analyzed by children are strings where part or all of
the overt morphology is missing. The string [s=01 iv-[1] thus represents a piece of input data
whose inflectional markings are not noticed by children. As acquisition progresses, the morphology
is gradually worked out and becomes available for syntactic analysis. In the above session, case
morphology becomes visible at %2 where S(F(case)) is reset to 0-1. Tense and aspect morphology
appears in the input (or rather intake) at %3 and %4 where S(F(tns)) and S(F(asp)) are successively
set to 0-1. Up till %5, however, Little French has been treated as a language which has no overt
movement. The SVO order found so far is compatible with the structure where every lexical item is
in its VP-internal position. The trigger for a different setting came at %6 where often appeared. The
new string cannot be parsed unless the subject moves to Agrlspec and the verb moves to Agri-0.
Hence the new setting. After that, every string in (193) is acceptable. The language generated by
the current setting is exactly Little French. We thus conclude that this language has been correctly
identified in the limit.

5.4.6 Acquiring Little German

Little German is a V2 language which contains the following strings:

129

(196) { s-[c1] aux-fagr,tns] (often) iv-[asp],
s-[c1] aux-[agr,tns] (often) o-[c2] tv-lasp],
o-[c2] aux—[agr,tﬁs] s-[c1] (often) tv-[aspl,
often aux-[agr,tns] s-[ci]l o-[c2] tv-[asp]
}

This is the small subset of German main clauses where the auxiliary is in second position and the

verb is clause-final. The following shows how Little German is acquired on-line.

| 7= sp.

Tha initial setting is

o o 60 00 0 0 i i

agr(0-0) asp(0-0) case(0-0) pred(0-0) +tna(0-0) 1]

Next? [s-[],aux-[tnsl,iv-[1]. %1
Unable to parse [s~[1,aux-{tns],iv-{]]

Resetting the parameters ...

s(f(tns)) is reset to 1-0

Word order parameters reset to: [0 0 0 0 0 1 0 0 i i]
Successful parse.

Next? [8-[],aux-{tns],o-[1,tv-[1]. %2
Unable to parse [s~[],aux-[tns],o-[],tv-[1]

Resetting the parameters ..

Word order parameters reset to: [0 0 0 0 0 1 1 o0 i i]
Successful parse.

Next? generate.

Language generated with current setting:
[s=[],often,aux-[tns],iv-[1]

[s-[],cften,aux-[tns],o-[1,tv-[1]

[s-[],aux-[tnsi,iv-[1]

[s-[1,aux-[tns],o-[1,tv-[1]

Next? [o-[],aux-[tns],s-[1,tv-£]]. %3
Unable to parse [o-[],aux-[tns],s-[1,tv-[1]

Resetting the parameters ...

Word order parameters reset to: [0 0 0 0 0 0 1 1 i i]

130

Successful parse.

Next? generate..

Language generated with current setting:
[often,aux-[tns],o-[],s-[],tv-[]1]
[often,anx-[tns],s-[],iv-[]]
[o-[1,cften,aux-[tns],s-[],tv-[1]
{o-[1,aux-[tns],s~[1,tv-[1]

Next? [s-[ci],aux-[tns],iv-[1]. 2
Unable to parse [s—[ci1],aux-[tns],iv-{]]

Resetting the parameters ...

a(f(case)) is reset to 0-i

Word order parameters reset to: [1 0 0 ¢ 0 1 0 1 i i
Successful parse.

Next? generate.

Language generated with current setting:
[often,s—[c1],aux-[tns],iv-[]]
[often,s—[c1],aux-[tns], tv-[1,0-L[c2]]
[8-[c1],often,aux-{tng] ,iv-[3]
[z-Lci],often,aux-[tnsl, tv-[1,0-[c2]]
[s~[ci],aux-[tns],iv-[]1]
[s-[c1],aux=-[tns],tv=-[1,0-[c2]]

Next? [often,aux-{tns],s-[c1],iv-[]1]. %5
Unable to parse [often,aux~{tns],s-[c1],iv-[]]

Resetting the parameters ..

Word order parameters reset to: [1 0 ¢ 0 ¢ 0 1 1 i £]
Successful parse.

Kext? generate.

Language generated with current setting:
[often,aux-[tns],o~[c2],5~{c1];tv-[1]
[often,aux-[tns],s~[c1],iv-[]]
[o-[czl,offan.aux-[tns],s~[c1],tv-[]]
[o-L[¢2],s8-{c1],tv-[1,aux~[tns]]

131

Next? [s—[ci],aux-[tns],iv-[]1]. %6
Unable to parse [s-[ci],aux-[tns],iv-[1]

Regsetting the parameters ...

Word order parameters reset to: [0 1 0 0 0 1 0 1 i i]
Successivl parse.

Next? generatae,

Language generated with current setting:
[often,s-[c1],aux~[tns],iv-[]]
[often,s-[c1],aux-[tns],tv-[],0~[c2]]
[a-[ci],often,aux-[tns],iv-[]1]

[s-Cc1l,often,aux-[tnsl, tv~[1,0-[c2]]

[8-[ci),aux-[tns],iv-[]]

[s-[ci],aux~[tns],tv-[1,0=Cc2]]

Next? [often,aux-{tns],s-[c1],iv-[]]. wr
Unable to parse [often,aux-[tns],s-[c1],iv-[]1]
Resetting the parameters ...

Word order parameters reset to: [0 1 0 0 0 0 1 1 i i]
Successful parse. .
Next? [o-{c2],aux-[tns],s-[ci],tv-[]1]. A:
Current setting remains unchanged.

Next? [s-[c1],aux-[tns],iv-[1].

Unable to parse [s—[cil,aux-[tns],iv-[1]

Regsetting the parameters ...

Word order parameters reset to: [0 0 1 0 0 1 ¢ 1 i i]
Successful parse.

Next? [s-[ci],aux-[agr,tns],iv=-[]1]. %o
Unable to parse [s-[c1l],aux-[agr,tns],iv-[1]

Resetting the parameters .

s(f(agr)) is reset to 1-0

Word order parameters reset to: [0 0 ¢ 1 0 1 ¢ 1 i i]
Successful parse.

Next? [often,aux-[agr,tns],s-[c1],iv-[]]. %10

132

Unable to parse [often,aux-lagr,tns],s-[c1],iv-[1]

Resetting the parameters ...

Word order parameters reset to: [0 0 0 1 0 0 1 1 i i]
Successful parse.

Next? [o-[c2],aux-[agr,tnsl,s-[c1l,tv-011. %11
Current setting remains unchanged.

Next? [2-[eil,aux-[agr,tns],o-{c2],tv-01].

Unable to parse ([s-[cil,aux-[agr,tns],o-[c2],tv-0]

Resetting the parameters ...

Word order parameters reset to: [0 0 0 1 0 1 1 1 i i]
Successful parse.

Next? [o-[c2],aux-[agr,tns],s-[ct1],tv-{1]. %12
Unable to parse [o-[c2],aux-[agr,tns],s—[c1],tv-[1]

Resetting the parameters ...

Word order parameters reset to: [1 0 0 1 1 0 1 1 i £]
Successful parse.

F¥ext? [s-[cil,aux-[agr,tns],o-[c2],tv-F1]. %13
Unable to parse [s-[ci],aux-[agr,tns],c-[c2],tv-[]]

Resetting the parameters ...

Word order parameters reset to: [1 0 0 1 0 1 1 1 i i]
Successful parsa.

Next? generate.

Language generated with current setting:
[often,s-[c1],aux~[agr,tns],iv-[1]
[often,s~[c1],aux-{agr,tns],o-[c2],tv-[]]
[o-[c2],s-Lc1] ,aux-[agr,tns],often, tv-[]1]
[o-[c2],s-[c1],anx-[agr,tns], tv-[]1]
[s-[c1],aux-[agr,tns],often,iv~[]]
[s-[c1],aux-[agr,tns],often,o~[c2], tv~[]]
[s-[c1],aux-[agr,tns],iv-[1]
[s-{ci],aux-[agr,tns],o-[c2],tv~[]]

Next? [s-[c1],aux-[pred,agr,tns],o-[c2],tv-[1]. VALY

133

Unable to parse [s—[cil],aux-(pred,agr,tns],o-[c2],tv-[1]

Resetting the parameters ...

s(f(pred)) is reset to 1-0

Word order parameters reset to: [0 0 0 1 1 1 1 1 i i 1]
Successful parse.

Next? [8-[¢1],aux-[pred,agr,tns],o-[c2],tv-[aspll. %15
Unable to parse [s-[c1],aux~[pred,agr,tns],o-[c2],tv-{aspl]

Resetting the parameters ...

s(f(asp)) is reset to 0-1
Successful parse.
Next? [o-[c2],aux-[pred,agr,tnsl,s-[c1]l,tv—{aspl]. %16
Current setting remains unchanged.
Next? [often,aux-[pred,agr,tns],s-[c1],0-[c2],tv-[aspl]l.%17
Current setting remains unchanged.
Next? current_setting.

o oo 1 1 1 1 1 i i

agr(1-0) asp(0-1) case(0-1) pred(1-0) +tns(1-0) 1]
Next? gemerate.
Language generated with current setting:
[often,aux-[pred,agr,tnsl,s-[cil, iv-laspl]
[often,aux-Ipred,agr,tnsl,s-[c1],0-Lc2], tv-[aspl]
[o-[c2],aux-{pred,agr,tnsl,s~[c1],0ften, tv-[aspl]
[o-[c2],aux-[pred,agr,tns],s-[c1],tv-[aspl]
[s-[cil,aux-[pred,agr,tns],often,iv-[aspi]
[s-[c1l,aux-[pred,agr,tns],often,o—[c2],tv-[aspl]
[s~[<1],aux-[pred,agr,tns],iv-{asp]]
fs-[c1],aux-[pred,agr,tns),o-{c2],tv-[aspl]

Next? bye.

yes
| ?-

The first input string is not compatible with the initial setting. It became analyzable when S(M(specl))
is reset to 1 and S(F(tns)) is set to 1-0. The next string (%2) triggered the resetting of S(M(spec2))
to 1. The language generated at this point is an SOV language instead of a V2 language. The next

134

input string (%3) informed the learner of the error and resetting occurred. The learner is trying to
identify the input language as a non-scrambling one.at first, but she did not succeed. Resetting
continued through %4, %6, %6, and %7. The setting at this point was able to accept a language where
the Aux is in second position while the first position can be occupied by an Adverb or an Object.
But no subject can appear clause-initially, which shows the setting was still incorrect. Therefore
more resetting occurred until after the string at %15 was presented. Meanwhile, the recognition of
morphological inflections caused S(F(case)) and S(F(asp)) to be reset to 0-1 whereas S(F(agr)) and
S(F(pred)) were reset to 1-0. From this point on, every string in Little German were acceptable. In
addition, the language generated with the current setting is not a superset of the target language.

The learner has thus converged on the correct grammar for Little German.

5.5 Summary

We have seen in this chapter that the parameter space associated with our experimental grammar
has certain desirable learnability properties. The languages generated in this parameter space are
not only typologically interesting but learnable as well. There is at least one algorithm whereby
the parameters can be correctly set for each language in the parameter space. The precedence
rules employed in the learning algorithm, which are crucial for the success of the learnability, are
deducible from a general linguistic principle, the Principle of Procrastinate. This makes our learning
algorithm linguistically plausible as well as computationally feasible. There are many issues to which
our acquisition model is potentially relevant, but they have not been addressed so far. We may want
to examine the empirical implications of this model for language development. One of the questions
we can ask is how the intermediate settings the learner goes through in our model relate to the
developmental stages that children undergo. Our model may also be theoretically interesting to the
study of langnage change. The existence of weakly equivalent languages in our parameter space may
provide an explanation for the kind of reanalysis phenomena where the gramrmar changes without
immediately affecting the language generated. Another issue we may want to pursue is how plausible
our learning algorithm will be when the input is noisy and what modifications are needed to make
the learning procedure more robust. All these issues are yet to be explored and a serious discussion

on them requires much more work than has been done in this thesis.

135

Chapter 6

Parsing with S-Parameters

When discussing the parameter space in Chapter 4 and the parameter setting algorithms in Chapter
5, we have assumed that there is a parser which implements the experimental grammar defined in
Chapter 3. In Chapter 4, the parser was used to generate all possible strings of all possible languages
in our parameter space. In Chapter 5, it was used by the learner to process incoming sentences or
generate all the strings in her language.! So far the parser itself has not received any discussion. It
is the goal of this chapter to describe this parser.

The parser to be discussed is supposed to be an implementation of our version of UG, namely,
the experimental grammar we have assumed. It is not strictly speaking an axiomatic representation
of the grammar, but it is equivalent to the grammar in that it accepts or rejects exactly the same
set of sentences/languages as the grammar does. The parser is universal in the sense that it is
capable of processing any language in the parameter space. In other words, the parsing procedures
can be applied in a uniform fashion no matter what the grammar of the individual language is. The
only thing that can change from language to language is the parameter setting. This should be no
gurprise because the parser is in fact the embodiment of UG which does not vary except for the

parameter values.

6.1 Distinguishing Characteristics of the Parser

QOur discussion of the parser will not be concerned with general issues of sentence processing which
everyone who builds a parser has to address. For instance, everyone who builds a top-down parser
has to deal with the problem of left-recursion and everyone who builds a bottom-up parser has to
face the problem of empty categories. These issues have been discussed extensively in the literature
and whatever applies to other parsers applies to our parser as well. What we are interested in are

those properties which are absent in other parsers.

1The Prolog programs pspace.pl in Appendix A.1, sp.pl in Appendix A.4 and spl.pl in Appendix A.6 cannot
run without this parser.

136

The reason why the parser we build here can be different from all other parsers is that the
grammar to be implemented is-different. The most salient feature which distinguishes our grammar
from all other versions of UG is the uniform treatment of moverment. In traditional grammars, most
movements are S-structure movernents. The movements that a parser deals with are only those
movements which are overt. The parse trees built by the parser are either S-structure representations
or combinations of S-structure and D-structure. In the latter case, certain nodes in the parse tree
form chains. The constituent that moves is found at the kead of the chain and the fail or foot of the
chain consists of a trace. A chain is therefore a simultaneous representation of both the S-structure
and D-structure positions of a constituent. Since S-structure movements can vary from langunage to
language, the chains to be built by the parser can vary according to which language is being parsed.
Consequently, the parse trees built for different languages can vary in shape depending on what
S-structure movements occur in those languages. This makes it necessary to “tune” the parser for
different languages. Suppose a wh-question is being parsed and we have come to the point where
the Cspec node is constructed. If the language being parsed is English, then the parser must find a
lexical item in this position (namely a wh-word) and start building a chain from this point. If the
language being parsed is Chinese, however, the parser must not find a wh-word in this position and
no chain will be built. These specific, language-particular instructions must be built into the parsing
procedure. As a result, we may need an English parser to parse English and a Chinese patser to
parse Chinese. These two parsers may be very similar on the whole, but the Chinese parser cannot
be used to parse English without some procedural fine tuning.

Things are different in our present model. We have assumed that there is an underlying set of
movements which occur in every language. All those movements are LF movements in the sense
that they are all necessary for the successful derivation of the LF representation. The derivation
will crash if any of those movements fails to occur. This implies that the parser in our model must
build an LF representation in order to find out if a sentence is grammatical. Looking at LF, we see
that all languages are identical at this level of representation in that the movement chains found
there are the same cross-linguistically. If a sentence is grammatical at all, then its LF representation
must have those chains, no matter what language this sentence is from. This means that the LF
representation can be built in a universal way as far as chain formation is concerned. The parser
can go ahead and construct an invariant set of chains regardless of what language is being parsed.
If the only representation we need were LF, then we could have a truly universal parser which needs
no fine tuning when used to process different languages.

LF is of course not the only structure the parser has to build. When we talk about chains, at
least two levels of structures must be involved, one represented by the heads of the chains and one
by the tails. In terms of a chain resulting from LF movement, the head is the LF position of a
constituent and the tail is the base position. The base position is the position where the constituent

is generated through lexical projection. All the “content words” in our system are base-generated

137

VP-internally. It is roughly the D-structure (DS) position in traditional terminology. Since every
LF movement involves moving a constituent from its base position to the LF position, the chain
formed by this movement is a simultaneous representation of both positions. When we say that the
chaing are universal, we in fact mean that both the LI positions and base positions are invariant.
By saying that the chains can be built uniformly, we have actually concluded that the LF and “DS”
representations of all languages can be constructed through a uniform parsing procedure. In other
words, no fine tuning in the parser will be necessary for parsing different languages if LF and DS
information alone needs to be represented in the parse tree.

However, LF and DS are not the only representations at which the grammaticality of a sentence
can be determined. We also have to look at the representation that is spelled out. In traditional
terminology, this representation is called S-structure (SS). We can borrow this term and use it to
refer to the structure which is fed into the PF component. The “S” thus stands for “Spell Qut”
rather than “surface”. This is the structure which is subject to cross-linguistic variation. The
source of variation in our model is the values of S{M)-parameters which determine which subset of
LF movements must be performed before Spell-Out in a given language. The constituent involved
in an LF movement appears at the head position of the chain at S-structure if it moves before
Spell-Out. It appears at the tail position if it moves after Spell-Out. To find out if a sentence
is grammatical in a given language, we have to take the S-structure positions of every constituent
into consideration. In other words, the parse tree we build must represent SS in addition to LF
and DS. This is not difficult to do. LF and DS position can as usual be represented by the chain,
with its head invariably marking the LF position and the tail the DS position. The S8 position
can be indicated by the position of the moving constituent. It must be at the head position if it
moves before Spell-Out and it must be at the tail position if it moves after Spell-Out. We can thus -
represent LF, DS and S8 in a single parse tree. Examples of such parse trees are given in (197) and
(198).

138

cp

npll el
caaecl,
ind:2,
phisk:
]t:hn'tl':-qt])
<QIL sgrip
sepiA,
ind:i
lt:’!'ri[:a 2t,pat]
tn;:ﬂ)-Pl N
np{l agri_i
cane:cl,
ind:2,
og: *,
f i:X,
hetaingt])
Subject agrl _O([tp
aepiA,
indil

aspO([
aspiA,
ind:{

pﬂi[: 1t pat]
th: f \
tm:.'lﬂ.l) pe

(197)

asp.p
napl
agrlp
npl{ agr2_i
cameic2,
ind:3,
opi=,
phi:Y,
thete:pat)
Object agr2_0O([vp
aepiA,
ind:1
h

ph i[,]
gy ot

np(l vi
caseicl,
ind:2,
i
gh.‘t“:lﬂt]}
»a({ ¥,
aepiA, 3
ind:{
pt}:ifx't]
th: ' '
nt:’ﬁ) e
Yerk npll vl
cageic2,
ind:3,
opi=,
pﬁi:\’.
thataipat))
vO([
amf
nd:
'l;xi[:}f. 1
th:[petl,
m,ﬁ-‘n

139

cp

phi:X, -
thata:agt])

QU egrip
aspiA,
ind:l

pll;si[: .]
th:[agt,patl,
tnl:’ﬂ) e

np([agri_t
cans:ci,
ind:2,
op: *,
phi:X,
thata:agt])
1_0 t
i:g;:x. (L P

tph-if T, pat)
biat s R
tl

Verb o[ssp_p
asp:A,
ind:l

B agt.pat]
thilsgspatl.

/ sep!
wnpO([agr2p
anpiA,
ind:
Phiih,
thilage.pat), np{[_ agr2_1
:ns[:!ﬂ) prtd f;;::-fZ.
v,
ghou:pu]}
agr2 O([vp
asp:A,
ind:
phi:

np(l vi

case:cl,

ind:2,

o

't:ho'n':lgt))

Subject vO({ vp
s
hi:d

lt:'h-llf Jt,pat]
tn'-:!I%J'p. !

np(l vi

cane:02,

ind:3,

iy,

lt’h-n:pat])

Object vO(f
aapiA,
ind:l
p:ifx. 1
th:(pat],
tnl:%'])

(198)

140

The chains in those parse trees are represented through coindexing and feature-sharing. There

are three chains in each.of the trees.

(i) A V-chain linking the nodes C0, Agr1-0, T0, Asp0, Agr2-0 and V0. All those nodes are assigned
the same index: “1”. They also share the following feature values: phi:X, tns:T, asp:A, and
th:[agt,pat]. This chain is formed by successive head movements from VO to C0. The variables
in the chain, X, T and A, can be instantiated to things like 3sm (3rd person singular masculine),

pres (present tense), prog (progressive aspect) in an actual sentence.

(ii) An NP chain linking the nodes Cspec, Agrlspec and the first Vspec. These nodes are coindexed
“2” and they share the following feature values: case:1, op:+, phi:X, and theta:agt. This chain
is formed by two successive movements of the subject NP: an A-movement from Vspec to
Agrlspec and an A-movement from Agrlspec to Cspec. The fact that both the “phi” feature
in this NP chain and the “phi” feature in the V-chain have the value “X” indicates that the
subject and the verb must agree with each other. The “+” value of the “op” feature in this
NP chain shows that this NP can be the topic or focus of the sentence, or a QP which receives

a wide-scope reading.

(iii) Another NP chain linking the nodes Agr2spec and the second Vspec. The index for these
nodes is “3” and the feature values that are shared between them are case:2, op:-, phi:Y, and

theta:pat. This chain is formed by movement of the object NP from Vspec to Agr2spec.

As far as these chains are concerned, (197) and (198) are identical. This should be the case because
these chains are formed by LF movements which are universal.? What differentiates (197) and
(198) are the positions of the lexical items in these chains. The lexical items, which are actually
pronounced, are represented by “Subject”, “Object” and “Verb” in those trees. In a real sentence
they will be real words like ke, him and likes. In (197), Subject is in Agrlspec, Object in Agrispec,
and Verb in V0. In (198), Verb is in C0 and Subject and Object are in their VP-internal positions.
These positions tell us where Subject, Object and Verb are at the time of Spell-Out. In (197),
Subject and Object have moved overtly to their case positions and the surface word order is SOV.
In (198), Verb has overtly moved to C0 and the surface order is VSO. We get the tree in (197) when
the S(M)-parameters are set to [0,0, 0,0, 0,1, 1, 0] and we get (198) when they are set to | 1, 1,
1,1,0,0,0,0]. It is clear that three levels of representation — LF, DS and SS — are merged into one
in those parse trees. The LF and DS positions are identical in the two trees but the SS positions
are different.

In building trees of this kind, the parser is constructing three levels of representations at the
same time. There are three things that the parser must do. It must (i) build the tree; (ii) build the

2Both (197) and (198) have an alternative representation where Cspec is coindexed with the object NP which will
then have the “4" value for the operator feature. This is possible when the object is understood to be the topic,

focus, or wide-scope QP of the sentence.

141

chains; and (iii) decide where the lexical item appears in each chain.

Chain-building is universal, as we have seen. The parsing procedures which are responsible for
chain-formation can therefore be invariant. It can simply be hard-wired into the parser, since it
does not respond to language variation at all. So this part of the parsing mechanism can be totally
innate. No learning or fine tuning is necessary.

Tree-building is universal in that the same set of nodes are built in a given type of sentence no
matter what the language is. This has been illustrated in (197) and (198) which represent different
languages but have the same nodes. Furthermore the same set of dominance relations holds between
those nodes in every language. AgrlP is always dominated by C1, for example. However, linear
precedence may vary according to the values of HD-parameters. When building CP and IP, the
parser must be able to respond in two different ways. It has to build the phrase head-initially if the
HD-parameter is set to “i” and build the phrase head-finally if the parameter is set to “f”. These
alternative actions can again be built-in. We can suppose that the parser is innately able to build
a phrase in either way. In parsing a particular language, it has to receive instructions from the
HD-parameters in order o decide which action to take. But such choices are made by the grammar
rather than the parser. The parser does not have to adapt itself in this respect when parsing different
languages. Once the parameters are set in a language, the parse will respond accordingly. We can
thus conciude that no learning or fine tuning on the part of the parser is necessary as long as the
parser is innately able to build a phrase in either way, head-initial or head-final.

The task of deciding where the lexical item appears in each chain consists of the following
computation. The parser must determine for each terminal node in the tree whether this node
should dominate a lexical item. In addition, it must make sure that only one node in each chain
dominates a lexical item. Can these decisions again be made universally? In other words, is the
parser able to handle all languages without learning or fine-tuning? The answer appears to be
negative at first sight. Apparently, the action the parser takes at a given terminal node can vary
cross-linguistically. In some languages it must find a lexical item to be dominated by this terminal
node while in some other languages it must not find one. It seems that we may need to specify
the parser action at each terminal for each different language. This does not have to be the case,
however. In our model, where the lexical item appears in a chain is determined by the values of
S(M)-parameters. These parameters decide how far each lexical item moves before Spell-Out. A
terminal node must dominate a lexical item if this lexical itern has moved exactly to that position
at Spell-Qut. The node should dominate nothing (i.e. empty) if the lexical item in that chain has
either moved through this node to a higher position or has not moved to this node by the time of
Spell-Out. Take T0 as an example. It must dominate a verb if S(M(tns)), S(M(asp)) and S(M(agr2))
are set to 1 while S(M(agrl)) is set to 0. In this case, the verb will overtly move to T0 but- no further.
T0 must be empty in either of the following situations: (a) S(M(tns)), S(M(asp)) and S(M(agr2))
are set to 1 and S(M(agrl)) is set to 1 as well (the verb moves through T0 to a higher position); (b)

142

S(M(tns)) is set to 0 (the verb does not move to T0 before Spell-Out). We assume that, whenever a
terminal node is built, the parser is able to consult the S(M)-parameter values and decide whether
the node should be empty or not. We can further assume that such decision-making capability of
the parser is innate. There can be a built-in mechanism which can check the parameter values and
take the right actions accordingly. If this is true, no learning or fine tuning'is needed in this part
of the parsing procedure, either. What has to be learned or tuned is the parameter setting which
exists independently of the parser. Once the parameters are set for a given language, the parser will
be able to process that langnage.

It turns out that, given a certain value combination of S(M)-parameters, the action that the
parser must take at any given terminal node is unique. The following table shows the S(M)-parameter

conditions under which a terminal node is to dominate a content word (V or NP).

Vin GO S(M(c(1)))8S{M(agri(1)))&S(M(tns(1)))&S(M(asp(1)})&S(M(agr2(1)))
Vin Agrl-0 S(M(<c(0)))&S(M(agr1(1))&S(M(tns(1)))&S{M(asp(1)))&S(M(agr2(1)))
Vin T0 S(M(agr1(0)))&S(M({tns(1)))&S(M(asp(1)))&S(M(agr2(1)))
V in Asp(S(M(tns(0)))&S(M(asp(1)))&S{M(agr2(1)))
Vin Agr2-0 S(M(asp(0)))&S(M(agr2(1)))

(199) [Vin VO S(M(agr2(0)))

NP in Cspec S(M(cspec(1)))& (S(M(specl(1))) or S(M(spec2(1))))

NP in Agrlspec | S(M(specl(1)))

NP in Agr2spec | S{M(spec2(1)))

NP in Vspecl S(M(specl(0)))

NP in Vspec2 S(M(spec2(0)))

Notice that the conditions for an NP appearing Agrispec or Agr2spec are necessary but not sufficient
conditions. S(M(specl(1))) is necessary for Agrlspec to dominate an lexical NP, but it is not
sufficient. The NP may move further up to Cspec if S(M(cspec(1))) holds. However, we cannot state
the condition as S(M(specl(1)))&S(M(cspec(0))) because that would be too limiting. The subject
NP may stay in Agrlspec with S(M(cspec)) set to 1 if the object NP moves to Cspec instead. By
putting in the necessai-y conditions only, some kind of non-determinism is allowed for. But the
non-determinism is local. In any given context only one choice can be correct and the wrong choice
will eventually be ruled out. Let us take Agrlspec again as an example. Suppose both S(M(specl))
and S(M(cspec)) are set to 1. Upon seeing S(M(spec2(1))), the parser may decide to put the subject
NP under Agrlspec. This would be the correct choice if the object NP has moved to Cspec. If the
object is not there, however, Cspec will be empty which is contradictory to S(M(cspec(1))). The
parser will realize that a mistake has been made and it will try the other choice — putting the subject
in Cspec and leaving Agrlspec empty — which is also permitied by the current parameter setting.

It should also be noted that the VO in (199) is the head of the top layer of VP. The lower VO(s)
are always empty. The assumption is that the verb always moves through all layers of VP to the
top one before Spell-Out. There is no variation there.

In addition to deciding whether a terminal should contain a content word or not, the parser

143

also has to check, in cases where the terminal is not empty, what features are overtly expressed in
the word. An NP may be overtly marked for case or not; a verb can be overtly marked for the
predication, agreement, tense or aspect feature, or any combination of them. A sentence is accepted
only if the morphological patterns are correct as well. These patterns are determined by the values
of §(F)-parameters. An NP must be overtly marked for case if S(F(case)) is set to X-1; otherwise it
must be set to X-0. A verb can be overtly marked for predication, agreement, tense or aspect if and
only if S(F(pred)), S(F(agr)), S(F(tns)) or S(F(asp)) is set to 1; it must have no overt inflectional
morphology if every S(F)-parameter is set to 0. The complete set of possible spell-out of S (Subject
NP), O {object NP), and V (verb) and the S(F)-parameter values which are necessary and sufficient
conditions for the spell-out are given in (200). As usual, we will indicate the overtness of a feature
by placing it in the feature list of every symbol. For conciseness, we will use “v” as a cover term for
both “iv” and “tv”.

S s S(F(case(X-0}))
L_till______f;(f‘(m(x-l)))
O o] [S(F(case(X-0)))

o-[c2] S{F(case(X-1)))

V[v S(F (pred(X-0)))&S(F(agr(X-0}))&S(F (tns(X-0)))&S(F(asp(X-0)))
v-|pred]| S(F(pred(X-1)))&S(F(agr(X-0)))&S(F (tns(X-0))) &S(F(asp(X-0)))
v-lagr] S(F(pred(X-0)))&S(F(agr(X-1)))&S(F(tns(X-0)))&S(F (asp(X-0)))

i v-[tns S(F(pred(X-0)})&S(F(agr(X-0)))&S(F(tns(X-1)}) &S(F (asp(X-0)))
v-[asp S(F(pred(X-0)))&S(F (agr(X-0)))&S(F(tns(X-0)))&S(F (asp(X-1)))

(200) v-[pred,agr] S(F(pred(X-l)))&S(F(agr(X—l)))&:S(F(tns(X -0)))&S(F(asp(X-0)))
v-[pred,tns|. S(F(pred{X-1)))}&S(F (agr(X-0)))&S(F (tns(X-1)))&S(F(asp(X-0)))
v-{pred,asp| S(F(pred(X-1)))&5(F (agr(X-0)))&S(F(tns(X-0)))&S(F(asp(X-1)))
v-[agr,tns] S(F(pred(X-0)))&S{F (agr(X-1))) &S(F(tns{X-1))) &S(F(asp(X-0)))
v-|agr,asp S(F (pred(X-0)))&S(F(agr(X-1)))&S(F (tns(X-0)))&S(F(asp(X-1)))
v-{tns,asp S(F(pred(X-0)))&S(F(agr(X-0}))&S(F (tns(X-1)))&S(F(asp(X-1)))
v-{pred,agr,tns] S(F (pred(X-1)))&S(F(agr(X-1)))&S(F (tns(X-1))) &S(I'(asp(X-0)))
v-|pred,agr,asp} S(F{pred(X-1)))&S(F(agr(X-1)))&S(F(tns(X-)))&S(F(asp(X—)))
v-[pred,tns,asp] S{F(pred(X-1)))&S(F(agr(X-0)))&S(F (tns(X-1)))&S(F (asp(X-1)))
v-[agr,tns,asp S(F(pred(X-0)))&S(¥(agr(X-1)))&S(F(tns(X-1)))&S(F(asp(X-1)))
v-|pred,agr,tns,asp| | S(F(pred(X-1)))&S(F(agr(X-1)))&S(F(tns(X-1)))&S(F(asp(X-1)))

So far we have limited the lexical items that can appear in the treé to content words (verbs
and NPs) only. There is another kind of lexical items that can be dominated by terminal nodes:
auxiliaries/grammatical particles which we have represented as Aux. Whether a terminal node can
dominate an Aux has to be determined by both S(M)-parameters and S(F)-parameters. Take TO as
an example. There are three situations where T0 can dominate an Aux.

(i) When S{M(tns(0)))&S(F (tns(1-X))&S(M(agr1(0))) is true. This condition requires that (a) no
constituent move to T0, (b) the feature of TO be spelled out as an Aux, and (¢) this Aux not

move up. In this case, the Aux appears as “aux-[tns]”.

144

(ii) When S(M(asp(0)))&(F (asp(1-X)))&S(M(tns(1)))&S(M(agrl(0)))&S(F(tns(0-X))) is true. This
condition requires that (a} no constituent move to Asp0, (b) the feature of Asp0 be spelled
out as an Aux, (¢) this Aux move to T0, (d) it move no furhter up after moving to T0, and

(e) the feature of TO not be spelled out. In this case, the Aux appears as “aux-[asp]”.

(iii) When S(M(asp(0)))&(F(asp(1-X)))&S(M(tns(1)))&S(M(agrl(0)))&S(F(tns(1-X))) is true. This
condition requires that (a) no constituent move to Asp0, (b) the feature of Asp0 be spelled
out as an Aux, {c} this Aux move to T0, (d) it move no furhter up after moving to T0, and
(e) the feature of TO be spelled out as well. In this case, the Aux appears as “aux-[tns,asp]”.

We assume that an auxiliary can be overtly inflected for a certain feature only if it has originated
from or moved through the position in which this feature is found. An Aux can have “tns” in its
feature list only if it is in 'T0, or has moved from or through T0. In order for an Aux to be spelled
out as aux-[pred,agr,tns,asp], for instance, two conditions must be met. First, the Aux must have
originated from Asp(and moved all the way up to C0; second, S{F(pred)), S(F(agr)), S(F(tns)) and
" S(F(asp)) must all be set to 1-X. In short, the spell-out of Aux has to be determined by the values
of both S(F)- and S(F)- parameters. The following table lists all the possible spell-out of Aux and
the necessary and sufficient conditions for each possibility. Since an Aux can have a different sei of

spell-out possibilities in each different position, we have to consider them one by one.?

3 Agr2-0 is being ignored here because we are restricting ourseives to situations where there is no object-verb
agreement. We can easily extend it to object-verb agreement but we choose not to do so for the sake of avoiding
unnecessary complications in our exposition.

145

(201)

Aux aux-[pred) S(F{pred(1-X))) & S(M{c(0)))
in aux-(agr] S(F(pred(0-X)))&S(¥{agr(1-X))) & S(M(c(1)))&S(M(agri(0)))
Co aux-[tns] S(F(pred(0-X)))&S(F(agr(0-X)))&S(F(tns(1-X)))&
S(M(c(1)))&5(M (agrl(1)))4S(M(tns(0)))
aux-|asp| S(F(pred(0-X)))&S(F(agr(0-X)))&S(F(tns(0-X)))&S(F(asp(1-X)))&
S(M(c(1)))&S(M(agri(1)))&S(M(tns(1)))&S(M(asp(0)))
aux-|pred,agr| S(F(pred(1-X)))&S(F(agr(1-X)))&
S(M(c(1)))&S(M(agr1(0))) _
aux-|pred,tns| S(F(pred(1-X)))&S(F (agr(0-X))}&S(F (tns(1-X)))&
S(M(c(1)))&S(M(agri(1)))&S(M(tns(0)))
aux-|pred,asp) S(F(pred(1-X)))&S(F(agr(0-X)))&S(F (tns(0-X)))&S(F (asp(1-X)))
S(M(c(1)))8:S(M(agrl(1)))&8(M(tns(1)))&S(M(asp(0)))
aux-|agr,tns] S(F(pred(0-X}))&S(F(agr(1-X)))&S(F(tns(1-X)))&
S(M(c(1)))&5(M(agrl(1)))&S(M(tns(0)))
aux-[agr,asp) S(¥(pred(0-X)))&S(F(agr(1-X)))&S(F(tns(0-X)))&S(F(asp(1-X)))&
S(M(c(1)))&S(M(agrl(1)))&S(M(tns(1)))4S(M (asp(0)))
aux-|tns,asp| S(F(pred(0-X)))&S(F(agr(0-X)))&S(F (tns(1-X)))&S(F(asp(1-X)))&
S(M(c(1)))4S(M(agrl(1)))&S(M(tns(1)))&S(M(asp(0)))
aux-{pred,agr,tns] S(F(pred(1-X)))&S(F(agr(1-X)))&S(F(tns(1-X))) &
S(M(c(1)))8S(M(agrl(1)))&S(M(tns(0)))
aux-[pred,agr,asp] S(F (pred(1-X)))&S(F(agr(1-X)})&S(F(tns(0-X)))&S(F(asp(1-X)))&
S(M(<(1)))&S(M(agrl(1)))&S(M(tns(1)))&S(M(asp(0)))
aux-{pred,tns,asp) S(F(pred(1-X)))&S(F (agr(0-X)))&S(F(tns(1-X)))}&S(F(asp(1-X))) &
S(M(c(1)))4:8(M(agrl(1)))&S(M(tns(1)))&S(M(asp(0)))
aux-[agr,tns,aspj S(F(pred{0-X)))&S(F(agr(1-X)))&S(F (tns(1-X)))&S(F(asp(1-X))) &
S(M(c(1)))&S(M (agrl(1)))&S(M(tns(1)))}&:S(M(asp(0)))
aux-{pred,agr,tns,asp| | S(F(pred(1-X)))&S(F(agr(1-X)))&S(F(tns(1-X)))&S(F(asp(1-X)))&
S(M(c(1)))&S(M(agrl(1)))&S(M(tns(1)))&S(M(asp(0)))
MAux aux-fagr] S(F(agr(1-X)))&S(M(c(0)))&s(M(agrl(0)))
in aux-{tns] S(F(agr(0-X)))&S(F(tns(1-X)))&
Agri-0 S(M(c(0)))&S(M(agrl(1)))&S(M(tns(0)))
aux-(asp| S(F (agr{0-X)))&S(F(tns(0-X)))&S(F(asp(1-X)))&
S(M(c(0)))4:S(M(agr1(1)))&S(M(tns(1)))4S(M(asp(0)))
aux-{agr,tns) S(F(agr(1-X)))&S(F(tns(1-X)))&
S(M(c(0)))8:5(M(agrl(1)))&S(M(tns(0)))
aux-|agr,asp| S(F(agr(1-X)))&S(F(tns(0-X)))&S(F(asp(1-X)))&
S(M(c(0)))&S(M(agrl(1)))&S(M(tns(1)))&S(M (asp(0)))
aux-(tns,asp| S(F(agr(0-X)))&S(F(tns(1-X)))&S(F(asp(1-X))) &
S(M(c(0)))&S(M(agrl(1)))&S(M(tns(1)))&S(M(asp(0)})
aux-[agr,tns,asp] S(F(agr(1-X)))&S(F(tns(1-X)))&S(F(asp(1-X))) &
S(M(c(0)))&5(M(agr1(1)))&S(M(tns(1)))&S(M(asp(0)))
Aux aux-[tns] S(F(tns(1-X)))&S(M(agrl{0)))&S{M(tns(0)))
in aux-|asp] S(F(tns(0-X)))&S(F(asp(1-X)})
TO S(M(agri(0)))&S(M(tns(1)))&S(M(asp(0)))
aux-|tns,asp| S(F(tns(1-X)))&S(F(asp(1-X)))
[__ S{M(agri(0)))&S(M(tns(1)})&S(M(asp(0)))
[Aux
inux aux-[asp] S(F(asp(1-X)))&S(M(tns(0)))&S(M(asp(0)))
Aspl

146

Note that Aux can never have an empty list attached to it. This is so because Aux is the spell-out
of some F-feature(s) and there can be no Aux if no feature is spelled out.

Using the decision tables in (199), (200) and (201), the parser can uniquely determine the status
of each terminal. If the condition in (199) holds, the terminal must contain a content word (a verb or
a lexical NP). It then uses (200) to determine the inflectional pattern of this word. If the condition
in (201) holds, the terminal must dominate an Aux of a particular morphological make-up. Notice
that there is no overlapping between the conditions in (199) and (201). If neither the conditions in
(199} nor those in (201) are met, the terminal must be empty i.e. dominating no lexical item.

Now we sum up the characteristics of the parser in our model. Like all other principle-based
‘parsers, the present parser has to do at least three things: it has to build a tree, it has to build
chains, and it has to decide which terminals are empty and which terminals contain lexical items.
What distinguishes this parser from all others is the degree of universality found in the parsing
procedures. Our parser can be used to analyze any given language without a single change in its
structure. All the cross-linguistic variations are encoded in the parameter values rather than the
parser itself. The parser does not vary, but it is able to respond to different parameter settings and
act accordingly. As we have seen, chain-building is universal and tree-building is universal aside
from the limited variation in head direction. Most of the language-particular decisions are made
at the terminal nodes and these decisions can always be made correctly by consulting the values of
S-parameters. In the next section, we will look at a Prolog implementation of this parser. This will
clarify the discussion in this section and add some concreteness to our understanding of the parsing

algorithm.

6.2 A Prolog Implementation

In this section we look at a particular implementation of the parser described above. It is a top-
down parser implemented in the DCG (definite clause grammar) format. The choice of presenting a
top-down version of the parser in this thesis is motivated by the consideration that this seems to be
simplest way to describe the underlying logic of the parser. It is not theoretically superior, nor is it
the most efficient parser that can be built in the present model. We choose it in order to make the
main characteristics of the parser clear without getting into the complications of parsing strategies.
Once the logic is clear, we can turn it into any other kind of parser. .

The top-down parser to be discussed is presented in Appendix A.7. We shall examine it by
looking at the following sub-processes one by one: (a) tree-building; (b) feature-checking; and (c)

leaf-attachment.

147

6.2.1 Tree-Building

The tree is built by ep/3, c¢1/4, agrip/b, agrii/4, tp/6, t1/8, aspp/8, aspi/e, a.gr2p/6,>
agr2.1/6, vp/b and v1/6.* These predicates implement the following phrase structure rules which
are equivalent to the rules in (??) presented as part of our experimental grammar in Chapter 3.
(202)

COP—XP ! (2)

C'— {C° AgriP} (17)

AgrlP — NP(1) Agrl? (#d)

Agrll — {Agr1® TP} (iv)

TP —T! (v)
T! — often T* (vi)
Tt - { T° AspP} (viz)
AspP — Asp* (vii?)

Aspt — { Asp®, Agr2P} (iz)
Agr2P — NP(2) Agr2! (x)

AgraP — Agrat (zi)
Agrat — { Agr2®, VP(1) } (zid)
VP(1)— NP(1) V(1) (wii)

V(1) — VO VP(2) (zii)
V1) = vO (ziv)
VP@2) - NP(2) VI(2) ()

Vi{2) —» VO (zvi)

The XP in (i) can be an NP (subject or object) or an AdvP such as often. The first clause of c/3
takes care of the case where Cspec is occupied by an NP. The second clause lets Cspec contain an
AdvP whose instantiation is limited to ofien in the present system.

Some of the rules have their right-hand side enclosed in curly brackets. The symbols in these
brackets are unspecified for linear order. Which symbol precedes the other depends on the values
of HD-parameters. This is why c1/4, agri_1/4, t1/8, asp1/6 and agr2_1/5 each have at least two
clauses, one for the value “i” (head-initial) and one for “f” (head-final).

Two different NPs are distinguished in these rules: NP(1) and NP(2). NP(1) is the subject
NP which is assigned Casel and NP(2) is the object NP which has Case2. This distinction is
implemented by the checking requirement caze(NF)===c1 or case(NF)===c2 in agrip/5, agr2/6
and vp/6. (The Variables NF, CF, Agr1F, Agr2F, TF, AspF, VF, and AdF in the program represent the
feature matrices of C, Agrl, Agr2, T, Asp, V and Adv respectively.)

Differentiation is also made between two VPs: VP(1) and VP(2). VP(1) is the top layer of
VP whose specifier is the subject NP. This layer of VP is always present in the structure, since
every sentence must have at least one argument. V P(2) only appears in transitive sentences and

its specifier is the object NP. As we are restricting ourselves to sentences with no more than two

4The predicates are again referred to by the notation X/Y where X is the predicate name and Y is the number of
arguments in the predicate. Notice that the two arguments representing difference lists are invisible due to the DCG
format used here.

148

arguments for the time being, ¥V P(2) will be the bottom layer of VP, Hence the rules in (xv) and
(xvi) which close the.whole VP. VP(1) may or may not also be the bottom layer, depending on
whether the verb is transitive or not. This is why there are two different expansions of V(1) ({xiii)
and (xiv)), one taking a V'.P(2) complement and one closing the VP. In the Prolog implementation,
the distinction between V P(1) and V P(2) is made by theta-grid checking, The first clause of vp/5,
corresponding to (xii), requires [agt|Ths] which shows that the theta-role assigned in this layer of
VP is the agent role. The second clause corresponds to (xv). It requires [pat] which shows that
the agent role has already been assigned in the layer above.

We notice that there are two alternative ways of expanding Agr2P: (x) and (xi). The rule
(x) applies when the sentence is transitive and (xi) applies when it is intransitive. The distinetion
is again made by theta-grid checking. The specifier of Agr2P is generated only if the theta-grid
contains two theta roles.

The rules in (vi) and (vii) permit zero or more often to be attached to T'. Thus T? can be
expanded recursively, allowing an infinite number of often to be adjoined to 7. In our implemen-
tation, however, the recursion is interrupted so that at most one often can be generated. (This is
done by adding a dummy argument to t1/6 after often is attached.) We have to do this because
the parser also functions as a generator in the system. The generator is used to generate all possible
strings in a language. By limiting the recursion to Depth 1, we can prevent the generation from
being infinite.

We find that the second clause of cp/3, the third clause of agrip/5 , and the third, fourth and
fifth clauses of t1/6 are commented out by “4” in the Prolog program. These clauses are needed

only if we want ofien to appear in the strings,

6.2.2 Feature-Checking

There are two types of feature checking in the parsing process. One shows up as Spec-head agreement
and the other involves movement. Both types of feature-checking are performed in the tree-building
process. Spec-head agreement is checked whenever a specifier is built, and chains are formed as the
tree grows. As we can see in the program, all the feature-checking operations are built into the
phrasal expansions.

Let us look at spec-head agreement first. The tree we build has five Spec positions: Cspec,
Agrispee, Agr2spec, Vspecl and Vspec2. The features checked in these five positions are different.
The constituent in Cspec is assigned the “+” value of the operator feature. The agsignment is done in
cp/3 by “op(XF)===’+'", The features checked through spec-head agreement in Agrl are case and
agreement features. The specifier of Agrl is assigned Casel (case(NF)===c1 in agrip/5). In addi-
tion, the NP in Agrispec must agree with Agrl in the values of phi-features (phi (Agr1F)===phi(NF)
in agr.1/6). Similar checking is done in Agr2 where the NP in Agr2spec is assigned Case2.’> The

5Verb-object agreement is being ignored in this program. This is why we do not find phi{Agr2F)===phi(¥F) in

149

spec-head agreement in VPs are responsible for theta-role assignment. The NP in Vspecl is assigned
the first role in the theta grid (which is always the agent role in our restricted system) and the
NP in Vspec2 is assigned the second theta-role (patient in our case). (See theta(NF)===agt and
theta(NF)===pat in vp/6). All the feature checking operations are performed by “===/2" which is
Johnson’s (?7ref) unification algorithm implemented by Ed Stabler. This algorithm (johnson.pl)
ig given in Appendix A.7 as well.

The chains resulting from movement are formed through feature-passing and feature-checking.
Three types of chains are built in the parsing process: X0-chains, A-chains and A-chains. Each of
the three is represented by a separate argument in the predicates. They are named EC (Head Chain),
AC (A chain) and ABC (A-Bar Chain) respectively when appearing as variables. EC is the second
argument (if any) in each predicate. Its content is x0(HF,Th) where “HF” is the feature matrix being
passed on in the chain and “Th” the theta-grid. AC is the argument following HC (if any). It is a list
because there can be more than one A-chains being formed at the same time. Each member of this
list is an “np(RF)” where “NF” consists of the NP features of the chain. The argument following AC
is ABC (if any) which is represented as a list not because there is more than one A-chain but because
we want to distinguish between empty and non-empty lists. In our system, ABC may contain an NP
(NP1 or NP2) or an AdvP depending on which constituent has moved to Cspec. A chain starts
when the head of that chain is encountered and terminates when the tail of that chain is reached.

Since a verb moves successively from VO to Agr2-0, Asp0, T0, Agrl-0 and finally to CO, the
head of the X0-chain (BC) is C0 and the tail is V0. The formation of the chain starts in ¢1/4 where
an extra argument is created to hold the chain. It goes through agrip/5, agri 1/4, tp/6, t1/8,
asp.p/6, aspl/6, agr2p/6, agr21/5, vp/b and ends in vi/5 where the chain terminates. The
features of this chain are checked at each link. The checking is done through check_v_features/2
at ¢1/4, agri1/4, t1/6, asp1/6, agr2.1/5 and v1/56. A new head is found in each of these steps
and the features of the new head is unified with those of the chain. The features that are checked
in the present program are index, tense, aspect and phi-features.

The A-chains are created by NP-movement. In a transitive sentence, there are two A-chains, one
for the subject and one for the object. The subject A-chain has its head in Agrlspec and its tail in
Vspecl. The object chain starts in Agr2spec and ends in Vspec2. By the time we come to VP(1), AC
contains two NPs. The subject NP, whose case feature is instantiated to cl, is selected and unified
with the NP in Vspecl. The other NP is passed on until it is unified with the NP in Vspec2. The
unification is performd by checknp_features/2 which checks the index, operator, theta, case and
phi-features.

The A-chain can consist of the subject NP, the object NP or an AdvP like often. The chain starts
in Cspec. The first clause of cp/3 deals with the cases where an NP moves to Cspec. An “np(NF)”
is thus put in ABC. The second clause is used when Cspec is occupied by an AdvP. In this case ABC

agr2.1/6.

150

will contain advp(AdF). The A-chain is passed on and different actions are taken depending on what
XP is in the chain. If Cspec is filled by the subject NP, this chain will terminate at Agrlspec in
which case the first clause of agrip/6 will apply. (ABC becomes empty after that.) If the object
is in Cspec, the chain will be passed on through AgrlP (second clause of agrlp/5), TP and AspP
until it comes to Agr2P where the tail of the chain is found in Agr2spec (first clause of agr2p/6).
If the constituent that has moved to Cspec is an AdvP, ABC will contain an AdvP instead of an NP.
It passes through AgrlP (third clause of agrip/6) and terminates in TP where an empty AdvP is
adjoined to T1 and this AdvP is unified with the AdvP in ABC (fourth clause of £1/8).

Besides building the chains, we also have to make sure that each chain contains exactly one
lexical head (a pronounced NP or verb). This checking is done through indexing. The value of the
index feature starts as a variable. When a visible NP or verb is attached to a terminal, the variable
becomes instantiated. In this particular implementation, the verb always receives the index 1, the
subject NP 2, the object NP 3 and and the AdvP 4. Aux is not considered a full lexical item, so an
X0-chain can seemingly contain more than one lexical item: a verb and one or more auxiliaries. For
this reason, an Aux shares the index of the verb instead of having one of its own. Once the index
feature of a chain has been instantiated, no other visible NPs or verbs can be put into the chain.
This is achieved through index/2 which is applied whenever a visible head is found. It requires
that the value of “index” be a variable and it will refuse to incorporate a lexical item into a chain if
the value is already a constant. This prevents a chain from having more than one lexical head. In
addition, we use lexical/1 to make sure that each chain does have a lexical head, in which case the
value of “index” should be a constant rather than a variable. This predicate is applied after each
chain terminates, by which time every chain is supposed to have found a lexical head. The checking
of NP chains is done in vp/5 after the termination of each chain in Vspecl or Vspec2. The X0-chain
is checked after the parse iree is complete. The checking cannot be done earlier, say, when VO is
reached, because the chain will not be complete at that time if CP or IP is head-final. The joint

effect of index/2 and lexical/1 ensures that each chain has exactly one lexical head.

6.2.3 Leaf-Attachment

This is the part of the parsing procedure which deals with cross-linguistic variation due to different
value combinations of S-parameters. It is applied whenever a terminal node is created. The procedure
determines, on the basis of the current setting of S-parameters, whether the terminal node should
dominate a content word, an Aux, or be empty. How such decisions are made has been discussed in
6.1. The particular actions to take in all individual situations have been summed up in the decision
tables in (199), (200) and (201). They are directly coded in our Prolog program as c0/5, agri.0/5,
t0/5, asp0/b, agr2.0/5, v0/5, np/5, subject/4, object/4, verb/5 and aux/6.

NPs in different positions are differentiated by the second argument in np/5. In each case
the parser looks at S(M(cspec)), S(M(specl)) and S(M(spec2)) to decide whether the terminal NP

151

should contain a subject, object or nothing. If the terminal node must be non-empty, a “word”
(Subject/Object) will be taken from the input string and attached to the node as a leaf. If a subject
NP is to be attached, subject/4 is called to determine whether this NP must be overtly marked for
case. Object/4 is called when an object NP is to be attached. In cases where there is overt case,
the morphological case of the overt NP must get unified with the case feature of the NP chain of
which the terminal is a link. Indexing is also done at this point.

The leaf to be attached to X0 can be a verb, an Aux, or nothing. The computation involved
here is more complex because a three-way decision has to be made. Each of the three possibilities is
handled by a separate clause in c0/B, agr1.0/5, t0/5, asp0/5, agr2.0/5 and v0/6. The first clause
finds out if a verb can be attached here. If so, verb/5 (which implements the decision table in (200))
is called to process the morphology of the verb to be attached. If not, the second clause is applied
to find out if an Aux can be attached here. The real work is done by aux/5 where the decision
table in (201) is implemented. This predicate determines not only the presence/absence of an Aux
in a given position but the specific morphological make-up of the Aux as well. The morphological
information of the Aux to be attached is incorporated into the X0-chain using code-features/2.
If neither the first clause nor the second applies, the third clause will be used and the terminal will
be empty.

Since the terminal nodes are encountered strictly from left to right and every node is checked for
its status as soon as it is encountered, the input string will not be accepted by the parser unless it
has the required word order. The string will also be unacceptable if some symbols in the string do

not have the correct morphological pattern,

6.2.4 The Parser in Action

The parser described above can be used in several different ways. We can call parse/0 to get all
the strings in a language and graphically displays their parse trees. We have seen exampies of such
parse trees in (197) and (198). We can also use parse/1i to process a string without showing the
tree and parse/2 to get both the string and the tree.

Before a sentence is parsed, the parameters must be set to a particular value combination. The
setting can be done on-line using reset/0. The following are two Prolog sessions illustrating the
use of reset/0 and parse/1. The clauses concerning often were commented out while running the
first session but were included when the second session was run. The parse tree is printed out for
each string that is generated. To save space, I omitted all the parse trees except for the last string
in each setting. Furthermore, only the category label for each node is printed out, with all the other

features suppressed in the tree printing.

(203) Session 1:

| 7= reset.
New setting: [1,1,1,1,0,1,1,0,i,1,0-1,0-0,0-1,0-1,0-1], %

152

yes
| 7- parse(S).

S = [g~[c1],iv-[agr,tns,asp]] ;

8 = [s-[c1],tv-[agr,tns,asp],o-[c2]] ;

<p
np
cl
c0
agrip
np Subj-[c1]
agrl_1
agr1_0 Verb-[agr,tns,asp]
tp
t1
t0
asp_p
aspl
asp0l
agr2p
np Obj-[c2]
agr2_1
agr2_0
vp
up
vl
v
vp
np
vi V0
5 = [s-{c1],tv-[agr,tns,aspl,o-[c2]1] ;
no
| ?- reset.
New getting: [0,0,0,0,0,0,0,0,f,f,0-0,1-0,0-0,1-0,0-1]. %2
yes

| 7- parse(S).
§ = [s-[],tv-[asp],o-[],aux-[tns],aux-[pred]] ;

8 = [s-[],iv-[asp],aux-[tns],aux~[pred]] ;

cp
np
cl
agrilp
np
agri_l

tp

153

t1

v0 Verb-[asp]

np Dbj-[]
vi v0

asp_p
aspl
agrip
np
agr2_1
vp
np Subj-[]
vi
vp
agr2_0
aspl

t0 Aux-[tns]
agri o
¢0 Aux-[predl
8 = [a~[],tv-[asp]l,o-[],aux~{tns] ,aux-[predl] ;
no
| 7= reset.

Nev setting: [1,1,1,1,1,1,0,0,i,i,0-1,0-0,0~1,0-1,0-1].

yee
| 7= parse(S).

8 = [iv-[agr,tns,aspl,s-[c1]] ;

8 = [tv-[agr,tns,aspl,s-[c1],0-[c2]] ;

<p
np
cl
¢0 Verb-[agr,tns,asp]
agrip
np Subj-[cl]
agri_i
agri 0
tp
ti
t0
asp_p
aspl
aspl
agrip
np
agr2_ 1
agr2. 0

' vp
np
vl

154

%3

v0

vp
np 0bj-[c2]
vi v0
S = [tv-[agr,tns,asp],s-[cil,o-[c2]] ;
no
| 7= reset.
New setting: [o0,0,0,1,0,1,0,0,i,i,0-1,0-0,1-0,1-0,0-1]. %4
yeos
| 7= parse(S).
8 = [a~[c1],aux-[agr,tnsl,tv-[aspl,o-[c2]1] ;
S = [s-[c1],aux-[agr,tns],iv-Laspl] ;
<P
np
cl
<0
agrip
np Subj-[ci]
agri_1
agri_0 Aux-[agr,tns]
tp
t1
t0
asp_p
aspl
aspl
agr2p
np
agr2_1
agr2_0
vp
np
vl
v0 Verb-[aspl]
vp
np Obj=[c2]
vl vl
S = [8-[c1],aux-[agr,tns],tv-[aspl,o-[c2]] ;
no
| 7= reset.
New setting: [1,1,0,1,1,1,1,1,i,£,0-1,0-0,1~0,1-0,0-1]. %5
yes

| 7- parse(S).

S = [3-[c1),aux-[agr,tnsl,o~[c2], tv-{aspl] ;

155

8 = [s-[c1),aux-Tagr,tns],iv=-[aspl] ;

<p
np Obj~[c2]
cl
¢0 Aux-[agr,tns]
agrip
np Subj-[c1]
agri_1
tp
t1
asp_p
aspl
agrip
np
agr2_1
vP
np
vl
v0
vp
np
vl v0
agr2_0
asp0 Verb-[asp]
t0
agri 0

8§ = [o=[c2],aux-[agr,tns],s=[c1], tv-[aspl] ;
no
| 7= resat.
Nev setting: [0,0,1,0,1,1,1,0,%,3,0-0,1-0,1-0,1~0,1-0]. %6
yes
| 7- parse(8).

8 = [g-[],aux~[tns,aspl,o~[],tv~I],aux-[pred,agr]] ;

S = [a~[],aux-[tns,asp],iv-[],aux-[pred,agrll ;

<p
np
cl
agrilp
np Subj-[]
agri_i
agri 0
tp
t1
t0 Aux-[tns,asp]
asp_p
aspl

156

aspl
agr2p
np Obj-[]
agr2_1
agr2 0

np
vl
v0 Verb-[]
vp
np
vl w0
<0 Aux-[pred,agr]

3 = [8-[],aux-[tns,aspl,o~[],tv-[1,aux~{pred,agrl] ;

no
| 7- reset.
New setting: [0,0,1,1,1,1,1,0,i,i,0-1,1-0,1~0,1-0,1-0].

yes
| 7~ parse(S).

8 = [aux-{pred,agr,tns,aspl,s~[c1],0-[c2],tv-[1] ;
§ = [aux-[pred,agr,tns,aspl,s~[c1],iv-[1] ;

cp
np
cl
c0 Aux-[pred,agr,tns,asp]
agrip
np Subj-[ci]
agri_i
agrl. 0
tp
t1
t0
asp.p
aspl
asp0
agrip
np Obj-[c2]
agr2.1

agr2_0
vp

np

vl

v0 Verb-[]

vp
np
vl v0

167

w7

S = [aux-[pred,agr,tns,asp]l,a-[ci1],o~-{c2],tv-[]1] ;

no
| ?- reset.

New setting: [0,0,1,1,1,1,1,0,4,1,0-0,1-1,1-1,1~1,1-1]. %8
yes

| 7~ parse(S).
8 = [aux~({pred,agr,tns,aspl,s-[1,0-[],tv~[pred,agr,tns,aspl] ;

8 = {aux-[pred,agr,tns,aspl,s-[],iv-[pred,agr,tns,aspl] ;

cp
np
ci
<0 Aux-[pred,agr,tns,asp]
agrip
np Subj-[1
agri_1
agri 0
tp
t1
10
asp_p
aspl
aspl
agr2p
np Obj-f]
agr2_1
agr2_0
vp
np
vi
v0 Verb-[pred,agr,tns,aspl
VP
np
vi vQ

S = Laux~[pred,agr,tns,asp},s-[],0-{1,tv-[pred,agr,tns,aspl] ;

no
I ?-

(204) Session 2:

| 7= reset.
New setting: [1,1,1,0,0,1,0,1,i,i,0-1,0-0,0-1,0-1,0-0]. il
yes

| ?- parse(S).

S = [s-[c1],iv-[agr,tns]1] ;

158

8 = [s-[ct],tv-[agr,tns],o-[c2]] ;

8 = [s-[c1],often;iv-[agr,tns]ll ;

S = [a~[c1],often,tv-[agr,tns],o-[c2]] ;
S = [often,s-[c1],iv-[agr,tna]] ;
cp
advp often
cl
c0
agrip
np Subj~[c1]
agri_1
agri 0 Verb-[agr,tns]
tp
t1
advp
t1
t0
asp_p
aspl
asp0
agr2p
np
agr2_1
agr2_0
vp
np
vl
vl
vp
np 0bj-[c2]
vl 0
§ = [often,s-[c1],tv-[agr,tns],o-[c2]] ;
no
| 7= reset.
New setting: {1,1,1,1,0,1,0,1,i,i,0-1,0-0,0-1,0-1,0-0]. %2
yes

| 7- parse(S).

S = [s-[c1],iv-[agr,tns]] ;

S

[e~[e1], iv-{agr,tns],often] ;

[s-[c1],tv—[agr,tnsl,o~[c21] ;

w
]

[s-{c1],tv-[agr,tns],often,0~[c2]] ;

[7]
H

S = [often,s-[ci],iv-{agr,tns]] ;

159

<p

advp often
cl
c0
agrip
np Subj-[c1]
agri_1
agri 0 Verb-[agr,tns]
tp
t1
advp
t1
t0
asp_p
aspl
aspl
agrlp
np
agr2_1
agr2 0
vP
np
vl
v0
vp
np 0bj-[c2]
vl w0
8 = [often,s-[cl1],tv-[agr,tns],o-{c2]] ;
no
| 7= reset.

New setting: [1,1,1,1,1,1,1,1,i,i,0-0,0-0,0-0,0-0,0-0]. Y3
yes

| 7= parsa(S).

S

[s-[1,iv-011 ;

S = [g=-[],iv-[],o0ften] ;

7]
L]

[e-01,tv-01,0-[1] ;

n
L}

[s-[],tv-{J,often,o-[1] ;

v
H

[o-01,tv-0[1,s-[1] ;

[7]
R

[o-[1,tv-[1,8-[],0ften] ;
S = [often,iv-[1,s-[]] ;
cp

advp often

160

cl

c¢ Verb-[]
agrip
np Subj-{]
agri_ 1
agri 0
tp
t1
advp
t1
t0
asp.p
aspl
asp0
agrlp
np 0Obj-[]
agr2_1
agr? 0
vp
np
vl
v0
VP
np
vi vO

S8 = [often,tv-[1,8-[1,0-[1] ;

no
[?-

Every time a new setting is entered, parse/1 is run exhaustively to find out all the strings that can
be parsed with this setting. In Session 1, the number of strings which are accepted by each setting
is always three: one intransitive sentence and two transitive sentences. The two transitive sentences
are different from each other in that, at LF, Cspec is occupied by the subject NP in the first one
while it is occupied by the object NP in the second. In other words, the two sentences differ as to
whether the subject or object is the topic/focus of the sentence. This difference does not show up
in the surface strings if there is no overt movement to Cspec. But it does show up in the parse tree.
It shows up in the surface string when S(M(cspec)) is set to 1, as we can see in the fifth setting. In
Session 2, more strings are generated with each setting because of the optional appearance of often.
The number of strings generated is six if there is no overt movement to Cspec and eight if overt
movement to Cspec occurs. There are two additional strings in the latter case becanse offen itself

can move to Cspec.

6.2.5 Alternative Implementations

What we have seen here is just one possible way of implementing the parser. There are many other

alternatives of which we will briefly mention two. The alternative implementations may differ from

161

our present parser with regard to how the tree is built and how the chains are formed. They will
not be much different, however, in terms of the way in which the leaves are attached.

We can build a head-driven parser which is like any other head-driven parser except the following:
when a phrase is projected from a head, we must decide whether it is to be projected from a content
word, a function word such as Aux, or from an empty head. This can be done in exactly the same
way as we have done in the top-down parser presented here. The fact that we can find out precisely
when a head is to be empty may help us solve a major problem in head-driven parsing: the problem
of empty categories. With the decision tables in (199), (200} and (201), we never have to guess when
to project a phrase from an empty head. Consequently, spurious projections can be avoided in spite
of the existence of empty categories.

We can even construct a parser where all the possible trees and chains are precompiled. When
parsing a sentence, we can use the subcategorization information of the verb to activate the relevant
tree. Once a tree is activated, what remains to be done is just leaf attachment which can again
be performed using the decision tables in (199), (200) and (201). The number of trees that need
to be precompiled is not likely to be very big. Presumably, verbs of different types may project
different trees. So there have to be at least as many trees as verb types. In addition, each verb
type will need four trees, corresponding to the four different value combinations of HD-parameters.
Therefore, if the number of verb types is n, the number of trees we have to precompile is 4n. This
is feasible if n is finite with a low bound. In traditional models where there are both head-specifier
and head-complement parameters, the number of possible trees for each verb type would be greater
and the approach of precompiltion would be less feasible.

The parsers mentioned above, the head-driven parser and the parser using precompiled trees,

have been implemented in Prolog as well. They are available upon request.

6.2.6 Universal vs. Language-Particular Parsers

As we have seen, the parser presented here is universal in that it can process strings from any
language by consulting the values of parameters. The reason why it is capable of doing so is that the
parser is constructed in such a way that it can handle all possible cases. As a matter of fact, it is the
union of parsers for all individual languages. When the parameters are set in a certain way so that
just one language can be accepted, only a subpart of the parser is used. When the HD-parameters
are set to “i”, for instance, the clauses which require that the parameters be set to “f” will not be
activated. There are three clauses for c0/6, agr1 0/6, t0/5, and asp0/5, fifteen clauses for verb/5,
and twenty-six clauses for aux/5. Once the S-parameters are set, however, only one of them will
be used. Which one is used depends on the parameter values. Therefore, although the program in
Appendix A.7 is fairly big with many disjunctions, the parser for any particular language can be
reasonably small. In fact, we can obtain any language-particular parser by removing all the clauses

which will not be used with the given parameter setting. Once these clauses are removed, all the

162

choice points where parameter values are consulted no longer exist. As a result, we can remove all
the calls to parameter values as well. The resulting parser can parse one language only but it will
be more efficient because the computation involving parameter values is not necessary any more.
An example of such a parser is given in Appendix A.8. This parser can only accept the language
generated with the following parameter setting: [1, 1, 0, 1, 1, 1, 1, O, i, i, 1-0, 0-0, 1-0, 1-0, 0-1
]. Compared with the parser in Appendix A.7, this parser is much smaller, being a subset of the
universal parser. Generally speaking, we can get such small parsers for all particular languages by
taking different subsets out of the originai parser.

This relationship between the universal parser and particular parsers is suggestive of a certain
hypothesis on learning. We can speculate that children are born with the universal parser. This
parser is used in setting the parameters. Once the parameters are set, however, there might be no
longer the need to keep every part of the original parser. Some parts of the parser are never used
and these parts may eventually be pruned away. The pruning results in the removal of all the choice
poinés concerning parameter values. The resulting “adult parser” can therefore be used without
reference to parameter values. Consequently the parameters can be removed as well. The removal
of the unused parts of the parser can save time and space in parsing a particular language, but it can
make it very difficult, if not impossible, to learn other languages. Whether this actually happens
in human learning and whether this is related to the difficulty associated with second language

acquisition are open to discussion.

6.3 Summary

In this chapter we have seen how parsing might work in our present model. Our parser differs from
other parsers in that the procedures for tree-building and chain-building are almost invariable across
languages. Differences between different languages show up mostly in how the leaves are attached
to the tree. It is found that, given a particular setting of S-parameters, there is a unique way to
attach the leaves. The parser can consult the parameter values and attach the leaves accordingly.
It is universal in the sense that it can parse any language in the parameter space without a single
change in the parser itself. A Prolog implementation of the parser is presented and alternative
implementations are discussed. The presentation and the discussion show that our present f.synt,actic

model might have advantages over traditional models in terms of parsing.

163

Chapter 7

Final Discussion

This thesis has been a syntactic experiment in the field of Principles and Parameters theory. We have
explored a parametric syntactic model which is based on the notion of Spell-Out in the Minimalist
framework. A specific grammar was proposed and this grammar has been put to the test of language
typology, language acquisition, and language processing. We are now in a better position to see the
potentials and limitations of this model. In this chapter, I will first consider some possible extensions

of the model and then discuss the validity of the present model in general.

7.1 Possible Extensions

The experimental grammar we have examined in detail here is a very restricted one. Among those
things that were left out are the internal structures of DP/NP and PP. We have put these phrases
aside in order to limit our experimental parameter space to a manageable size. There is no principled
reason why the present approach cannot be applied to the internal word orders of these constituents
as well. As a matter of fact, a great deal of research has already done in this direction. The parallels
between CP/IP and DP have been discussed by many people (Abney (1987), Ritter (1988,1990),
Tellier {1988), Stowell (1989), Szabolesi (1990), Carstens (1991,1993), Valois (1991), Mitchell (1993),
Campbell (1993)). I will not get into a full discussion of non-verbal projections, but it is fairly obvious
how the S(M)-parameters can work there. We can use a very simple DP structure to illustrate this.

Suppose lexical projection and GT operations universally generate the following tree:

(205) AN

164

Suppose also that the NP in this tree must move to the Spec of DP by LF in order to have its case
and ¢-features checked against those of the determiner. (The fact that the noun has to agree with
the determiner in many languages suggests that this checking operation is plausible.) If this checking
movement has an S(M)-parameter associated with it, then the determiner will get spelled out in a
pre-nominal position if this parameter is set to 0 and in a post-nominal position if the parameter is
set to 1. The word order inside a PP can be derived in a similar way. Let us suppose that PP also

has a Spec position as shown in (206).

(206) AN

There could be an LF requirement that the prepositional object must move to the Spec of PP to have
its case features checked. If so, at Spell-Out the P will precede its object NP when the movement is
covert and follow the object when the movement is overt.

Extensions of our current approach can also be made with respect to the notion of feature speil-
out. Take PP again as an example. In all the cases where a preposition takes an NP object, we can
treat the P as an overt realization of the case feature of this NP. In other words, we can let the case
feature of this NP be associated with an S(F)-parameter. We see a preposition when this parameter
is set to 1. This idea is by no means my own invention. It has been proposed recently (Ref?7)
that every NP has an abstract P (whether overt or covert) associated with it. The abstract P may
well be a case feature which is spelled out as a preposition in certain cases. If this is true, we will
not even need the tree in (206) and the case-checking movement to derive both prepositional and
postpositional structures. The P is simply a case-marker which can appear either as a prefix or suffix.
What we will have to explain then is why the the case marker can have different physical realizations
on different NPs in the sentence, sometimes as an integral part of an NP/DP and sometimes as an
more independent element such as a preposition.

In many languages, including English and Chinese, there exist both NPs carrying no case marker
and prepositional NPs. If we regard P as a case marker, we face the question of why some NPs have
to be overtly marked for case (by a P) and some do not. Here is a tentative answer to this question.
As a working hypothesis, we can assume that any NP whose case feature is not checked in the Spec
of IP (Agrlspec or Agr2spec) must be spelled out as a preposition. Consider the grammatical model
used in our experiment. There are two Agr projections in an IP: AgriP and Agr2P. Usually the

subject NP can have its case checked in Agrlspec and the object NP can have its case checked in

165

Agr2P. This is probably why the subject and object NPs almost never need a preposition. If there
are other NPs in a sentence, however, there will be no more Agrspecs for these NPs to move to in
order to have their cass features checked. This can happen in many situations. One situation is

where the sentence has an adjunct modifier, such as in (207).
(207) The girl met the boy in the garden.

The subject and object NPs in this sentence, the girl and the boy, can obviously have their case
features checked in Agrlspec and Agr2spec respectively. The third NP the garden, however, cannot
move to any Spec of AgrP. It must therefore have its case feature spelled out as a P, as predicted by
the hypothesis suggested above. This hypothesis may also explain why the subject NP in a passive
sentence has to appear in a by-phrase. In passivization, the subject f-role is absorbed. The object
NP is “promoted” and can thus move to Agrlspec to have its case checked. If we want to mention
the subject NP in a passive sentence, this NP can not move to Agrlspec which has already been
occupied by the object NP. It cannot move to Agr2spec, either, because its case feature and the
feature in Agr2spec will clash. As a result, it must have its case feature spelled out as a preposition,
namely, by. Another way to look at it is by treating the by-phrase as an adjunct which, like in the
l garden, must appear as a PP.
The fact that we have assumed two Agreement projections in IP in cur experimental model does
not mean that there cannot be a third AgrP in IP. Certain verbs may project a triple-Agr IP. One
such verb might be give which can be used in a double-object construction such as (208).

(208) The girl gave the boy a book.

The IP projected by give may look like the following.

166

Agri-P

N

Spec Agri-
Agri-0 P
T

N\

TO AspP

—

Aspl

N

Asp0 Agr2-P

Spec Agr2-1

N

Agr2-0 Agr3-P

N

Spec Agr3-t

Agr3-0 VP
(209) PN

In a sentence like {208), each of the three NPs can have its case features checked in one of the
Agrspecs. There is therefore no need of a preposition.

An obvious question that arises here is why we need a preposition in (210).
(210) The girl gave a book to the boy.

This sentence contains exactly the same number of NPs as in (208), but one of them has to take
a preposition. One way to tackle this problem is to assume that the verb give is syntactically
ambiguous. It may project either a triple-Agr IP or a double-Agr IP, When a double-Agr IP is
projected, the third NP in the sentence must be an adjunct which has to be licensed by an overt
case feature manifested in a P.

The present model can also be extended to cover both nominative-accusative languages and

ergative-absolutive languages. We have assumed that an IP contains two Agr projections even in an

167

intransitive sentence. As a result, there are two potential Agrspecs that the sole NP in an intransitive
sentence can move to. Let us assume that the case checked in Agrlspec is nominative/ergative and
the one checked in Agr2spec is accusative/absolutive, Then we will have an nominative/accusative
language if this NP chooses to move to Agrlspec; we get an ergative/absolutive language if this NP
moves to Agr2spec. We can then propose a parameter which determines which Agrspec an NP moves
to in an intransitive sentence. This is again not my own invention. Similar approaches have been
taken by Bobaljik (1992), Chomsky (1992), Laka (1992), etc. They actually have a name for this
parameter: the Obligatory Case Parameter. A potential problem we can have with the particular
structure assumed in this thesis is word order. In our IP projection, TP and AspectP come between
AgrlP and Agr2P. In a language where the verb moves to T, we can have two different word orders
in an intransitive sentence depending on which Agrspec the NP moves to. The order is NP-Verb if
it moves to Agrlspec and Verb-NP if it moves to Agr2spec. In an ergative language where the verb
moves to T, a transitive sentence will have the order NP-Verb-NP and an intransitive sentence will
be Verb-NP. To account for an ergative language which is NP-Verb-NP when transitive and NP-Verb
when intransitive, we have to assume that the verb can never move beyond Agr2 in this ergative
language. This assumption will almost certainly turn out to be wrong. To avoid this problem, we can
try an alternative model where there is only one Agr projection in IP when a sentence is intransitive.
But this AgrP can have different case features in different languages. The obligatory case parameter
then determines which case the AgrP has. We have a nominative/accusative language if it is Case
1 and an ergative/absolutive language if it is Case 2.

All the extensions proposed above ¢can make our model more complete, but they have not been
worked out in detail. A lot more research has to be done before we can incorporate them into our

theory.

7.2 Potential Problems

The present mode] is not perfect and it can be challenged in many different ways. There are at least
two kinds of argument that can be made against our approach. First of all, this model may seem
too theory-dependent. We may wonder what will happen if some of the specific assumptions in our
grammar turn out to be incorrect. Secondly, one may worry about the number of parameters we
may need in a full version of the theory. It may seem that, as the grammar is expanded to cover
more and more constructions, the parameters will become so many that learnability can become a
problem. We will address these two potential problems in this section. We will see that our general
approach can remain plausible even if many of the specifics of this theory are thrown out.

Almost every present-day syntactic model is theory-dependent to a certain extent. Any approach
in the Principles and Parameters paradigm has to start from some basic assumptions of this theory,

such as the existence of Universal Grammar. Our current approach is built upon some hypotheses in

168

the Minimalist Framework. One of those hypotheses is the notion of Spell-Qut. All the experiments
we have done in this thesis will be pointless if this basic notion turns out to be fallacious. However,
what we have to worry more about is not whether a model is theory-dependent but the degree of such
dependency. It is acceptable for a model to depend on certain theoretical assumptions, but these
assumptions should be as general as possible. It is not desirable to have a model whose success hinges
on some very specific assumptions which have not been generally accepted. One of the assumptions
in our model which we may find suspicious is the structure of IP. It has been assumed in our model
that the IP consists of a TP, an AspectP and two AgrPs. In addition, these phrasal projections must
be arranged in a certain structural configuration. We may wonder what will happen if we replace
this more articulated IP with a traditional non-split IP structure, such as the one in (211).

CP
/N
Spec Ci
/N
o IP
/N
Spec)i
/\
I VP
/\
NP Vi
N
subject v NP
(211) velrb obj|ect

Let us assume this base structure and the following LF movements:

A. The verb must move to I to have its tense, aspect and agreement features checked.

B. After moving to I, the verb must move to C to have its predication features checked.

C. The subject NP must move to the Spec of IP to have its case and agreement features checked.
D.

Either the subject NP or the Object NP must move to the Spec of CP to have its operator

features checked.

We can let each of these movements be associated with an S(M)-parameter and let CP and IP each

have an HD-parameter, as we have done before. Then we can derive the following word orders by

169

varying the parameter values (only one of the possibilities is given below for each order):

S V O if IP is head-initial, the subject NP moves overtly to Spec of IP and the verb moves to I;
S O V if IP is head-final, the subject NP moves overtly to Spec of IP and the verb moves to I;

V § O if CP is head-initial, the subject NP moves overtly to Spec of IP and the verb moves to C;

V2 if CP is head-initial, the verb moves overtly to C, and either the subject or object NP moves to
the Spec of CP;

O S V if the object moves to Spec of CP and both the subject and the verb remain in situ;

O V § if CP is head-initial, the object NP moves overtly to Spec of CP, the verb moves to C, and
the subject NP remains in situ.

We notice that the V O S order cannot be derived unless we allow the object NP to move to the
Spec of IP or allow the Spec of IP {o appear on the right. We will also lose many of the scrambling
orders. What this shows is mixed. On the one hand, our model does seem too theory-dependent,
since it misses certain word orders once the Split-Infl hypothesis is removed; on the other hand, we
can still get most of the basic word orders even if the IP is non-split. In any case, our model is
dependent on the Split-Infl hypothesis, at least to a certain degree.

Our specific theory also depends on the VP-internal Subject hypothesis. Once this hypothesis
is dismissed, many movements will not be necessary any more. The word order variation we can
derive from movement will be very limited. What does all this show? It may mean that the Split-
Infl hypothesis and VP-internal Subject hypothesis are correct, as they can provide us with more
explanatory power. But let us consider the worst case. Suppose that both of these two hypotheses
are proven incorrect in the end. Can the model proposed in this thesis still exist? The answer
can be “yes” or “no”. The specific grammar used in this thesis can of course no longer exist. The
movement patterns will have changed and so will the S(M)-parameters. All the experimental results
in the thesis will need to be reconsidered. However, the general approach we are taking here can
remain valid even in such a situation. We can proceed in this direction as long as the following are

true:

(i) The grammar has X-bar structures and movement operations;

(ii) The X-bar structures are universal modulo head directions;

(iif) The movement operations are universal modulo the timing of Spell-Out;

(iv) Different head-directions and different spell-out of movements result in word order variation;

(v) The head directions of X-bar structures can be parameterized;

170

(vi) The spell-out of movement can be parameterized,

If these assumptions hold, we can build a model of the present sort no matter how the other
specific assumptions change. The general picture of word order typology described in this thesis
will not change; the learning algorithm presented here will still be applicable; and parsing can
still proceed in the way presented in this thesis. The basic problem this thesis has addressed is
how to handle word order in a syntactic model where cross-linguistic variation can result from
both X-bar structure and movement. We have found a way to describe a word order typology in
terms of both head-direction and movement. We have also discovered a learning strategy which
the learner can use to converge on any particular grammar by simultaneously setting two different
types of parameters: X-bar parameters and movement parameters. This is a problem that has to
be addressed by any acquisition theory which accepts the view that word order can be determined
by both phrase structure and movement. Finally, we have seen the possibility of 2 more universal
parser which can parse different languages by looking at the parameter settings of those languages.

Now let us consider the potential problem of “parameter explosion”. The model we have been
working with is minimal, but the number of parameters we have assumed does not seem too small.
One may wonder how many parameters we would eventually need when the model is expanded to
include more constructions. There seem to be many ways in which the number of parameters may

grow. Here are a few of them:

(212) a. In order to account for word orders within other constructions, such as DP/NP and PP,
more S(M)-parameters and HD-parameters may be needed to control the movements and

head directions internal to these constituents.

b. Since even a single language may have different word orders in statements and questions,
in main clauses and embedded clauses, etc., we seem in need of different parameters in

different types of clanses.

¢. To handle the full range of inflectional morphology in world’s languages, a greater number
of features may need to be taken into consideration. As a result, the number of S(F)-

parameters may increase.

It looks as if the parameter space could be much bigger than the one we have dealt with. The
amount of search involved in learning and parsing could then be so great that language acquisition
and language processing might become a problem.

Are the problems in (212) real problems? Let us examine them one by one.

The problem in (212(a)) exists only if the internal structures of DP/NP and PP are totally
unrelated to those of CP/IP. This does not seem to be the case. There are more and more studies
showing that DP/NP parallels CP/IP in many ways. It is very likely that these phrases are similar
not only in X-bar terms, but in terms of movement as well. It could well be the case that a movement

171

in CP has a counterpart in DP. Moreover, the corresponding movements could be similar in their
overtness, i.e. they might both occur before Spell-Out or both after Spell-Out. If so, we will not
need two separate S(M)-parameters. The two movements could be considered different instances of
a single type of movement whose spell-out is controlled by a single S(M}-parameter. Should this be
true, the number of parameters will not increase as much as we might expect. Language acquisition
will therefore not be a problem. As a matter of a fact, parameter setting could be easier, since the
learner can get evidence for a parameter value from both CP/IP and DP/NP (Koopman ?77?)

The problem described in (212(b)) can be a real problem only if we adopt the assumption that
HD and S(M)-parameters are the only determinants of word order. This assumption seems to be
false. There are obviously other factors which can influence the word order of a language. When an
S(M)-parameter has the value 1/0, for instance, whether the relevant movement occurs before Spell-
Out depends on things other than the parameter values. The Principle of Procrastinate dictates that
the movement should be after Spell-Out in this case, but this principle can be overridden if some
other factors call for overt movement. When a language has different word orders in statements
and questions, or in main clanses and embedded clauses, the difference can often be explained by
the overtness of one or two movements. It is definitely not the case that different clauses have
totally different parameters or parameter values. In English, statements are S-Aux-V-O and yes-no
questions are Aux-S-V-O. A simple explanation for this fact is that the auxiliary moves to C in
questions but not in statements. We do not need additional parameters to account for this if we
assume that the S(M)-parameter for I-to-C movement is set to 1/0 in English. The real question
we have to answer then is what overrides the Principle of Procrastinate in interrogative sentences
to make the movement overt. This is a question that has to be addressed in any linguistic theory
regardless of the existence of S-parameters.

A similar argument can be made for German which has the V2 order in main clauses and SOV
orders in subordinate clauses. Assuming that CP is head-initial and IP is head-final in German,
we can account for the word order difference by supposing that the S(M)-parameters for I-to-C
movement and XP-movement to Cspec are both set to 1/0 in German. In subordinate clauses,
these movements are covert due to the Principle of Procrastinate. In matrix clauses, however, the
movements are made overt by some other factors. What these factors are remain the topics of current
linguistic research. The important point is that we do not need different parameters for questions
or embedded clauses. Once the module of linguistic theory we have studied here is interfaced with
other modules, the correct word order in each type of clauses will emerge. The success of our model
therefore depends on the research in those other modules.

Finally we address the problem in (212(c)). The number of S(F)-parameters required depends
on the number of features required by the gramrmar. As long as the set of features is finitely small,
there will not be too many S(F)-parameters. The question is how many features have to be there in
our system. There is no definite answers here, but the number should be finite. This may seem false

172

in view of the fact that morphological variation in world’s languages is so rich. But the seemingly
infinite variation in inflectional morphology does not have to imply that the number of morphological
features is infinite. We can get tens of thousands of surface morphological paradigms from a small

set of features because of the following:

i. Different languages can have different subsets of features spelled out;

ii. Different combinations of features can have different phonological realizations;

iii. The phonological realization of a certain feature or a combination of features can be arbitrary.

Therefore, while we may need more features than we already have in the system, there is very little
indication that the required set of features must be infinite,

In conclusion, the likelihood of an explosion of S(M)-parameters and S(F)-parameters is very
small. We probably need more parameters but the increase will not be dramatic. As long as
the number of parameters is finite and reasonably small, parameter-counting is not particularly
meaningful. Given two grammars which account for the same range of linguistic phenomena, the
one with fewer parameters is of course preferable. However, there is no principled reason why the
number of parameters should be less than 20 or less than 30. As long as there is a learning algorithm
whereby those parameters can be correctly set, the exact number of parameters should not be an
issue. In fact, a small increase in parameters is welcome if this can result in a simplification of the

principles of our grammar.

7.3 Concluding Remarks

In this thesis, we have studied a particular model of the Principles and Parameters theory. By fully
exﬁloiting the notion of Spell-Out, we have set up a grammar where cross-linguistic variation in
word order and inflectional morphology is mainly determined by a set of S-parameters. The new
parametric system, though still in its preliminary form, has been found to possess some desirable
properties in terms of language typology, language acquisition and language processing. The experi-
ments we have performed in this thesis are far from complete, but the initial results are encouraging.
There is reason to believe that this line of research is at least worth pursuing, though a great deal

of future work is needed to get this model closer to the truth.

173

Appendix A

Prolog Programs

Al

% File: pspace.pl

% Author: Andi Wu

% Date: July 15, 1993

% Purpose: Find all values combinations of S(M)-parameters, S{F)-parameters,

% HD-parameters and AA-parameter. Try generating some language

% (possibly empty) with each value combination and collect the set of
4 all non-empty languages that are generated and their corresponding
% parameter settings.

i

:= ensure_loaded(library(basics)).
1= ensure_loaded(generator). % The parser/generator used here is in a separate file.

:- dynamic s/1, hdi/1, hd2/1, aa/1, lang/1.

%% pspace(A list of all the setting-language pairs in the parameter space,
W each containing one possible parameter setting and the language
i it generates)

papace(Pa) :- setof(P,sl_pair(P),Ps).

%% pspacei(A list of all the setting-language pairs in the parameter space,
% each containing one or more possible parameter settings and the
pA4 single language they generate)
% (The settings in a single pair all generate the same language.)
pspacel(Ps) :~

setof(P,sl_pair(P),Ps0),

group_settinga(Ps0,Ps).

%% pspace2(A list of all the distinct langunages that can be generated in
the parameter space)

pspace2(Ls) :-

setof (P,sl_pair(P),Ps),

collect_langs(Ps,Ls).

174

%4 sl.pair([Setting,Languagel).

g8l_pair([s,L]):- .
get_setting(s),
setof(L,2]_pairil(S,L),Ls),
merge_1(Ls,L).

%% sl_pairi(Setting, A list of setting-language pairs, each with a different
Wh variable instantiation of the setting)
8l_pairi(s,L) :-

instantiate_var(S,51),

generate_all(S1,L).

% Find all strings that can be generated from a given (fully instantiated)
% value combination
generate_all(Setting,Strings) :-
retract_old_setting,
assert_nev_setting(Setting),
setof(String,generate(String),Strings).

%% instantiate_var(Setting,Particular_Instantiatien_of_Setting)
% (It has no effect on settings that do not contain variables.)
% Nota: s(m(specl)), a(m{spec?)) and s(m{cspec)) may be set to 1/0 which,
% being a variable, can be instantiated to either 1 or 0 in a particular
% parse. The language generated by a setting containing such variable(s)
%4 is the union of the languagae generated with each particular instantiation.
% (It only has effact on settings containing variable values.}
instantiate.var([1/01Vs1],[VIVe2]) :- !,

(Vy=mQ; Vv=i),

instantiate_var(Vs1,Vs2).
instantiate_var([V{Vsil,[VIvs2]) :-

instantiate_var(Vs1,Vs2).
instantiate_var([],[1).

%4 merge_l(Sete_of_Strings,Union_of_Sets_of_Strings)
% Merge languages generated with different instantiations of a setting
merge_1([L1,L2|Ls],L):~
merge(L1,L2,L3),
merge_l1([L3|Ls},L).
merge_1(L,L).
Wi group_settings :
%4 (A list of setting-language pairs,
pA A A liat of setting(s)-language pairs
wh).
% Group together settings that generate identical languages.
group_settings(SL_Pairs,SL_Pairs1} :-
retractall(lang(_,.)),
pack_pairs(SL_Pairs},
collect_pairs(SL_Pairsi).

% Assert all langunages and group together the settings for each of them

175

pack_paira([[S,L]|Pairs]) :-
lang(si,L1), % the present language has already
same_set(L,L1),!, % been asserted.
retract(lang(S81,L1)), % add the present setting to the
assert(lang([5|51]1,L)), % settings for this language.
pack._pairs{(Pairs).

pack.pairs([[S,L]|Pairs]) :- % the present langnage has not been asserted.
assert(lang([S],L}), % assert this new langunage
pack_paira(Pairs).

rack_paira([]).

% Collect all languages and their settings.
collect_paire(Ps) :-
collect_pairs([],Ps).

collect_pairs(Ps0,Ps) :-—
retract(lang(Ss,L)),
collect_ pairs([[Ss,L]|Ps0],Ps).
collect_paira(Pa,Ps).

collect_langs(Ps,Ls) :-
collect_lange(Ps,[],Ls).

collect_langs([[_.,L]|Ps],Ls_So_Far,La) :-
memberi(L,La_So_Far),!,
collact_langs(Ps,Ls_So_Far,Ls).
collect_lange(L[_,L]1{Ps],La_So_Far,Ls) :-
collect_langs(Ps, [L|Ls_So_Far],Ls).
collect_langs([],Ls,Ls).

% Take union of two or more sets of strings.
merge{[5]8a],52,New_5) :-

member(s,52),!,

merge{Ss,52,New_8).

merge([S1Se],52,Nevw_8) :=
merge(Ss, [S]S2],New_S).
merge([],8,5).

same_set([1,).

same.set([A]lAs],B) :~
member{A,B),
select(A,B,Bs),
game_set(As,Bs).

nemberi(A,[B!_1) :- same_set(A,B).
memberi{A,[_1Bsl) :-
member1(A,Bs).

select(A, [A]As],As).

select{a, [BIBs],[BlCe]) :-
select(A,Bs,Ca).

176

retract_old_setting :-
retractall(s(_)),
retractall(hdi(_)),
retractall¢hd2(_}),
retractalld{aa(_)).

assert_nev_setting([A,B,¢,D,E,F,G,H,HD1,HD2,Case, Agr, T, Asp, Pred, Op, AA]) :

assert(s(m{agr2(a)))),
assert(s(m(tn=(C)))),
assert(s(m(c(E)))),
assert(s(m(spec2(6)))),
assert (hd1 (HD1)),
assert(s(f(case(Case)))),
assert(a(f(tns(T)))),
assert(a(f(pred(Pred)))),

assert(s(a(asp(B)))),
assert(e(m(agri(D)))),
assert(s(m(spacl(F}))),
assert(s (m(capec(H)))),
assert(hd2(HD2)),
assert(s(f(agr(igr)))),
asgert(s(f(azp(Asp)))),
assert(a(£(op(0p))}).

get_setting([A,B,¢,D,E,F,G,H,D1,D2,Case, Agr, T, Asp,Pred,0p, AR]) :-
sp(m(agr2(4))),sp(m(asp(B))) ,ep(m{tna{C))},sp{mfagri(D))),
sp(n(c(E))) ,sp(m(apeci(F))),sp(m(apec2(G})),eplmlcepec(H))),
ap(f(case(Case))),sp(f(agr{Agr))),sp(£(tns(T))),
sp(£(asp(Asp))) ,ap(f(pred(Pred))},sp(£f{op(0p))),
c_head(D1) ,i_head(D2).

sp(m{agr2(0))).
sp(m(asp(0))}).
sp(m(tns(0))).
sp(r(agr1i(0})).
ap(m(c{0))).
sp(a(spec1(0))).
sp(m(apec2(0))).
sp(m(capec(0))).

sp(f{case(0-0)}).
sp(f(case(1-0))).
sp(f(agr(0-0})).
sp(f(agr(1-0))).
ap(£(tna{0-0})).
sp(£(tns(1-0))).
sp(f(asp(0-0))).
sp(f(asp(1-0))).
sp(f(pred(0-0))).
sp(f(pred(1-0))).
sp(£(op(0-0))).
sp(f(ep(1-0))).

ap(m(agr2(1))),
ap(n(asp(1))).
sp(m(tns(1))).
sp(m(agri(1))).
sp(m(c(1)}).
sp(m(speci(1))).
sp({m(spac2(1))).
sp(m(cspec(1))).

sp(r(apec1(1/0))).
sp(n(spac2(1/0)}).
sp(m{cspec(1/0})).

ap(f(case(0-1))).
sp(f(case(i-1))).

sp(f(agr(0-1))).
ap(flagr(i-1))).
ap(f(tna(0-1))).
sp(£(tns(1-1))).
sp(£(asp(0-1))).
sp(f(asp(1-1))).

sp(f(pred(0-1))).
sp(f(pred(1-1))).

sp(£{op(0~-1})).
ap(flop(1-1))),

c_head(i). c_head(f).
i_head(i). i_head(f).
A2

% File: sets.pl
% Author: Andi Wu

177

% Update: July 16, 1993
% Purpose: Compute the set-theoretic relations between languages in a given
% parameter space.

:= ensure_loaded(pspace0).
:= ensure_loaded(generatord),

%% disjoint_paire(A list consisting of pairs of languages in the parameter
W space which are disjoint with each other)
% (Each distinct language represented by a distinct number in the output)
disjoint_pairs(Ps) :-

pspace2(Ls),

retractall(language(.)),

assert_languages(Ls,1),!,

setof(P,disjoint_pair(P),Ps).

disjoint_pair([Ni,N2]) :-
language(N1,4),
language(N2,8B),
disjoint(A,B).

%% intersecting_pairs(A list consisting of pairs of languages in the parameter
A A space which intersect each other)
% (Each distinct language represented by a distinct number in the output)
intersecting_pairs(Ps) :-

pepace2(Ls),

retractall{language(_)),

aesert_languages(Ls,1),!,

setof(P,intersecting_pair(P),Ps).

intersecting pair([N1,N2]) :-
language(N1,4),
language(N2,B),
intersecting(4,B).

%% proper_inclusions(A list consisting of pairs of languages in the parameter
FA A space vhere the first member of each pair is a proper
W subset of the second member)
% (Each distinct language represented by a distinct number in the output)
proper_inclusions(Ps) :-

pspace2(Ls),

retractall (langnage(_)),

assert_languages(Ls,1),!,

setof(P, properly_included(P),Ps}.

properly_included([N1,N2]) :- :
language(N1,4),
language(N2,B),
properly_includes(B,4).

%% Find out the set-theoretic relation between any two languages.

178

set_relation(L1,L2) :=-
(identical(L1,L2),
--write(L1),nl, write(and),nl, write(L2),nl,
vrite(’are identical.’)
; diejoint(L1,L2),
write(L1),nl, write(and),nl, srite(L2),nl,
urite(’are disjoint.’)
intersect(L1,L2),
write(L1),nl, write(and),nl, write(L2),nl,
write(’are intersecting.’)
; properly_includes(L1,L2},
write(L2),nl,
write(’is a proper subset of’),nl,
write(L1)

},nl.

identical([A|As],B) :-
member(A,B),
select(A,B,Bs),
identical(As,Bs).

identicai([1,[1).

disjoint(a,B) :-
\+ co_member(A,B).

intersect(A,B) :-
co_member(A,B),
unique_member(A,B},
unique_member(B,A),!.

properly_includea(A,B) :-
subset(B,A),
unique_member(4,B),!.

subsget([],_).

subset([A|42],B) :-
member(A,B),
subset(As,B).

co_mexber([A|_],B) :-
member(A,B).

co_member([_|As],B) :-
co_member(As,B).

unique_member([4]_],B) :-
\+ member(4,B).

unique_member(f{_{As},B) :-
unique_member(As,B).

assert_languages([LILa],N) :-

assert(language(N,L)),
N1 is N+1,

179

assert_languages(Ls,N1i).
assert_languages([J,_).

A.3

% File: order.pl

% Author: Andi Wu

% Date: August 8, 1993

% Purpose: Drder the settings in a given
% parameter space in the spirit of
% the Principle of Procrastinate

order_settings(S,51) :-
quicksort(S,S1}.

quicksort(List,Sorted) :-
quicksort2(List,Sorted-[1}.

quicksort2({1,2-2).

quicksort2([X]Taill,A1-22) :-
split(X,Tail,Small,Big},
quicksort2(Small, Al-{X[A2]),
quicksort2(Big,A2-Z2).

Split(-xp []) [] » []) .

aplit(X,[Y|Taill, [Y|Swall]},Big) :-
verify(precedes(Y,X)),!,
aplit(X,Tail,Small,Big).

spiit(X,[Y|Tail],Small, [Y|Bigl) :-
aplit(X,Tail,Small,Big).

precedes(P1,P2) :-
fewer_opt_mvnt_than(P1,P2),!.
precedes(P1,P2) :-
\+ has_abar_mvnt(P1),
has_abar_mvnt(P2),!.
precedes(P1,P2} :-
fewer_mvnt_than(P1,P2).

fewer_copt_mvnt_than(P1,P2) :-
num_of_opt_mwmt(P1,N1),
num_of_opt_mvnt(P2,N2),
Ni<N2.

nun_of_cpt_mvnt(P,N) :-
num_of_opt_mvnt1(P,0,N).

num_of_opt_mvnt1([],N,N).
num_of_opt_mvnti([P|Ps],NO, N} :-
var{P),!,
K1 is NO+1,

180

num_of_opt_mvnt1({Ps,N1,N).
num_of_opt_nwnt1({_|Pa],N0 N} :-
num_of_opt_mvwnti(Ps,NO,N).

fever_mvnt_than(P1,P2) :-
num_of_mwnt(P1,N1),
nun_of_mwnt(P2,N2},
N1<N2.

num_of_mvnt(P,N) :-
num_of_wmvnt1(P,0,N).

num_of_mvntl([],N,N).
nun_of_mvnti([1{Ps],NO,N) :- !,
N1 is NO+1,
num_ of_nvnti(Ps,N1i,N).
num_of_mvnti({_|Ps],NO,N) :-
nuw_of_mvntl(Ps,NO,N).

verify(P) :- \+(\+P).

A4

% File: sp.pl

% Author: Andi Wu

% Date: August 3, 1993

% Purpose: Acquiring word orders by setting S-parameters.

1= ensure_loaded(library(basice}).
:—- ensure_loaded(sets).

1= ensure_loaded(parser).

:= ensure_loaded(order).

i~ ensure_loaded(sputil).

i~ dynamic settings/1.

get_pspace :-
get_settings,
get_languages.

get_settings :~
setof(S,get_satting(S),Ss),
order_settings(Ss,5s1),
assert(settings0(S5s1)).

get_languages :-~
getof(L,get_language(L),Ls),
assert (langs(Ls)).

get_setting([A,B,C,D,E,F,G,H]) :~

181

sp(m(agr2(4))},sp(n(asp(B))),ap(m(tns(C))),splmlagri(D))),
sp(m{c(E))),sp(mlspeci(F))) ,sp(m(apec2(G))),sp(mlcapec(H))).

get.language(L) :-
get_setting(Setting),
satof(String,generate(Setting,String),L).

sp = initialize,
write(’The initial setting is '),
current_setting,
spl.

8pl :- next_input(S),

S=injtialize -> sp

S=bye -> true

S=generate ~> generate,spl

S=current_setting -> current_setting,spl
procasa(s),!,

write(’Current setting remains unchanged.’),nl,
spl

write(’Unable to parse '),

write(S) ,nl,

write(’Resetting the parameters ... ’),nl,nt,
reset_to_process(S),

spl

- wa we me

ws

).

reset_to_proceas(S) :-
try_next_setting,!,

(process(s),!,
write(’Parameters reset to: ?),
current_setting

; reset_to_process(S)

).

learn_all_langs ;-
langa(Ls},
learn_all(Ls),

learn_all([LILs]) :-
learni(L),!,
learn_all{Ls).

learn_all([]).

learni(L) :-
write(’Trying to learn ’),
write(L),write(’ ...%),nl,
initialize,
learn(L).

learn(L) :-

182

proceas_all(L),!,
write('Final setting: ’),
" current-setting,
generate(L1),
write(’Language generated: ’),
srite(L1),nl,
(identical(L,L1),!,
write(’The language ’),
write(L),
write(’ is learmable.’),nl
: write(’ which is a superset of *),
srite(L) ,nl,
write(’The langnage '),
write(L),
write(’ is NOT learmable.’),nl,nl
J,nl.
learn(L) :-
try_next_setting,!,
learn(L}.

initialize :-
retractall (current_setting(_)),
retractall(s(_)),
retractall{settings()},
settings0([S5]Ss]),
assert{current_setting(s)),
assert(settinga(Ss)).

proceas_all([s|Ss]) :-
process(S),
process_all(Ss).

process_all([]1).

process(8) :-
current_setting(P),
instantiate_var(P,P1),
retract_old_value,
asgert_nev_value(P1},
parse(S).

try.next_.setting :-
retractall{current_setting(.)),
retract(settings([S{Ss]})),
assert(current_setting(S)),
assert(settings(Ss)).

generate ;-
current_setting(P),
setof(S,generate(P,8),8s),
vrite(’Language generated with current setting: ’),nl,
vrite(Ss),nl.

generate(Ss) :-

183

current_setting(P),
satof(S,generate(P,5),S8).

generate(P,8) :-
instantiate_var(P,P1),
retract_old_value,
assert_new_value(P1),
parse(S).

current_setting :-
current_setting(P),
vrite_values(P).

retract_old_value :-
ratractall(s(m(.))).

assert.new_valua([A,B,C,D,E,F,G,H]) :-

assexrt(s(m(agr2(a)))),
assert(s(m(asp(B)))),
assert{s(m(tna(C)))),
assert{(a(mn(agri(D}))),
assert(s(m(c(E)))),
assert(a(u(speci(F)))),
assert(s(m{spec2(G)))),
assert(s(m{cspec(H)))).

ap(m(agr2(0))),
ap(m{asp(0))).
sp{m{tns(0))}).
sp(m(agri(0))).
sp(m(c(0))).

ap(m(agr2(1)}).
ap(m(asp(1))).
sp(m(tna(1))).
sp(m(agri(1))).
ap(n(c(1))).

sp(n(spec1(0)}),
sp(m(spec2(0))).
sp(m(cspec(0))).

sp{m(speci(1))).
sp(m(apec2(1)}).
sp(m(cspec(1)}),

A.5

% File: spuntil.ps

% Author: Andi Wu

% Date: August 15, 1993

% Purpose: Tools used in sp.pl

write_values(Vs) :-
write ([},
write_valuesi(Vs),
write(’]?),nl.

write_values1([1).

write_valuesl([VIVa]) :-
var{¥),!,
write(’1/0*), tab(2),
write_valuesi(Vs).

write_valuesi([V|Vs]) :-

184

sp(m(speci(.))).
sp(m(apec2(.))).
sp(m(cspec(_)))}.

write(V), tab(2),
write_valuesi(Vs).

writel([S]Ss]) :~
write(S),
write(Ss).

writel([]).

next_input(Input) :-
repeat,
write(?Next? *),
read(Input).

instantiate_var([Vi[Vvs1], [V2ive2]) :-
var{Vi),!, (V2=0; v2=1),
instantiate_var(Vsi, Vs2).

instantiate_var{([ViVvs1],[V|Vs2]) :-
instantiate_var(Vsi,Vs2).

instantiate_var([1,[])."

A.6

% File: sp2.pl

% Author: Andi Wu

% Date: August 3, 1993

% Purpose: Acquiring word orders and inflectional morphology by setting
% S(M)-parameters, HD-parameters and S{F)-parameters.

:- ensure._loaded(library(basics)).
i~ ensure_loaded{sets).

:= ensure_loaded(parser).

t= ensure_loaded(order).

1= ensure_loaded(sputil).

:= dynamic settings/i.

get_pspace -
get_settings,
get_languages.

get_settings :-
setof(S,get_setting(S),Ss),
order_settings(Sas,Ss1),
assert(settings0(Ss1)}.

get_.languages :-
satof(L,get_language(L),La),
assert(langs(Ls}).

get_setting([A,B,C,D,E,F,qG,H,HD1,HD2]) :-
ap(m(agr2(4))),sp(n(asp(B))) ,spl{u(tns(C)}),sp(m(agri(D})),
ap(m(c(E))),sp(m(speci(F)))},sp(m(spec2(q))),sp(mlcapec(H))),
c_head(HD1),i_head(HD2).

185

get_settingi([A,B,C,D,E,F,G,H,HD1,HD2, Case, Pred, Agr, Tns, Asp]) :-
sp(=m(agr2(4))),sp(m(asp(B))),sp{m(tns (€))},sp(miagri(D))),
sp(m(c(E})),sp(m{epeci(F)))},sp(m{spec2(G))),sp(m(cspec(l))},
c_head{HD1),i_head(HD2),
sp(f(case(Casa))} ,sp(f(pred(Pred))),sp(f (agr(igr))},
sp(£(tns(Tns))) ,sp(f(asp(Asp))).

get_language(L) :-
get.settingl(Setting),
setof(String,generatel (Setting,String),L).

8p :- initialize,
write(’The initial setting is ’),nl,
current_setting,
spl.

spl :- next_input($},
(Swinitialize -> ap
S=bye -> true
Smganerate -> generate,spl
S=current._setting -> current_setting,spl
process(8),!,
write(’Current setting remains unchanged.’),nl,
spl
H write(’Unable to parse ’),
write(S),nl,
write(’Resetting the parameters ... ’),nl,nl,
reset_to_process(3),
spl

e ws wa wm

).

reset_to_process(S) :-

(reset_sfp(8),
procesa(s),!,
write(’Successful parse.’),nl

: try_next_setting(V),
process(S),!,
write(’Word order parameters reset to: ’),
write_values(V),nl,
vrite(’Successful parse.’),nl

: |, reset_to_process(S)

).

learn_all_langs :-
langs(Ls),
learn_all(ls).

learn_all([L|La]) :-
learni{L),!,
" learn_all(Ls).
learn_all([]).

learni(L) :-

186

write(’Trying to learn ’),
write(L),write(’® ...’),n1,
initialize,

set_sfp(L),

learn(L).

learn(L) :~-

process_all(L),!,
write(’Final asetting: *),
current_setting,
generate(L1),

write(’Language generated: '),
vrite(L1),nl,

¢

),nl.
learn(L) :-

identical(L,L1),!,

write(’The language *),

write(L),

writa(’ is learnable.’),nl
write(’ which iz a superset of '),
write(L),nl,

write(’The language '},

write(L),

write(’ is NOT learnable.’),nl,nl

try_next_setting(_),!,
learn(L).

initialize :-

retractall(current_setting(.)),
retractall(s(.)),
retractall(hdi(l)),
retractall(hd2(.)),
retractall(settings(_}),

initial .

setting([5]8s1),

asgert{current_setting(s)),
assert{current_setting(s)),
assert(settings(Ss)),
assert{s(f(case(0-0)))),
assert{s(f(pred(0-0)))),
assert(s(f(agr(0-0}))),
assert(s(f(tns(0-0}))),
assert(s(f(asp(0-0)))).

process_all([S]Ss]) :-
process(S),

process_

process_ali([]).

process(8) :-

current_

all(Ss).

setting(P),

instantiate_var(P,P1),

retract_

old_values,

187

assert_new_values(P1),
parsa(S).

try_next_setting(S) :-
retractall(current_setting(_)),
retract(settings([S|S8al)),
assert{current_setting(8}),
assert(settings(Ss)).

set_sfp([S]Ss]) :~
reset_sfp(8),
set_sfp(Ss).

set_sfp({D).

reset_sfp([W|Wsl) :-
check_sfp(W),
reset_sfp(Ns).

reset_sfp([1).

check_zfp(_-[]1).

check_sfp(W-[F|Fs]) :-
check_sfpl (W-[F1),
check_sfp(W-Fa),

check_atp(often).

check_sfpl (aux-[F1) :- !,
check_f_featurae(F).

check stp1(_-[F]) :-
chack_1_feature(F).

check_f_feature(pred) :-
(a(f(pred(1-_))),!
; retract{a(f(pred(_~L)})},
assert (s (f(pred(1-L)))),
write(’s(f(pred)) is reset to '),
write(1-L),nl

).

check_f_feature(agr) :-

(s(f(agr(1-_))),!

: retract(e(f(agr(_-L)))),
assert(s(f(agr{1-1)))>,
write(?’s(f(agr)) is reset to ’),
srite(1-L),nl

).

check_f_feature(tns) :-

{ s{f(tna(1-.))),!

; retract(s(£(tns(_-L}))},
assert (s (f(tna(1-L)))),
write(’s(f(tna)) is reset to ’),
write(i-L),nl

Y.

188

check_f_feature(asp) :-

(s(f(asp(1-2)0),!

: retract(a(f{asp(_-L)})),
aasert(s(f(asp(1i-1)))),
write(’z(f(asp)) iz reset to ’),
write(1~L),nl

).

check_1_feature(Ftr) :—

(Ftr=cl; Ftr=c2),

(s(f(case(_~-1))),!

; retract (s(f{case(F-_)))),
assert(s(f(case(F-1)))),
vrite(’as(f(case)) is reset to *),
srite(F-1),nl

).

check_l_feature(pred) :-

(s{f(pred(_-1))),!

H retract(s(f(pred(F-_)))),
assert (s(f(pred(F-1)))),
write(’a(f(pred)) iz reset to '),
write(F-1),nl

).

check_l_feature{agr) :-

¢ s(f(agr(.-1))),!

: retract(a(f (agr(F-_)))),
assert(s(f(agr(F-1)})),
write(’s{f(agr)) is reset to *),
write(F-1),nl

).

check_1_feature(tns) :-

(a(f(tna(_~1))},!

: retract (s (f(tns(F-_)))),
assert(s(£(tns(F-1)))),
srite(’s(f(tns)) is reset to ?),
srite(F-1),nl

).

check_l_feature(asp) :-
(a(f(asp(.-1)}),!

; retract(s(f(asp(F-_)))),
assert(a(f(asp(F-1)3)),
write(’a(f(asp)) is reset to *),
writa(F-1),nl

).

generate :-
current_setting(P),
setof(S,generate(P,S),Ss),

write(’Language generated with current setting:

writel(Ss),nl.

generate(Sa) :-

189

,))nli

current_setting(P),
setof(S,generate(P,$),88).

generate(P,S) :-
instantiate_var(P,P1},
retract_old_values,
assert_new_valuea(Pl),
parse(S).

generatei(P,8) :-
instantiate_var(P,P1),
retract_old_valuesi,
assert_new_valuesl1(P1),
parse(S).

current_setting :-
current_setting(P),
setof(V,s(£(V}),Vs),
write(*[?), write_values(P),nl,tab(1),
vrite_values(Vs),write(’]?),nl.

retract_old_values :-
. retractall(s(m(_))),
retractall (hd1(_)),
retractall(hd2(_)).

assert_new_values([A,B,C,D,E,F,G,H,HD1,HD2]) :-
assert_smp([A,B,C,D,E,F,q,E]),
assert_hdp([HD1,HD2]}.

retract_old_valuesl :-
retractall(s(.)),
retractall (hdi(_)),
retractall Chd2(_)).

assert_nevw_values1([A,B,C,D,E,F,G,H,D1,HD2,Case, Pred, Agr, Tna, Asp]) :-
assert_smp([A,B,C,D,E,F,q,H]),
assert_hdp([HD1,HD2]),
asgert_sfp([Case,Pred, Agr, Tns, Asp]).

assert_swmp([A,B,C,D,E,F,G,H]) :-

assert(a(m(agr2(A)))),
assert(s(m(asp(B)})),
assert(a(m(tns(C)))),
assert(s(m(agri(D)))),
assert(a(m(c(E)))),
assert(s(m(apeci(F)))),
assert(s(m(spec2(8)))),
asgert(s(m{cspec(H)))).

. assert _hdp([HD1,HD2]) :-

assert(hd1(HDL)),
assert(hd2(HD2)).

190

asgert_sfp([Case,Pred, Agr,Tns, Aspl) :-
assert(a(f(case(Case)))),
assert(s(f{pred{Pred}))},
assert(s(f(agr(igr)))),
assert(s(£(tns(Tns)))),
assexrt(s(f(asp(isp)))).

sp(m{agr2(0))). sp(m{agr2(1}}).

sp(m(asp(0))). sp(m(aap{1))).

sp(a(tns(0))). sp(m(tns{1))).

sp(m(agri(0))). sp{m(agri(1})).

sp(m(c(0))), apl{m(c(1))).

sp(u(aspeci(0})). sp(m(apeci(1)}). sp(n(speci(_))).
sp(m(apec2(0))). sp(m(apec2(1))). ap(m(spec2(.))).
sp(m(cspec{(0))). sp(n(cepec(1))). ap(m(capec(.))).

sp(£(F-1)) :~
f_feature(F),
1_feature(L).

f_featurae(0). f_teature(1).
1_feature(0). 1_feature(1)}.
c_head{i). c_head(f).
i_head(i). i_head(f).
AT

% File: parser.pl

% Author: Andi Wu

% Updated: August 20, 1993

% Purpose: A top-down parser implementing the S-parameter model.

:= ensure_loaded(johnson).
;- ensure_loaded(tree).

:- dynamic s/1,hdi1/1,hd2/1.

parse :- cp(Tree,_,[]), d(Tree),fail.
parse :- write(’No more parse.').

parse(S) :- cp(_,s,ID).
parse(S,T) :- cp(T,S,[]).

cp{cp/[np(NF)/NP,C1]) -->
{op(NF)===+1},
np(NP,capec,NF),
c1(C1, np(NF)]).
cp{cp/[advp(AdF)/[eften],C1]) ~~> [often],
{s(m(capec(i))),
op(AdF)==='+’,

191

index(AQF)===4
} ” .
ci(c1, [advp(AdF)]).

c1(c1/[c0(CF,Th)/G,AgriP],ABC) —=>
{hdi(ir},
c0(C,CF,Th),
agrip(AgriP,x0(CF,Th),ABC),
{lexical(CF)}.
c1{c1/[AgriP,c0(CF,Th)/C],ABC) -->
{hd1(£)},
agrip(AgriP,x0(CF,Th),ABC),
¢0(C¢,CF,Th),
{lexical(CF})}.

agrip(agrip/ [np(NF)/KP,Agri_1i] ,HC, [np(NF1)])} =-=>
{case(NF)===cl,
check_np_features(NF,NF1)
},
np(NP,agrispec,NF),
agri_1(Agri_1,HC, [np(NF)],[]1}.
agrip(agrip/[np(NF)/NP, Agri_1],x0{HF,Th), [ap(NF1)]1) ~->
{Th=[_,_],
case(NF)===ci,
case(NF)=/=case(NF1)
},
np(NP,agrispec ,NF},
agrl_t(Agri.1,x0(HF,Th), [np(8F)], [np(NF1}1).
agrip(agrlp/ [np(NF)/HP, Agrl_i] ,xo (HF,Th) » [adVP(AdF)]) =2
np(NP,agrispec,NF),
agri_i(Agri_1,x0(HF,Th), [np{NF)], [advp(AdF)]1).

agri_i{agri_1/[agri_0(AgriF,Th)/Agr1,TP],x0(HF,Th), [np(NF)],ABC) ~~>
{hd2(i),
phi (Agr1F)===phi (NF),
check_v_features (AgriF,HF)
T,
agr1_0(Agri,AgriF,Th),
tp(TP, x0(HF, Th) , [np(NF)1, ABC) .
agri_1(agri_1/[TP,agri_0(AgriF,Th)/Agril,x0(HF,Th), [np(NF)]1,ABC) ——>
{hd2(f),
phi(AgriF)===phi (NF),
check_v.features (AgriF,HF)
3,
tp(TP,x0(HF, Th) , [np(NF)1,ABC),
agrl_0(Agri, AgriF,Th).

tp(tp/(T1],HC, AC,ABC) -->
t1(T1,HC,AC,ABC).

t1(t1/[t0(TF,Th) /T, AspP], x0 (HF, Th) ,AC, ABC) ~=>

192

{hd2({i),
check_v_features(TF,HF), ~
\+ABC=[advp(_)]

},

t0(T,1F,Th),

asp_p(AspP,x0(HF,Th),AC,ABC).

t1(t1/[AapP, t0(TF,Th)/T],x0(HF,Th),AC,ABC) -->

{hd2(f),
check_v_features(TF,HF),
\+ABC={advp(_)]

},

asp_p(AspP,x0(HF,Th),AC,ABC),

t0(T,TF,Th).

t1(t1/[advp/ [often],T1],x0(HF,Th},AC,ABC) -=-> [often],
{\+ABC=[advp(_)]},
t1(T1,x0(HF,Th) ,AC,AEC,.).
t1(t1/[advp{AdF)/[],T1],x0(HF,Th) ,AC, [advp(AdF}]) -->
t1(T1,x0(HF,Th) ,AC,[1,.).
t1(t1/[t0(TF,Th)/T,AspP], x0(HF,Th) ,AC,ABC,_) —=>
{check_v_features(TF,HF)},
+0(T,TF,Th),
asp_p(AspP,x0(HF,Th) ,AC,ABC) .

asp.p(asp_p/[Aepl],HC, AC, ABC) -->
aspl(Aspl,HC,AC,ABC) .

aspil(aspl/[asp0(AspF,Th)/Aep, Agr2P], x0 (HF,Th}, AC, ABC) ——>

{hd2(i),

check_v_features (AspF,HF)

},

asp0(Asp, AspF,Th),

agr2p(Agr2P, x0 (HF, Th), AC, ABC) .
aspi(aspi/[Agr2P,asp0(AspF,Th) /Aspl,x0(HF,Th) ,AC,ABC) —->

{hd2{f),

check_v_features(AspF, HF)

1,

agr2p{Agr2P, x0 (HF,Th) , AC, ABC),

asp0(Asp, AspF,Th).

agr2p(agr2p/ [np(NF}/NP, Agr2_11,x0 (HF,Th) ,AC, [np(NF1}]) -->
{Th=(_, .1,
case(NF)==uc2,
check_np_features{NF,NF1)
1.
np(NP, agr2apec,NF),
agr2_1(Agr2_1,x0(HF,Th), [np(NF)1AC1).
agr2p(agr2p/ [np(NF)/NP,Agr2_1],x0{HF,Th),AC,[]1} -->
{Th=[— I—] »
casa{NF)===c2
T,
np{NP,agr2spec,NF},

193

agr2_1(Agr2_1,x0(HF,Th), [np(NF)]AC]).
agr2p(agr2p/[Agr2_1],x0(HF,Th) ,AC,[]1) -->

{Th=[_1},

agr2_1(Agr2_1,x0(HF,Th),AC).

agr2_1(agr2_1/[agr2_0(Agr2F,Th)/Agr2,VP],x0(HF,Th), [np(NF) |NPs]) -->
{hd2(i),
check_v_features (Agr2F,HF)
1,
agr2_0(Agr2, Agr2F,Th),
vp(VP,x0(HF, Th) , [np (HF) |NPs]) .
agr2_1(agr2_1/[VP,agr2_0{Agr2F,Th)/Agr2],x0(HF,Th), [np(NF) |NPs]) -->
{hd2(t),
chack_v_features (Agr2F,HF)
1,
vp(VP,x0(HF,Th) , [np{NF) |KPe]},
agr2_0{Agr2, Agr2F,Th),

vp{vp/[np{NF)/RP,V1],x0(HF, [agt |Tha]) ,AC) -->
{theta(NF)===agt,
select (AC,np(NF1),AC1),
casa(NF1) ===ci,
check_np_features(NF,NF1)
¥,
np(NP,vspecl,NF),
{lexical(NF)},
v1(V1,x0(HF, [agt|Ths1),AC1).
vp{vp/[np(NF)/NP,V1],x0(HF, [pat]) ,AC) —=>
{theta(NF)===pat,
select(AC,np(NF1),AC1),
case(NF1) ===c2
check_np_features (NF,NF1)
},
np(NP,vspec2,NF),
{lexical{RF)},
v1(V1,x0(HF, [pat]},AC1).

v1(vil/[vO(VF, [Th1{Ths])/V,VP},x0(HF, [Th1|Tha]l),AC) ~~>
{check_v_features(VF,HF)},
vO(V,VF, [Th1|Thsa]),
vp(VP,x0(HF, Ths) ,AC) .

vi(v1/LvO(VF, [Th]}/V],x0(HF, [Th]),_4C) -->
{check_v_features(VF,HF)},
vO(V,VF,[Th]).

c0(Verb,CF,Th) -->
{v_to_c},
verb(Verb,CF,Th).
¢0(Aux,CF, _Th) —>
aux (Aux,c,CF).
Co([] u-:—) -—> [] »
{\+v_to_c,
\+a-u-x(_pc’-s—s-)

194

.

agrl_0(V,AgriF,Th) -->
{v_to_agri},
verb(V,AgriF,Th).

agri_0{Aux,AgriF,_Th) -->
aux(Aux,agrl,AgriF).

agri_o([1,_,.) --> [1,
{\+v_to_agri,

\taux(_,agri,_,.,.)

}.

t0 (V,I'anl) -—>
{v_to_t},
verb(V,TF,Th).

t0 (Aux,TF,_Th) -=->
aux(Aux,t,TF),

to([] I-I-) -—2 []l
{\+v_to_t,
\vaux(_,t, ,_,.)
}.

asp0(V,AspF,Th) ~->
{v_to_asp},
verb(V, AspF,Th).

asp0(Aux, AspF,_Th) =~->
aux(Aux,asp, AspF).

aspo([1,_,.) --> [1,
{\+v_to_asp,
\taux(_,asp, _,_,.)

¥

agr2_.0(V,Agr2F,Th) -->
{v_to_agr2},
verb(V, Agr2F,Th).

agr2_0(|:| |_’-) -—> [:Io

vO(V,VF,[agt[Ths]) —->
{a(m(agr2(0) 1)},
verb(¥,VF, [agt|Tha]).

VO([].-.tagtl_]) -—> []l
{a(m(agr2(1)1)}.

vo([1,_,[Thl_1) —> {1,
{\+Th=agt}.

np{(Subj,cspec,NF} ——>
{a(n{cspec(1))), s(m(speci(1)))},
subject (Subj,NF).
np(Dbj,cepec,NF) -->
{a(mlcspec(1))), s(m(spec2(1)))},
object(0bj,NF).
np([],cspec,.) -=> [1,
{a(m(capec(0)))}.

195

np(8ubj,agrispec,NF) -->
{a(m(epec1(1)))},
subject(Subj,NF).
np([],agrispec,_) --> [].

np(0bj,agr2spac,NF) —->
{s(m(spec2(1)))},
object(Obj,NF).

np([],angSRec,_) --> [1.

np(Subj,vspecl NF} -->
{s(m{apec1(0)))},
subject(Subj,NF).

np({1,vspect,_) —> [].

np{Dbj,vspec2,NF} -->
{a(m{spec2(0)))},
object(Obj,NF).

np([],vspec2,.) --> [1.

subject([’Subj-[1'/011,8F) --> [s-[1],
{a(f(case(0-0))),
cage(NF)===c],
index{NF,s)
}.
subject(['Subj-[c1]’/[11,NF) --> [s-[c1]],
{8 (£{case(0~1))),
cage(NF)=umcl,
index(NF,s)
}.

object([*0bj-L]1’/[11,8F) --> [o~[1],
{s(£f(casa(0-0))),
case (NF)mm=c?2,
index(NF,o)
}.
object{['0bj~[c2]?/[1]1,NF) --> [o-[c21],
{s({f{case{0-1))),
cage(NF)wmuc?
index(NF,o)
}.

verb(['Verb-£1'/[11,VF,Th) ——> [V-[]1],
{th_grid(¥,Th),
s (f(pred(_-0))),s(£{agr(_-0))),s(f(tna(_-0))),a(f(asp(_-0))),
code_features([],VF),
index(VF,V)
}.
verb([’Verb-fpred] */[11,VF,Th} --> [V-[pred]],
{th_grid(V,Th),
a8(f(pred(_~-1))),s(f(agr(_-0))),a(£(tna(_-0))) ,s(f(asp(_~0))),
code_features([pred], VF),

196

index(VF,V)
}.
verb([’Verb-[agr]’/[1],VF,Th) --> [V-[agrll,

{th_grid(V,Th),
s(f{pred(_-0)}),s(£(agr(_~1))),s8(f(tn=(_-0))) ,s(f(asp{_-0))),
code_features([agr],VF),
index(VF,V)

}.

verb([’Verb-[tna]l’/{1],VF,Th) --> [V-[tn=]],

{th_grid(¥,Th),
a8(f(pred(_-0))),s(f(agr(_-0)}),s(£(tna(_-1))),s(£(asp(_-0))),
code_features ([tna],VF),
index (VF,V)

}.

verb(['Verb-[asp]’/[11,VF,Th) --> [V-[aspl],

{th_grid(V,Th),
a(f(pred(_-0))),s(f(agr(_-0})),a(f(tns(_-0))) ,s(f{asp(_-1)}),
code_features([asp],VF),
index(VF,V)

T

verb(['Verb-[pred,agr]!/{]],VF,Th) --> [V-[pred,agrl],

{th_grid(v,Th),
a(f(pred(_-1))),8(f(agr(_~1))),s8(f(tns(_~-0))) ,s(f(asp({_-0))),
code_features([pred,agri,VF),
index(VF,V)

}.

verb{[’Verb-[pred,tns)*/[13,VF,Th} —-> [V-[pred,tns]],

{th_grid(V,Th),
s(£{pred(_~1)1),s(£(agr(-0))),8(£(tns(_-1))},a(£(asp(_-0))),
code_features ([pred, tns] ,VF),
index (VF,V)

I

verb([’Yert-[pred,aspl*/[11,VF,Th) --> [V-[pred,aspl],

{th_grid(V,Th),
s8(f(pred(_~1))),8(£(agr(_-0))),s(£(tns(_-0))),s(f(asp(_-1))),
code_features ([pred,asp],VF),
index(VF,V)

}.

verb([!Verb-[agr,tns]’/[1],VF,Th) -=-> [V-[agr,tn=s]],

{th_grid(v pTh) *
s8(£{pred(_-0))),s(f{agr(_~-1))),s(f{tns(_~1))},s(f(asp(_-0))),
code_features{[agr,tns],VF),
index(VF,V)

}.

verb([’Verb-[agr,aspl’/{1]1,VF,Th) --> [V-fagr,aspl],

{th_grid(V,Th),
a(f(pred(_-0))),s(f(agr(_-1))),s(f(tna{_~0))),a(f(asp(_-1})),
coda_featurea([agr,aspl,VF),
index(VF,V)
¥.

verb([’Verb=-[tns,asp]'/[1]1,VF,Th) —-> [V-[tns,aspl]l,

{th_grid(v,Th),

s(f(pred(_-0))),s{f(agr(.-0))),s(f(tns(_-1))) ,s(f(asp(_~1})},

197

code_features([tns,asp],VF),
index(VF,V)
N
verb{([*Verb-[pred,agr,tns]!/[1],VF,Th) --> [V-[pred,agr,tns]],
{th_grid(V,Th),
s(f(pred(.~1))),s(f(agr(_-1))),s(f(tna(_-1))),a(£(asp(_~0))),
code_features([pred,agr,tns],VF),
index{VF,V)
}.
verb([’Verb-[pred, agr,aspl’/[1],VF,Th) --> [V-[pred,agr,aspl],
{th_grid(V,Th),
8{f(pred(_-1))},8(£(agr(.-1)}),8(£(tns(.=0))) ,a(f(asp(_-1))),
code_features([pred,agr,asp],VF),
index(VF,V)
}.
verb([’Verb-[agr, tns,aspl’/[1],VF,Th) --> [V-[agr,tns,aspl]l,
{th_grid(V,Th),
s{f(pred(_-0))),s({f(agr(_-1))),s(f(tne(_~1))),s(£(asp{_-1))),
code_features ([agr,tns,asp] ,VF),
index(VF,V)
}.
verb([’Verb-{pred,agr,tns,aspl’/[1],VF,Th) --> [V-[pred,agr,tns,aspl],
{th_grid(V¥,Th),
s(f(pred{_-1))),s({f(agr(.~1))),8(f(tns(_-1))),s(f(asp({_~-1))),
code_features([pred,agr,tns,asp],VF),
index(VF,V)
}.

aux([’Aux-[pred]’/(1]1,¢,CF) --> [aux-[predl],
{s(f(pred{1-1))),
s(m(c(0})),
code_features ([pred],CF)
}.
aux([’Aux-[agr]’/[1],c,CF} --> [aux-{agr]],
{s(£(pred(0-_))),a(f(agr(1-.))),
a{m(c(1))),8(n(agri(0))),
code_features([agr],CF)
}.
anx([?Aux-[tns]?/[1],c,CF) ~=> [aux-[tnsl],
{s(f(pred(0-_3)},s(£(agr(0~-_)}),s(f(tna(1- _)))
a(m(c(1))),s(n(agri(1))),s(n(tns(0))),
code_featurea([tns],CF)
T
aux{[’Aux-[asp]’/[1],c,CF) ——> [aux-[aspl],
{s(£{pred(0~_))),s8(f(agr{0-.))),s(£(tns(0-_3)),a (f(asp(i-.))),
s(m(c(1))),s(m(agri(1))),s{m(tna(1))) ,s{m(asp(0))),
code_features([aspl,CF)
3.
aux{ [’ Aux-[pred,agr]*/[1],c,CF) -~> [aux~[pred,agrll,
{s8(f(pred(1-_))) ,s(f(agr{1~-_))J,
s(m(c(1))),a(n(agr1(0))},
code_features([pred,agr],CF)
1.

198

aux([’Aux-[pred,tns]’/[1]1,c,CF} —--> [aux-[pred,tns]],
{a{f(pred(1-_))),s8(£(agr(0-_))) ,a(£(tns(1-))),
8{m(c(1))),a(m(agri(1))},s(mn(tns(0))),
code_features ([pred,tns],CF)
}.
aux([’Aux-[pred,aspl’/[1]1,¢c,CF) --> [aux-{pred,asp]],
{a(£(pred(1-.)}),s8(£(agr(0-_))) ,a(£(tns(0-_))) ,s(£(asp(1-))),
a(m(c(1))),8(nlagri(1))),s(m(tns(1))),8(m(asp(0))),
_code_zfeatures{{pred,asp],CF)
¥
anx([’Aux-[agr,tna}’/[1]1,c,CF) -=> [aux-[agr,tns]],
{e(£f(pred(0-_))),s(f(agr(1-.3)),s(£(tna(1-_))),
8(m{c(1))),s(m{agri{1))),s(m(tns (0))),
code_featurea([agr, tna],CF)
}.
aux([*Aux-[agr,asp]’/[1],c,CF) --> [aux-[agr,aspl],
{s(£(pred(0-_))),a(£f(agr(i-_))),8(£{tns(0-_))),s(£(asp(1-_))),
s{m{c(1))),s(magri(1))),s(m(tna(1))),s(m(asp(0))),
code_features ([agr,asp],CF)
}.
aux{[?*Aux-[tns,asp]’/[1],c,CF) ——> [aux-[tns,aspll,
{a(f(pred(0-_))),a(£(agr(0-_))),s(£(tna(1-_)}),s(£(asp(1-_))),
s(m(c(1))),a(m(agri(1))),a(m(tne(1))) ,s(m{asp(0))),
code_features([tns,asp]l,CF)
}.
aux([’Aux-[pred,agr,tna]’/[1],¢c,CF) --> [aux~-[pred,agr,tns]l],
{a(f(pred(1-_))),a(f(agr(1-_))),s (£ (tna(i-_)}),
s{m{c(1))),s(n(agri(1))),s(n(tns(0))),
code_featurea([pred,agr,tns],CF}
}.
aux([’Aux-{pred,agr,asp]’/[1],c,CF) -~> [aux-[pred,agr,aspll,
{=(f(pred(1-_))},s{f(agr{1-_))),s8(£(tn2(0-))) ,a(f(asp(i-_)}),
s(u(c(1))),s(magri(1))) ,s(m(tne(1)}) ,8(m(asp(0))),
code_features([pred,agr,aspl,CF}
}.
aux([’Aux-{pred,tns,asp]’/[1],c,CF) --> [aux-[pred,tns,aspl],
{s(f(pred(1=_))),s{f(agr(0-_))),s(f(tna(1=_))) ,as(£(asp(l-_))),
s(m(c(1))),s(mlagr1i(1))),s(a{tna(1)}) ,s(m(asp(0))),
code_featuresa([pred,tns,aspl,CF)
T
aux([’Aux~ [agr, tns,asp]*/{1],c,CF) --> [aux-[agr,tns,aspl],
{a(£{pred(0-_))),a(f(agr(1-_))),s(£(tna(1-_))) ,8 (£ asp(i-))),
B(m(c(1))),s(m(agr1i(1))},s(u{tns(1))) ,s(m(asp(0))),
code_features([agr,tns,asp],CF)
}.
aux{[’Aux-{pred,agr, tns,aspl*/[1],c,CF) ==-> [aux~{pred,agr,tns,aspl],
{e(£(pred(1-.))),s(f(agr{1-_))),a{(£(tns(1-_))) ,a(f(asp(1-0)),
8(m(c(1))),s(mlagri(1))),s(m(tns (1))} ,s{m(asp(0))),
code_features([pred,agr,tns,asp]l,CF)
}.
aux ([’ Aux-{agr] */[1],agrl,AgriF) --> [aux-[agrl],
{s(f(agr(i-.0)),
s(m{c(0)}),s(mn(agr1(0))),

199

code_featurea([agr],AgriF)
}.
aux([’Awx~(tne]*/[1],agrl, AgriF) ~--> [aux-(tns]],
{a(f(agr(0-_1)) ,s(f(tns(1-1))),
s(m(c(0))),s(mlagri(1))),s(n(tns(0))),
code_features([tns],AgriF)
}.
aux{[’Aux-[asp]l >/ [1]1,agrl,AgriF) --> [aux-{aspll,
{a(f(agr{0-_)}) ,a(£(tns(0-2))),s(f(asp(1-_))),
a3(m(c(0))),s(m(agri(1))),a(m(tns(1)}) ,s(m(asp(0))},
code_features([aspl,AgriF)
}.
aux (£’ Aux-[agr,tns]’/[1],agr1, AgriF) --> [aux-[agr,tns]],
{s(£(agr(1-_))),s8(£(tns(1-_})),
8(m(c(0))),s(m(agr1i(1))),s(m(tns(0))),
code_features ([agr, tns], AgriF)
}.
aux ([’ Aux-[agr,aspl’/[1],agrl,AgriF) --> [aux-[agr,asp]],
{e(£(agr(1-_))) ,8(£(tns(0~-_))) ,s(f(asp(1-_})),
8(m(c(0))),s(m(agri(1))),s(m(tns(1))) ,s(mlasp(0))),
code_features([agr,asp], AgriF)
. }.
. aux([’Aux-[tne,aspl’/{1],agrl, AgriF) --> [aux-[tns,aspl],
{8 (£(agr(0-_))),8(£(tns(1-_))) ,a{£(aap(1-_))),
8(m(c(0))),s(m(agri(1))),s(n(tns(1))) ,s(m(asp(0})),
coda_features([tns,aspl, AgriF)
}.
aux([’Aux-(agr,tns,aspl'/[1],agrl,AgriF) --> [aux~[agr,tns,aspl],
{a(£(agr(t-_))),s (£(tne(1-_))),s{f(asp(1-_})),
s(m(c(0))),s(mlagri(1)}),s(m(tna(1))),s(n(asp(0))),
code_features([agr,tns,aspl,AgriF)
}.
aux([’Aux-[tns]*/[1],t,TF) --> [aux-[tns]],
{a(£(tna(1-2))),
a(mn(agri(0))),s(n(tns(0))),
code_features([tns],TF)
}.
aux([’Aux-[asp]’/[]],t,TF)} --> [aux-[aspl],
{s(£(tna(0-1))},s(£(asp(1-))),
s(m{agri(0))),s{m(tns(1)}),2(m(asp(0))),
code_features([asp],TF)
}.
anx([’Aux-[tns,asp]’/[]1,t,TF) --> [aux-[tns,aspl],
{a{f(tna(1-))) ,s(f(asp(1-_})),
a(m(agr1(0))),=s(m(tne(1))),s(mlasp(0))),
code_features([tns,asp],TF)
t.
aux([’Aux-[asp]’/[1],asp, AspF) --> [aux~-[asp]],
) {s(£(asp(i-.))),
. s(n(tns(0))),5(n(asp(0))),
code_features{[aspl,AspF)
}.

200

check_v_features(HF1,HF2) :-
ind (HF1)===ind (HF2) ,
phi (HF1)===phi (HF2) ,
tns (HF1)===tns (HF2) ,
asp(HF1)===asp(HF2) .

check_np_features (NFi,NF2) :-
ind(NF1)===ind (NF2),
theta(NF1)===theta(NF2),
cage(NF1)===cage(NF2),
phi (NF1)===phi (NF2),

op{(NF1)===op (NF2) .
th_grid{v,Th) :-

(V=iv, Th=[agt]

s Vutv, Th=[agt,pat]

).

code_features([F|Fs]l,VF) :-
code_featura{F,VF),
code _features(Fs,VF).

code_features([]1,_).

code_feature(F,VF) :-
Feature=,, [F,VF],
Feature === Q(F1,F1,_),
F=F1.

index{Chain,Cat) -
ind{Chain) === @(I,I,_),var(I),

((Cat=iv;Cat=tv), I=1
; Cat=g, I=2

H Cat=o, I=3

).

laexical (Chain) :-
ind(Chain)=== ¢(I,_,_) ,nonvar{l).

votooc = s(m(c(1))),s(m(agri(1)}),s(n(tns(1}}),s(m(asp(1)}),s(m(agr2{i))).
v.to_agrl :- 8(m(c(0))),s{m{agri(1))),s(n(tns(1})),s(mlasp(i)}),s(mlagr2(1))).
v to_t :- s(m(agr1i(0))),s(m(tna(1))),s{m{asp(1))) ,s(m(agr2(1))).

v_to_asp :~ s(m(tns(0))),s(m(a=zp(1))),s(m(agr2(1))).

v_to_agr2 :- s(m(asp(0})),s(m(agr2(1))}.

reset :-
write(’New setting: ’),
read([A,B,C,D,E,F,G,H,HD1,HD2,Case, Pred, Agr,Tns, Aapl) ,
retractall{s(_)), retractall(hdi(.)), retractall(hd2(_)),

assert(s{m(agr2(a)))), assert{s(n(asp(B)))},
assert(a(m(tns(C)))), assert(s(m(agri(D))),
assert(a(m(c(E)))), assert(s(m(apeci(F)))),
assert(s{m{spec2(G)))), assert(e(m(cspec(H)))),
assertChdi (HD1)), assert(hd2(HD2)),

201

assert(s(f(case(Case)))), assert (s (f(pred(Pred)))),
assert(s{f{agr{Agr)))), assert{(s(f(tns(Tns)))),
assert(s(f(asp(Asp)))).

A.8

% File: parseri.pl

% Author: Andi Wu

% Updated: August 24, 1993

% Purpose: A top-down parser implementing the S-parameter model.

1= ensure_loaded(johnson).
:— ensure_loaded(tree).

parse ;- cp(Tree,_,[1), d(Tree),fail.
parse :- write(’No more parse.’).

parse(8) :- cp(.,5,[1).
parse(S,T) := ep(T,S,[]).

cp(cp/ [np(NF)/KP,C1]) -->
{op(NF)m=m>+1},
np{NP,cspec,NF),
ci(e1, [np(NF)]1).

¢1(c1/[c0(CF,Th)/C,Agr1P]1,ABC) -—>
<0(C,CF,Th),
agrip(AgrlP,x0(CF,Th),ABC),
{lexical{CF)}.

agrip(agrip/[np(NF)/NP,Agri_1],HC, [np(NF1)]) -->
{case(NF)===c],
check_np_featurea(NF,NF1)
},
np{NP,agrispec,NF},
agrl_1(Agri_1,HC, [np(NF)],[]).
agrip(agrip/[np(NF)/NP,Agri_1],x0(HF,Th), [np(NF1)]1)} -->
{Th=[_,_1,
cage(NF)==xc],
case(NF)=/=case(NF1}
},
np(NP,agrispec,NF),
agrl_i(Agri_1,x0(HF,Th), [np(NF}], [np(NF1)]).

agri_i(agri_1/[agri_0(AgriF,Th)/Agri,TP],x0(HF,Th), [np(NF)],ABC) —->
{ phi(AgriF)===phi(NF),
check_v_features (AgriF,HF)
T,
agrl_0(Agrl,AgriF,Th),
tp{TF,x0(HF, Th), [np(KF) 1, ABC) .

tp(tp/[T1],HC,AC,ABC) ~=>

202

+1(T1,HC,AC, ABC).

t1(t1/[t0(TF,Th)/T,AspP], xO(HF,Th), AC, ABC) -->
{ check_v_features(TF,HF),
\+ABC=[advp(_)]
},
t0{T,TF,Th),
aap_p(AspP,x0(HF,Th) ,AC,ABC).

t1(t1/[advp/[oftenl, T1]1,x0(HF, Th) ,AC,ABC) ==-> [often],
{\+ABC=[advp(_)1},
t1(T1,x0(HF,Th),AC,ABC,).
t1(t1/[t0(TF,Th)/T,AspP], x0 (HF, Th),AC,ABC,.) =-->
{check_v_features (TF,HF)},
t0(T,TF,Th),
asp.p(AspP,x0(HF,Th) ,AC,ABC).

asp_p(asp_p/ [Aspl] ,HC, AC,ABC) =-=>
aspl(Aspl,HC,AC,ABC).

aspi{aspl/[asp0 (AspF,Th)/Asp,Agr2P],x0(HF,Th),AC,ABC) ——>
{ check_v_featurea(AspF,HF)
},
asp0 (Asp, AspF,Th) ,
agr2p(Agr2P, x0 (HF,Th) , AC, ABC) .

agr2p(agr2p/ [np (NF} /NP, Agr2_1],x0(HF, Th) , AC, [np(NF1)]) -->
{Th‘[—a-] »
caso(NF) uwmc2,
check_np_features(NF,NF1)
1,
np{NP,agr2spec,NF),
agr2_1(Agr2_1,x0(HF,Th}, [np(NF) | AC1).
agr2p(agr2p/ [np(NF) /NP, Agr2_1],x0(HF,Th),AC,{]) -—>
{Th=(_,.],
cage (NF) m=wc2
1,
np{NP,agr2spec,NF),
agr2_1(Agr2_1i,x0(HF,Th), [np(NF) [AC]).
agr2p(agr2p/[Agr2_1],x0(HF,Th),AC,[1) -->
{Th=[_1},
agr2_1(Agr2_1,x0(HF,Th),AC).

agr2_1agr2_1/[agr2_0(Agr2F,Th)/Agr2,VP],x0(HF,Th), [np(NF) INPs]) -->
{ check_v_features(Agr2F,HF)
},
agr2_0(Agr2, Agr2F,Th),
vp(VP, x0(HF, Th) , Enp{NF) |NP2]).

vp{vp/[np(KF)/NP,V1],x0(HF, [agt|Thal),AC) -->
{theta(NF)===agt,
select(AC,np(NF1),AC1),
case(NF1)===ci,

203

check_np_features(NF,NF1)
1,
np(NP, vaspecl,NF),
{lexical(NF}},
v1(V1i,x0(HF, [agt|Tha]) ,AC1).
vp(vp/{np{NF)/NP,V1]} ,x0(HF, [pat]),AC) ——>
{theta (NF)===pat,
select(AC,np(NF1),AC1),
case(NF1)m===c2,
check_np_features(NF,NF1)
L.
np(NP, vapec2,NF),
{lexical (RF)},
vi(V1,x0(HF, [pat]),ACl1).

vi(v1/[vO(VF,[Th1|Thal)/V,VP]1,x0(CHF, [Thl]|Thsl),AC) -=>
{check_v_faoatures (VF HF)},
vO(V,VF, {ThilThs]),
vp(VP,x0(HF,Ths),AC).
vi{v1/[vO(VF,[Thl)/Vv],x0(HF, [Th]),_AC) -->
{chack_v_features(VF,HF)},
vO(V,VF,[Th]).
c0Cfl,_,.) ——> 0.

agrl_O{Aux,AgriF,_Th) -->
aux(Aux,agrl,AgriF).

to(ld,.,-> --> 0.

asp0{V, AspF,Th) ——>
verb(V, AspF, Th).

agr2.0([1,.,.) --> [J.
VO([:I |-|—) -2 []-
np({],cspec,_} —> [1.

np{Subj,agrispec,NF) ——>
subject(Subj,NF).

np(0bj,agr2spec,NF} ~—>
object (0bj,NF).

np([1,vspeci,_) ==> [1.

np([],vspec2,_} —-> [I.

subject ([?Subj-{c2]1’/[11,NF) --> [s-[c1l],
{ case(NF)==cl,

index(NF,s)
}.

204

object{[’0bj-[c2]°/[1],NF) --> [o-[c213,
{ case(NF)=—==c2,
index(NF,o0)
3.

verb([*Verb~[asp]'/L[1]1.VF,Th) --> [V-[aspll,
{th_grid(v,Th),
code_features([asp],VF),
index(VF,V)
}.

aux([’Aux-{agr,tns]’/[1],agrl, AgriF} --> [aux-[agr,tns]],
{code_features ([agr,tns],AgriF)}.

check_v_features(HF1,HF2) :~
ind(HF 1) ===ind (HF2) , phi(HF1)===phi (HF2},
tns (HF1) mm=tns (HF2) , asp(HF1)===agp(HF2).

check_np_features (NFi,NF2) :-
ind(NF1)===ind (NF2}, theta(NF1)===theta(NF2),
case(NF1)===caga(NF2), phi(NF1)===phi(NF2),
op(NF1)===op(NF2).

th_grid(v,Th) :-
(V=iv, Th=[agt]
H V=tv, Th=[agt,pat]
).

code_features([FIFa],VF) :-
code_feature(F,VF),
code_features(Fs,VF).

code_featurea([],_).

code_feature(F,VF) :-
Feature=. . [F,VF],
Feature === Q(F1,F1,_),
F=F1,

index{Chain,Cat)} :-
ind(Chain) === @(I,I,.),var(I),

((Cat=iv;Cat=tv), L=l
H Cat=s, I=2
H Cat=0, I=3

.).

" lexical(Chain) :-

ind(Chain) === ¢(I,_,_) ,nonvar(I).

205

Appendix B

Parameter Spaces

B.1

#1 Q 0 9
f[s v, 38 vol
2 0 0
[osv, sv]
#3 LI]
[= v, 8 vo]
4 i ¢
[v 5, v aoal
5 o 0
[o s ¥]

*6 0 0
[s v, 8 v ol
7 o 0
[s v, 8 0 v]
8 i 0
[vs, ovs]
30 1 0
[s v, s vel]
#10 1 1
[vs, vsol
#11 o0
[osv, sv,
#12 1 0
fo v 8]

#13 1 0
[sv, 2 vol]
#14 1 0
[s v, 80 v]
¥156 11

{vs, vos]

#16 11 06 O
[s v, 8 v ol

81T 11 1 0
[vs, vsol]

18 i 0 0 0
[osv, av, 20

*9 1 1 0 0
{o v 8]

#20 11 0 0
[s v, 5 v ol

#21 11 0 0
[s v, 2 v o]
22 1 1 1 0

[ve, vos]

*23 111 0
[s v, 5 v ol

24 11 1 1
[vs, vs=sol

25 i1 0 0
[osv, sav, sv

226 11 1 0
[o v £]

27 11 1 0
[sv, s vol

#28 i1 1 0
[# v, s v ol

#29 11 1 1
[vs, vosl

#30 1111

206

[s v, & v ol

#31 111 11 06 0 0
[vs, vsol]

32 11 1 0 0 t 1 1
[osv, sv, 8 vo]

$33 1 1 £t 0 0 1 1
[o v =]

#34 111 1 0 1 0 1
[s8 v, 3 v ol

#36 1111 0110
[s v, = vol
*36 i 1 111 0 1 0O
[vs, vosl]
*37 1 1111 1 0 0
[vse, vasol

#38 i 111 01 1 1
[esv, 5v, 8 vo]

%39 1 1 111 0 1 1
fo v s}

#40 11 111 1 01
[s v, s v o]

#41 111 11 11 0
[vs, vsaol

42 11111 1 1 1
fovs, sv, 8vo]

*#43 0O 00 0 0 1/0 0 0
[v, 3 vol

$44 0O 0 0 0 0 0 1/0 0O
[osv, sv, 8 vo]

*45 0O 0 0 0 0 0 0 1/0
[s v, 3 v o]

%46 o0 ¢ 0 0 0 1/0 1 O
[sov, osv, sv)

*47 0 0 0 0 0 1/0 0 1
[s v, 3 vol

#48 0 0 0 0 0 0 1/0 1t
[o 8 v]

#2495 0 0 0 0 0 0 1 1/0
[o=sv, = v]

#50 ¢ 00 0 0 1 /0o 0
[sov, sv, 8 vol

351 0O 0 0 0 01 0 1/0
[sv, 8 vel

52 i 000 0 t/0 0 0O
[svo, sv,"vs, vsao]

#53 1 0 0 0 0 0 1/0 O
[ovs, vs, vsol

254 i 00 0 0 0 0 1/0
[vs, vsol

#55 0 ¢ 0 0 ¢ 1/0 1 1
[0y, sv, osv]

#56 00 00 0 1 1/0 1
[sov, osv, s8v, 85 vol
57 000 0 01 1 1/O
[osv, sv, 30v]

68 1 0 0 0 0 1/0 1 ©
[sov, sv, v=&, ovs]

259 100 00 1/0 0 1
[sv, 8 vol

#60 i 0 0 0 0 0 1/0 1
[o v 8]

261 i0000 01 1/f0
[vs, ovs]

*#62 i 0 ¢ 0 0 1 1/0 ©
[so0v, av, = vol

263 1 000 01 0 1/0
[= v, 8 vol

%54 11 0 0 0 1/0 0 0
[svo, sv, vs, vsol

265 i1 0 0 0 0 1/0 O
[ves, vs, vso]

#66 i1 0 0 ¢ 0 0 1/0
[vs, vsaol

67 1 0 0 0 0 1/0 1 1
[sov, sv, osv, ovs]
#58 1 0 060 0 0 1 1/0 1
{gov, o8v, Bv, s vol]
#69 i 00 0 0 &t 1 1/0
[osv, 5v, Bov]

#70 11 0 0 0 1/0 1 ©
[sve, sv, vs, vos)]

71 1100 0 1/0 0 1
[s8 v, 3 v ol

207

*72 11 0 0 0 0 1/0 1
[o v 8]

*73 11000 01 1/0
[ovs, vs, vos]

74 11 0 0 0 1 1/0 ©
[s=v, 3 vo]

175 11 0 0 01 0 1/0
[# v, 8 vol

376 111 00 1/0 0 0
[svo, sv, vs, v 3ol

144 111 0 0 0 1/0 0
[vos, vs, vseol

*78 111 0 0 0 0 1j0
[vs, vs=o]

&79 i1 0 0 0 t/0 1 1
[#vo, s¥, osv, ovas]

#80 11 0 0 0 1 1/0 1
[esv, sv, s vol

81 i1 0 0 0 1 1 1/0
[ocsvy, av, 8 vol]

82 111 0 0 1/0 1 ©
[svo, sv, vs, vos]

#33 11 1L 0 0 1/0 0 1
[s v, 8 v ol

84 i 11 0 0 0 1/0 1
[o v =]

#85 it 11 0 0 0 1 1/0
[ovs, vs, vos]

286 i 11 0 0 1 1/0 ©
[g v, 8 v ol

287 111 00 1 0 1/0
[s v, 8 v o]

#88 111 434 0 1/0 0 O
[svo, sv, vs, vaol

#89 11t 11 0 0 1/0 0
fvoa, vs, vsaol

#90 1111 0 0 0 1/0
[vs, v=so]

91 i11 00 1/0 1 1
{svo, Bv, o8Bv, ovs]

#92 111001 1/0 1t

[o s v,

sv, 8 vol

293 111 0 01 &t 1/0
[osv, =v, 8 v o]

94 1 1 1 1 0 10 1 0
[svo, sv, vs, vos]

*95 111 1 0 1/0 01
[s v, s vol

196 t 111 0 0 1/0 1
[eo v a]

*#97 i1 11 00 1 i/f0
[ovs, vs, vos]

#98 1 4111 0 1 1/0 0
[sv, & vol

#99 111101 0 t/0
[s v, s vo)

#100 1 1 1 1 1 10 O O
[vse, vsol

*101 11111 0 1/0 0
[vos, vs, vs ol

#02 1 1 1 1 1 0 0 1/0
[vs, vsol

%103 11 1 1 0 1/0 1 1
[svo, sv, osv, ovs]
#104 1 1 1 1 0 1 1/0 1
[osv, sv, s v o]

#106 i 41 11 01 1 1/0
[losvy, sv, 5 vo]

#106 i 1111 1/0 t 0
fvso, vs, vosl

%107 1t 111 1 1/0 0 1
[s v, s vol

#108 i 111 414 0 1/0 1
[o v 8]

£109 it 111 1 0 1 1/0
fovs, ve, vos=]

#3310 1 £ 1 1 1 1 1f0 ©
[ve, vso]

111 i 3+ 11 ¢t & 0 1/0
fsvo, av, ve, vsol
$112 1 11 1 1 1/0 1 1
[vo, 8v, ovs]

208

#113 1 1 1 1 1
fovs, sv, 5 v o)

1 1/0 1

#1144 {1 1 1 1 4
[svo, av, ovs,

i1 1/0
vse, vaol

%115 o 0 0 0 0
[osv, s0v, s5v,

i/0 1/0 o©
s v o]

#116 o 9 0 0 0O
[sv, 8 vo]

i1/0 o 1/0

$17 0 0 0 0 ©
[oavy, s8v, s vol

o 1/0 1/0

#112 0 0 0 0 O
[svo, sv, sov,

1/0 1/0 1
o8 v]

#¥¢119 0 0 0 0 O
[sov, osv, s8vl

1/0 1 1i/0

#120 o0 0 0 O
[csv, so0v, sv,

1 1/0 t/o
8 v o]

#121 i 0 0 0 O
[ovs, so0ov, 8w,
vs o]

i/0 1/0 o
5 vo, VY E,

$122 1 0 0 0 0O
[sveo, sv, vs,

1/0 0 1/0

v s o]

#123 1 0 0 0 O
[ovs, vs, vsol

o i/0 1/0

$124 1 0 0 ©¢ O
[sveo, sv, o8vw,

i/0 1/0 1
gov, ovas]

*125 1 0 0 0 0
[ocsv, av, saov,

1/0 1 1/0
vsas, ovs]

#126 1 0 0 0 O
fosv, sov, sv,

$127 i1 1 0 0 O
[vos, sv, svo,

1 1/0 1/0
s v o]
1/0 1/0 0

ve, vso]

#1128 1 1 0 0 O
[evo, sv, vs,

1/0 o tfo

v 5 o]

#129 1 1 0 0 0
[vos, ovs, vs=,

0 1/0 1/0
v s o]

#130 1 1 0 0 0
[svo, av, osv,

1/0 1/0 1
o v al

#131 1 1+ 0 0 0O
fove, osv, 8V,
v o 8]

1/0 1 1/0
svo, vs,

%132 1 1 0 0 0
[osv, s8v, 8 v ol

1 1/0 1/0

#133 1 11 0 0 1/0 1/0 ©
[vos, sv, svo, vs, vso]

#1134 111 0 0 1/0 0 1/0
[svo, sv, vs, vso)

*#135 i 11 0 0 0 1/0 1if0
[vos, ovs, vs, vsol

#136 111 0 0 1/0 1/0 1
[evo, sv, osv, ovsl

#137 1 1 1 o 0 1/0 1 1i/o
[ovs, osv, s8v, s8voe, vs,
v o 8]

#138 1 1 1 0 0 1 1/0 1/0
[osv, sv, 8 vo]

#139 1111 0 1/0 1/0 ©
[vos, sav, savo, vs, vsol

#140 1 1 1 1 0 1f0 O 1/0
[sevo, sv, vs, vsol

#141 1 11 1 0 0 1/0 1i/0
[vos, ovs, vs, vs ol

#142 1 1 1 1 0 1/0 1/0 1
[evo, B8v, osv, ovel

#143 1 t 1 1 0 /0 1 1/0
[ovse, osv, sv, s8vo, vs,
vos]

#44 1 1 31 1 0 1 1/0 1/0
[csav, Bv, 8 vo]

#145 11414 1 1 1/0 1/0 0
[vos, vs, vs ol

#146 1 1 1 1 1 1if0 O 1/0
[sv, svo, vz, vsol

#47 1 1 1 1 1 0 1/0 1/0
[vos, ovs, vs, vso]

#48 1 1 1 1 1 1/0 1/0 1
[s vo, 8 v, o v sl

#149 1111 1 1/0 1 1j0
[ovs, avo, 8v, veo, Vvs,
v o 8]

2150 111 414 1 1 1/0 1/0
[s ve, =v, ovs, vs, vsao]

#181 0 0 © 0 0 1/0 1/0 1i/0
[osv, so0v, av, 5 vol

#152 1 0 0 0 O 1/0 1/0 1/0

[ove, savye, sv, so0v, o08Y,

209

11110

1
1 00 0 0 ¢ 0 1/0

v s o]

Vs,

1 000 0 0 1/0
111000 0 1/0

1

110 0 ¢ 1/0 1/0 1/0

#1563

svo, BY, OS5V, O0OVYS,

v 5 o]

[v o s,

1 0 0 0 1/0

1
1
i
i

1
1
1

1
v s ol

v s,

1 0 0 1/0

i
1

1/0 0 0
111 1/0 0

1

1 0 0 1/0 1/0 1/0

1
8 V o,
v s o]

1

#1654

1

osv, ovVs,

8 v,

[vos,

[v s,

vas,

¢ 0 0 0 0O 0 1t O

3

11110 1/0 t/0 i/0
s vo,
v a o]

#1565

1/0

0 00 ¢ 0 0 1

oBY, OVS,

s v,

[vos,

s v]

[o 8 v,

v s,

0O 0 0 0 0 1t 1 O
i 00 0 0 1
s o v]

4

i/0 t/0 /o

ovs,

1

i
s vo,

1

1

1

¥156

1 0

v s,

8 v,

[vos,

[s v,

v s o]

o0 0 0 01 0

1

*5

1 00 0 0 0 1 1/0

o v s)

B.2

*t

[v s,

0 00 0 0 0 1 1

¥

O 0 0 0 0 0 0 0
¢ 0 0 0 01 0O

1 0 0 0 0 1

0 0 0 0 0 0 1/0 4

[o & v]

1 0090 0 01 1

1

L 14

o 0

O ¢ 0 0 0 1 0 1
110001 00
1 000 01 0 1

1000011

111060 011

1 111001

0010 90

i

1
1106 00110

1

1111190 1 1
1 00 0 0 0 1/0 1

i1 0600101

111101 00

1110011

100 0 0 1/0 1
i1 0 0 0 1/0 1
1111 0 0 1/0 1

1
1

0

1 6 01 01

1

1110110
11101 01
11111 01

i
i
1

1111 0 1/0 1

1

[o v =]

00 0 ¢ 0 0 0 1/0
0 00 0 0 1/0 0 O
0 0 0 001 0 1/0
0 00 0 0 1/0 0°1
1t 000041 0 1/0
1 0 0 0 0 1/0 0 1
1100901 0 1f0

i 00 G 0 1 O

1
1

8

11 ¢ ¢ 01 0

11110010
111119010

v o s]

[v 8,

o0 ¢ 0 0 0 1 11
1 6 0 0 0 1 1

*9

1/0 0
11 0 0 0 1/0 0 1
111 00 1 0 1/0

11 0 0 0 1

1

¢ 00 0 0 1/0 1 O

i/0

1
¢ 00 0 0 1/0 1 1
1 000011 1/0

0 0 0 0 0 1

1 0 01 1/0 0
0 0 1/0 O 1
111101 0 t/0

1

1
1

1/0

000 0 0 1/0 1

111 01 /0 0

1110 1/0 01

i 111 1/0 01
000 0 0 1/0 0 1/0

3 v ol

1
1
1

csv, sv]

[s o v,

1
1
1

0 00 0 0 0O 1/0 O

110 0 01 1

*#10

11 0 01 1

11110 11

1

[3 v,

¢ 0 0 0 0 0 0
1 0 0 0 0 0 0
111 0 0 0 0 O

1
1

0?2

1 1/0

i1 0 0 0 1
1/0 1

1 06 0 0 1

1
1

-

- -

-

c o

[=J =]

[~ =2

O -

-

—

-

-

1 011 1/0

1

1

11111 0 0

1

210

1 11 1 01 1/0 1
o 0'0 0 0 0 1/0 1/0
i1 0 0 0 1 1/0 1/0
1 114 0 0 1 1/0 1/0
1111 01 1/0 /0
[oav, sv, s vo]
#11 1 1 1 1 1 1 1 1
i1 1111 1/0 1t
i1 1 1 1 1/0 1 1
i1 1 ¢t 1 1/0 /0 1
{svo, sv, ovs]
#12 1 06 0 0 0 t/0 0 O
1100 0 1/0 0 O
i 11 00 t/0 0 O
i1 11 0 1/0 0 O
11 1 111 0 1/0
1 0 0 0 0 1/0 0 1/0
110 0 0 t/0 0 1/0
i1 1 0 0 1/0 0 1/0
i 111 0 1/0 0 /0
111 1 1 1/0 0 1/0
[svo, av, vs, v 5 o]
#3 0 0 0 0 0 1 1/0 O
1 00 001 1/0 O
[sov, sv, s vo]
#14 1 0 0 0 0 0 1/0 O
1 0 0 ¢ 0 0 1/0 1/0
[ovs, vs, vesol
#15 110 0 0 0 1/0 ©
i 11 00 0 1/0 ©
i1 11 00 1/0 ©
i1 41 1 1 0 1/0 ©
111 1 41 1/0 1 O
111 1 1 1/0 1/0 ©
[vos, vs, vso]
#6 0 0 0 0 0 1 1/0 |
i 0 0 0 01 1/0 1
0 0 0 ¢ 0 1/0 1/0 0
o 00 0 0 1 1/0 /0
o 00 0 ¢ 1/0 1/0 1
1 0 00 0 1 t/0 1/0
0 00 0 0 1/0 1/0 1/0
[osv, so0v, 8v, s vol
#7 1 0 0 0 0 1/0 1 O
[sov, sv, vs8, ovVs)]
#18 11 0 0 0 0 1 1/0
111 0 0 0 1 1i/0
i 111 00 1 1/0
11111 0 3% 1/0
{fovs, vs, vos]
#19 i1 0 0 0 1/0 1 0
i 114 0 0 1/0 1 ©
1t 1141 0 4/0 1 O

[savo, sv, v5, vos]
#20 1 0 0 0 0 1/0 1 1
[sov, s8v, oav, ovs]
#21 1 1 0 0 0 1/0 t 1
1t 11 06 0 1/0 1 1
111 1 0 1/0 1 1
110 0 0 1/0 1/0 1
111 0 ¢ 1/0 1/0 1
1 11 1 0 1/0 1/0 1
[svo, sv, osv, ovs]
2§22 1 ¢+ 1 1 1 1 1 1/0
i 1111 1 1/0 1/0
[svo, gv, ovs, ¥vs, vso]
23 1 0 0 0 0 1/0 1/0 0
[ocvys, sov, sv, svo, vas,
v s o]
$24 11 0 0 0 0 1/0 1/0
11414 0 0 0 1/0 1/0
1111 0 0 1/0 1i/0
1111 1 0 1/0 1i/0
[vos, ove, vs, vs ol
#26 1 1 0 0 0 1/0 1/0 ©
11414 0 0 1/0 1/0 0O
111 1 0 1/0 1/0 0
[vos, sav, svo, vs, vsol]
#$26 1 0 0 0 0 1/0 1 1/0
[osv, av, s80v, vs, ovs]
27 i 00 0 0 1/0 1/0 1
[sveo, sv, osv, so0ov, ovs]
%28 11 0 0 0 1/0 1 1i/0
1 11 0 0 1/0 1 1/0
i 111 0 1/0 1 1/0
[ovs, osv, sv, svo, Vs,
v o 5]
#29 1 1 1 1 1 170 1 1/0
11111 /0 1/0 1/0
[vos, sv, Bvao, ovs, vs,
v s o]
#30 t 0 0 © O 10 1/0 1/0
[ovs, svo, sv, sov, 08Yv,
vs, vsol
#31 11 0 0 0 1/0 1/0 1/0
111 0 ¢ 1/0 t/0 1/0
111 1 0 10 1/0 1/0
[voe, aveo, sv, osv¥, ovVs,
vs, vsol

211

0 0 0 0 0 1 1 1

1

#10

B.3

00 0 ¢ 1t 11

oo o
e S
L= =] oo OO OrHO A= < o L= 1.”u -
H...l..l.vn. OOUU..N 0011” .N. OO.H_ 11:-...: .ﬂ.... vu. o9 .M_ - o 1.......: ~ Py
bal
o000 (=] o0 = [B v] =~ -] o R
~ [T -~ -] b T, Y, T T T . @ @
- - B 000 OMOOOw G - HrEHEH A A B (=TI R -] oo o o B i
@ —~ (=3 =" —~ [@ 5 [
-] e] - = o o
11.“. 0000“ .111.11111.“ 00“ 11111111.“ 1.11#... A== R = =] ot o W o
' ey [- ~r ~ £y 'S
(= = OO o COO0OHOO0COH o x o COOCOOOOoOO - O O oo oo e
" Ly - - [-] w L] n
(== o - HH A A o® - o OO0 O0OCOO0O0OCO i - - o ot o
el -~ [am] L -
> » E -} L] ~ o .~
(=] ol -~ o v o v e e o -~ O H OO O ha o IR 2 ol oo et o B - g
-0 % - ® B i = a3 2
0O o~ ™ v o e o o v e - @ - o~ Rl BE BE B BE R B B Y ol - @ ™ v - o oo e - o B
+# = -] + B o - 4 a o
“H @ o Lo @ H o = L2 g St
o - o oW o - B o v v = O - - P oA e OR O o - @ LI I I [-
e = - ko] Y ~ ~r L "y
" < » S " " > "> >
-3 u - n L] ﬂ - H L] ﬁ - m -] ﬂ -] m
o OCrHOHMOO-WOOw 000 -~ oo
0Nl oOMOMOOUOag _m_ o = FloocovuaeloYlooFTiowln - o
=] o o0 oo =] ==~
- o M L L] L] i~ - bt T S e
oo OCO0OQCQCOOCAHOC 00 o (=201 (=2 COOCOOO - - -l - - ol o o -
L] (=] (= m. m.\m L] \m \m -]
Oom 11111111111”1”111111“ 000000ﬂ 0“ 11“ Oﬂ oo QOO 0CC0C L=
o @ ha) H o
(== 4 OOOOOOOOOOOOOOOOOOOOJM OO OO 00w o o oo o L= o0 Q00000 (=3
s ~ Jm ~ ~ Jm.
o
QO W~ D00 OCOO0OOOO0000C00O00OO0OO N COO0C0 OO W 0-. SO m L o0 OO0 O0OO0CO0 [=]
™ L}
L4 >
o0 - OO0 QOO FMOOWMHWODOOOOCOO M-~ = SO HO O » (=] oo - o - oo 0010018 (=]
> L] L) L L] 0 >
(==] 00010111110000111111\m OO > (=20 -] Oo\m o > Oosm 01.1011.\m -
‘e o] AHA A ElOEl Om Eloos s
- - - oo ot
000 (=2] 1.11.111.1001.11.11111._.. - H b3 hof g & 1f -
ol (-] ot » Q = Q -]
- (O\ o L] m - W o w L] 0 b Q w0 < [+7]

e v (oftan) o]

11100010

(often) v o s8]

[{often) v =,

0 00 0 0 0 1/0 0

#19

212

[(often) o 5 v, (often) s v,
(often) 5 v o]

%20 0 0 0 1/0 0 ©
0 Q9 0 L/0 0o 1/0
[a (often) v o, s {often) v,
(often) s v, (often) s v ol

o0
o 0

#2611 0 0 0 0 1/0 0 0
1 ¢+ ¢ 0 0 1/0 0 0
1110 0 1/0 ¢ O
10 6.0 0 1/0 0 1/0
11000 1/0 0 1/0
1110 0 1/0 0 1/0

[s (often) v 0o, s (often) v,
(often) v s, C(often) v = o]

#22 0 0 O 01 1/0 0O

i1 0 o0 01 1/0 O
[s (often) o v, s (often) v,
s (often) v o]

L]
0

#23 1 00 0 0 0 1/0 ¢
[{often) o0 v 8, ({often) v s,
{often) v s o]

124 00 0 0 0 0 1 1/0
[o {often) s v, (often) o s v,
(often) s v]

#26 0 0 0 0 0 1/0 1 ©
[s C(often) o v, s (often) v,
(often) o s v, (often) s v]

26 11 0 0 0 0 1/0 O
111 0 0 0 1/0 0

[(often) v o s, {(often) v s,

{often) v s o]

#27 0 0 0 0 0 1 1/0 1
i 00 0 01 10 1
006 0 0 01 1/0 1/0
1 6 00 01 1/0 1/0

[o s (often) v, s {often) o v,
s (often) v, s (oftan) v o]

328 i1 0 0 ¢ 0 0 1 1/0
[o (often) v s, (often) v =,
{often) o v s]

$29 i 0 0 0 0 1/0 1 O
[s (often) o v, s (often) v,
(ofter) v s, (oftan) o v s]

#30 0 0 0 0 0 1/0 1 1
[s (often) o v, s (often) v,
o s {often) v, o (often) s v]

#31 1 0 0 1 1/0
1 0 0 1 t/0
[o (cften) v s, (often) v s,
(often) v o s8]

1 00
110

#32 1 1 0 0 0 1/0 1 O
i 11 0 0 1/0 1 0
[s (often) v o, s (often) v,
(often) v s, (often) v o sl

#33 i 00 0 0 1/0 1 1
[s (often) o v, =& (often) v,
o 8 (often} v, o (often) v s]

#34 1 11 1 0 o 1/¢ 0

11111 0 1/0 ©
[v (often) ¢ s, v (often) s,
v (often) s o]

23 1 1 1 1 0 1/0 0 0O
1111 0 1/0 0 1/0

[= v (often) o, s v C(often),

v (often) s, v (often) s o]

#36 1 1 0 0 0 1/0 1 1
111 00 1/0 1 1
i1 00 0 1/0 1/0 1
111 00 1/0 1/0 1

[s (often) v o, 8 (often) v,
o s (often) v, o {often) v =]

37 111 1 0 0 1 1/0

it 11 1 01 1/0
[o v (often) s, v (often) s,
v (often) o s8]

#38 1 1 14 1 1 10 0 O
[v s (often) o, v s (often),
v (often) s, v (often) s o]

39 1111 0 t/0 1 0O
[s v (often) o, s v (often),
v (often) 8, v (often) o s}

#40 1 11 ¢t 1 1 0 1/0
[s v (oftan) o, s v (often),
v 5 (oftan), v s (often) o]

#41 1 1 1 1 1 1/0 1 O
[v s (often) o, v s (oftaen),
v (often) s, v (often) o =]

#42 1111 0 1/0 1 1
i1t 1 0 1/0 1/0 1

[s v (often) o, 2 v (often),

o 5 v (often), o v (often) =]

#43 1111 1 L 1 170
11111 1t 1/0 1/0

I[s v (often) o, s v (often),

o v s (often), v 8 (often),

v s {(often) o]

14 111 1 1 /0 1 1
111 1 31 1/0 /0 1
[s v (often) o, = v (often),

213

o v s (often), o v (often) s]

45 0O 0 0 0 0 O 1/0 1/0
[(often) o 5 v, o {often) s v,
(often) s v, {(often) s v o]

46 00 Q0 Q 0 /0 1/0 ©
[(often) o s v, = (often) o v,
s (often) v, s (often) v o,
(often) s v, (often) s v o]

247 1 0 0 0 0 0 1/0 1/0
[{oftem) o ¥ 8, o (often) v =,
(often) v 5, (often) v s o]

#48 1 0 0 0 0 1/0 1/0 O
[(often) o v 8, & (often) o v,
a8 (often) v, s (often) v o,
(often) v s, (often) v s o]

#49 0 0 0 0 0 1/0 1 1/0
[o (often) s v, o & (often) v,
s (often) v, s (often) o v,
(often) o s v, (often) s v]

850 0 Q0 0 0 0 1/0 1/0 1
[s (often) v o, s (often) v,

o 8 (often) v, s (often) o v,
o (often) s v]

251 11 0 0 0 0 1/0 1/0
1 1 1 0 ¢ 0 1/0 ifo0
[{often) v o 8, o (often) v s,
(often) v 8, (often) v s o]

#52 1 1 0 ¢ 1/0 1/0 ©
1 1 t ¢ 1/0 1/0 ©
[(often) v o &, = (often) v,
s (often) v o, {often) v =,
(often) v s o]

0
0

3 1 0 0 0 0 1/0 1 1/0
[o (often) v 5, o s (often) v,
s (often) v, s (often) o v,
(often) v 8, {often) o v sl

64 t 0 0 O 0 t/0 1/0 1
[s (often) v o, s (often) v,

o 8 (often) v, s (often) o v,
o (often) v =]

46 1 1 0 0 i/0 1 1/o
1110 1/0 1 1/0
[o (often) v s, o s (often) v,
s (often) v, = (ocftemn) v o,
(often) v 8, (oftan) v o =]

0
0

#56 1 L 1 1 0 o0 t/0 1/0

111411 0 1/0 1/0
[v (often) o s, o v (often) =,
v (often) s, v (often) s ol

#B7 r 11

[v (often) o =,
s v (often) o,
v (often) s o]

1 0 1/0 1/0 ©
s v (often),
v (often) s,

;s 1 1 1
[¥ & (often) o,
s v (often),
v (often) s,

11 1/0 o 1/0
v 8 (often),

s v (often) o,

v (often) s o]

#59 1 1 1

[v (often) o =,
v 8 (often) o,
v (often) s o]

i1 1/0 1/0 0©
v s (often),
v (often) s,

20 1 1 1
[o v {often) =,
s v (often),
v (often) s,

i ¢ /0 1 1/0
o 8 v (often),

8 v (often) o,

v (often) o s8]

%61 1 1 1
[o v {often) =,
s v (often),
v 8 {often),
v (often) s,

11 i/0 1 t/o
s v (often) o,

o v 5 (often),

v 8 (often) o,

v (often) o s]

2862 O 0 0
[{often) o 8 v,
s (often) v,

o 8 (often) v,
(often) s v,

0 0 1/0 1/0 1/0
s (often) v o,
s (often) o v,
o (often) s v,
(often) s v o]

#63 1 0 0
[(often) o v 8,
s (often) v,
o 8 (often) v,

6 0o /0 1/0 1/0
s {(often) v o,
s (often) o v,
o {often) v =,
(often) v 5 o]

(often) v s,
4 1 1L O
1 1 1

[{often) v o s,
s (often) v,

o (often) v s,
(often) v s o]

0 0 1/0 1/0 1/0
0 0 1/0 1/0 1/0
8 (often) v o,

o 8 (often) v,
(often) v s,

#66 1 1 1
[v (often) o s,
s v (often),
o v {(often) s,
v (often) s o]

1 0 1/0 1/0 1/0
8 v (often) o,

o s v (often),
v (often) =,

#66 i1 1
{v (often) o s,
v s (often),
s v {often),
o v {often) s,
v (often) = o]

i1 1/0 1/0 1/0
v s (often) o,
o v s (often),

8 v (often) o,

v (often) =,

214

L I I B I B R B B I B B R B I L

H ool o oer o oA H o o oA
e
Crim OO 00 M HOOQOO A
Y S T,
ot L]
(=3 =2 -] LO0CO0 OQoQCOO0
s T e S e,
- [= =08 OO~
o0 (=~ oo
T e T e e e 3
o H A T e e v v e e e -
OO0 0CO0OOLO0COOOCOOw
OCQQOO0OOOCOCOH ™A
QOO A rH v v oo
o H e o o e e
o v v e o o vt o e

HOH A o H o H o H e oA
A oA S H A HH A H A AR
OO0 O00O0O0O0O0OC -
QOO0 00C0O0O0O0OO0O00OC
C O OO0 M A A -
COoO0O0O0OO0O0OCCOQD
CoOCOO0O0O0OQCOOQOCOCOCO
CCOoOCOO0O0ODOCOCO
Au COOCOoO0CO0OO0O0OCOCOCO
B “0000000011000

114111 1/0 01,1

£
i

f

¥

o000 01 01

i

1

110001 00,1

o i/0 o0 1/0,

f
i
£

£
f

0o 1/0 0 1/0 , i

o 1/0 o 1/0,
o 1/0 0 1/0,

(=R =]
oo
oo
- oo

v vt v

¥2

oo
(= =]
o0
oo

- -

i

o

- -

(=2
- O
-
(=1 -]
oo
(==
- -

- -

11000000
11 0 090 0 00
11100000

f
, 1
0 0,f i

r

o 1

11 0 0 0 1

01
0 1
111 0011 0,1

11 1 1
11 1 1

i
i

1

i

111001411 0,*¢

ol et

oA Mo

A n &

- o
o O -
R)
o o0
O
- oo
- o

1 0,¢f 4
01,1
1111410101

111 0 1

[+

1

11111

11 0 1

1

i

£
, 1

1111101

1

R R IR B B B B IR IR B B

A H o H o H o H A A o
OO0 O
T My, Y,
i vl

[= =}

1/0 ,
i/0 ,
1/0 ,
t/0 ,
t/0 ,
i/0 ,
t/o ,

000000000000
R
COCCO0OOOO0OOODOA

COoOCO0OO0OO0O0O0O Y™
OO0 O0OOM-E "~
CQO QO ™ v v v
OO iAol

A A A A A A A A AAA

Mo oA oA H o H A

HOO0O0OO0OO0OOCOOO0OC
HO0OO0OO0O0OO0OOO0OOQOQ
00000 QOOOO0O
HO0OO00O00O0OOOOCCO0O

HO0O00O0OO0O0O0O0O00CC0C

1 1/0 0,14

111 11

00 0 0 0 1 0 1/0
0 00 0 0 1/0 0 1
0 0 0 0 0 1/0 0 1
0O 00 0 ¢ 1/0 0 1
9 00 0 0 1/0 0 4

1 1/0 0, i

1

1
v s o]

[v =,

#3

O HH A

i
£
i

Hoer HoA

p=a ==

]
»
r

cCco
S owd
L= 2 =0 -]
(= =]
(=~ =]

- OO

1 0 0000 00O
i 00 000 00
11 000 00O

0o ¢ 0 90011 0,

™ v o

i
i
1
i
i
i
i

00 0 01 0 1/0

0 0 0 0 1 0 1/0

00 0 ¢ 1/0 01,1
i1 0001 1/0 0,1

1
1
1
1
1
1

215

i1 000 1/0 0 1

f
i
f

0 000 011 0,i

110 0 0 1/0

11110 0 0 1/0

1

1

0O 000011 0,1%

0 0 00011 O0,f

i

i1 0 1/0 0 O

i

i

i1 0 00 00

HH Y
oA H o W
- ohon
QOO O
T
- -
L= o Co
cown
o =
S s
L alR = IR B IR]
00000
- OO0 0O
e R I]
ol o
oo
HOHOH e oA
Yt ool B e
000000
O QO = -
O vl oo T
CoOOCOoOC0
o000 CCO
“~oQOCOQ
- - OOCO
ol o o e

111 0 0 1/0 0
11111 0 0 1/0

111 1

f

o0 0 011 0,1

b

100001 0¢1,if

i1 0009101, 1

1 1/0 o

11 1 1 %

1111

i 0000,1i ¢

i1t 06006 0,f £

11

i
1

111101 0 1/0

1001 00,1f
i 00100,*f
1100011 0,1

1
1

111101 0 1f0,f f

111101 1/0 0,1
111101 1/0 0,f f

1

b4

f
f

1

00 0 11 0,

1

HOH
-
- on
- - Q

T

-
(==}

o
(==
T S
-
SO
ot
o
Ll
o
HHA
A HH
- -
[B R o)
- -o
[~ =20]
[= =08 o]
o O -
oo
o

i 11 0 1/0,f £

1 1

1

T
E

11111000,*¢f

i

1111 1 1 1/0 0, %
t 1 1/0 0, f f

11 1 1

i

¥

11110100

1 1/0 0 1 ,¢f i

11 1 1

t 1/0 0 1 ,f f
i 0000 1/0 0 1/0,1 f
i 0000 1/0 0 1/0,f £

1

i

£
1t
£
£
T
f
2
f

111 00 1/0 0 1/0,1i

i1 00 1/0 0 1/0, ¢

1

11100110

1

1

11100101

™
22
- -
oo
22
v
(=2 =]
Lo =
(=2 =]
-
Lalk o]
ot Yt
B
c o
oo
LI |
bkl
-
- -
- -
R el ol

0
0

HHH W
Co0o0O
e T T S
o -
Qo CO
OO0 0O
T, T Ty
LR]
SO
- oo
oo
o o
o e
L L
O

- n .
- OO
O O vt
o e e
OO mw-
o
o e oo
o e
oo

5 0 v]

[s v,

f i
, £ £

11111101

0O 0 0 0 0 01 0

4

/0 ,i £
i/o , t £

i 0000 1/0 0 0,41 %

- o

oo 0

- o O

- O

o
-Oo O
- O O

-t

0 0 0 0 0 0 1 0

-
o
o Cco
L= = =]
L= = =]
(===

OO

1
£
c 0 0 0 0 1/0o,tf t

0
1
1

1
1
1

L= =]
QO

- -

H ™

-

- -

[= =]
(= =]

(= =]
LAkl

[~]
oo
oo
-

-

i000¢901 0,1 f

i

f

i 000 01 0 1/0,1
i 000 0 1 0 1/0
1 00 0 0 1 1/0 0

100 0 01

1

i1 0001 0,f f

11100 01 0,i

i

1111001 0,1i ¥

1
i

£

11111 01 0,f

>

110 01 0

1

1000 0 1/0 ¢ 1

i 006 0 0 1/0 0 1

-

111101 0,f

0 0 0 0o o0 01 1/0,

1

wH A HHH M

el O oA

1
Tt
1

1 00 0 0 L/0
110 0 1/0o ¢ 0,1
11100 /0 0 0, f

1

1
1

o 0 0 0 90 0 1 1/0,

00 0 0 O 0 1 1/0,

f f

11t 11 1

1

1

1 00 0141 /0,41 ¢t

1
1

1 10 0 0 1 1/0
111 0 01 1/0

i
1

o 00 00 1/0 1 0,1

£

1/0 , £

1110 01

ot O N

i HH A e
a moa oA oa oa
OCO0OO0OoOOoOCOC
o OO w
~~
- ol
000 (=3
T S .,
- e OO
o000 CO
OO0 O CO
O COoOO0O0O0
QO OQvrmwoO
QOC A~
-
-
L
- - ol
oo -
S
- o -
™ ol -l
o o o
s Hm o
»
—u o
— - - o
»
W (=]
-] Lo
o =t » O

Hoord o o H o H R H

100090 1/0t 0, f

1

i

o0 0 090 01 1

1/0 , i
i/0,
1 t/0,

o000 0 0 1 1

o0 0 0 0.0 2t 1,f 1

i
£
£
i

1

0 0 0 0 1
o 0 0 0 1
0 0 0 0 0 1 1

[+]
0

H W

LI

o
-
o0
oo
o0
o0
[=2 -]

L=]

i/o0 ,

6 0000 1/0 1 1,
¢ 0 0 0 0 1/0 1

1 0 0 0 0 0 1 1

1 0 0 0 0 11

1

1

1,f ¢

o 0 0 0 1

1 0 0 0 1
i1 00011
1110 01
111 0 01

i
i

¢ 00 0 0 L0 1 1 ,f
¢ 00 00 {/0 1 1, ¢

.

1

1
1

£
i
T

i

©c 0 0 1/0 0, 4%

111 00 0 1/0 0, f

11

1

*

1
1

¥

1

1000 14/0 1 0,1

1100 0 1/0 1 0

i

11111 01
11111 0 1

H

1

A =
H oA H A
o000
e e e]
R]
=]
S
- oo -
- oo o
o O0CC o0
COO0O00o
oo 00
(=== -]
R I]
o WO
o o
- o o e
coQoL
T M Sy Sy
od o
0000
COO0OO
QOO0 OoOo
COQLo0
cCO0OoO0
CO0OO-

.

HOHHE NN

f
i

10000 1/0 1 1,1
10 0 0 0 1/0 1 1, f
11110 0 1/0 0,
11110 0 1/0 0,

A

(=g =]

o
o0
i
R
(==
(=2 =]

-

-l o

1 00001 1/0 1,
110001 1 1/0

- o

£
£
f
f
i
f

1 00 0 1/0 1 ,i f
100 0 1/0 1, ¢
it 00 t/01,i ¢t
it 10 0 1/0 1,1 f
1111141 0 1/01,7¢

100 0 0 1/0 1,1
1 0000 1/0 1, ¢

i 009000 1/0 1, ¢
i
i
1
1

1
1
b
1

Lol

HHHHHAHHH A

1+ 00011 1/0,f
110 0 01 1/0 1,14

0 1/0 1, ¢

i1 1

11
[o s v]

o

o
(=20 o]
b
-
<

)
Lol s]

oo
(=1 =]
(=] =]
-

v -

6
1

1000 1/0 1 t,f

1

i

, i

o 00 0 01 0O

HOH A
Qo000
QO H
T M
- o

22
OO A
- -0 0o
- oo
oo
-
- oo -

wd e
-

H
[P
-0 O
S
O -
ot
[~ = I =]
[~ ==]

L]
(=20 - o B
0000

-
OO n

>
o vl bt

o H

1 1/o,
1 t/o,

11001
i1 001

1
1

¥7

B B HH
]
o vt
29 -~
"Tee
vl v e
QO o
(=3 = BN o B o |
™ v v o
vl v et
v v v v
el e
el o P S
ot vt o
vt vl vl
i vl v v
[~~~}
QOO0
[I o= I e e
OO0 0O
(=2 = B = 0 =]

B H e A

i/o 1 0o, f

11 1
1

1

106 0 0 0 1 1 1

i/o 1 o, f

100 001 11

ol B o

i1 01 1 t/0,
1111011 1o,
111101 1/0 1

1

1 00 0 0 1 11

11 0 0 01 1 1

1 01 1/0 1
1 0 t/0 1 1

1
1

1
1

1

1t
i

i1 0 00 1t 1 1,°T

1

y 1
, £
P

» i

it 1100141 11

L I

- -

1/0 ,

o -~
S
i
=
s

-
Rl

o -
=l

~

oo
Q-
o
oo
v o o

™ vl v

H A

o H O

-~ o oa om

ol e
o e
Lol IR]
DOoOCw
O oo -
ot v -
ot

o

217

f
£
T
i
£

111 0 0 1/0 1/0 1/0, £

1

111111 1/0 1, %

1111 0 1/0 1/0 1/0, i

i1 11 1/01 1,f i

1

H O
(= = =]
S M M
LR
(==~
Ty M T
- oo
(=2~ -
T T T
o -
(=
- o -
et
- o -
o -
O
L]
ol
[TR
-0 O
Ty Y
- o
-oo
T
-
<
~
- O O
- 0 O
-oo
- oo
- oo
- T

s v]

os v,

[sov,
%8

i f
f f
i i

0 t/0 1/0 0, i

o 1/0 1/0 o,

0 1/0 1 1/0, i
0O 00 0 0 1/0 4 1/0, 1
000 0 0 1/0 1 1/0
0 00 0 0 /0 1 1/0

0 0
o 0
00

[= I = =]

- ™ Q

i
i
i
i
i
i

i
1

1 0 0 00 011

f

1 0 0 00 0 1 1

i1 000901 1,1

1

f

1000 0 1 1

1 11 090 01 1,1
11100011

£

i 001 1,1

1

1
i 11100 1

111 11 01

1 0 0 0 0 1/0 1/0
1 6 0 0 0 1/0 1/0
110600 1/0 1/0 ©

1
1

1 0 0 0 1/0 1/0 O
100001 1/0 t/0,1
i 00 0 041 1/0 t/0, ¢

1

1,f i

i

f
£

i

01 1 ,1i f

1

1
1t 00 00 0 1/0 1,1

i 00000 /01, %f
11000 0 1/0 1,1

© 0 0 0 1/0 1 1/0,41i f

1 06 0 0 0 1/0 1

1

i
i
i

3

1/0)f

0o 0 0 o0 1/0 1/0 1,1 f
©c 0 0o o0 1/0 1/0 1, ¢

1
1

£t
f

11 000 0 1/0 1, 9% i

1 0 00 1/0 /0, i

1t 00 0 1/0 1/0, ¢ £
1 1.1 00 1/0 1/0 0,4 £
11100 1/0 1/0 0, f

11
1 1

-

b al

=4
-

=]

o

o

i

-

hal

b

i

o
hal

o
1=
o
-
-

-

i

L]

0 1/0 1, i
0 1/0 1,14

10 0 1/0 1, ¢
1
1

11 ¢ 0 1/0 1,1
1
1

i
11
11

1t
b 4
T

i 00 0t 1/0 1/0, i
i 0001 1/0 1/0,f £
11 0 0 0 1/0 1 1/0, i

1
1

-.l o

[o v 5]
%9

L f 1
it
,f f

o 1/0 1 1/0
0 1/0 1/0 1
0 1/0 1/0 1

o0
0 0
0 0

o

ot e

11 0 0 0 010

6 0 1/0 1/0 , i £
£t

i1 1 0 0 t/0 1/0,

1

11 000 010

1

i
i
i
i
i
1

i
£
, i

111 00010

1
b
T
f

1 0 1/0 1/0 0, i

1
1
1
1
1

i 00 01 0
1110 01 0
111001 0

0 1/0 1/0 0, t
0 6 1 10 1/0, i
0 0 1 1o 1/0, f
0 0 1/0 1

1

1
1

1
1

f

1

11111901 90,1

1/0|i
1/0

11101 0,i

v os]

1

1
[v 8,
$10

1 0 1/0 1/0

o 1/0 1
0 1/0 /0 1t
0 1/0 /0 1

i 0
1 0
i 0
i1

- o -

ol - -

110 0 0 1 1 1

t
i
£

1 0 t/0 t/o, ¢

1
1

1 1/0 i/o0 0, 1

1
11 1

1 1/0 1/0 0, ¢

1

T T P R G

P Y
- oo
<
e
L B)
- oo
(== ey o)
O ™o
-t O
- -0
- oo
HHHMWM
oM
o000
B]
- o
(= =T]
-~
—
o O
]
- oo
o000
i
-~
- o e
Hor o

w

1 000 00 0 /0 0,
f 00 0 00 0 1/0 0,

1111 0 1/0 1/0 1,1
11110 1/0 1/0 1, f

W oed H o
- o -
Q0
Ty
- -
o
-~
-
(=R
L= =~
L=J = =4
[+~ 2% =
O
O
e
Lo L
PO
090
e
o -
OO
e
=
T
LR
LR
—
R
- -
- o

, i

11 00 0 1 1/0 1

£
i

1 1 1/0 ¢ 1/0, f

1 1 1 1/0 1/0 1,

11
i

1

1/0 1

0 ¢ 0 1

1

1 /0, f

114 00 1 1/0 1,1

o
(=
S
hal
-
Ll o]

(=28 =]
o
Lol o]

-

f
f

0o 1/0 1/0 1f0, i

1 1/0 1/0 1 , £ f
1 0 0 0 0 1/0 1/0 1/0, f

- O

1 1/0 1, £ i
1 1 t/o,4i i

0
0
i111 011 1/0,

0
1

vl vl

-

- -

o 1/0 1/0 1fo ,i ¢
f f

o i/o0 1/0 1/0 ,

11 0 ©
11 00

f i

1

i 0 0 1i/0 1/0 1/0 , i

1

1

218

v 8 o]

v s,

[ovs,
*#15

i
b4

i
i

1 1/0 1, i

i 1/0 1, ¢

0o 1/0 t/o, i
00 0 0 0 0 1/0 1/0, i

000
- -
- e O
- -0

- - O

1

f 1
T f
i i

o 1/0 1/0,

o 1/0 1/0,

1 1/0 1/0,
1 00 0 t 1/0 1/0,f i
1 1.0 0 1 1/0 t/o,41 i

o 0
o 0
a0

© 00
00w

(=2 =2]

1
1

1111 0 1/0 ©
11110 1/0 ©
11 11 1/0 1 0

i
1
i

i
i
i

1/0 1/0 , £

1 0 01

1/0 1/0, i

it 11 01

i

t {1101 1/0 1/0, ¢
s v o]

[o 5 v,

3V,

0,1 i
T

i 1/0 1/0 o, i

1 1/0 1/0

111
111

[vos,

-

#11
1

v s 0]

v s,

11

1

1111

#i6

i 1/0 1,14
i

1

1

i
f
i
f
i
i

000 0 0 1 1/0 1,1

0 0 0 0 0 1

1/0 1, i £

1/0 1

1

1
i
1

1
1

1

1 1

0O 00 0 0 1

£

1/0 1 1,14

f

000 0 0 1 1/0 1

/0 t/0 1, % 4

11

1

- H
-
oo
—~
- -
- -
[= 2R =]
QO
<o O
<o O
ot
H
-
-
-
=]
~
“
]
(=2
~
- o
- -
-
- @
- -
-]
-
L]
i L1

i

0 1/0 1/0 0,3 ¥
0 1/0 1/0 o

o 1/0 1/0 ©

0 1/0 1/0 0,1
00 0 0 0 1

O 0 0 O
o 0 0 O

#12

i
£
i
£

f
f

1/0 /o, i

oo

- M

O

PR

(==
(==}

(= I =]
i

(==}
[=J =
(=]
[=]

Lol o

11000 1/0 0 0,4 i
ii1 000 1/0 0 0,1t

i/0 1/0 , i

0 ¢ 0 0 0 1

i

i
f

1/0 1/0 , f
00 0 0 0 1 1/0 10, F
o 0 0 0 0 1/0 1/0 1

0 0 0 0 0 1f0 1/0 1
O 0 0 0 0 1/0 1/0 1

0 0 0 0 0 1

11400 1/0 0 0,4 4

1

i
i
i
i

i 00 1/0 0 0, T

i
1

1
1

1 0 1/0 0 0,14
i1114 0 1/0 0 0, f

1

11 0 1/6,14

1

0 1/0 1/0 1
0 1 1/0 1/0
10000 1 1/0 1/0, £

i
i
i

11 0 1/0,4i £
o i/0 0 1/0, i

1006 0 0 1/0 0 1/0, £

- O

i

i
f
i
f

0 1/0 1/0 1/0, 1

6 0 0 1/0 0 1/0, i
1000 1/0 ¢ 1/0,f i

i

1

0 1/0 1/0 1/0, i

1

O
oo
-
-
008
-~
- - -

-
(=2 =~ I]
-~
- -

>
o0

]
[=JE=1]
SO -

-
oo w

I~

< Lol

o O ”»
oo o o H
A e oA
CO0O000
T e S
v ol v o
COO0O0O0
COO0O0O0
. S
HA A A
SCoQOoOH
OO
oo
vl vl vl el vl

1
1
1
1
1

i
i

10000 1/01 0,1
1 00 00 /0t O,Tf

1

11 1/0 0 1/0, 14

1 1 1
[s v o,

vs, vsol

s v,

va, ovs)]

s v,

[s 0w,

R R B B B I B I]

1
1
1
1
1
100 1 1/0,
1101 /0,
1 0 1t 1/0, i

0
]
1
1
i
b
1
11 1

vs, vos]

fovs,

$15
1

i

1000 1/0 1 0,1

219

i1 000 1/01 0,¢% i 100 0 0 1/0 1 10, ¢t 1
i 11t 0 0 1/0 1 0,4 i [osv, 2v, s80v, vs, ovs]
i1 100 101 0, i -
11110 1/01 0,4 i 827
11110 1/01 0,%f i 100 00 1/0 1/0 1 ,1i i
[svo, sv, vs, vos] i 00 00 /0 1/0 1, f i
[sve, sav, osv, sov, ovs)
%20
10 00 0 1/0 1 1,4i i 228
1 6 0 0 0 1/o 1 1 ,f i 11 0 0 0 1/0 1 1/0,4i i
[sov, sv, osv, v 8] i1 000 1/0 1 10, f i
1t 1 0 0 1i/0 1 1/0,4i i
21 11100 1/0 1 1/0, f i
i1 0 0 0 1/0 1 1,41 i 1111 0 1/0 1 1/0,i i
1t 1 00 0 t/o 1 1,2 4 11110 1/0 1 1/0, ¢ i
111 0 0 1/0 1 1,41 i [ovse, osv, 8v, svo, vs,
i1 100 1/0 1t 1,4+ i v o s]
1111 0 1/0 1 1,1 4
1111 ¢ 1/0 1 1,f i #29
i1 00 0 1/0 1/0 1,41 i 111 1 1 1/0 1 1/0,41i i
11 0 0 0 /0 1/0 1, £ i i1 1 11 10 1 1/0,1i ¥
i1t 00 1/0 1/0 1,1 4 11 ¢+ 414 1 1/0 1/0 1/0,41i i
i 1+ 1 0 0 2/0 1/0 1, f i i1 1+ 1 % 170 /0 1/0,i ¢
i £ 11 0 1/0 1/0 1,4 i [vos, a8v, svo, ovs, vs,
i1 1 1 0 1/0 1/0 1, i v s o]
[8vo, 8v, o8v, ovasa] -
30
#22 i1 0 0 0 0 1/0 1/0 1/0 , i
111 1 1 11 /0,43 i 1 0 0 0 0 1/0 1/0 1/0, f i
111 11 11 1/0o,4 ¢ [ovse, svo, sv, sov, o=sv,
1111 3 1 1/0 170, 3 i vs, vsol
i1 11t 11 1/0 /0,41 £
[sveo, sv, ovas, vs, vsol #31
11 0 0 0 1/0 1/0 t/0, 1 i
#23 1 1 0 0 0 1/0 1/0 1L/0, f i
1 0 0 0 0 1/0 1/0 0,1 i 1 11 0 0 1/0 1/0 1/0, 4 i
i0 0 0 0 1/0 1/0 0, f i 111 00 1/0 1/0 t/0,f i
[ovs, sov, sv, svo, vs, 1111 0 1/0 1/0 /0,1 i
v 5 o] 111 1 0 1/0 1/0 t/Oo, £ i
[vos, svo, sv, osv, ovs,
224 vs, vso]
1100 0 ¢ 1/0 1t/0,1i i
i1 0 0 0 ¢ 1/0 t/0, f i
111 00 0 1/0 /0,4 i
11100 0 1/0 1/0,¢ i B.5
i 111 0 0 1/0 1/0,41 1
i 111 90 0 /0 1/0, 7t 1 #1 0O 0 0 0 0 0 0 O
11111 0 10 1/0,4i 1 [aux = v, aux s v o]
i 1111 0 1/0 1/0,i ¢
[ves, oevs, vs, vso] 2 000 0 01 900
------- [s aux v, s aux v o]
#25
i1 0 0 0 1/0 1/0 0,1 i 3 1 0 0 0 0 0 0 O
11900 0 1/0 1/0 0, f 1 [avx v 8, aux v s o]
111 00 1/0 1/0 0,1 i
111 0 0 1/0 1/0 O, f i 4 0 00 0 0 01 0
i111 0 1/0 1/0 0,4 i [aux o 8 v, aux s v]
111 1 0 tf0 1/0 0, f i ———
[vos, av, svo, vs, Vvaol 25 i 0000010
[aux v 8, aux o v s]
#26 -
1 00 0 0 1/0 1 t/0,1i i 6 c 0 0 0 01 1L O

220

[s aux v, 8 aux o v] [oaux s v, aux o s v, auxs v]

&7 o0 0 0 0 0 1 1 #27 0 0 0 0 0 1/0 1 O
[0 aux & v] [s aux o v, s aux v, aux o s v,
aux s v]

&8 111 0 0 0 0 O
[ve, vsol #28 1 1 0 0 0 0 1/0 ©
[aux v 0 8, aux v s, aux v s o]

¥9 1 0 0 0 0 0 1 1
[e aux v s] #28 1 0 0 0 0 0 1 1/0
[o aux v s, aux vs, aux o v s]

#$1¢ 1t 0.0 0 0 1 O

[aux v s, aux v o s] %30 © 0 0 0 0 1 1/0 1
[osaux v, s aux o v, s aux v,
#11 0 0 ¢ 0 0 1 1 1 s aux v o]

[osaux v, 8 auxv, s aux o v]

#31 1 0 0 0 O 1/0 1 O

#12 1 1 1 0 0 i 0 O [s aux o v, s aux v, aux v s,

[s v, 8 v ol aux o v s

*13 i1 11 0 0 01 O #32 0 0 0 0 O 1/0 1 1

[vse, vosl [s aux o v, = aux v, o s aux v,
o aux s vl

$¢4 0 0 0 1 1 1 1 O
faux = v, aux s o v] #33 1 11 0 0 1/0 O 0
[svo, 2v, vs, vsol

#156 1 11 0 0 0 1 1
[o v s] #3¢ L 11 0 0 0 1f/0 ©
[¥vos, vs, v s o]

%16 11 0 0 01 1 1
[o8 aux v, 5 aux v, s aux v o] *35 14 0 0 0 0 1 1/0

- [o aux v s, aux v s, aux v o s]
#17 o0 0 0 1 1 1 1 1

[« aux o v, s aux v, o0 aux s v] #$36 1 0 0 L 1 1/0 0 O
_____ [aux 8 v 0, aux s v, aux v s,
#$18 1 1 1 0 0 1 1 1 aux v & o)

[osv, sav, & vo]

#37 1 1 0 0 O 1/0 1 o0

#9 1 1 0 &t 1 1 1 1 [s aux v 0, = aux v, aux v s,
[o aux s v, s aux v, s aux v o] aux v o s}

20 1 1 1 1 1 1 1 1 #38 0 0 0 1 1 1 1/0 ©
[svo, Bav, ovs] [aux s o v, aux s v, aux s v o]
#21 0 0 0 0 0 1f/0 0 © #39 1 0 0 0 0 /0 1 1
[s aux v o, » aux v, auxs v, [s aux o v, # aux v, o s aux v,
aux s v o} o aux v s]

#22 0 0 0 0 0 0 t/0 O #40 0 0 0 1 1 1/0 1 ©
[aux 0 8 v, aux s v, aux s v o] {aux s o v, aux o s v, aux s v]
#23 10 0 0 0 1/0 0 © 41 i11 0 0 0 1 1/0
[# aux vo, s aux v, auxv s, [ovs, vs, vos]

aux v s o)

%42 i 11 0 0 1/0 1 ¢
224 {1 0 0 0 0 0 i1/0 O [smvo, sv, vs, vos)
{aux o v 8, aux v s, aux v s o]

#43 1 1 0 0 O 1/0 1 1

25 00 0 001 170 O [s aux v o, s aux v, o s aux v,
[s aux o v, & aux v, s aux v o] o aux v s] .
#26 0 0 0 0 0 O 1 1/0 #44 0 0 0 1 1 1 1 1i/f0

221

[aux o v, = aux v, o aux s v, J[aux v 0o 8, s aux v, € aux v o,

aux s v, aux s o vJ aux ¥ 8, aux v s o]
#45 0 0 0 1 1 1 1/0 1 261 100 0 0 1/0 1 1/0
[s aux v o, B auxv, s aux o v, [oaux vs, o3 auxv, s aux v,
o aux s v] 8 aux o v, aux vs, aux o v s]
#46 i 0 011 1/0 &t O 262 i 00 0 0 1/0 1/0 1
[aux 8 0 v, aux s v, auxv s, {s aux vo, sanxv, o s aux v,
aux o v s} s aux o v, o anx v s]
247 1 11 0 0 10 1 4 #¥63 0 0 0 i 1 1/0 1/0 ©
[svo, sv, ozgv, ovasl] [aux o s v, aux s o v, auxs v,
aux s v o]
48 i1 011 1/0 1 0O
[aux 8 v o, auxs v, auxvs, #64 1 1 1 O 0 © 1/0 1/0
aux v o sJ [vos, ovs, vs, vs o]
49 1 0 01 1 1/0 1 1 #65 1 11 0 0 1/0 1/0 0

[#= aux o v, & aux v, o aux s v, [vos, sv, svo, vs, vs o]
o aux v s8]

#66 1 0 01 1t 1/0 0 1/0
%0 1 1 0 1 1 1 1 1/0 [aux s v o, aux s v, s aux v,

[s aux v 0o, s aux v, o aux = v, 8 AUX ¥ O, aux vs, aux v s o]
aux s ¥, aux s v o]

267 1+t 00 0 1/0 1 1/0
#$1 11 01 1 1/0 1 1 [oauxvs, os aux v, s aux v,
[# aux v o, s aux v, o aux s v, $ AUX ¥V O, aux v s, aux v o s]
o aux v s8]

#¥68 0 0 0 1 1 1 1/0 1/0
%2 1 1 4 1 1 1 1 1/f0 [aux v 0, 8 aux v, s aux o v,
[svo, Bv, ovs, vs, vsol O auUX £ ¥, AUX # 0 ¥, aux s ¥,
aux s v o]

#$3 0 0 0 0 0 0 1/0 1/0

faux o s v, o auxs v, auxsyv, 69 1 0 0 1 1 1/0 1/0 O©

aux s v o] [aux o v 5, aux s o v, auxs v,
- aux 8 vy 0, AaUX Vs, aux v s o)

#54 0 0 0 0 0 1/0 1/0 O

[aux 0 8 v, B aux o v, = aux v, #70 0 0 0 1 1L 1/0 1 1/0

g auxX v o, aux s v, aux s v o] {oauxs v, s auxov, 3 auxyv,

aux 8 0 ¥, aux o £ ¥, agx s vJ

%6 1 0 0 0 0 0 1/0 i/0

[aux o v 5, o aux v s, aux v s, 71 111 0 0 1/0 1 t/O
aux v 8 o] fovae, osv, s8v, s8vo, vs,
— v osa]
#66 1 0 Q o 0 1/0 1/0 ©
[aux 0o v s, 8 aux o v, s aux v, #72 1 1 0 1 £ 1/0 1/0 O
B aux v 0, aux v s, aux v s o] [aux v o 5, aux s v, aux s v o,
- aux v s, aux v s o]
67 0 0 0 0 0 if0 1 1/0
[oaux s ¥, o 8 aux v, s aux v, #$73 1 0 0 1 1 1/0 &t 1/0
s aux o ¥, aux o s v, aux s v] {oaux v s, 3 auxo v, = aux v,
-— Oaux s v, aux s v, aux s o v,
658 0 0 0 0 0 1/0 1/0 1 aux v 8, aux o v s]
[s aux v o, s aux v, o s aux v,
s aux o v, 0 aux s vJj 74 1 0 0 t 1 1/0 1/0 1
[s aux v 0, 8 aux v, o aux s v,
259 1 1 0 0 0 0 1/0 1/0 s aux o v, © aux v sl
{faux vo s, oauxv s, aux v s,
aux v 8 o] *75 1 1 0 1 1 1/0 1 1/0
[oaux v 3, 5 aux v 0, s aux v,
#$0 1 1 0 0 0 1/0 1/0 O O aux s v, aux s v, aux s v o,

222

aux v s, aux v o 5]

- #7 1 0 0 0 0 0 0 0,1
#7¢ 1 1 1 1 1 1/0 1 /0 [avx v 8, aux v = o]
[vos, sv, svo, ovs, vs,
v s o] 8 0 0 0 ¢ 0 1 1 O,
- [s aux v, 8 aux o v]
877 ¢ 0 0 0 0 1/0 170 1/0
[aux 0 s v, 5 aux v o, s aux v, # 0 0 0 0 0 0 1 1,1
8 aUX O ¥, O S5 Aaux v, O aux e v, [o aux s v]
aux s v, aux s v o}
- #1100 0 0 0 0 0 ¢t 1,
78 1 0 0 0 O 1/0 1/0 1/O [0 s v aux]
[aux 0o v &, s aux v o, s aux v,
S AauX 0 ¥, O 8 aux v, O aux v s, #1111 0 0 0 0 0 L O,
aux vs, aux v s ol [aux v s, aux o v s8]
&79 i1 ¢t 0 0 0 if0 1/0 1/0 #121 1 £ 0 0 0 0 0, i
[aux v 0 s, 8 aux v o, = aux v, [vs, vs ol
0S AaUX ¥, O AUX Y 5, AUX V 8,
aux v s o] $131 1 14 0 0 0 ¢ 0, i

[s v, 8 o vl

#$0 0 0 O 1 1 1/0 1/0 1/0
[aux o 5 v, aux s o v, s auxo v, #140 0 0 0 0 1 L 1,
s auUX YV, S AaUX YO, o aux s v, [aux s v, aux s o v]

aux s v, aux s v oJ

#1661 0 0 0 0 0 1 1, i

#81 1 1 1 0 O 1/0 1/0 1i/o [o aux v =]
[ves, Bvo, sv, osv, ovas,
vs, vsol #$171 1 0 0 0 0 1 0,

[aux v s, aux v o =]

$]82 1 0 ¢ 1 1 1/0 1/0 1/0

[aux ¢ v 2, aux s v o, aux s v, #1881 0 0 1 L O O O,
AauUxX 8 O ¥V, O AUX B V, B AUX O ¥, [v 5 aux, v s o auxl

S aux v, S aux v o, O aux v s,

aux v 8, aux v s o] #190 0 0 0 0 1 1 1,

[0 s aux v, = aux v, s aux

#83 1t 01 1 1/0 1/0 1/0
[aux vos, auxs vo, auxs v, %201 1 1 0 0 1
O AUX S ¥V, S aux v, S aux v o, [s v, 8 v o]

o
<
-

0 aux v 5, Aaux v s, aux v s o]

#2111 1 1 0 0 0 1 O, i
[vs, vosl

B.6 #221 11 00 01 0,
[o s v, 8 v}

#1 0 0 0 0 0 O O O ,i i
[aux = v, aux s v o] #2231 0 0 1 1 O 1 O,
[v 2 aux, o v s aux]

#2 ¢ © 0 0 6 0 0 0,1 £
[s v aux, = v o aux] #2241 1 1 0 0 0 1 1,14
{o v 8]

#3 1 ¢ 0 0 0 O & 0,1 £
[s v aux, s ¢ v aux] #251 1 L 0 0 0 1 1,1
(o s v]

#4 0 0 0 0 0 1 0 0, i i

[s aux v, s aux v o] 260 0 0 1 1 1 1 1,
{saux o v, s aux v, o aux

%% 0 0 0 0 0 0 1 0,1 i ——

[aux o & v, aux s v] #271 0 0 1 1 O 1 1,

(e v s aux]

¥ 0 0 0 0 0 0 1 O0,1i T
(o 8 v aux, = v aux] #2814 1 0 1 1 0 1 0,

223

fv 8 aux, v o s aux]
#2941 1 0 0 0 1 4 1,4 i
[osaux v, # auxv, s aux v o]
#3301 1 &+ 0o 0 1 § 41,41 £
[csv, sv, 30 v]
#3111 1 1 0 o 1 1 1,41 i
[osv, sv, & vol
#321 1 0o 1 1 1 1 t,4i i
[o aux s v, s aux v, s aux v o]
#331 1 o 1+ 1 1 ¢ 1, f i1
[o 8 vaux, s v aux, s v o aux]
#341 1 1 1 14 + t 1,4 4
[svo, av, ovas]
#3500 0 0 0 0 /0 O O, i
[s aux v o, 8 aux v, auxs v,
aux 8 v o)
$60 0 0 0 0 0 /0 0,1
[aux o s v, aux s v, aux s v o]
#3370 0 0 0 0 0 1 1/0, i
[oaux s v, auxos v, aux s v]
$381 0 0 0 0 1/0 0 O, i
[# aux v 0, s aux v, aux v s,
aux v s o]
#3980 0 0 0 0 &t 1/O0 O, i
[s o v aux, ® v aux, s v o aux]
#401 0 0 0 0 0 1/0 0, i
[aux o ¥ 8, aux v s, aux v s o}
#41 0 0 0 0 O 1 1/0 O, i
[s aux o v, 5 aux v, s aux v o]
$420 0 0 0 0 1/0 1 0, i
[s aux o v, 8 aux v, auxo s v,
aux s v]
#4431 1 0 0 0 0 1/0 0, i
[aux v o s, ‘aux v s, aux v s o]
#440 0 0 0 0 1 1/0 1, i
{os vaux, s o v aux, s v aux,
s v o aux]
#4614 0 0 0 0 0 1 /0,1
[0 aux v 5, aux v s, aux o v =]
#2460 0 ¢ 0 0 1 L/0 1, i
[osaux v, s aux o v, 5 aux v,
s aux v ol

#4771 0 0 0 O 10 1 O, i

[s asx 0 v, 8 aux v, aux v s,
aux o v s]

#4480 0 0 0 0 /0 4 1, i
[# aux o v, # aux v, o s aux v,
o aux & v]

#491 1 1 0 0 1/0 0 O, i
[svo, sv, vs, vao]

#6501 1 & 0 0 0 1/0 0, i
[vos, vs, vso]

#1141 1 0 0 0 0 1 1/0, i
[0 aux v s, aux v s, aux v o =]
#6521 0 0 1 1 0 1f0 0, i
[aux 8 0o v, aux o s v, aux s v}
$31 0 0 1 1 1/0 0 0, i
[aux s vy 0, aux s v, aux v s,
aux v s o]

#6541 0 0 1 1 1/0 0 O, £
[s v o aux, s v aux, v s aux,

v 8 o aux]

661 1 0 0 0 1/0 1 0, i
[s aux v 0, s aux v, aux v s,
aux v o]

#6660 0 0 1 1 1 1/0 0, i
[aux 8 o v, aux s v, aux s v o]
%71 0 0 1 1 0 1/0 0, £
[o v 8 aux, v s aux, v s o aux]
#81 0 0 0 0 1/0 1 1,1
[# aux o v, s aux v, o s aux v,
o aux v s]

#6691 1 1 0 0 0 1 1/0, 3
[ovs, vs, vos]

01 1 1 0 0 1/0 L 0,1
[svo, sv, vs, vos]

#6610 0 0 1 1 1 &t 1/0, i
[s aux o v, sauxv, o auxs v,
aux s v, aux s o v]

#621 0 0 1 1 1 o0 1/0, i
[s aux v, s aux o v, aux s v,
aux 5 o v]

%631 1 0 £ 1 0 1/0 0, f
{vosaux, vsaux, v s o aux]

#6841 1 0 0 0 1i/0 1 %, i
[s aux vo, s aux v, o s aux v,
¢ aux v a]

224

#6560 0 0 ¢t t 1 1/0 1 ,4i i [aux o v &, 2 aux o v, s aux v,
[s aux v 0, = aux v, = aux o v, s aux v 0, aux v s, aux v s ol
o aux s v]
bl #3820 0 0 0 0 1/0 1 1/0, i
#6661 0 0 1 1 1/0 1 0,1 i [o aux 2 v, o5 aux v, s aux v,
[aux 5 0o v, aux s v, auxv s, s aux o v, aux o s v, aux s vJ
aux o v s]

#8830 0 0 0 0 1/0 t/0 1, i
#8671 0 0 1 1 1/0 1 0, f i [s aux vo, sauxv, os aux v,
[5 o v aux, s v aux, v s aux, 8 aux o v, o aux s v]

o v s aux]

%841 1 0 0 0 0 1f0 1/0, i
#8131 1 1 0 0 1/0 1 1 ,4i i [aux v o =, aux v s, aux v s,
[evo, sv, osv, ovs] aux v s o]

-]

#861{ 1 0 0 0 1/0 1/0 O, i

o8

#6891 1 0 1 1 0 ¢t 1/0, £

[ovs aux, v » aux, v o s aux] [aux v 0 5, s aux v, s aux v o,
- aux v 5, aux v s o]

#701 1 0 1 1 10 1 0,1 i

[aux = v 0, aux s v, aux v s, 861 0 0 ©0 0 1/0 &t L/0, i
aux v o s] [oaux v s, o8 auxv, s auxyv,

S ayx o v, aux v s, aux o v s]

#7111 0 1 1 1/0 1 O, f i
[» vo aux, s v aux, v s aux, #7T1 0 0 0 0 1/0 /0 1 , i
v o s aux] [s aux v o, s aux v, o s aux v,
S AUX O ¥V, O aux v =]

#721 o0 0o 1 1 3f0 1 1,41 i

[s aux 0 v, = aux v, o0 aux s v, #8880 0 0 1 Lt 10 1/0 0, i
o aux v s] [aux o s v, aux s o v, auxs v,

aux 8 v o]

#7231 0 0 1 1 1/0 1 1, ¢ i

[5 0o v aux, s v aux, o 8 v aux, #8891 1 1 0 0 0 1/0 1/0, i
o v s aux] [vos, ovs, ve, vso]
$741 ¢ 0 1 1 1 1 1/0,3i i #901 1 &t 0 O 1/0 10 O, i
[saux v o, s aux v, o aux s v, [ves, sv, svo, vs, vsol

aux 5 v, aux s v o]

#9114 0 0 1 1 O 1/0 1/0, %

#7611 0 1 i 1/0 1L 1 ,i i [aux o s v, o auxs v, auxs v,
[s aux v 0, s auxv, o auxs v, aux 8 o vl
o aux v s]
—— #8921 0 0 & 1 1/0 0 1/0, i
#761 1 0 1 1 1/0 1 1 ,f i [aux 5 v 0, aux s v, s aux v,
[s voaux, s v aux, o s v aux, s AauX v o, AUX v S, aux v s o]

o v 8 aux]

#930 0 0 1 1 1/0 1 1/0 , i

#7771 1 1 1 1 11 1/0o,di i [0 aux 8 v, » aux o v, = aux v,
[svo, sv, ovs, vs, vsol aux 8 0 ¥, aux ¢ s v, aux s vJ
#7880 0 0 0 0 O 1/0 t/0,1i 1 #941 1 0 0 O 1/0 1 1/0, i
faux o 5 v, o aux s ¥, aux s v, [oaux v 2, o s aux v, s aux v,
aux s v o) % aux v 0, AuUX v s, aux v o =]
#1790 0 0 0 0 1/0 1/0 0,1 i #60 0 0 1 1 1 10 1/0, i
fauxoas v, s auxov, s auxv, [s aux v o, s auxv, s asxo v,
£ AuX v o, aux s v, aux s v o] oaux s v, aux s o v, aux s v,
- aux 8 v o]
801 0 0 0 0 O /0 1if0,1i i -
[aux o v &8, o0 aux v s, aux v s, 961 0 0 1 1 /0 t/0o O, i
aux v s o] [aux o v 8, aux s o v, auxs v,

aux 8 vo, aux v s, aux v s ol

#8111 0 0 0 0 1/0 1/0 0, i i

225

H-

#9971 0 0 1 1 1/0 1/0 O, f

[ovs aux, s o v aux, 8 v aux,

s voaux, v s aux, v s o aux]
#9981 1 1 0 0 1/0 1 t/0, i
[ovs, onsv, sv, 8vo, Vs,

vos]

#9901 1 0 ¢t L 0 1/0 /0, f

[vosaux, o v s aux, v s aux,

v s o aux]

#1001 1 0 1 1 1/0 1/0 O, i

[aux vy 0 5, auxs v, auxs vo,

aux v s, aux v s o]

#1011 t 0 1 1 /0 1/0 O, £

[vos aux, s v aux, s v o aux,

vsaux, v s o aux]

#1021 0 0 1 1 1/0 1 1/0, i

[oaux vs, sauxov, =sauxy,

oAaNX 8 ¥V, AUX B ¥, AauxX s o v,

aux v 8, aux o v s]

#1031 ¢ 0 1 1 1/0 1 t/o , £

[o s v aux,
¥ 8 aux,

s v aux,
o ¥ s aux]

s o v aux,

#1041 o0 0 1 t 1/0 1/0 1,
[aux v o, 8 aux v, o aux s v,
s aux o v, 0 aux v s]

#1061 0 0 1 1 1/0 1/0 1L, ¥
[v o aux, s v aux, o 8 v aux,
3 0 v aux, o v s aux]
#061 1 0 1 1 i/0 1 1/0, i
foaux v 8, s auxvoe, s aux v,
CAaUX S V, auxXx s ¥, aux s v o,
aux v s, aux v o s]
#1071 1 0 1 1 1/0 1 1/0, £
[o ¥= aux, o s v anx, s v aux,
£ ¥O aux, ¥ 8 aux, v o s aux]
#1081 1 1 1 1 10 1t /o, i
[vos, av, Bvo, ovs, vs=s,
#1090 0 0 0 0 10 1/0 1/0, i
faux 0o 8 v, B aux v o, s auxyv,
S aUX O Y, O B AUX V, O AUX 8 V,
aux s v, aux s v ol
#1101 ¢ 0 ©0 0 1/0 £/0 1/0, i
f[aux o v 8, s aux v o, 8 aux v,
s auXx 0 ¥, O 5 aux ¥, O aux v s,
aux v s, aux v s o]
#1141 1 0 ¢ 0 1/0 1/0 1/0, i
[aux v o 5, 8 aux v o, 5 aux v,
osSaux ¥, O aux v s, Aaux v s,

i

i

aux v 5 o]

#1120 0 0 1 1 1/0 1/0 t/0,
[aux 0 5 v, aux s o v, s aux o v,
5 aux v, S aux vo, O AUX S V,
aux s v, aux s v o)

#1131 1 1 o o 1/0 1/0 1/0,
{voe, svo, B8v, os8v,
ovs, vs, v s ol

#1141 0 0 1 1 1/0 1/0 1/0,
[aux 0o v 8, aux s vo, auxs v,
AUX 8 O ¥, O AUX B VY, S AUX O V,
S AUX ¥, S AUX V O, O AuxX v 8,
aux v s, Aaux v s oJ
#1161 0 0 1 1 1/0 1/0 1/¢ ,
[o vsaux, s v o aux, s v aux,

% 0 v aux, o S Vv aux, VvV 8 aux,

v 5 o auxj
#1161 1 0 1 1 1/0 1/0 1/0,
faux vo s, aux = vo, auxs v,

O AauUX B Vv, S AUX ¥, S AUX V O,
OAUX V B, AUX ¥V S, aux v s o]
#1171 1 0 1 1 31/0 1j0 1i/o ,
[vosaux, s v o aux, s v aux,
08 Vaux, o v s aux, Vv S aux,

v 5 o aux]

s o]

226

[T

B.7

1l o 000 01 0 O0,1i i, 0-1 1-0 1-0 0-1
[2=[c{1)] aux=-[tns] v-[aspl, s~[c(1)] aux-{tns] v-[asp] o-[c(2)]]

82 o 0 9 0 01 0 0,41 i,01 1-0 1-0 0=0
[s=[c(1)] aux-[tns) v={], s=~[c(1)] auwx={tns] v=-[] o-[c{2)]1]

#3 0o ¢ 0 0 01 0 O0,i i, 00 1-0 1~-0 0O-1
[s-[1 aux-[tns] v-[asp]l, =-[1 aux-[tns] v-[asp] o-[I]

4 0O 0 0 0 01 ¢ O0,1i i, 0-0 {-0 1-0 0-0
[s-[1 aux-{tns] v=[], s=-[1 aux-{trs] v=-[] o-[]]

25 o 0 o0 01 0 0,1 f,01 1-0 1~0 0~-1
[s=0[c(1)] v-[asp] aux~[tns], s=[c(1)] v-[asp] o-[c(2)] aux~[tns]]

#$ 0 0 0 0 0 1 0 0,4 £, 0-1 1-0 1-0 0=-0
[s=[c(1)] v-[3 aux~{tns], s=[c(1)] v-{J o-[c(2)] aux~[tns]]

&7 o 0 o0 0 01 0 0,4i £ ,0-0 1-0 1-0 0-1
[8-[] v-[asp]l aux-[tna], a~f] v-[asp] o-[] aux-[tns]]
0" o ¢ 0 0 01 0 O0,4i £, 0-0 1-0 1-0 0-0
[s-E1 v-{1 aux-[tns], =[] v-[] o-[] aux-{tns]]

9 ¢ 001 01 0 0,41 1,01 1-0 1-0 0O=1

[8-[c(1)] aux-[agr,tns] v-L[asp]l, s-[c{1)] aux-[agr,tns] v-Lasp]l o-[c(2)]]

##0 0 0 0 1 01 O 0,1 i, 0-t 1-0 1-0 0-0
[8=[c(1)] aux-[agr,tns] v-[1, =-[c(1)] aux-[agr,tns] v-[] o-[c(2)]1]

##1 0 0 0 1 0 10 0,3 i, 00 1-0 1-0 0-1
[s=-[1 aux-[agr,tns] v-{asp]l, s-[] aux-[agr,tns] v-{asp]l o-[1]

2 o 001 01 0 0,1i i, 0-0 1-0 1'0 o=0
[=-[1 aux-{agr,tns} v-[1, s-[1 aux-[agr,tns] v-[] o-[1]

#$3 0 0 01 01 0 0,i £,01 1-0 1-0 0-1
[s=[c(1)] v-[asp] aux-[agr,tns], =~[c(1)] v-[asp] o-[c(2)] aux-[agr,tns]]

$¢14 ©0 ¢ 0 1 01 0 0,3i ¢ ,0-1 1-0 1-0 0-0
[s=[c(1)] v=[]1 aux-[agr,tns]l, s-{c(1)] v-[] o-{c(2)] aux-[agr,tns]]

#16 o0 0 0 1 01 0 0,41i £, 0-0 1-0 1-0 0O-1
fs-[]1 v-[asp] aux-[agr,tns], s-{] v-[asp] o-[] aux-[agr,tns]]

16 o 001 01 0 o0,4i £,0-0 1-0 1-0 0-0
[s~[] v-[] aux-[agr,tns]l, s=~[] v-[]1 o-[]1 aux-[agr,tnsl]

#$17 1 1 1 0 0 ¢ O O ,4i i, 0-t 1-0 0-1 0O-1
[s=[c(1)] v-[tns,asp], s-[c(1)] v-[tns,asp] o-[c(2)]]

%18 1110 61 0 ¢,41i 4i,01 1-0 0-1 0-0
[s-{c(1)] v-[tns], s-[c(1)] v=[tns] o-[c(2)]1]

#19 1 1 1 0 0 1 0 0,1 i, 0~1 1-0 0-0 0O-1
[s~[c(1)] v-[asp], s-[c(1}] v-[asp] o~-[c(2)]]

#20 t 11 001 00,1 i, 01 1-0 0-0 0-0
[a=[c(1}] v=-[1, s-[c(1)] v-L[1 o={c(2)]]

227

121 1141 001 00,1 i, 0-1 0-1 0~1 0-1
[e-[c(1)] v-[agr,tns,asp]l, s-[c(1)] v-[agr,tns,aspl o-[c(2)]]

£22 i1 1 0 0414 0 0,4 i, 0-1 0-1 0-1 0-0
[s~[c(1)] v-[agr,tns], s-[c(1)] v-[agr,tns] o-[c(2)]]

#23 1 141 0 041 0 0,1 4,01 0-1 0-0 0-1
[s-[c(1)] v-[agr,aspl, s-[c(1)] v-[agr,aspl o-[c(2)]]

#24 1 1 1 0 01 0 0,4 i, 01 0-1 0-0 OC-0
Es=[c(1)] v-[agr], s~[c(1)] v-[agr] o-[c(2)]]

#2260 1 1 1 0 01 0 0,4 4, 0-0 1-0 0-1 0-1
[s~[] v-[tns,asp], s-[1 v-[tns,asp] o-{]]

#£26 1 11 001 0 0,41 4,00 1-0 0-1 0-0
[s-[] v~Etnsl, s~[] v-[tns] o-{13

027 i1 1 0 01 0 0,1 i, 0-0 1-0 0-0 0-1
[s~[]1 v-[asp]l, =-[] v-[asp] o-[1]

#28 1 L 1 0 0 &t 0 0,4 1,00 1-0 6-0 0-0
[s-E] v=[1, #={1 v-[] o-[13

*29 111900190 0,1 i, 00 01 0-1 0-1
[8=[) v-[agr,tns,asp]l, s-[] v-[agr,tns,asp] o-[]]

#30 1 1 414 0 01 0 0,41 i, 0-0 0-1 0-1 0-0
[»=[1 v-[agr,tns], »=[] v-[agr,tns] o-[]]

#31 1 1 1 0 01 0 O0,4i 4,00 0-1 0-0 0-1
[s-[]1 v-{agr,asp], s-[] v-[agr,asp] o-[11

#£32 1 1 1 0 0 1 0 0,4 4,00 0-1 0-0 0-0
Ce-[1 v-{agrl, s-[] v-[agrl o-[I1

#33 1110 010 0,i £,0-1 1-0 0-1 0-1
is=[c(1)] o=-[c(2)] v-[tns,asp], =-[c(1)] v-[tns,asp]]

#3¢ 1 11 0 0 1 0 0,4 £, 01 1-0 0-i 0-0
(s=[c(1)] o=[c(2)] v-{tns], s=s=[c(1)] v-[tnsl]

#35 111 0 01 00,1 £,0-1 1-0 0-0 0-1
[s-[c(1)] o=[c(2)] v-{asp]l, =~[c(1)] v-Laspl]

#36 1 1 1 0 01 0 O0,i f,0-1 i-0 0-0 0-0
[8-[c{1)] o~[c(2)] v~[1, s-[c(1)] v-{1]

#37 1+ 11 0 01 0 0,1i £,0-1 0-1 0-1 0-1
[s=[c€1)] o={c(2)] v-[agr.tns,asp], s-[c(1)] v-fagr,tns,aspll

#38 1 1 1L 0 0t O O0,41i £,0-1 0-1 0-% 0-0
[8=[c(1)] o=[c(2)] v-[agr,tns]l, =-[c(1)] v-[agr,tns]]

#3% 1 1 1 0 0 1 0 O ,1i £,0-1 0-1L 0-0 0-1
[s-[c(1}] o-[c(2)] v-[agr,asp]l, =-[c(1)] v-[agr,aspl]

#0 1 1 1 0 ¢ 1 0 0,31 f£,0-1 0-1 0-0 00
[s-{c(1)] o-[c(2}] v-[agr]l, =-[c(i)] v-[agrl]

%41 1110010 0,41i £, 0-0 1-0 0-1 0O-1
[s=[]1 o=[] v=-[tns,asp], s-[] v-[tns,asp]]

228

#42 1 1t 1 0 0 1 0 0,1 f,0-0 1-0 0-1 0-0
[2~[]1 o-f1 v-{tns], s-[]1 v-[tnsi]

#43 1 t 1 0 0 & 0 0,1 £, 0-0 1~-0 0-0 0=-1
[s-[1 o-[3 v-{aspl, =-[1 v-[aspi]

#44 1 1 1 0 0 1 0 0,1 £ ,0-0 1-0 0-0 0-0
[s-01 o-[1 v-[1, s=[1 v-[11

#45 1 1 1 0 0 1 O O ,i f,0-0 O-1 0O-1 0O-1
[s~[] o-[] v-{agr,tns,asp], s~[] v-fagr,tns,asp]]

#46 1 1 1 0 01 0 0,3i f£,0-0 0-1 0-1 0-0
[s-[1 o-[1 v-[agr,tns], s-[] v-[agr,tnell

247 1 11 0 01 0 0,4i £, 00 0-1 0-0 O-1
[2~[) o-[] v-[agr.asp]l, s-[1 v-[agr,aspl]

#48 1L 1 1 0 01 0 ©,i £,0-0 0-1 0-0 0-0
[s=[1 o-{1 v-[agr]l, =-[1 v-[agrll

229

Appendix C

Partial Ordering of Parameter

Settings

e el N e Fee N Nl e N N B N e S e N l o N e N e N e N e N N N o N Nen N R B e N B N B o N |

QOO O0OCOOOOC0

Lol

o

1
1

[o 0o 01
[oo 01

(1) 0.0.0

(=3

-

ot O

- o

O

-
(=]
o
(=2 = =]
=]

L o0o1 00

[L o000 00 0 0 3

(2) 0.0.1

(=]

11 01

000 0 o0 01 0]

L

OO
O v O
-
oo
oo
- -

(==

[o1 o000

e

lon B on Bl o
coc oo
(=] =]
- OO0
OmOQ
(== =]
DO 0w~
Q0 00

OO0

L
[
C
L

o

-
o
(=]
-
(=]
Lol
<
(]

L o1 0000 O0 0]
L1000 000 0]

L 6000 011 01

OO COoOO0OQOCO0O0O0 OO
QO HOOOCHAOAOQO A
H OO HOO O HOCHOO
O OO -"OOr=OO-HO
H A OO O AO OO ww--O
CO M N "M OOOO0OQOOA
A A A NN OO0 O0OQOOO0
COQCOOOrHHAA A --
e e L et e e) et e e fed L) L

{3) 0.0.2

™

00 0 01 01 0

et et e b e e e e By g e b

o O
S -
- o
-t O
(=20
(==
(==

<O

001 01 0 01

[=]

]
]

oo
O
oo
- o
Ll =
(=2
o o

(==

01 0 01 0 0]

o

01 01 00 0]

[=]

(== el
COC O
QOO
L=JE =
COAD
O
OO O

™ v o

cCoO0C
OO0
- o0 o
o~OoOC
[= I~ -]
COO0O -
o

Lo R B B]

e ld B el T b L

(==~ -]

[100 00 01

[10001000]

(5) 0.0.4

Mo
o O
o o
o0
L= =]
-~ o
L= =3

L=~

LKl N Nl
00000
™ol v = O
o = O oo
o O
HO A D
L= T -]
COoOOOO0OmM
COoOO0O0O0O0

d hd et) L

11 01

[ooo1 o1 1 0]

(4) 0.0.3
L'0o 0 0 0 1

230

[1111110 0]1]

L o1 o1 o011 0]
o1 011014

L o1 01 1

o 1

(8) 0.0.7

1t 0 0]

11101
]

[o0 00 0 o0 01

(9) 0.1.1

1 0 0 1 o 1
i 0101 0 1]
10 01 0]

1 010 0 1]

1 0 0 0 1]

10) 0.1.2

o 1]

1
[10011010]

]
]
]
]
]
]
]

ol e o e e
o OoCOoOOO00
O-NOCOQOQO
OO0 =OD OO
CCO MO OO
oo OHOO
COO0OO0O O
COCO0OO0CO O
L e e e e b
LR R B Eon N N W |
Qo0 0CO0OO0OOCOC
OrH O OO~
O HO SO
HO A WO O wmO
HO OO wwwO
Owrvr A O
CO0OQOO0OQOCH
oo o o e
e e e e) et e

(1t) 0.1.3

L 11 001 01 0]

[1 1 0 0 1

i 0 0 1]

i B B B0 e B e BN ot B N B e I I e e I e 0 B e |
oAl o A o o v o e
HHMOHOOHMOOOHOOOO
HOHOWOOHOQOQONCOOO
QM OO HMOOAOOOROOO
COO0OWMA "W OOONOOO-O O
OCO0O0OC OO0 MAAMAOOC OO
COQ0OCOQOOOH—AHAAD
CRDO0O0QCOOO0O0C0O00COOOw
e b e bd ed b e d bend ld e b b) b Bd
[an e B e e N oo e | puBasNan Nan B on N o |
[= I o B o] OO0 QOO
HO OO OO e -O
OwWOO~O0O0 - oo O
OO0 HMOOCHCO O A
- O OO - O -
QOO0 » O o -
oo o - OH QO v o
Lol B B B BB] \Oa OO0 O0O0CO
e) e e e w d bl et fed b b

o 1 1

L1 00 01 0 01 1]

[1 0 00 01

0
0

111 01
i
1

i
01 0 1 1

- -

L

[1 001 0 0 01]

L1t o011 01

]

[1 61 0 00 01

101 01

1

{101

~ ™
- b al
Q Lol
L= -
o -
1= o
L]) =]
-
- . o
o
L] ~ <
™
has)
w ~r —
mrmeerm e
(=3 =R~ = o
Qv -O
o O -
oo Qo
o O -
Lo == = =]
O
o -
e e e D

L oo o001 041 1 1]

[£+t 1 10011 0]

L oo o011 011 1]

61 01 0 3
[111011001
[1111 0601 0]

[1 1 1

[oo o111 01]

i1]

[o610 01

]
]
]

[001101011
[oo 111 ¢ 01 1]
L o1 o090 0 1

L o1 0 0 1

L ot 0o 01

L 61 01

[oo1 01011
[0 1 01

[o001 01

i 0100 1]

[L 1111 100 0 1]

[1 1 1

o 1

1

[o061 1 0 o011

(7) 0.0.8

[pu B s Nan B o N s Ny |

1 1
0 1 1
1
0 0 1
01 0

[o1l1 01 1 0 01

1111 01
111 0 1]
111 01

1101 0]

1

1

231

L T e N I B I B e N B e N e o O I N N B I e B e B i

- o
- o
v O
- o
O ot
- o
- o
(=3~ 2]
—
o B N |
- o
- o0
L= B S =]
OO«
[~ =]
— -
o
oOo0
e b d

i

-

-

[01 11110

[1 0 01 1

L
¥

-

1

[1 01 01 1

i 00 0t 01 1]

[1 0001101 1]

[

i v

[1t 011 01
[1 061110

L1 00100111}
L1 001t 041 01 12

[1 001 1 001]

o

O

i

[1 011 1 1
[11 001

-

[1t 1 01 ¢ 1

L1 0t 0 001 11

bl

[11 011 01

[11 011

L1 013t 0010 1]
L1 01010011
[1 011 00011
[11 00 001 1]

i vl

[~ I}

1

[111001

Lol

i1 01 01

1

i el

Q-

-l

1
[111100

1 00 010 1)
L 11001 00 11
L1101 090 0 1 1

[1

1
1

f 111101 0

r

0

111 1 0

1

o 0o 0 0 1 1]

1

1

[1

(15) 0.1.7

(13) 0.1.8

1

]

[

11]

1
L oo 1011 11]

1

[o0 01

[101 1

e R]
- oo
- --O
i Qv
O
O vt
oot
oo
b Lo e B
AmEe
Rl IR
o - O -
- O -
O oo
O
- o O
OO0
(=R = I =]
et el) b

1

1

[11

1
i 0 11
o 01 1 1 1]

{ 61t 011011

L o1

(18) 0.1.8

1

01

[o1 1

111 11

1

[11

o1 01 1]

[011011 0 1]

[o 1 1

(17 1.0.1

1 1]

[ot 11 010 1t 1]

[01 11 0 0t

L o000 o0 1/0 0 0]
L oo o0 0 0 1/0 0 1]

L o000 0 1/0 1

1t 1100 1]

[o1t

11 3}

Lt 00011

o 1]

1]

Lt 001 011

{10 01

1

0

1

(18) 1.0.2

1

1
0o 0t 111

Q

[1 0 01 1 1

[1

i

4]

]
]
1
]
]
]
]
]
]
1
]

COoO0O0OOQOO00
momomomo
lmlmimlm
HHOAO HOQO -
QHH OO OO0
OO0 W OOO
OO0 OO A wO
200 0CQCQOO-
0000 OCO0Q
LY e b e)
[lnlalalalalal o]
oo o -
HOH OO =-mO
OO WD A0
MM OO WO =
OO HAH-OOCO
HHH M OOO
COQC QOO -
o o o o
L e bt et) e L

0
Q
0

0

L 91000 0 y

[11 01 001 1]
[t 1 01010 1]
110110011

0 0 0 0 1/0 O
L1000 0 0 1/0

1

L

]

1 0041 0 1 1
[111010011

b
L1111 0001 1]

1 0 0 0 1

i
1

[1

(19) 1.0.3

[1

[L oo o o1 1/0 1 0]

00 0 0 1 1 1/0 0 1]

Y
L
C

(14) 0.1.6

o006 011 1/0 0 0]

L

111
1

11

[o 01

i 0 1/0 0 1

L o¢ 01

1

[61 01

232

mersEmsm [N R NN K N N N N N B Mo N N N B B o W W W N B e B B B R B Boe Do | [pn ol o Bl e B B sl B N i o B oo |

oCOo0OCQCC COQOOV0OO0CO0O0OOCO0OO0OoO0OOCO00000O0OO0C0O OO0 000000 OOO0O
QOO0 00 MO MO M OMOOOAO OO o o (=] o - o0
3°8°% SOS_S.S STS05TS0ST73T78°8 80808 mggmgUgUseg
b sl - bl Ll
o o o o e T e T e TeTeTomeTeToe "o " e "o e ™ o"oTe"oToMe
~~ ~ ~ . ~ S~ ~ ~ ~ ~ ~ S~ Y e . w o~ ~ ~ -~
QO HO -HO HTrA A A Al A A A OO A A A A AN A1 OO H A H A A O A A HO O o e e e O
o OOOo HTH A A A MO A A A H A A OO M A R HODOHA A0 O A OOC oo o OO -
Ow"mwmOO Hred A A OO0 A M 100 A A A HOO A A A OOO0O A A A A A OO ATt
QOO0 - 7.3 M OO W rH M A QO A A A rH A Al OQCOOCO O vt = w0 o OO o -
. .
=]
ol o o - - CO A A A rM A MM A OQO0QCOO OO MM AdAA A A ™ 0 OO oo e
i
v vl v e u...: COQOCO0OOVOO M AN A A A A v v \nU OO0 A A A A A A
el o Rl Rl R Bl e N N N Rl R N B B B W B W B | el el il el el Rl e el N e e NN e N e N NN o B o |
COO0OO0OO0OO0CO00O0QCQOOO0O0O0O000CO0CO 00 CO0O0O0OCOO0COOOOOODO0OO0CO0OODOO0OODDO0OCO
HOO0OO0ODO0OO0O 10 COO0O000MO0OO000O0OOO0OOCO MO A O HO OO MOHOOOHOOOOOHOROOO
SR D D D D D D BB B B NN S SN NS S S_%_3_3
g7g.8.87878787872727e g g787gTeTeTe"eTeTe "2 R g
H A A OO A OO A A H O A OO H O A N WO OAD O 1.1..”11..110111110111010111110
COHHOOO0OO0OMMOOOOOQONTOCOO0Q OO H A A" OO " AW OO WMOOHADO A AOO -
COO0OOHNHOOOO A OO O0OCOOWM—"ODOO T H HOO M H AN H QOO M AA A0 O AH OO AH A
HEH A H N H OO0 O OO0 A0 0COO0O0O0H-OO COF MM A" OO0O0O 0O MMM OOOOOO
OO0 OO0 O M MMM mHmWMA"dOCOOQOOCOO W~ COO0Q0OQOOOCO0OMA A Al 00O00 00

COO0O0O0O0O0COO0OCOO0O A v wl =t

e e b e et e e) B et e e e e e b b b b bt b b A

(20) 1.0.4

COO0O0OO0OQOOCO0OO0OCOOO0O0COC0HE" -

010 0 1/0 1 0]

bl

(23) 1.0.7

01 1/0 0]
1/0 ¢ 0]

1

(=R =]

o

L] ™
(==} (=
~—
-
-2
.o (=
.mv:
- - <o
o o
Lol] o
- - -t <
-t
LR] - o
-
- ~ <o
LT
[,n.&\ —
(mlnlalalala)
OO 00O
OO0 OO
. =5_3
<& =] o
s T e
CHO A

- CoO0OOO -
CHAOO0O0O
-0 O0O0
CO O - ™

™ vl vl vl e

L e) e e e e bd o B L) et e et el) e e e e e e) L) L bed emd Bt Red et G bend b)

233

L Eanlanl el e Nl e il Nl an Y Nan lan Nas R R L B N Rl el el l el el el R e E e R R N N F e W W W W o W o W W oo Wan W o |

101100110001101

S T ey e,

- 11 o 1
< o0 [=] - o L=
u....l .4.....1.0 ...-....100 -......1.

e - [(= =4
e, S ey ey
HAE EH QO HHD O A QA
OO A OO0 AOOO0O
COO0OQODOMAmMA-NOOOO0O
A A A A A A A A A AHO OO0
OO0 O00O00O0O0COO A
OO0 O000CO0OO0LCO0OO0OCO0OC0C
e B B Bt e e e e e e e) e a1
R B i B i B B Tt N e B i I |
MM OOOOOOO
e T T T T]
wowdl vl o v v v
°g
011000000
.......:00100000
QOO0 O0OMOOOO
OCDOOO-HO OO

o~ OO0 OCO0O0C =00 ~}

-l Lol

. 00O QQCO O -

-l t

-~ OO0 O0O0OCCOOH ~

L) Q0

o ™

St e e e e et b e e N

10011.0001.10000110110011000110000110

0
-
N

<o

-l -t

o0

oo

I

(==

bod Ll

[
r

1

=]
Ll
hal
<
=]
L)

<

el

{ oo o0 o001 1 if0]

01 0 i/o

1

(=]

o

00

hal

=]

-l o
v o o

coQ

ISF__SS3S
- QO nvo ﬂvo oo
:.......1 ”....1.0 ..1-..100 .“1000
o < o o
~ ~ ~ ~
HH At A OO A A OO AHO OO OO
COO A A A0 O0 0O HOOOCHO
COQOOCOO0OHHANAAA0O0O0CO
COQOOCOOO0COOO0 O e~
COO0O0O0O0OQOO0OO0O0OCOO0O0COO
M H A A A A A A H A A A

=]

o0 0 0 1/0

1
1
1
1

i

et bed bd bd Bl b hd Bt fmd hd L) bl el el e T e e fnd e o e) T e f)) bl 2

1/0 0 1]

L oo0o o041 0 1/0 1]
L ooo o1 01 1/0]
L oc o0 o011 0 1/0]

{ 00 0 01

o1]
1/0 1]

1/0
]

0 01 0 01

oo

—

<0

o O

o0

1/0 1

¢ 01 0 1 0 1/0 1]

(=]

0

Il e e e T N T K N |
OO0 0 M- OODOO
S e Ny, N, T Ty My My T
oo v o
°g
10000110000
-~
CHOOHOOHOOO
COMOOOQOQOONOO
COO0O-MOOOOCOO
M A AT OO OO0 0O
COQCO A A~

CO0OQ0O0OO0OO0O00OO0

I Non NanNen B an N an B ol
- -Q00000
e e T
o o
(=38 ~]
-......10000
[=]
~
HOOHO OO

CQooOQOU OO

el vt el et o ol

t 100 00 0 1/0 1]

e] b b e) b b Bd Bowwd B e b e e e)) e e e) e)

1/

00 0 1 0 1/0]

<

00 0 0 1/
0 0 0 0 1

1
1

(27) 1.1.4

o 1/0 1]
o 1/0 1
o 1/0 1]

1 0
o 0
o 0

O wmOo

(=2 =00 o]

- -

- -

(28) 1.1.5.

bod hmd) bt

Lo B I B B e B

o OO
e

1/

-

- O - O
e s
ol -t

=] =4

T ey

o o

o 11

e -OO
ODOO A

OO0 OO

0 0 1

00000

oo OoOo0

el e et b bt] b hd bd

- ol

v o

[~ =K1

(= 3 = I =]

o Cc o

-
(=]
o
=]
—

234

01 0 1/0 1]

L 1 1 0 1

11 1/0 1]

L o 01 01

Lan B e B I e N oo B |]]]]]]]]]]]]]]]]]]]]]J]]]]]]]J]]]]J]]]]]]]]]]]]]]]]
Omnm-=HO00C0O HTH O A A M AP O H MDA H Y O H A O M A O HA O A HOOD A H O A A O A OO A HO M HOOH WO OO
S__NESES S o noTaeNaoNm oS LS LS TSITUSTUSTUSRSTOSTUSRSTUSSS
-t - bal - ol
L= =] - O - O - Q - o L= =} - O - o - 0 oo - 0o - o o0 - O (= I =] oo
o1000 .Ui. H...l ..Ul ”.-.1 .“.-10 U....I U.ll. ..IO = = U.10 ﬂl u......lO .-..UIOO
o - o - -
g SO SURIE- SIS DN SRE- SIS SR S-S SIS
O OO -wOO .1111111.1..1.11110011111111111001”11”111001111100110010
O OOO O HHA A A A A A A A OO A AN A AN AN A AR OO O A A AN M A OO O A A MO OO A A" OOOO
HOOOCOOCOH A H A A A OO O A A A A N A A A HO OO A A A A AN A A OO O A A AN M AOO0O0OCO O A e
O v v o 0 HH H OO O A A Al A A A A O CO A A A A A A A O OCOOO OO OO O v vl vl vl vl vl vl vt od
-
ol vl o e 1 CO0 A AN A A A A A A A A A 0000000000 OO M A A A A vl oo
HrH A A A" \o)._ CCOOCOO0O0OCOOOCOCOOO v Avrl o vl vt v v vl v ovd ot vl et vl v v o v oo vl v
o~
L R e T e R T e Y) S [[[[[[-L_Lr-r-[[[[[[[—LE[r-r..[[[[[[[[EEE[[[[[[[[[[[[[[{[[[
]]]]]]]]J]]]]]]]]]]]]]]]]]]]]]]]]J]J]]]]]]]]]]]]]]2]]]]]]]]]]
HMHO A A ODO A A A A O N OO A A H A A HNODOO M MO A A OO HH O A OO e OO O A MO OO ™O
S o T o vomoo TN o Too N omuN S N TSI USRTUSSIUSSSIOSIOSSITS
bal — bal Lal i v i - ™ v
O o0 - QO - o (=2 =] - O (=2 =] L= -] - O - O oo - o oo [= I =] - O c o < O
..-.....1 :4.....10 l..i -4...11 .“.rlo H...l :4.....10 - oo - /1..10 3 3 =] .U.IOOu.:l:1.0 Ui
hal i v LI -t -
o o o ° o o o ° =) <R - T~ TP~ o o o o
s S T s o s o . T b S s s e S T S
HEH A A OO A H A AN A A OO H A H A H OO N AQCO A A M AN H A OO A A H OO A MO HO A AN T OO WA OO
COD M A rMrmrH OO0 H A A A0 OO H A R HOO0CO A AN HAQDO O A M MHOOO WA AHOO OO HOOO A A HNO OO
HE EH A SO0 OO HM M A AN A A A0 OO MM A A A QOO M A AN A MO0 00O A A" HOOOO OO O wiv
HEH EH A A0 O0 0000 00O O A A H AN AN A A OO0 OO0 A AAAAAA A A A OO OO0OOOOOOCCO
COO0CO0O0COmmmorH o AdAAdA A A A A A AN A A AR A0 000COCCO0 00000 OOOOOOO A A~
COO0CO0OCOCOO0CO0O0O00O0QOOOO0OCOOOCOCOCO OO H oA A vi vt ol v vl v v vl vt v vl v v oot v vl ot
e bt fd b b fd ol] Tt P BP0 L L T P e i e b] Rt el had W) L L et et e e G b e e et bt ed bt ek A hed A L b b b L b e e e d b A) b e Bk

235

(30) 1.1.7

i vl

-

-

i -t

vl el

<0

(36) 2.0.6

Y
O
- OO O

L= R]

1 1/0 1i/o
o 1/0 i/0

37 2.0.7

e
o O

b

-
- O
.....1
-
o

)
oo e

vl o o
- - O OO
DC v
o ot

o v el

i1 11 1/0 1/0 0 1]

1

L

L N |
- v
- o
s
Lol
o

e
- -

oo
Lol]
i o
-

-

Fan o]
< O
T M
- -
oo
bt
-
o
T
- O
oo
oo
o oo
-
. (=2 =3
[~}
o~ (=] =)
[]
]
- d
iRl]
C - =-o0
e, T e
- - -
o 0o
UIO
i
o
~
- OO -
O o= o-
ol e

i vl vl ol v

Y

- o A -

e e e e e e e e e e e e L L e

(39) 2.1.23

(31) 1.1.8

Lom B e B B o B e I O |
-Oo 0000 Oo
S T Ty e T, e
o oo e
(=]
S
- OOOOO
SN
o0 =] o
S by b
oo OO
COO =D O
CO OO0
COOCOO0C0Q
COQOO0O0
CoOCOoOO0OQO

e d Bd d b hd bd

(32) 2.0.2

Lo B et B ot B B e |
QOO0OoOO0O0
T e
™ol vl v v o
OO0 Q0O CCo
R D
£.8.%
SO WO HO
Qo000 00O
o OO0 O
- OO OO
O HH OO
COCO
it e
— Lo B B |
[} (= = I =]
o (== =]
~ e
- vl el
[=~] o 00
~ e
- - -
(=} --oo
(=] CHO
< L] (=R =R]
=]
o . (=~ =)
[}
(=] o o0
7]
L]
e . e had L

(40) 2.1.4

0 1/0 1/0 o 1]
0 1/0 1/0 o 1]

09
0o 0

i
0

L=]

[B |

(el el el elebele kel el Re el e N e N N W B an N |
HOOHO OO HMHOQOODOHOOOOOOD
e T T My St N e T, ey, e T T Y
el ol - oo o oo o
o =] o (=
HHOH A DOO M HMODOOOOA~A0000C
= - S5 5 W _ 5
(=0 ~] oo (=] < o (=] o o0 o <
S S, e T Sy T s S))
M A A A M A DA A A MO A O AN OO
M A OO O WO QO MO OO OO HAO O
OO MM A RO QOO0O0O M "HOOOQOQOO -
COO0OO0OO0CQOOH M MAWdA00CODO0O0O
COO0OOCOROOCOCOoOCOLOOHAHAAAA
COO0DO0OOCOCO0QOCOoOO0COOODOCOC

e b et e bed b)) Bt) T ld et B e Bed Bowd £) e b b

HOH OO0 0OHOO o O O
= O "HOOHMOO D] HO M AO ™
(=} [=]

. QOO " HDODOOH . O Ao O
o~ (2]

ﬂ.a COQOOO -~ Hw COCO A
MW et) brd bt e bd fd bd b Ld rnclw el e e b e D

236

Lo B o B e | el alalslelelels el e lalsl el el el ol ot e e et el e e el el i e le bl o Ll l s D] (e N anNan N sl o B s B B Wy N o B o N o |
0000 H OO HQOOMOOHOQOQOOD OO HOOHOQQODAHOOHOOOOHOOOOOO HOOA0O0 A OO O O
e, Y S - B T e i T B T e T T N e T T Sy
o - - i o - - - - - LTI - - vl o v e - - - - - - o
grTeT e e gT e 0. 2" "e g groeT e TR

OO0 00 11.0110110110O0.11.0.110.11000”10”10001100000 H A O A RO A AD AN O
S AR D D= DI DA DA D DR AR B BB B S_o_S__S__F

Al - - - Lol bl i -l hal
o o (=1 =] o0 oo o0 (=] oo o0 0010 o O o0 h=d oo o o oo [= =] o0 o0
~ ~ s e B e S B B B T ~ ~ S ~ S]
- O - O M A A A A A Al H A A A A O A A A A O WO e e DD o vl vl vl o v e o e e
0o O A A A A A rSr AT OO O A AN M Al OO A M N HMHOOO A "M OO OO0 ™ ord v T A o e e
- - OO A A AN A At C OO0 A A A A A AN OO O A AN A A0 AH A A MOOOOCO - T H A A A A A A OO0
QOO A =] HEHEHOOO A A A A A AN AN O OO H AN AN A M MO OOC OO O OO mwr oo b~ OO O WA

- -
oo - ~ COO MM A AW Ard A A M OO0 O00QOOC OO MM vl vl vl vl vl oo o o EH O OO o
o M..r COQCO0OO0O0COOQOO0O0O0 OO v v m = vtvl vl vl sl vl H ol vt or vl vl vl ol vl v \nw QOO A A
Lo B B e B i B o B e M BN B s B B B e B | il el e lel el el e el el el e F e el i e e e e e e e e e e e R e e e e R Nl N e e N e W]
COmMOOO0OO0OOOOCOOCO HOOHOOHOOOOHMOOHOODOOMOODOOQOHOOAHODOOHQOOOOODAHOOOO
St e ey T ey T e e N, S B e T B e e e T e T e T e T N e e e e B T
- o el A A A A - - o LR ER - o ot o o —~ - oo ol o o -
2 2 2 % 2 L L 2 L L 2
CO--OOO0OO0OCCOOO M H O N O M H OO O 1O QOO A HOOO OO AHMO A0 M OO0 OCOD A OO0
SR D= B B B SR DI - D D DA D D= DI B D AR D= = A S
L]

ecToeo " oToTe "o - - - - - - R - X - - R - X - R - R - - - - X - - X - R - R - - -)
~ S e ~ ~ S e T T T B T ~ -~ e ~ . S S ~
H O H A A O OO -0 HEH A A A Al EH A MO A WA A AN H O AN A A O A H A A H A A O AR AN A OO O
COO0O0COHHOOQOQOOCO M A A A QOO M A M A MO OO A A0 O AHDO A A HOOO A AHOOOAACODOCC v
CO00CO0OO0O0O+HOODOO HMEH OO O A A AN A OO0 A MM AANCOO 0O A AQOO A A A A ANOO0OOOOMNNOCOOO
HEHOOOOOOOCAAOO VOO0 HAAAAA A AOCO0 00RO AN rMARNACOO000CC O MmN OOOO
HHOCOOOO0OQOQOO A OO0 COO0O00COOHMAHH A AMdArN"T Al "0 O0Q0QCOOOOCOOOOCO A"

C O vt v vl v v v e

e o B o) T ld Bd b Bd L L L Lt

(41) 2.1.5

COQCOCOO0COOROOOOVOODOOCOODOOCOCMmMmMmMmeuMmMmeMeaArMArdA A~ A A

e 1l T bd el el e e e e i e e A el R)) el o e e e)) bl e e b e et b Bl) b) Ll e et et e et e) e

237

e
(e T VY

(44) 2.1.8

mme
[T
[T
[

(45) 3.1.3

(46) 3.1.

(]

(=2 o= 3 = 2~ }
SO OO

(47) 3.1.

n

e e
H oM HEREDDOO00 00
FOOOR MO0
O OO OO KD

~
o
[+]
S

3.1.

L]

L T s B s T e O e I O e B I e B §
P HHHERREOOOOC
HHHNOOOFRKRO
HOOMMAFOFRKFEOR

~
'Y
@
~r

3.1.

-

[ae Bl o B Bl e N o |
NN~

(R TS T T

QOO RO [

COrFrOOMOKROK

O OO HMEC MR

[T Y TR SN

Ll el = = I~]

cocor -

COOMOOHKOHK

OO HOMRBRORRERM

O R e

i/o 1/0 1
1/0 1 1/0

i/0 0 1/0

3
]
i 1/0 170 1]
1
|

0 1/0 tfo

1/0 1/0 1
i/0 1 1/0
i 1/0 1/0

i/0

1/0
1/0
1/0
1/0
1/0

1/0
1/0
1/0
1/0
i/0
1/0
i/0
1/0
1/0
1/0

1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0
1/0

1/0
i/0
1/0
1/0
1/0

1/0

1/0

1/0
i/0
i/0
1/0
i/0

1/0
i/0
i/0
1/0
i/0
1/0
1/0
1/0
1/0
1/0

1/0
1/0
1/0
t1/0
1/0
1/0
1/0
1/0
1/0
1/0

1/0
1/0
1/0
1/0
1/0

1/0

bd b d

1/0

1/90
1/0
1/0
1/0
1/0

1/0
1/0
1/0
1/0
1/0
1/0
i1/0
1/0
1/¢
i1/¢

1/0
1/0
1/9
i/0
/0
1/0
1/0
1/0
1/0
1/0

1/0
i/0
1/o
1/0
1/0

1/0

e b e e e e g e) bt bdd LB LT

e e e e e e e

e

238

Appendix D

Learning Sessions

D.1

| 7- sp.

The initial settingis [0 ¢ 0 0 0 0 ¢ ©]

Text? [s,iv]. Y1
Current setting remains unchanged.

Rext? [s,tv,0]. Y2
Current setting remains unchanged.

Next? [s,0,tv]. %3
Unable to parse [s,o0,tv]

Resetting the parameters ...

Parameters reset to: [0 0 0 0 0 1 1 0]

Next? generate.

Language generated with current setting:
[[s,iv],[s,o0,t¥],[s,0ften,iv], [s,0ften,0,tv]]

Noxt? [s,tv,0]. %4
Unabla te parse [s,tv,o]

Regatting the parameters ...

b
Parameters reset to: [1 0 0 0 0 1 0 0]
Next? generate.
Language generated with current setting:
[[s,ivl,[s,often,iv], [s,cften,tv,0],{s,tv,0]]
Rext? [s,0,tv]. %5
Unable to parse [s,o,tv]
Resetting the parameters ...

Parameters Teset to: [1 0 0 0 0 1 1 O]

Next? generate,

Language generated with current setting:

[[s,iv],[s,0,tv], [2,0ften,iv],[s,0ften,0,tv]]

Next? [s,tv,0]. A3
Unable to parse [s,tv,o0]

Resetting the parameters ...

Paramoeters reset to: [1 1 0 ¢ © L 0 0]

Next? generatae.

Language generated with current setting:
[[s,iv],[s,often,iv]l,[s,0ften,tv,0l,[s,tv,0]]

Noxt? [o,s,tv]. %
Unable to parse [o,s,tv]

Resatting the parameters ...

239

%a

%b

Yc

%d

Ya

Paramaetors reset to: [0 0 0 0 0 © 1 1] %t
Next? generate.

Language generated with current setting:

[fo,often,s,tv],{o,s,tv]]

Next? [s,tv,0]. 41

Unable to parse [=,tv,o]

Resetting the parameters ...

Paramaters reset to: [0 0 0 O 0 1 0 1] g
Foxt? generata.

Language generataed with current setting:
[[s,iv],[s,often,iv],[s,often,tv,0],[s,tv,0]]

Wext? [s,0,tv]. 3]

Unable to parse [s,o,tv] .

Resetting the parameters ...

Parameters resat to: [0 0 0 0 0 1 1t 1] %h
Next? generate.

Language generated with current setting:
[lo,s,0ften,tv],[o,s,tv],[s,iv],[s,0,tv], [8,0ften,iv], [s,0ften,0,tv]]
Next? [s,tv,0]. %10

Unable to parse [s,tv,c]

Resetting the parameters ...

Parameters resat to; [1 ¢ ¢ 0 0 1 0 1] Yi
Wext? gemnerate.

Language generated with curreat setting:
[[s,iv],[s,often,iv],[s,often,tv,0],[s,tv,0]]

Naxt? [o,s,tv]. Y11
Unable to parse [o,s,tv]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 1 1 1] %i
Naxt? generate.

Language genarated with current setting:
[[o,s,often,tv]l,{o,8,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,0,tv]]
Next? [s,tv,0]. %12

Unable to parse [s,tv,ol

Resetting the parameters ...

Paramaters reset to: [1 1 O 0 0 1 0 1] %k
Next? generats.

Language generated with current setting:
[[s,iv]),[s,often,iv],[s,often,tv,0],[s,tv,0]]

Next? [s,0,tv]. %13
Unable to parsa [s,o,tv]

Resetting the paramaeters ...

Parameters reset to: [0 ¢ 0 0 ©0 1/0 1 ©] %1

Baxt? generatae.

Language generated with current setting:
[[o,s,tv],[often,o0,s,tv], [often,s,iv]l, [s,iv],[s,0,tv],[s,0ften,iv], [s,0ften, 0, tv]]
Next? [s,tv,ol. %14

Unable to parse [s,tv,o]

Resetting tha parameters ...

Paramaters raset to: [0 0 0 0 0 1 1/0 0O 1] %m
Next? generate.

* Language generated with current setting:
CCs,ivl,[s,0,tv],[s,0ften,iv], [s,0ften,0,tv],[s,0ften,tv,0],[s,%v,0]]
Next? [o,s,tv]. %15

240

Unable to parse [o0,s,tv]
Resetting the parameters ...

Parameters resat to: [0 0 0 0 0 0 1/0 1 1] ¥n
Noxt? ganerata.

Language generazted with current setting:

[fo,often,s,tv],[o,s,tv]]

Naxt? [s,tv,0]. b4 1]
Unable to parse [a,tv,ol

Resetting the parameters ...

Parameters reset to: [0 0 0 0 ¢ 1 0 1/0] %o
Next? generata.

Languaga generated with current setting:

[[s,iv],[s,often,iv], [s,0ften,tv,0],[s,tv,0]]

Yext? [s,0,tv]. %17
Unable to parse [s,0,tv]

Resetting the parameters ...

Parameters reset to; [0 0 0 0 0 1/0 1 1] %p

Fext? generate,

Language generated with current setting:

[[o,often,s,tv], [o,s,0ften, tv],[o,s,%v]),(8,iv],[8,0,tv],[s,0ften,iv], [s,0ften,s,tv]]
Next? [s,tv,0]. %ie

Unable to parse [s,tv,o]

Resetting the parameters ...

Parameters reset to: [0 0 0 0 ¢ 1 1/0 1 1] %
Next? [s,iv]. Yi9
Current setting remains unchanged.

Next? [s,o0ften,iv]. %20
Current setting remains unchanged.

Yext? [s,tv,e]. 121
Currant setting remains unchanged.

Noxt? [o,s,tv]. %22
Current setting remains unchanged.

Next? [- 1N t'] . 123
Current setting remains unchanged.

Yaxt? [s,often,tv,o0]. %24
Current setting remains unchanged.

Text? [o,s,0ftan,tv]. %25
Current setting remains unchanged.

Next? [s,o0ften,o,tv]. %26

Current setting remains unchanged.

Next? generate.

Language generated with current setting:
[[o,s,0often,tvl,[o,s,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,0,tv],[s,0ften,tv,0],[s,tv,0]]
Yoext? bya.

yes
| 7-

D.2

| ?- 8p.

The initial settingis [0 0 0 ¢ 0 0 0 0] fa
Next? [s,o0,tv]. %1
Unable to parse (s,0,tv]

Resatting the parameters ...

Parametars reset to: [0 0 ¢ 0 0 1 1 0] %b

241

Text? [o,s,tv]. Y2
Unable to parse [o,s,tv]
Resetting the parameters ...

Parameters reset to: [0 0 0 0 0 0 1 1] %e
Next? [s,0,tv]. %3

Unable to parse [s,o,tv]

Resetting the parameters ...

Parameters reset to; [0 0 0 O 0 1 1 1] %d
Next? [s,tv,0]. %4

Unable to parse [s,tv,ol

Resetting the parameters ...

Parameters roset to: [t 0 O 0 O 1 O 1 3] e
Fext? [=,0,tv]. %5

Unable to parse [s,o,tvl

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 1 1 1] Y
Fext? [s,tv,o0]. %6

Unable to parse [s,tv,o0l

Resetting the parameters ...

Parameters reset to: [1 1 0 0 0 1 0 1] i
Next? [o,s,tv]. i

Unable to parse [o,s,tv]

Resetting the paramatexs ...

Paramatars Teset to; [1 1 0 0 0 1 1 1] %h
Naxt? generate.

Language generated with current setting:
[[o,s,0ften,tv],[o,s,tv],[s,iv], [s,0ften,iv},[s,0ften,tv,0], [2,tv,0]]
Next? [s,0,tv]. b1:3

Unable to parse [s,o,tv]

Resotting the parameters ...

Parameters reset to: [0 0 0 0 0 1/0 1 0] %1

Next? generate.

Language generated with current setting:

[[o,s,t¥],[often,o0,s,tv], [often,s,iv],[s,iv],[s,0,tv],{s,0ften,iv], [s,0ften,0,tv]]
Next? [s,tv,0]. %e

Unable to parse [s,tv,o]

Resetting the parameters ...

Parametoers reset to: [0 0 0 0 O 1 1/0 O 1 %
Naxt? [o,s,tv]. %10
Unable to parse [o,s,tv]

Resetting the parameters ...

Parameters raset to: [0 0 0 0 0 0 1/0 1] ik
THaxt? [s,0,tv]. it

Unable to parse [s,o0,tv]

Resetting the parameters ...

Parameters reset to: [0 ¢ 0 0 ¢ i/0 1 1] %1

Next? generate,

Language generated with current setting:
[[o,often,s,tv],{o,s,0ften,tv],[o,8,tv],[s,iv],[s,0,tv],[s,0ften,iv], [s,0ften,o0,tv]]
Next? [s,tv,0]. %12

Unable to parse [s,tv,ol

Resetting the parameters ...

242

Parameters reset to: {0 0 0 0 0 1 i/0 1] Y

Next? [s,iv]. %13
Current setting remains unchanged.
Next? [s,often,iv]. Y14
Current setting remains unchanged.
Next? [s,tv,0]. Y15
Current setting remains unchanged.
Naxt? [o,s,tv]. %18
Current setting remains unchanged.
Next? [s,0,tv]. %17
Current setting remains unchanged.
Next? [s,often,tv,0l. %18
Current setting remains unchanged.
Noxt? [o,s,often,tvl. %19
Current setting remains unchanged.
Next? [s,often,o,tv]. . %20

Current setting remains unchanged.

Next? generate.

Language generated with current setting:
[[o,s,often,tv],[o,8,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ftan,0,tv], [s,0ften,tv,0],[s,tv,0]]
Next? bye.

yos
I 2=

D.3

| 7= learn_all langs.

Trying to learn [[s,iv],[s,tv,0]] ...

Final setting: 0 0 0 0 0 O O O
Language generated: [[s,iv],[s,tv,0]]

The language [[s,iv],[s,tv,0]] is learnabla.

Trying to learn [[s,iv],[s,0,tv],[s,tv,0]] ...

Final setting: ¢ 0 0 0 0 1 1/0 ©

Language generated: [[s,iv],[s,o0,tv],[s,tv,0]]

The language [[s,iv],[s,0,tv],[s,tv,0]] is learnabla.

Trying to learn [[s,iv],[s,0,tv]] ...
Final setting: ¢ 0 0 0 0 1 1 ©
Language generated: [fs,iv],[s,o0,tv]]
The language L[s,iv],[8,0,tv]] is learnabla,

Trying to learn [[o,tv,s],[s,iv],[(s,tv,0]] ...

Final setting: 1 1 t 1 t 1 1 1

Language genaratad: [[o,tv,s],[s,iv],[s,tv,0]]

The language Elo,tv,s],[s,iv},[s,tv,0]] iz learnable.

Trying to learn [[o,tv,s]] ...

Final setting: 1 0 0 0 0 0 1 O
Language generated: [[iv,2l,[o,tv,s]]
which is a superset of [[o,tv,s]]

The language [[o,tv,s]] is NOT learnable.

Trying to learn ([o,s,tv],[s,iv],[a,tv,0]] ...

Final setting: 1 1 0 0 0 1 1 1

Language generated: [[o,s,tvl,[s,iv],[s,tv,0]]

The language [[o,s,tv],[s,iv],(s,tv,0]] is learnable.

243

Trying to learn [[o,s,tv],[s,iv],[s,0,tv],[s,tv,0]] ...

Final setting: ¢ ¢ 0 0 0 1 1/0 1

Language generated: [[o,s,tv],[s,iv],[s,0,tv],[s,tv,0]]

The language [[o,s,tv],[s,iv],[s,0,tv],[s,tv,0]] is learnable.

Trying to learn [[o,s,tv],[s,iv],(s,c,tvl] ...

Final setting: 0 0 0 0 ¢ 1 1 1

Language gensrated: [[o,s,tv],[=s,iv],[s,0,tv]]

The language [[o,s,tv],[s,iv],[8,0,tv]] is learnable.

Trying to learn [[o,s,tv],[s,iv]] ...
Final setting: 0 0 ¢ 0 0 0 1 0
Language generated: [[o,s,tv],[s,iv]]
The language [fo,s,tv],[s,iv]] is learnable.

Trying to leara [[o,s,tv],[o,tv,s],[s,iv],[s,tv,0]] ...

Final setting: 1 1 0 0 0 1/0 1 1

Language generated: [[o,s,tv],[o,tv,s],[s,iv],(s,tv,e]]

The language [[o,s,tv],[o,tv,s],[s,iv],[s,tv,0]] is learnable.

Trying to earn [[o,s,tv],[o,tv,s8],{s,iv],[s,0,tv], [s,tv,0]] ...

Final szetting: 1 0 0 0 0 1/0 1/0 1

Language generated: [[o,s,tv],[o,tv,s],[s,iv],[s,0,tv],[s,tv,0]]

The language [[o,s,tv],[o,tv,s],Is,iv],[s,0,t¥],[5,tv,0]] is learnable.

Trying to learn [[o,s,tv],[o,tv,s],[s,iv],[s,0,tv]] ...

Final setting: 1 0 0 0 0O 1/0 1 1

Language generated: [[o,s,tv],[o,tv,s],[s,iv],[s,0,tv]]

The language [[o,s,tv],[o.tv,s],[s,iv],[s,0,tv]] iz learnable.

Trying to learn [[o,s,tv]] ...

Final setting: 0 0 0 0 0 0 1 O
Language generated: [[o,s,tv],[s,iv]]
which is a superset of [[o,s,tv]l]

The language [[o,s,tv]] is EOT learnable,

Trying to learn [[iv,s],[tv,s,0]1 ...
Final setting: 1 0 0 0 0 0 0 O
Language generated: [[iv,s],[tv,s,c]]
The languaga [[iv,s]},[tv,s,0]] is learrable.

Trying to leara [[iv,s],[tv,0,8],[tv,s,0]] ...

Final setting: 1 1 0 0 0 0 1/0 ©

Language generated: [[iv,s],[tv,0,s],[tv,s,0]]

The language [[iv,s},[tv,0,s8],[tv,s,0]] is learnabla.

Trying to learn [[iv,s],[tv,0,3]] ...
Final setting: 1 1 0 0 O 0 1 ©
Language generated: [[iv,s],[tv,0,s]]
The language [[iv,s],[tv,0,8]] is learnable.

Trying to learn [[iv,s],[s,ivl,[(s,tv,0],[tv,s,0]] ...

Final satting: 1 0 ¢ 0 0 1/0 0 ©

Language generated: [[iv,s],ls,iv]l,[s,tv,0],[tv,s,0]]

The language [[iv,s],[s,iv],[s,tv,0],[tv,s,0]] is learnable.

Trying to laarn [[iv,s],[s,iv],[s,tv,e],[tv,0,8],[tv,s,0]] ...

Final setting: 1 1 0 0 0 1/0 1/0 ©

Language genarated: [[iv,sl,[=,iv],[s,tv,0],[tv,0,s],[tv,s,0]]

The language [[iv,s],[s,iv],[=,tv,0],[tv,0,8],[tv,2,0]] is learnable.

244

Trying to learn [[iv,s],[s,iv],[s,tv,0],[tv,0,8]] ...

Final setting: 1 1 0 0 O 1/0 1 O

Language. generated: .[[iv,s],[s,iv},[s,tv,0],[tv,0,s]]

The language [[iv,s],[s,iv],[s,tv,0],{tv,0,8]1] is learnable.

Trying to learm [[iv,s],[o,tv,s],[tv,s,0]] ...

Final satting: 1 0 0 0 0 0 1/0 © '
Language generatad: [[iv,s],lo,tv,s],[tv,s,0]]

The language E[iv,s]l,[o,tv,s],[tv,s,0]] is learnable.

Trying to learn [[iv,s],[o,tv,=],ftv,0,8],[tv,8,0]] ...

Final setting:.1 1 0 0 0 0 1/0 1/0

Language generated: [[iv,s],[o,tv,s],[tv,0,2],[tv,s,0]]

The language [[iv,s],[o,tv,s],[tv,0,8],[tv,8,0]] is learnable.

Trying to learn [[iv,sl,[o,tv,s],[tv,0,8]] ...

Final smetting: 1 1 0 0 0 0 1 1/0

Language generated: [[iv,s],[o,tv,s],[tv,0,s]]

The language [[iv,2],[0,tv,s],[tv,0,8]] is learnable.

Trying to learn [[iv,sl,[o,tv,s],[s,iv],[#,tv,0],[tv,s,0]] ...

Final setting: 1 1 1 1 1 L 1 1/¢

Language generated: [[iv,s],[o,tv,s],[s,iv],[s,tv,0],[tv,2,0]]

The language [[iv,s],[o,tv,s8],[s,iv],[s,tv,0],[tv,8,0]] iz learnable.

Trying to learn [[iv,s],[o0,tv,s],[s,iv],Es,tv,0],[tv,0,38],[tv,s,0]] ...

Final setting: 1 1 1 1 1 1/0 1 1/0

Language generated: [[iv,s),[o,tv,s],[s,iv],[s,tv,0],[tv,0,8],[tv,s,0]]

The language [[iv,s],[o,tv,s8],[s,iv],[s,tv,0],[tv,0,8],[tv,=,0]] is learnable.

Trying to learn [[iv,s],[o,tv,s],[s,iv],[s,0,tv],[s,tv,0],[tv,8,0]1] ...

Final setting: 1 0 0 0 O 1/0 1/0 ©

Language generated: [[iv,s],[o,tv,s],[s,iv],[s,0,tv],[s,tv,0],[tv,s,0]]

The language [[iv,s],[o,tv,s],[s,iv],[s,0,tv],[s,tv,0],[tv,5,0]) is learnable.

Trying to learn [[iv,s],[o,tv,s],[s,iv],[s,0,tv]] ..

Final setting: 1 0 ¢ 0 0 1/0 1 ©

Language generated: {[iv,s],[o,tv,s],[s,iv],[s,0,tvi]

The language [[iv,s},[o,tv,s],[s,iv],[s,0,tv]] is learnable.

Trying to learrn [{iv,s],[o,tv,s]] ...
Final setting: £ 0 0 © 0 0 § O
Language generated: [[iv,s],[o,tv,a]]
The language [[iv,s],[o0,tv,s]] i=s lLearnable.

Trying to learn [[iv,s],[o,s,tvl,lo,tv,s],[s,iv],[s,tv,0],[tv,0,8],[tv,s,0]] ...

Final szetting: 1 1 0 0 0 1/0 1/0 1i/0

Language genarated: [[iv,s},[o,s,tv],[o,tv,8],[s,iv],[s,tv,0],[tv,0,s8],[tv,s,0]]

The language [[iv,s],[o0,s,tv],[o,tv,s],[s,iv],[s,tv,0],[tv,0,2],[tv,s,0]] is learnable.

Trying to learn [[iv,s],[o,s,tv],[o,tv,s],[s,iv],[s,tv,0],[tv,0,8]] ...

Final setting: 1 & 0 0 © 1f0 1 1/0

Language generated: [[iv,s],[o,s,tv],[o,tv,s],[s,iv]l,[s,tv,0],[tv,0,s]]

The language [[iv,s],[o,s,tv],[o,tv,s],[s,iv],[s,tv,0],[tv,0,8]] is learnabls.

Trying to learn [[iv,s],[o,s,tv],[o,tv,s],[s,iv],[s,0,tv],{s,tv,0],[tv,s,0]] ...

Final setting: 1 0 0 0 0 1i/0 1/0 1/0

Language generated: [{iv,s],[o,s,tv],fo,tv,s],[s,iv],[s,0,tv], [s tv,o0l,[tv,s,0]]

The language [[iv,s],[o,s,tv],[o,tv,al,[s,iv],[s,0,tv],[s,tv,0],[tv,s,0]] is learnable.

Trying te learn {{iv,s],[o0,8,tv],[0,tv,s],[5,iv], [s,0,tv]] ...
Final setting: 1 0 0 0 O 1/0 1 1/0

245

Language generated: [[iv,s],[o,s,tv],[o,tv,s],[s,iv],[s,0,tv]]
The language [[iv,s],[o,=s,tv],[o,tv,s],[s,iv],[s,0,tvi] is learnable.

yas
j~ 7

D.4

| 7- learn_all_langs.

Trying to learn [[s,iv],[s,often,iv],[s,often,tv,0],[s,tv,01] ...

Final setting: 0 ¢ 0 0 0 1 0 O

Language generated: [[s,iv],[s,often,iv],[s,often,tv,0],[s,tv,0]]

The language [[=,iv],[s,often,ivl,[s,often,tv,0],(s,tv,0]] is learnable.

Trying to learn [[s,iv],[s,o,tv],[s,often,iv],[s,often,o0,tv],[s,0ften,tv,0],[s,tv,01] ...

Final setting: ¢ 0 0 ¢ O 1 1/0 ©

Language generated: [[s,iv],[s,o,tv],[s,often,iv],[s,0ften,o,tvl,[s,0ften,tv,0],[s,tv,0]]

The language [[s,iv],[s,o0,tv],[s,often,iv],[s,often,o,tv],[s,0ften,tv,0],[s,tv,0]] is learnable.

Irying to learn [[8,iv],[s,0,tv],[s,often,iv],[s,0ften,0,tv]] ...

Final setting: ¢ 0 0 ¢ ¢ 1 1 O

Language generated: [[s,iv],[s,o,tv],[s,0ften,iv],[s,often,o0,tv]]

The language [[s,iv],[s,e,tv],[s,often,iv],[s,0ften,0,tv]] is learnabla.

Trying to learn E[s,iv],[s,iv,often),[s,tv,0],[s,tv,0ften,0]] ...

Final setting: 1 1 1 1 ¢ 1 0 ©

Language genrerated: [[s,iv],[s,iv,oftenl,[s,tv,0],[s,tv,0ften,0]]

The language [[s,iv]l,[s,iv,often],[s,tv,0],[s,tv,0ften,0]] is learnable.

Trying to learn Eloften,s,iv],[often,s,tv,0],[s,iv],[s,tv,0]] ...

Final setting: 0 0 ©¢ & 0 0 ©0 O

Language generated: [[often,s,iv],[oftan,s,tv,0],[s,ivl,[s,tv,0]]

The language [[often,s,ivl,[often,s,tv,0],[s,iv],[s,tv,0]] is learnable.

Trying to learn [[often,s,iv],[often,s,tv,0],[s,iv],[s,often,iv],[s,0ften,tv,0],[s,tv,01] ...

Final setting: 0 0 0 0 0 1/0 0 ©

Language generated: [[often,s,iv],[often,s,tv,0],[s,iv],[s,0ften,iv],[s,often,tv,0],[s,tv,0]]

The language [[often,s,iv], [often,s,tv,0],[s,iv],[s,often,iv],[s,0ften,tv,0],[s,tv,0]] is learnabla.

Trying to learn [[o,tv,s],[o,tv,s,often],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,0]] ...

Final setting: 1 1 1 1 1 1 1 1

Languaga generated: [[o,tv,s],[o,tv,s,often],(s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,o0l]

The language [[o,tv,s],[o,tv,s,0ften],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,0]] is learnabla.

Trying to learn [[o,tv,often,s],[c,tv,s],[o,tv,s,0ften],[s,iv],[s,iv,often],[s,tv,0],[8,tv,0Fften,0]] ...
Final setting: 1 1 1 1 1 1/0 1 1

Language generated: [[o,tv,often,sl,[o,tv,s],{c,tv,e,0ften],[s,iv],[s,iv,0ften],[s,tv,0],[s,tv,often,o]]
The language [[o,tv,often,s],[o,tv,s],{ec,tv,s,0ften],[s,iv],[s,iv,0ften],[s,tv,0],[#,tv,often,0l]

is learnable.

Trying to learn [[o,tv,oftan,s]l,[o,tv,s]] ...

Final satting: 1 1 1 1 0 0 1 1

Language generated: [[o,tv,often,sl,lo,tv,s]]

The language [[o,tv,often,s],fo,tv,8]] is learnable.

Trying to learn [[o,s,tv],[often,0,s,tv]),[often,s,iv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,o0,tvIl] ...
Final setting: 0 0 0 0 ¢ 1/0 1 ©

Language generated: [[o,s,tv],[often,c,s,tv],[often,s,iv]),[s,iv],[s,0,tv],[3,0ften,iv],[a,0ften,0,tv]]
The language [[o,s,tv],[often,o,s,tv],[often,s,iv],[s,iv],[s,0,tv]),[2,0ften,iv], [s,0ften,0,tv]]

is learnable.

246

Trying to learn [[o,s,tv],[often,c,s,tv], [often,s,iv], [s,iv]] ...

Final setting: 0 0 0 0 0 0 1 ©

Language generated: [[o,s,tv],[often,0,s,tv],[often,s,iv],[s,iv]]

The language [[o,s,tv],[often,o0,s,tv],[often,s,iv],[s,iv]] is learnabla.

Trying to learn [[o,s,tv],[often,o,s,tv],[often,s,iv],[often,s,tv,0],[s,iv],[s,tv,0]] ...

Final setting: ¢ ¢ 0 0 0 ¢ 1i/0 ©

Language generated: [[o,s,tv],[often,o0,s,tv],[oftan,s,iv], [often,s,tv,0],[s,iv],[s,tv,0]]

The language [[o,s,tv],[often,o,s,tv],[oftan,s,iv], [often,s,tv,0],[s,iv],[s,tv,0]] is learnabla.

Trying to learn [[o,s,tv],[often,o,s,tv],[often,s,iv],[often,s,tv,0],[8,iv],[8,0,tv], [5,0ften,iv],
[s,oftan,o,tv], [s,often,tv,0],[s,tv,0]] ...

Final setting: ¢ 0 0 0 0 1/0 i/0 o©

Language generated: [[o,s,tv],[eften,0,s,tv],[often,s,iv], [often,s,tv,0],[s,iv],[s,0,tv], [=,0ften,iv],
[s,often,o,tv], [s,often,tv,0],[s,tv,0]]

The language [[o,s,tv],[oftan,0,s,tv], [often,s,iv], [often,s,tv,0],[s,iv],[s,0,tv],[s,0ftan,iv],
fs,often,o,tv],[s,0ften,tv,0],{s,tv,0]] is learnable.

Trying to learn [[o,s,tv],lo,s,tv,0ften],[s,iv],[s,iv,0ften],[s,tv,0],[s,tv,0ften,al] ...

Final setting: 1 1 1 1 0 1 1 1

Language generated: [{o,s,tv],[o,s,tv,0ften] ,[a,iv],[s,iv,cften],[s,tv,0],[s,tv,0ften,0]]

The language [[o,s,tv],[o,s,tv,0ften],[s,iv],[s,iv,oftan],{s,tv,0],[s,tv,0ften,0]] is learnable.

Trying to learn [[o,s,tv],[o,s,tv,0often],[o,tv,often,s],[0,tv,s],[s,iv], [s,iv,often], [s,tv,0],
[s,tv,0often,0i] ...

Final setting: 1 1 1 1 0 1/0 1 1

Language generated: [[o,s,tv],[o,s,tv,often],[o,tv,0ften,s],[o,tv,s],[s,iv],[s,iv,often],[s,tv,0],
[s,tv,often,0l]

The language [[o,s,tv],[o,s,tv,0ften],[o,tv,0ften,sl, [o,tv,s],[s,iv],[s,iv,often],[s,tv, 0],
[s,tv,often,0]] is learnable.

Irying to learn {{o,s,often,tv],[o,s,tv],[s,iv],[s,0ften,iv],[s,0ften,tv,0],[s,tv,01] ...

Final setting: 1 1 0 0 0 1 1 1

Language generated: [[o,s,often,tvl,lo,s,tv],[s,iv],[s,often,iv],[s,often,tv,0],[s,tv,0]]

The language [[o,s,often,tvl,[o,s,tv],[s,iv],[s,0ften,iv],[s,0ften,tv,0],[8,tv,0]] is learnable.

Trying to learn [[o,s,often,tv],[o,s,tv],[s,iv],[8,0,tv], [s,0ften,iv],[s,oftan,o0,tv],[s,0Fften,tv,0],
[=,tv,0]] ...

Final setting: 0 0 0 0 O 1t 1/0 1

Language generated: [[o,s,often,tv],[o,s,tv],[s,iv],[s,0,tv],[s,0ften,iv}, [s,0ften,0,tv],
[s,often,tv,0],[s,tv,0]]

The language [[o,s,often,tv],[o,s,tv],[s,iv],[s,0,tv],[s,often,iv],[s,often,o0,tv],[s,0ftan,tv,0],
[s,tv,0]] is learnable,

Trying to learn [[o,s,often,tv],[o,2,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,0,tv]] ...

Final setting: 0 0 0 ¢ 0 1 1 1

Language generated: [[o,s,0ften,tvl,[o,s,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,often,0,tv]]

The language [[o,s,often,tv],fo,s,tv],[s,iv],{s,0,tv],[s,0ften,iv], [s,often,0,t¥]] is learnable.

Trying to learn [[o,often,tv,s],[o,tv,s]] ...

Final setting: 1 0 0 0 0 0 1 1

Language gensrated: [[o,often,tv,s],[o,tv,s]]

The language [[o,often,tv,s],[o,tv,s]] is learnable,

Trying to learn [[o,often,tv,s],[o0,s,0ften,tv],[o,s,tv],[0,tv,a],[s,iv],[s,often,iv],[s,0ften,tv,0],
[s,tv,01] ...

Final setting: 1 1 6 0 0 1/0 1 1

Language genarated: [[o,often,tv,s],[o,s,0ften,tv],[o,s,tv],[0,tv,8],[s,iv],[s,0ften,iv],
[=,0ften,tv,o0], [s,tv,0]]

The language [[o,often,tv,s],[c,s,often,tv],[0,8,tv],[o,tv,s],[=,iv],[s,0ften,iv],[s,often,tv,a],
[s,tv,0]] is learnable.

247

Trying to learn [[o,oftaen,tv,s],[o,s,0ften,tvl,[o,s,tv],[o,tv,s],[s,iv],[s,0,tv],[s,0ften,iv],
[s,often,o,tv],[s,0ften,tv,0l,[s,tv,0]] ...

Final setting: 1 0 ¢ ¢ 0 1/0 1/0 1

Language generated: [[o,often,tv,s],[o,s,often,tv]l,[o,s,tv],{o,tv,s],[s,iv],[5,0,tv], (s, 0ften,iv],
[s,often,o,tv],[=,0ften,tv,0],[s,tv,0]]

The language [[o,often,tv,s],[o,s,0ften,tv],[o,5,tv],[0,tv,s],[=,iv], s,0,tv], [s,0ften,iv],
[s,often,o0,tvl,[s,0ften,tv,0],[s,tv,0]] is learnablsa.

Trying to learn [[o,often,tv,s],[o,s,0ften,tv],[o,s,tv],[0,tv,8],[s8,iv],[s,0,tv],[s,0ften,iv],
[s,0ften,o,tv]] ...

Firal settipg: 1 0 0 0 O 1/0 1 1

Language gensrated: [[o,often,tv,s],[o,s,0ften,tv],[o0,s,tv],[o,tv,s],[s,iv],[s,0,tv], [=s,0ften,iv],
[s,0ften,o,tv]]

The language [{o,often,tv,s],[o,s,0ften,tv],[o0,s,tv],[0,tv,8],I5,iv],[s,0,tv],[s,0ften,iv],
[s,often,o0,tv]] is learnable.

Trying to learn [[o,often,s,tv],[o,s,tv],[often,o0,s,tv],[often,s,iv],[s,iv]] ...

Final setting: 0 ¢ 0 0 0 0 1 1/0

Language generated: [[o,often,s,tv],[o,s,tv],[often,o0,s,tv], [often,s,iv], [s,iv]]

The language [[o,often,s,tv],[o,s,tv], [often,o,s,tv],loften,s,iv],[=,iv]] is learnable.

Trying to learn [[o,often,s,tv],[o,8,tv],[often,0,s,tv],[oftan,s,iv], [often,s,tv,0],[s,iv],
[s,tv,0l] ...

Final setting: 0 0 0 0 0 0 1/0 1/0

Language gensrated: [[o,often,s,tv],[o,s,tv],[often,0,s,tv], often,s,iv], [often,s,tv,0],[s,iv],
[s,tv,0ll

The language [[o,cften,s,tv],[o,s,tv], [often,o,s,tv], [often,s,iv], [often,s,tv,o],[s,iv],[s,tv,0]]
iz learnable.

Trying to learn [[o,often,s,tv],[o,s,tv]] ...

Final setting: ¢ 0 0 0 0 0 1 1

Language generated: [[o,often,s,tvl,[o,s,tv]]

The language [[o,o0ften,s,tv],[o,s,tv]] is learnabla.

Trying to learn [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv],{s,iv],[s,0,tv],[s,0ften,iv], [s,0ften,o,tv],
[s,often,tv,c],[s,tv,0]] ...

Final setting: 0 0 0 0 0 1/0 i/0 1

Language generated: [[o,often,s,tv],[o,s,0ften,tv],[0,s,tv],[8,iv],[8,0,tv],[s,0often,iv],[s,often,o0,tv],
[s,often,tv,0],[s,tv,0]]

The language [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv], [s,iv],[s,0,tv],[s,0ften,iv],[s,0often,o,tv],
[s,often,tv,0],[s,tv,0]] is learnable.

Trying to learn [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv],[s,iv],[8,0,tv], [s,0ften,iv], [s,0ften,o,tvi] ...
Final setting: 0 0 0 0 O 1/0 1 1

Language generated: [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv],[8,iv],[5s,0,tv],[s,0ften,iv],[s,often,o,tv]]
The language [[o,often,s,tv], [o,s,0ften,tv],[0,s,tv],(s,iv],[5,0,tv],[s,0ften,iv],[s,0ften,o0,tv]]

is learnable.

Trying to learn [[o,often,s,tv],[o,8,0ften,tv],[o,8,tv],[often,0,s,tv], [often,s,iv],[s,iv],
[s,0,tvl,[s,0ften,iv],[s,often,0,tv]] ...

Final setting: 0 0 0 0 0 1/0 1 1/0

Language generated: [[o,often,s,tv],[o,s,often,tv],[0,8,tv],[often,0,s,tv],[often,s,iv],[s,iv],
[s,0,tv],[s,0ften,iv],[s,often,o,tvi]

The language [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv], [often,0,8,tv],[often,s,iv],[s,iv],[s,0,tv],
[s,0ften,iv],[s,often,o,tvl] is learnable.

Trying to laarn [[o,often,s,tv],[o,s,0ften,tv],[o,s,tv],[often,0,8,¢tv], [often,s,iv], [often,s,tv,0],
fs,iv],[s,0,tv],[s,often,iv], [s,often,o,tv], [s,0ften,tv,0],[s,tv,0]] ...

Final setting: ¢ 0 ©0 ¢ ¢ 1/0 1/0 1/0

Language generated: [[o,often,s,tv],[o,s,often,tv],[o,s,tv], [often,o,s,tv], [often,s,iv],[often,s,tv,0],
[s,iv],[s,0,tv],[s,0ften,iv],[s,often,o,tv],[s,0ften,tv,0],[s,tv,0]]

248

The language [[o,often,n,tv],[o,s,often,tv],[o,s,tv],[oftan;o,s,tv],[oftan,s,iv],[oftan,s,tv,o},
[s,iv],[s,0,tv],[s,0ftean,iv], (s, 0ften,o0,tv], [s,often,tv,0],[s,tv,0]] is learnable.

Trying to learn [[iv,s],[often,iv,s],(often,tv,s,0],[tv,s,0]] ...

Final setting: 1 0 ¢ 0 0 0 0 O

Language generated: [[iv,s],[often,iv,s],[often,tv,s,0],[tv,5,0]]

The language [[iv,s],(often,iv,s],[often,tv,s,0],[tv,8,0]] iz learnable.

Trying to learn [[iv,s],[often,iv,s],[often,tv,s,0],[2,iv],[s,0ften,iv], [s,often,tv,e],[s,tv,0],
[tv,s,c]] ...

Final setting: 1 0 ¢ 0 O 1/0 0 O

Language generataed: {[iv,s],[cften,iv,s],[often,tv,s,0],[s,iv],[s,0ften,iv],[s,0ften,tv,0],
[s,tv,0],[tv,s,0]]

The language [[iv,s),[often,iv,s],[often,tv,s,0],[s,iv],[s,often,iv], [s,often,tv,0],[s,tv,0l,
[tv,s,0]] is learnable.

Trying to learn [[iv,s],[often,iv,s],[often,tv,0,s],[tv,0,5]] ...

Final setting: £t 1 ¢ 0 0 0 1L O

Language generated: [[iv,s],[often,iv,s],[often,tv,0,8],[tv,0,8]]

The language [[iv,s],[often,iv,s],[often,tv,0,s],[tv,0,8]] is learnable.

Trying to learn [[iv,s],[often,iv,s],[often,tv,0,8],[s,iv]l,[s,0ftan,iv],[s,0ften,tv,0],[s,tv,0],
[tv,o,81] ...

Final setting: 1 1 0 0 0 1/0 1 0

Language generated: [[iv,s]),[often,iv,s],[often,tv,0,s],[s,iv],[s,often,iv],[s,often,tv,0],
[s,tv,o],[tv,0,s]]

The language [[iv,s],[often,iv,s],[often,tv,0,8],[s,iv],[s,0ften,iv],[s,often,tv,0],[s,tv,0],
[tv,0,8]] is learnable.

Trying to learn [[iv,s],[often,iv,s],[often,tv,0,8], [often,tv,s,0],[tv,0,8],[tv,s,0]1] ...

Final setting: 1 1 0 0 0 0 1/0 0

Language generated: {[iv,s],[often,iv,s], [often,tv,0,s],[oftan,tv,s,0],[tv,0,8],[tv,s,0]]

The language [[iv,z],[often,iv,s],[often,tv,0,5],[often,tv,s,0],[tv,0,8],[tv,2,0]] is learnable.

Trying to learn [[iv,s],[often,iv,s],[often,tv,0,8],[often,tv,8,0],[s,iv],[s,0ften,iv], [s,0ften,tv,0],
[s,tv,0],(tv,0,8],[tv,s,0]] ...

Final setting: 1 1 0 ¢ 0 1/0 1/0 ©

Language generated: [[iv,s],[often,iv,s],[cften,tv,0,8],loften,tv,s,0],(s,iv],[s,0ften,iv],
[s,often,tv,0],[s,tv,0],[tv,0,8],[tv,s,0]]

The language [[iv,s],[often,iv,s],[often,tv,0,s],[often,tv,8,0],[s,iv],[s,0ften,iv],[s,0ften,tv, 0],
[a,tv,0],[tv,0,8],[tv,s,0]] is learnabla.

Trying to learn [[iv,s],[o,tv,s],[often,iv,s], [often,o,tv,s],[s,iv],[s,0,tv],[s,0ften,iv],
[s,0ften,0,tv]] ...

Final setting: 1 0 ¢ 0 O 1/0 1 ©

Language generated: [[iv,s],[a,tv,s].[often,iv,s],[oftan,o,tv,s].[s.iv],[s,o,tv],[s,often,ii],
[s,often,0,tv]]

The language [[iv,s],[o,tv,s],[often,iv,s], [often,o,tv,s],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,0,tv]]
is learnable.

Trying to learn [[iv,s],[o,tv,s],[often,iv,s], [often,0,tv,8], [often,tv,s,0],[tv,s,0]] ...

Final setting: 1 0 0 0 0 O 1/0 O

Language generated: [[iv,s],[o,tv,s],[often,iv,s], [often,o,tv,s],[often,tv,s,0],[tv,s,0]]

The language [[iv,s],[o,tv,s],[cften,iv,a], [often,0,tv,8], [often,tv,5,0],(tv,5,0]] is learnable.

Trying to learn [{iv,s],[o,tv,s], [often,iv,8], [often,0,tv,8],[cften,tv,5,0],[s,iv],[s,0,tv],
(s,often,iv},[s,often,0,tv],[s,often,tv,0],[s,tv,0],[tv,8,0]] ...

Final setting: 1 0 0 0 0 1/0 1/0 0O

Language generated: [[iv,s),fo,tv,3],[often,iv,s],[often,o0,tv,8],[often,tv,8,0],[s,iv],[5,0,tv],
{s,often,iv],[s,often,o,tv],[s,often,tv,0],[s,tv,0],[tv,s,0]]

The language [[iv,s],[o,tv,sl,[often,iv,s],[often,0,tv,s], [often,tv,s,0],[s,iv],[s,0,tv],
[=,often,iv],[s,often,o,tv],[s,oftan,tv,0],[s,tv,0],[tv,s,0]] is learnable.

249

Trying to learn [fiv,s],[o,tv,s],[often,iv,s],[often,o,tv,s]] ...

Final setting: 1 0 0 0 Q@ 0 1 0

Language generated: [[iv,s],[o,tv,s],[often,iv,s], [often,o,tv,s]l]

The language [[iv,s],[o,tv,8],[often,iv,s],[often,o,tv,s]] is learnable.

Trying to learn ([iv,s]l,[o,often,tv,s], [o,tv,s],loften,iv,s], [often,tv,0,5], tv,0,81] ...

Final setting: 1 1 0 0 0 0 1 1/0

Language generated: [[iv,s],[o,0ften,tv,s],[o0,tv,s],[often,iv,s],[often,tv,0,s],[tv,0,5]]

The language [[iv,s],[o,often,tv,e],[o0,tv,s]),[often,iv,s], [often,tv,0,8],(tv,0,8]] is learnable.

Trying to learn [[iv,s],[o,0ften,tv,s],[o,tv,8],[often,iv,s], [often,tv,0,8],[often, tv,5,0],
ftv,o0,8),[tv,s,0]] .

Final setting: 1 1 0 0 0 ¢ 1/0 1/0

Language generated: [[iv,s],[o,often,tv,s],[o,tv,s],loften,iv,s],[often,ty,0,s], often, tv,s,0],
[tv,0,8],[tv,s,0]]

The language [[iv,s],[o,often,tv,s],[o,tv,s],[often,iv,a],[often,tv,0,s],[often,tv,s,0],[tv,0,5],
[tv,s,0]] is learnabla.

Trying to learn [[iv,s],[o,often,tv,s],[o,tv,s],[often,iv,s],[often,o0,tv,s], [often,tv,s,0],[tv,5,0]] ...
Final setting: 1 0 © 0 0 0 1/0 1/0

Language generated: [[iv,s],[o,often,tv,s],[o,tv,s],[often,iv,s],[often,o,tv,s8], [often,tv,s,0],[tv,5,0]]
The language [[iv,s].[o,often.tv.s],[o,tv,s].[often,iv,a],[often,o,tv.s],[often,tv.s,o].[tv,s,o]]

is learnable.

Trying to learn [[iv,s],[o,often,tv,s],[o,tv,s],[often,iv,s],[often,0,tv,s]] ...

Final setting: 1 0 0 0 0 0 1 1/0

Language generated: [[iv,s],[o,often,tv,s],lo,tv,s], [often,iv,s],[often,o,tv,s]]

The language [[iv,s],[o,often,tv,s],[o,tv,s]),[often,iv,s],[often,0,tv,s]] is learnable.

Trying to learn [[iv,s],[o,cften,tv,s],[o,s,0ften,tv],[0,s,tv],[o,tv,a], [often,iv,s], [often,tv,0,s],
[=,iv],[s,often,iv],[s,often,tv,0]l,[s,tv,01,[tv,0,2]] ...

Final setting: 1 1 0 0 0 1/0 1 1/0

Language generated: [[iv,s],[o,often,tv,s],[o,s,0ften,tv],[o,s,tv],[o,tv,s],[often,iv,s], [often,tv,0,8],
(s,iv],[s,often,ivl,[s,often,tv,0],[s,tv,0], [tv,0,8]]

The language [[iv,s],[o,often,tv,s],[0,s8,0ften,tv], [0,s,tv],[o,tv,s], [often iv,s],[often,tv,0,8],[z,iv],
[s,0ften,iv], [s,often,tv,0],[s,tv,0],[tv,0,8]] is learnable.

Trying to learn [[iv,s],lo,often,tv,s],lo,s,0ften,tv]},[0,s,tv]l, [o,tv,=],[often,iv,s], [often,tv,0,2],
foften,tv,=,0],[s,iv], [s,often,iv],[s,0often,tv,0],[s,tv,0],[tv,0,8],[tv,s,0]] ...

Final setting: 1 1 0 0 ¢ 1/0 1/0 1/0

Language generated: [[iv,s],[o,often,tv,8],[c,s,often,tv],lo,s,tv],[o,tv,8],[oftan,iv,s],[often,tv,0,8],
[often,tv,s,0],[s,iv],[s,cften,iv],[s,often,tv,0],[s,%v,0],[tv,0,5],[tv,s,0]]

The language [[iv,s],[c,often,tv,s],[o,s,0ften,tv],[o,s,tv],[o,tv,s],[often,iv,s],[often,tv,0,s],
[often,tv,s,0],[s,iv],[s,0ften,iv],[s,often,tv,0],[s,tv,0],[tv,0,5],[tv,8,0]] is learnable.

Trying to learn E[iv,s],[o,often,tv,s],[o,s,0ften,tv],[0,8,tv],[0,4v,8], [often,iv,s], [often,o0,tv,s],
[s,iv],[s,0,tvl,[s,often,iv], [s,0ften,o0,tv]] ...

Final setting: 1 0 0 0 0 1/0 1 1/0

Language generated: [[iv,s],[o,often,tv,s],[o,s,0often,tv],[o,s,tv],[o,tv,s],[often,iv,s], [often,0,tv,s],
[s,iv],[s,0,tv],[s,often,iv],[s,0ften,o0,tvi]

The language [[iv,s],[o,often,tv,8],[o,s,0ften,tv],[0,s,tv],[o,tv,s],[often,iv,s],[often,o,tv,s],
[s,iv],[s,0,tv],[2,0ften,iv], [s,0ften,0,tv]] is learnabls.

Trying to learn [{iv,s],[o,often,tv,s},[0,s,0ften,tv],[o0,s,tv],[o,tv,s], [often,iv,s], [often,o,tv,s],
[often,tv,s,0],[s,iv],[s,0,tv],[s,0ften,iv],[s,often,o,tv]l,[s,0ften,tv,0],[s,tv,0],[tv,s,0]] ...

Final setting: 1 0 ¢ © 0 1/0 1/0 1/o0

Language genarated: [[iv,s],[o,often,tv,s],[o,s,0ftan,tv],[o,s,tv],[o,tv,s],[often,iv,s], [often,0,tv,2],
[often,tv,s,0],[s,iv],[s,0,tv],[s,0ften,iv],[s,often,c,tv]l,[s,0ften,tv,0],[s,tv,0],[tv,s,0]]

The language [[iv,s],[o,often,tv,s],[o,s,0ften,tvl,[0,s,tv],[0,tv,s], [often,iv,s], [often,0,tv,5],

[often,tv,s,0],[s,iv],[s,0,tv],[s,0ften,iv],[s,often,o,tv],[s,often,tv,0],(s,tv,0],[tv,s,0]] is learnable.

250

-

Trying to learn [(iv,s],[iv,s,often],[tv,s,0],[tv,s,0ften,0]] ...

Final setting: 1 1 1 1 1 1 0 ©

Language generated: [[iv,s],[iv,s,oftan],[tv,s,0],(tv,s,0ftan,0]]

The language [[iv,s],[iv,s,often],[tv,s,0],[tv,s,0ften,0]] is learnable.

Trying to learn [[iv,=],[iv,s,often],[s,iv],[s,iv,often],{=,tv,0],[s,tv,0ften,0], [tv,s,0],
[tv,s,often,o0]] ...

Final setting: 1 1 1 1 1 1 © 1/0

Language generated: [[iv,s],[iv,s,often],[s,iv],[s,iv,often],[s,tv,0],[s,tv,often,o0],[tv,s,oc],
[tv,s,0ften,o0]]

The language [[iv,s],[iv,s,often],[s,iv],[s,iv,0ften],[s,tv,0},[s,tv,0ften,0], [ty,s,0],[tv,s,often,c]]
is learnable.

Trying to learn [[iv,s],[iv,s,often],[o,tv,s],[o,tv,s,0ften],[s,iv],[s,iv,0ften],[s,tv,0],
[s,tv,often,o0],[tv,s,0],[tv,s,0ften,oc]] ...

Final setting: 1 1 1 1 1 1 1 1/0

Language gonerated: [[iv,s],[iv,s,often],{o,tv,s],[o,tv,s,0ften],[s,iv],[s,iv,often],[s,tv, 0],
[s,tv,oftan,0],[tv,s,0],[tv,s,0ften,0]]

The language [{iv,s],[iv,s,often],[o,tv,8],[0,tv,s,0ften],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,0],
[tv,s,0],[tv,s,0ften,0]] is learnabla.

Trying to learn [[iv,often,s],[iv,s],[tv,often,s,0],{tv,s,0]] ...

Final setting: 1 1 1 1 0 0 0 O

Language generated: [[iv,often,s],[iv,s],[tv,often,s,0],[tv,s,0]]

The language [[iv,often,sl,[iv,s],[tv,often,s,0],[tv,5,0]] is learnable.

Trying to learn [[iv,often,s],[iv,s],[tv,0,8],[tv,0ften,o0,s],[tv,0ften,s,0],[tv,s,0]] ...

Final setting: 1 1 1 1 0 © 1/0 ©

Language generated: [[iv,often,s],(iv,s],[tv,0,s8],[tv,0ften,0,s],[tv,0often,s,0],[tv,s,0]]

The language [[iv,cften,s],[iv,s],[tv,0,8],[tv,often,s,8],[tv,0ften,s,0],[tv,8,0]] is learnable.

Trying to learn [[iv,often,sl,[iv,s],[tv,0,s],[tv,often,0,8]] ...

Final setting: 1 1 1 1 0 0 1 O

Language generated: [[iv,often,s],[iv,s],[tv,0,s],[tv,often,o,s]]

The language [[iv,often,s],[iv,s],[tv,0,2],[tv,oftean,0,8]] ias learnabla.

Trying to learn [[iv,often,s],[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0often,0],[tv,o0ften,s,0],
[tv,=,0]1] ...

Final setting: 1 1 1 1 0 1/0 0 ©

Language generated: [[iv,often,s],[iv,s],(s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,oc], [tv,often,s,c],
[tv,s,0]]

The language [[iv,often,s],[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,0],[tv,0ften,s 0],
[tv,s,0]] is learnable.

Trying to learn [[iv,often,=],(iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften, 0], [tv,0,s],
[tv,often,o0,s],[tv,often,s,c],[tv,s,0]1] ...

Final setting: 1 1 1 1 0 /0 1/0 ©

Language generated: [[iv,often,s],{iv,s]),[s,iv],[s,iv,0ften],[s,tv,0],[s,tv,0ften,c],[tv,0,s],
[tv,often,o,s], [tv,often,s,0],[tv,8,0]]

The language [[iv,often,s],[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0often,o),[tv,0,2],[tv,0ften,0,s],
[tv,often,s,0],[tv,s,c]] is learnable.

Trying to learn [[iv,often,s],[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,al,[tv,0,s],
[t¥,often,0,s8]] ...

Final setting: 1 1 1 1 ¢ 1/0 1 ©

Language generated: [[iv,often,s),[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,0],{tv,0,s],
[tv,often,o0,s]]

The language [[iv,often,s],[iv,s],[s,iv],[s,iv,often],[s,tv,0],[s,tv,often,0],[tv,0,s],[tv,0ften,0,s]]
is learnable.

Trying to learn [[iv,often,s],[iv,s],[o,tv,often,s],{o,tv,8],[tv,0,2],[tv,often,0,s],[tv,0ften,s,0],
[tv,s,0]] ...

251

Final setting: 1 1 1 1 0 0 1/0 1/0

Languaga generated: [[iv,often,s],[iv,sl,[o,tv,often,s]l,[o,tv,s],[tv,0,s],[tv,often,o0,s],
[tv,often,s,0],[tv,s,0]]

The language [[iv,often,sl,[iv,s],[o,tv,0ften,s],[o,tv,s],[tv,0,5],[ty,0ften,0,s], [tv,ocften,s,0],
[tv,s,0]] iz learnable.

Trying te learn [[iv,often,s],[iv,s],[o0,tv,often,s],[o,tv,sl, [tv,0,8],[tv,eften,0,8]] ...

Final setting: 1 1 1 1 0 0 1 1/0

Language generated: [[iv,often,s],[iv,s],[o,tv,often,s],[o,tv,s],[tv,0,8],[ty,0ften,0,s]]

The language [[iv,often,s],[iv,s],[o,tv,0ften,s],[o,tv,s],[tv,0,s],[tv,0ften,0,8]] is learnablae.

Trying to learn [[iv,often,s],[iv,s],[0,s,tv],[o,s,tv,0ften],{o,tv,often,s],[o,tv,8],[s,iv],
[s,iv,0often], [s,tv,0],[s,tv,0ften, 0], [tv,0,8], [tv,often,0,8],[tv,often,s,0],[tv,2,0]1] ...

Final setting: 1 1 1 1 0 1/0 1/0 1i/o

Language generated: [[iv,often,s],[iv,s],[o,s,tv],[o,s,tv,0ften],[o,tv,0ften,s],[o,tv,s],[s,iv],
[s,iv,often],[s,tv,0l,[s,tv,0ften,0],[tv,0,8],[tv,0ften,o,s], [tv,often,s,0],[tv,s,0]]

The language [[iv,often,s],[iv,s},[0,s,tv],{o,s,tv,0ften], [0,tv,often,s],{o,tv,s],[s,iv],[s,iv,often],
[s,tv,0]l,[s,tv,0ften, 0], [tv,0,8], [tv,often,0,5],[tv,0ften,=,0],[tv,s,0]] is learnable.

Trying to learn [[iv,often,s],[iv,s],[0,s,tv],[0,s,tv,0ften], [o,tv,often,s],[o,tv,8],[s,1iv],
[s,iv,often],[s,tv,0],[s,tv,0ften,0],[tv,0,58],[tv,0ften,0,s]] ...

Final setting: 1 1 1 1 0 1/0 1 1/0

Language generated: [[iv,often,s],[iv,s],[o0,s,tv],[o0,s8,tv,0ften],[o,tv,0ften,s],[o,tv,8],[s,iv],
[s,iv,often],[s,tv,0], [s,tv,often,0],[tv,0,s], [tv,0ften,0,8]]

The language [[iv,often,s],[iv,s],[o0,s,tv],[o0,s,tv,0ften],lo,tv,0ften,s],[o,tv,8],[s,iv],
[#,iv,often],[s,tv,0],[s,tv,often,0],[tv,0,8],[tv,0ften,0,5]] is learnable.

Trying to learn [[iv,often,s],[iv,s],[iv,s,0ften], [tv,often,s,0],[tv,8,0], [tv,s,0ften,0]] ...

Final setting: 1 1 1 1 1 1/0 0 ©

Language generated: [[iv,often,s),[iv,s],[iv,s,often],[tv,often,s,0],[tv,s,0],[tv,s,0ftan,0]]

The language [[iv,often,s],[iv,s],[iv,s,0ften],[tv,often,s,0],[tv,s,0],[tv,s,0ften,0]] is learnabls.

Trying to learn [[iv,often,s),[iv,s],[iv,s,often],[tv,0,s8],[tv,often,o,s],[tv,s,0], [tv,s,0ften,0]] ...
Final setting: 1 1 1 1 1 1/0 1 O
Language generated: [(iv,often,s],[iv,e],[iv,s,0ften),[tv,0,8],[tv,0ften,0,s], tv,5,0],[tv,s,0ften,0]]

The language [[iv,oftan,s],[iv,s],[iv,s,often],(tv,0,8],[tv,0ften,0,s],[tv,s,0],[tv,s,0ften,0]] is learnabla.

Trying to learn [{iv,often,a],[iv,s],[iv,s,often],[tv,0,s],[tv,0ften,0,s],[tv,0ften,s,0],[tv,s,0],
[tv,s,oftan,0]] ...

Final setting: 1 1 1 t 1 1/0 1/0 O

Language generated: [[iv,often,s],[iv,s],[iv,s,often],[tv,0,8],[tv,0ften,0,s],{tv,often,s,0],[tv,s,0],
{tv,s,often,o]]

The language [[iv,often,s],[iv,s],[iv,s,often], [tv,0,s],[tv,0ften,o0,s],[tv,often,s,0],tv,s,0],
[tv,s,0ften,0]] is learnablae.

Trying to learn [[iv,oftaen,s],[iv,s],[iv,s,often],[s,iv],[s,iv,often],[s,tv,0],[s,tv,0ften,o],
[tv,often,s,0],[tv,s,0],{tv,s,0ften,0]] ...

Final setting: 1 & 1 1 1 1/0 0 1/0 ‘

Language generated: [[iv,often,s],[iv,s],[iv,s,often],[s,iv],{s,iv,often],[s,tv,0],[s,tv,0ften, 0],
[tv,often,s,0],[tv,s,0],[tv,s, often,0]]

The language [[iv,oftan,2],[iv,s],[iv,s,0ften],(s,iv],(s,iv,often],[s,tv,0],[s,tv,0ften,oc],
[tv,often,s,0],[tv,s,0],[tv,s,0ften,0]l] is learnable.

Trying to learn [[iv,often,s],[iv,s],[iv,s,often],[o,tv,0ften,s],(o,tv,8],[0,tv,s,0ften],[s,iv],
[s,iv,otten],[s,tv,0],(s,tv,0ften,0],[tv,0,8],[tv,often,0,8],[tv,8,0],[tv,s,0ften,0]] ...

Final setting: 1 1 1 1 1 1/0 1 1/0

Language generated: [[iv,often,s],[iv,s],[iv,s,often],[o,tv,0ften,s],fo,tv,s],[o,tv,s,0ften], [s,iv],
[8,iv,often],[s,tv,0],[s,tv,0ften,0],[tv,0,8], [tv,0often,0,s],[tv,s,0],[tv,s,0ften,o0]]

The language [[iv,often,sl,[iv,s},[iv,s,often],[o,tv,often,s],[0,tv,8],[0,tv,s,0Fften],[[s,iv],[s,iv,0ften],
[s,tv,0],[s,tv,0ften,0],[tv,0,s},[tv,often,0,s8],[tv,8,0],[tv,s,0ften,0]] is learnabla.

Trying to learn [[iv,often,s],[iv,2],[iv,s,0ften],[o,tv,0ften,s],{o,tv,s],[o,tv,s,0ften],[s,iv],

252

=

[s,iv,often],[s,tv,ol,[s,tv,often,0],[tv,0,5],[tv,0ften,0,8],[tv,often,s,0],[tv,s,0],[tv,=,0ften,0]] ...
Final setting: 1 1 1 1 1 1/0 1/0 1/0

Language generated: [[iv,often,s],[iv,s],[iv,s,often],[o,tv,often,s],[o,tv,s], o,tv,s,0ften],
[s,iv],[s,iv,often],[s,tv,0],[s,tv,oftan,o0],[tv,0,8], [tv,0ften,0,s],[tv,0ften,s,0],[tv,8,0],[tv,s,0ften,0]]
The language [[iv,often,s],[iv,s],liv,s,often],[o,tv,often,s],[0,tv,s],[0,tv,s,0ften],[s,iv],[3,iv,0ften],
{s,tv,0],[s,tv,often,ol,[tv,0,8],[tv,0ften,0,8],[tv,often,s,0],[tv,s,0], [(tv,s,0ften,0]] is learnable,

yos
|= 7

D.5

] 7= sp.

The initial setting is [0 0 0 0 © ¢ O O] %a
Text? [s,0,tv]. %

Unable to parse [s,o,tv]

Resetting the parameters ...

Parameters reset to: [0 0 0 0 0 1 1 0] %b
Text? [iv,s]. %2

Unable to parse [iv,s]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 0 1 0] %c
Naxt? [s,iv]. %3

Unable to parsa [s,iv]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 1t 0 O] %d
Next? [o,tv,s]. Y4

Unable to parse [o,tv,s]

Resetting the parametexs ...

Parameters raset to: {1 0 0 0 ¢ 0 1 1] e
Next? [o,s,tv]. p13

Unable to parse [o,s,tv]

Resetting the parameters ...

Parametars reset to: [1 0 0 0 0 1 1 1] e
Yext? [tv,s,0]. %6

Unable to parse [tv,s,o)

Resetting the parameters ...

Parameters reseat to: [1 0 0 0 0 1/0 0 0O] g
Next? [s,tv,0]. %

Current setting remains unchanged.

Next? [s,0,tv]. %8

Unable to parse [s,o,tv]
Resetting the paramaters ...

Parameters reset to: [1 ¢ 0 0 0 1/0 1 0] %h
Next? [=,tv,0]. %9

Unable to parse [s,tv,ol

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 1 1/0 0 1] i
Next? [o,s,tv]. 110

Unable to parsa [o,s,tv]

Resetting the parameters ...

Parameters reset to: [0 0 0 O ¢ 0 1/0 1] %

2563

Next? [z,0,tv]. %11
Unable to parse [s,0,%v]
Resetting the parameters ...

Parameters resst to: [0 0 0 0 O 1/0 1 1] ik
Next? [s,tv,0]. Y12

Unable to parse [s,tv,o]

Resetting the paramaters ...

Parameters resst to: [0 0 0 0 ©0 1 1/0 1] Y1

Fext? generate.

Language generated with current setting:

[Lo,s,orten,tv]l, [o,s,vv],[8,iv],[s,0,tv],[s,0ften,iv],[s,0ften,0,tv], [s,0ften, tv,0],[s,tv,01]
Next? [iv,s]. 13

Unable to parse [iv,s]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 0 1 i/0 1] ¥m
Noxt? generate.

Language generated with current setting:
[[iv,s],[o,often,tv,s],[0,tv,s], [often,iv,s],[often,0,tv,8]]

Next? [s,tv,0]. %14

Unable to parsa [s,tv,o]

Rasetting the parameters ...

Parameters reset to: [1 0 0 0 ¢ 1 0 11/0] %n
Next? generate.

Language gonerated with current setting:
[[s,iv],[s,often,iv],[s,0ften,tv,0],[s,tv,0]]

Next? {s,0,tv]. %15

Unable to parse [s,0,tv]

Resetting the parameters ...

Parameters rasat to: [1 0 0 0 0 1/0 1 1] %o
Text? [o,s,tv]. Y16
Current setting remains unchanged.

Next? [s,tv,0]. %17

Unable to parse [s,tv,o]
Resetiing the parameters ...

Parameters reset to: [1 0 0 0 ¢ 1 1/0 1 1] ir

Yext? generate.

Language generated with current setting:
[[o,s,often,tv],[o,s,tv],[s,iv],[s,0,tv],[s,0ften,iv],[s,0ften,o0,tv], [s,0ften,tv,0],[s,tv,0]]
Yext? [iv,s]. Y18

Unable to parse [iv,s]

Rasetting the parameters ...

Parameters reset to: (1 1 0 0 0 0 1 1/0 1] %q
Next? generata.

Language generated with current setting:
[(iv,s],[o,often,tv,s],[o,tv,8], [often,iv,s],[often,tv,0,8],[tv,0,s8]]
Naxt? {s,tv,0]. %19

Unable to parse [s,tv,o]

Resetting the parameters ...

Parameters reset to: [1 1 0 0 0 1 © 1/0] %r
Bext? generate.

Languaga generated with current setting:
[(s,iv],{s,often,iv],[s,often,tv,0l,[8,tv,0]]

Next? [s,0,tv]. %20

Unable to parse [s,0,tv]

254

Rasetting the parameters ...

Parameters reset to: (0 0 0 0 0 1/0 1/0 O] %is

Naxt? generate.

Language generated with current setting:
[fo,s,tv],[often,o0,s,tv], [often,s,iv], [often,s,tv,0],[s,iv],[s,0,tv],[s,often,iv],[s,0ften,0,tv],
[s,often,tv,o],[s,tv,0]]

Taxt? [iv,s]. %21

Unable to parse [iv,s]

Resotting the parameters ...

Parameters resaet to: [1 0 0 O ¢ 170 1/0 0 1] Yt

Noxt? gaenerate.

Language generated with current setting:

[[iv,s],[o,tv,s],[often,iv,s], [cftan,o,tv,s],[often,tv,s,0],[s,iv},[s,0,tv],[s,0ften,iv], [s,0ften,0,tv],
[s,often,tv,0],[s,tv,0],[tv,s,0]]

Next? [s,tv,0]. %22
Current setting remains unchanged.
Bext? [s,0,tv]. %23
Current setting remains unchanged.
Next? [o,s,tv]. Y24

Unable to parse [o,s,tv]
Resetting the parameters ... '

Parameters reset to: [0 0 0 0 0 © 1/0 1/0] fu
Raxt? [s,0,tv]. %25

Unable to parse [s,0,tv]

Resetting the parameters ...

Parameters resat to: [0 0 0 0 O 1/0 1/0 1] Yv
Next? {s,tv,o0], %26
Current setting remains unchanged.

Next? fo,s,tv]. %27

Current setting remains unchanged.

Fext? generate.

Language generated with current setting:
[[o,often,s,tv],[0,s,0ften,tv],[o,s,tv],[8,iv],[5,0,tv],[s,0ften,iv], [s,0ften,0,tv],[s,0ften,tv,0],
[#,tv,0]]

Text? [iv,s]. %28

Unable to parse [iv,s]

Resetting the parameters ...

Parametars Teset toe; [1 0 0 0 O 1/0 O 1/0] iw
Next? [s,tv,o]. %29

Current setting remains unchanged.

Text? [s,0,tv]. %30

Unable to parse [s,0,tv]
Resetting the parameters ...

Parameters reset to: [1 0 0 O 0 1/0 /0 1] %x
Next? [s,tv,0]. %31

Current setting remains unchanged.

Next? [o,s,t¥]. %32

Current setting remains unchanged.

Next? generate.

Language generated with current setting:
[fo,often,tv,s],[o,s,0ften,tv],fo,8,tv],[o,tv,8],[s,iv],[=,0,tv],[s,0ften,iv], [s,0ften,o,tv],
[s,often,tv,0],[s,tv,0]]

Naxt? [iv,s]. %33

Unable to parse [iv,s]

Resetting the parameters ...

258

Parameters reset to: [1 ¢ 0 0 0 1/0 1 1/0] Ly
¥oxt? [s,tv,0]. %34

Unable to parse [s,tv,ol

Resetting the parameters ...

Parameters reset to: [1 0 0 0 O 1 1/0 1/0] Yz
Naxt? [s,0,tv]. %35
Current setting remains unchanged.

Next? [o0,s,tv]. %36

Current setting remains unchanged.

Next? generate.

Language generated with current setting:

[lo,s,0ften,tv],[o,s,tv],[s,iv],[s,0,tv], [8,0ften,iv],[s,0ften,o0,tv], [s,0ften,tv,0],[s,tv,0]]
Taxt? [iv,s]. %37

Unable to parse [iv,s]

Resetting the parameters ...

Parameters reset to: [1 1 0 0 O 1/0 0 1/0] %al
Text? [s,tv,0]. %38

Current setting remains unchanged.

Fext? [s,0,tv]. %39

Unable to parse [s,0,tv]
Resotting the parameters ...

Parameters reset to: [0 O O O O 1/0 1/0 1/0] Ybi
Next? [s,tv,o0]. %40

Current setting remains unchanged.

Next? [o,s,tv]. %41

Current setting remains unchanged.

Next? generate.

Language generated with current setting:

[[o,cften,s,tv],Lo,s,0ften,tv]l,[0,s,tv],[oftan,0,s,tv], [often,s,iv],[often,s,tv,0],[s,iv],{s,0,tv],
[s,often,iv],[s,often,o0,tv],[s,0ften,tv,0],[s,tv,0]]

Naxt? [iv,s], %42

Unable to parse [iv,s]

Resatting the parameters ...

Parameters reset to: [1 0 ©¢ 0 O 1/0 1/0 1/0] %el
Naxt? [s,tv,0]. %43

Current setting remains unchanged.

Next? [s,0,tv].] %44

Current setting remains unchanged.

Faxt? [o,s,tv]. %46

Current setting remains unchanged.

Hext? generate.

Language generated with current setting:
[[iv,s],[0,0ften,tv,8],[0,s,0ften,tv],[0,8,tv],[o,tv,s],[often,iv,s], [often,o,tv,s],[often,tv,s,0],
[s,iv],[s,0,tv],[s,0ften,iv], (s, 0ften,0,tv], [s,0ften,tv,0],[s,tv,0]1,[tv,s,0]]

Yext? [o,tv,s]. %46

Current setting remains unchanged.

Next? [tv,o0,s].

Unabla to parse [tv,o,s]

Resotting the parameters ...

Parameters resst to: [1 1 ¢ 0 © 1/0 1/0 1i/0 1 %d1
Eaxt? [s,tv,0]. 147

Current setting remains unchanged.

Toxt? [s,o0,tv]. %48

Unable to parse [s,0,tv]
Resetting the parameters ...

256

no
7=

D.6

[7= =p.

The initial settingis [0 0 ¢ 0 0 0 0 0 i i 1-0]
Yaxt? [s,iv,aux].

Unable to parse ([s,iv,aux]

Rosatting the parameters ...

Parametors reset to: [0 0 0 0 0 0 0 0 i f 1-0]
Next? [s,tv,0,aux].

Current setting remains unchanged.

Text? [s,0,tv,aux].

Unable to parse [s,0,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 0 0 O i £ 1-0]
Naxt? [s,tv,0,aux].

Unable to parse [s,tv,0,aux]

Resetting the parameters ...

Parametars reset to: [6: 0 0 1 0 0 0 0 i ¢ 1-0]
Next? [s,o0,tv,anx].

Unable to parse [s,o0,tv,aux]

Resetting the paramaters ...

Parameters reset to: [1 1 O 0 0 0 0 0 i £ 1-0]
Naxt? [=,tv,0,aux].

Unable to parse [s,tv,o,aux]

Resetting the parameters ...

Parameters reset to: [0 ¢ O 1 1 0 O O £ 1 1«0]
Yext? [s,0,tv,aux].

Unable to parse [a,o0,tv,aux]

Resetting the parameters ...

Parameters reset to: [0 0 0 0 0 1 1 0 i £ 1-0]
Next? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]

Rasetting the parameters ...

Parameters reset to: [0 ¢ 0 1 1 1 0 0 £ i 1-0 1]
Naxt? [s,o0,tv,aux].

Unable to parsa [2,0,tv,aux]

Resetting the parameters ...

Paramesters reset to: [0 ¢ 0 1 0 1 1 0 i f 1-0]
Naxt? [s,tv,0,auxj.

Unable to parse [a,tv,o0,aux]

Resetting the parameters ...

Parameters reset to: {1 0 0 1 1 1 0 0 £ i 1-0]
¥oxt? [s,0,tv,aux].

Unable to parse [s2,0,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 0 0 1 1 1 0 0 & f 1-0]

Jext? [s,tv,0,aux].
Unable to parse [g,tv,o0,zux]

257

Resatting the parameters ...

Parameters reset to: {1 1 0 1 1 1 0 0 £ i 1-0 1
Next? [s,tv,o0,aux].

Current setting remains unchanged.

Next? generata.

Language generated with current setting:
LCs,iv,aux],[s,tv,0,a0x]]

Next? [s,o,tv,aux].

Unable to parse [s,o,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 1 0 1 &£ 1 ©0 0 £ f 1-0]
Next? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]

Rasetting the parameters ...

Parameters reset to: {2 1 0 1 1 1 1 0 £ i 1-0]
Naxt? [s,0,tv,aux].

Unable to parse [s,o,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 1 0 i 1 1 1 O £ £ 1-0]
Next? [s,tv,o0,aux].

Unabla to parse [s,tv,o0,aux]

Resetting the paramaters ...

Paramaters reset to: 0 ¢ 0 0 0 L 0 1 1 £ 1-0]
Yaxt? [s,0,tv,anx].

Unable to parse [s,o,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 0 0 0 0 1 0 1 i £ 1-0]
Next? [s,tv,o,aux].

Unable to parse [s,tv,o,aux]

Resetting the parametars ...

Parameters resat to: [0 0 0 1 O 1 0 1 1 ¢ 1-0]
Next? [s,0,tv,aux].

Unable to parse [s,o,tv,aux]

Resetting the parameters ...

Parameters reset to: [0 0 O 0 © & 1 1 i f 1-0]
Next? [s,tv,o,aux].

Unable to parse {s,tv,o,aux]

Resetting the parameters ...

Parameters reset to: [0 0 0 1 1 1 0 1 £ i 1-0 1]
Next? [s,0,tv,aux].

Unable to parse (s,o0,tv,aux]

Resetting thae paramaters ...

Parameters reset to: [0 0 0 1 ©0 f 1 1 i £ 1-0]
Next? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]

Resetting the parameters ...

Parameters reset to: [1 0 0 1 1 1 0 1 f i 1-0]
¥oxt? [s,o0,tv,aux].

Unable to parsa [s,o,tv,aux]

Resetting the parameters ...

258

Parameters reset to: [1 0 0 1 1 1 0 1 £ £ 1-0]
Next? [s,tv,o0,aux].

Unable to parse [s,tv,o,aux]

Resetting the parameters ...

Parameters rasat to: [1 1 0 1 1 1 0 1 £ i 1-0]
Yaxt? [s,o0,tv,aux].

Unable to parse [s,o,tv,aux]

Rasetting the parameters ...

Parameters reset to: [1 1 0 2 1 1 0 1 £ f 1-0]
Next? [s,tv,o0,aux].

Unable to parse [s,tv,o0,aux]

Resetting the parameters ...

Paramaters reset to: (1 1 0 1 1 1 1 1 £ i 1-0]
Next? [s,0,tv,aux].

Unable to parse [s,0,tv,aux]

Resetting the parametsrs ...

Parameters resat to: [1 1 0 1 1 1 1 1 £ £ 1-0]
Naxt? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]

Rasetting the parameters ...

Paramsters resat to: [0 0 0 O 0 O $1/0 O i £ 1-0]
Yext? [s,o0,tv,aux].

Unable to parse [s,0,tv,aux]

Resetting the parameters ...

Parameters reset to: [1 0 0 O 0 O 1/0 0 i £ 1-0]
Next? [s,tv,o,aux].

Unable to parse [s,tv,o,aux]

Resetting the paramaters ...

Parameters raset to: [0 0 0 1 0 0 1/0 0 i f 1-0 1]
Naxt? [8,0,tv,anx].

Unable to parse [s,0,tv,aux]

Resetting the parameters ...

Parameters reset to: [0 0 ¢ 0 0 1 1/0 0 i £ 1-0]
Naxt? [s,tv,o0,aux].

Current setting remains unchanged.

Next? generata.

Language genarated with current setting:
({s,iv,aux],[s,0,tv,aux],[s,tv,0,aux]]

Noxt? [o,s,tv,aux].

Unable to parse [o,s,tv,aux]

Resetting the parameters ...

Parameters reset to: O 0 0 ¢ 0 1/0 1 0 i £ 1-0]
Next? [s,tv,o0,aux].

Unable to parse [s,tv,o,aux]

Resetting the parameters ...

Parameters reset to: [0 0 0 1 1 ©0 1/0 0 f i 1-0 1]
Yext? [s,0,tv,aux].

Unable to parse [s,o,tv,aux]

Resetting the paramaters ...

Parameters reset to: [0 O 0 1 O 1 1/0 O i £ 1-0]
Noxt? [=,tv,o0,aux].

259

Current setting remains unchanged.

Text? [o0,s,tv,aux].
Unable to parse [o0,s,tv,aux]
Resetting the parameters ...

Parameters reset to: [0 0 0 1

Next? {s,tv,0,aux].
Unable to parss [s,tv,o0,aux]
Resetting the parametars ...

Parameters reset to: [1 0 0 i

Next? [s,0,tv,aux],
Unable to parse [s,0,tv,aux]
Resetting the parameters ...

Parameters reset to: [1 0 0 1

Next? [s,tv,0,aux].
Unable to parse [s,tv,o,aux]
Resetting the parameters ...

Parametars reset to: (0 0 ¢ 1

Naxt? [3,0,tv,aux].

Current setting remains unchanged.

Next? [o,s,tv,aux].
Unable to parse [o,s,tv,aux]
Resetting the parameters ...

Paramaters reset to: {0 0 O 1

Next? [s,tv,o0,aux].
Unable to parse [s,tv,0,aux]
Resetting the paramaters ...

Parameters resat to: [1 1 0 1

Next? [s,0,tv,auxj.
Unable to parse [s,o,tv,aux]
Resetting the parameters ...

Parameters reset to: [1 i
¥ext? [s,tv,o,aux].

Unable to parse [s,tv,o,aux]
Resetting the parameters ...

0

1

Parameters reset to: (1 0 O 1

Next? [s,0,tv,aux].

Current setting remains unchanged.

Next? [o,s,tv,aux].
Unable to parse [o,s,tv,aux]
Resetting the parameters ...

Parameters reset to: [1 ¢ 0 1

Next? [s,tv,o0,aunx].
Unable to parse [s,tv,o,aux]
Resetting the parameters ...

Paramaters reset to: [1 1 0 1

Foxt? [s,o0,tv,aux].
Unable to parse [s,0,tv,aux]
Resetting the parameters ...

Paramoters reset to: [1 1
Hext? [s,tv,o,aux].
Unable to parse [s,tv,0,aux]

0

i

i/0 1
1/0 ©
1/0 o
1 1/0
i/0 1
i/0 o
1/o0 o
1 1/0
1/0 1
1 1/0
i 1/0

260

1-0

1i-0

1-0

1-0

Resetting the parameters ...

Parameters reset to: [1 1 0 1 1 1/0 1 O

Next? [s,0,tv,aux].
Unable to parse [s,o0,tv,aux]
Resetting the parametars ...

Parameters reset to: [1 1 0 1 1 1/0 1 O

Next? [=,tv,o0,aux].
Unable to parse [s,tv,o,aux]
Resetting the parameters ...

Parameters reset to; [0 O 0 O 0 0
Next? [s,0,tv,aux].

Unable to parse [s,o,tv,aux]
Resetting the parametaers ...

Parameters reset to: [1 0 O O O O
Toxt? [s,tv,0,aux].

Unable to parse [=,tv,o,aux]
Resetting the parameters ...

Parametars reset to: [0 O O 1 0O ©
Next? [8,0,tv,aux].

Unable to parse [s,o0,tv,aux]
Resetting the parameters ...

Parametexs reset to: [t 1 0 0 0 O
Next? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]
Resetting the parameters ...

Parameters reset to: [0 0 0 1 1 0O
Next? [s,o,tv,aux].

Unable to parse [s,o,tv,aux]
Resetting the parameters ...

Parameters reset to: [0 0 0 0 O 1
Next? [s,tv,0,aux].

Unable to parse [s,tv,o,aux]
Rasetting the parameters ...

Parameters resat to: [0 0 0 0 0O 1
Next? [s,0,tv,aux].

Current setting remains unchanged.
Toxt? [o,s,tv,aux].

Current setting remains unchanged.
Fext? generate.

Language generated with current setting:

o 1/0
o 1/0
0 1/0
o 1/o
0 1/0
1 1/0
1/0 1

[[o,s,tv,aux],[s,iv,aux],[s,0,tv,aux],[s,tv,0,aux]]

Next? bya.

yos
f 7=

261

1-0

1-0

	1
	2
	3
	4
	5
	6
	7

