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A quantlfler is a semantic operaton,that ansWers one of the
questlons ""How many?'' or" “wa much?' ’ Eng1lsh expressuons like
all, some, many, most, no, " few, nearly all, exactly six, at most
‘'nine, and some but not many all” qualify as quantlflers. The
semantic phenomenon of quantlficatlon is universal because of ‘the
common world in which human’ beings find themselves. However
languages might differ in their surface’ grammar,'lt would be
surprising indeed to discover a linguistic community whose mem-.
bers had no interest in quantities and their comparison, even if
this Interested included’ only the’ proverbnaE"one, two, mang form

of 'counting'. Some means of expressing” quantlflcat|onal notlons
‘must be provided by any" natural Ianguagé and it is“the semantic
‘notiohs themselves that” are’ accounted for in*the theory developed
in the d:SSertatlon. s : o v
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Quantlflers constltute a 5|ngle semant;c category, ‘But”
languages differ widely in’ thelr syntactlc and morpholog:cal
treatment of ‘individual members" of that categbry Part ¥ of - the

dissertation brsefly réviews some of the surface propertles of "

quantifiers ‘in Latin, Greek, Zulu, Englnsh ‘and German,::n ordet
to provide an emplrlcal background against whlch to méasire the
theoretical results of the'analysis developed - in the Iater Parts.
Singled out for spec:al attention is the treatment glven to the
existential (some) and null’ (no) quantifiers 'in Latin and Greek,
the class of quantitative pronouns (411, ‘only) in"Zulu, ‘and’ ‘the
contrast between simple \Somethlng) ard rélativized (some N)'
quantifiers in English and German. The interdefinability of some
quantifiers in terms of others plus negation and the interaction
of quantifiers with the other Boolean operators are also examined
in some detail.

Part Il critically examines some.of the semantic analyses
of quantifiers that have appeared in the logical and finguistic
literature, including the classical quantifiers (all, some, no),
Altham's plurality quantifiers (many, nearly all, few, a few,
all but a few), Rescher's and Kaplan's plurality quantifiers
(most, more than m/n) Keenan's presuppositional guantifiers
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PREFACE

“PART 1:

This study is the result of a long~standing fascination
with quantifiers and the direct outgrowth of occasional discussions
with David Kaplan and Barbara Partee of a number of exploratory
papers written during 1971-1972. A number of suggestions of
Joseph Emonds have also been incorporated in the text. The study
could not have been written without  the helpful comments and
criticisms of these scholars, but none of them can be held
responsible in any way for any errors or misconcéptions it may
~ contain.

Quantigiers in Natural Language

CHAPTER 1: QUANTIFIERS AND THEIR SURFACE FORMS

Section 1: Quantifiers as”Substantive Universals

Part | briefly reviews some of the superfi.ial features of .
quantifiers.in several natural languages with the purpose of
developing an intuitive feel for the phenomenon that is analyzed
In depth in the later Parts. Part Il critically reviews the
semantic analyses of a number of quantifiers that have appeared
in the logical and linguistic literature and genaralizes them in
“various ways. In Part |1l a precise formal explication of the
quantifier as a semantic operator is developed and in Part IV this
theory is applied to the analysis of a number of phenomena of
linguistic and logical interest.

A quantifier is a semantic operator that answers one of the
questions '"How many?" or '"How much?" English expressions like
all, some, many, most, no, few, nearly all, exactly six, at most
nine, and some but not many all qualify as quantifiers. In the
rest of this chapter and in the next we will present a brief
:mpressnonlstic discussion of some of the surface features of
guantifiers in several natural tanguages, with the purpose of
developing some familiarity with the phenomenon to be analyzed.
This will provide an empirical background against which to measure
the results of the analysis we develop. The remaining three
Parts will deal with quantification solely as a semantic phe-
nomenon without regard for how it might be expressed morpho]ogt-
cally or syntactically in speclflc natural languages.

As in any serious study, the number of questions raised
here is at least as great as the number answered. A lot more
work remains to be done to deepen our understanding of quanti-
fication and of formal semantics in general. Any suggestions
or criticisms that might help to achieve this aim will be
warmly welcomed.

Most of the data that we examine in this study will be
from English, but, quite aside from Chomsky's innateness hypo-
‘thesis, which claims that universal features of language consti-
tute evidence for principles that are innate in the very structure
of the human mind, there is good reason to believe that the
theory we will develop will be universal in scope. The semantic
phenomenon of quantification is universal because of the common
world in which all human beings find themselves. What Putnam
(3968) says about common nouns is equally true of quantifiers:

S

o

=

_If Martians are such strange creatures that they have no
‘interest in physical objects..., their language will
contain no concrete nouns; but would this not be more,
not less surprising on any reasonable view, than their
having an interest in physical objects?

It would be difficult to imagine a natural language, that is,

a language spoken by human beings on the planet Earth, that did
not provide its users with some means of expressing the answers
to questions fo the form 'How many?'' or "How much?!! Certdinly
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a way of expressing all and a notion of no or none are basic to
1ife in this world. However languages might differ in their
surface grammar, it would be surprising indeed to discover a
linguistic community whose members had no -interest in quantities
and their comparison, even if this interest included only the
proverbial one, two, many form of ''counting'. Some means of
expressing quantificational notions must be provided by any
natural language and it is the semantic notions themselves that
will be accounted for in the theory we develop. :

Section 2: <{lassical and PIurallty Quantlfication in Latin
and Greek

Quantifiers constitute a single semantic category, but
Ianguages differ widely in their syntactic and morpho!ogncal
treatment of individual members of that category. This varia-
bility is difficult to apprecaate in a language like English,
which Is relatlvely poor in-inflections, but we can get some -
taste of it by examining the classical and plurality quantlfiers
in Latin and Greek. The classical quant:flers are the.

_ existential quant:fier ‘some, the universal quantifier all, and.
the null quantifier no. They are called “cla55|cal“, because .
they are the most extensively used guantifiers in mathematics . .”

and the most thoroughly studled by.logicians. The basic R

plurality quantlfler is many, which was first analyzed seman-
tically by Altham (1971). '

. Both Latin and Greek treat many more or less as a regular
adJectave. Greek moAiof, 'many'', is the plural of moAUs, "much',
and is declined similarly to péyuas, igreat'', and fi80s,. sweet”
Both péyas and woAls. are second- and first-declension adjectives.
with the exception of the nominative, the accusative, and the ..
vocative singular masculine and neuter, which are of the third
declension. The plural, which is what interests. us most, is
entirely regular and declines like any second- and first-.

declension adjective. Latin multi, 'many'', is the plural of
multus, much, and is entirely regular as a first- and second-
declension adjective like magnus, ''great'. We see that many

is not distinguished morpholégscal]y from other sorts.of adjec-
tive in either Latin or Greek, despite its speC1f:cal]y quanti-
ficational semantic status.. : :

The same is true of all in Latin and almost so in Greek,
Latin omnes, "all", plural of omnis, ""every', is a completely .’
regular third-declension adjective of two endings, like fortis,
strong'. Greek mds, "all', is a third- and first-declension

k)
k|
2
.
-
i
2

Jreflected in. the fact that the demonstrative pronoun ille, 'that"
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_m_t stem adjective, declined spec:flcaliy ltke the- Ftrst aorlst,
active participles, such as maidedods, “havrng instructed', ..

Whether the inflectional parallel between 1&s and these partl—

v;;sples has any semantic significance is not at all clear to-me.

S

We have seen that there is nothing in the treatment of the
plurality or universal quantifiers in Latin or Greek that distin-
guishes themspecifically as quantifiers, rather than ordinary
adjectives. This is not the case with the null quantifier.

Latin nullus, 'no", is an adjective, like multi and omnes, but

it belongs to a special class of adjectives that also includes

a number of other quantafler like operators. Nullus is a regular
first- and second-declension adjective except for special
inflections in the genitive and dative singular, which it shares
with unus, '"one', alius, 'other', alter, ‘''the other {(of two)",
totus, ''whole', ullus, "any', and solus, "only''. All of these
forms are quantificational in character and alius and alter also
.have a demostrative element in their meaning. The latter fact is
»

also shares the special genitive and dative singular rnflectlons
of this class of adjectives.

Latin nullus is from non, ''not', and ullus.and ,the Greek

~form for nc is formed in a similar way. Greek ouéets, 'mo", is

derived from oudé, 'not even'’, and efs, 'one'. Its form
immediately marks It as a quantifier, rather than an ordinary

adjective, because eis, itself a quantifier, has its own set of
endings.

Both Latin and Greek give special treatment to the existen-
tial quantifier.. Latin uses the form quidam, ''some', which is
derived from the relative pronoun qui, '"who'', and is declined like
it. The forms of the interrogative adjective qui,-'which?', are
identical to those of this relative pronoun and those of the
interrogative pronoun quis, "who?', are similar, Greek expresses
the existential quantifier by the indefinite pronoun tis, "some' R
which is identical In all its forms to the |nterrogat|ve pronoun
tis, "who?", except for the accents.

"Section 3: Quantitative Pronouns in Zulu

In the last section we saw that Latin includes only in a
special ¢lass of quantificational adjectives that also includes
one, whole, no, and any. Zulu gives a special status to only and
all, by expressing them in paralle! forms that are different from
its treatment of other quantifiers or adjectives.
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Both all and only are expressed in Zulu by what traditional
grammarians have called '"quantitative pronouns'. 211 is expressed
by using the stem -nke with pronominal prefixes and only is :
expressed by using the stem -dwa with the same set of prefixes,
“the only exception being that all does not occur in the first and
second person singular. The Zulu sentences

(1) Izisebenzi zonke zifuna umsebenzi.

(2) Izisebenzi zodwe zifuna umsebenzi.

for example, are rendered in English, respectively, by the
seritences

a1l workers want work.
Only workers want work.
The sentences in (1) and (2) differ only in that the former uses

-nke, "all", while the latter uses ~dwa, ''only''. Both forms use
the pronominal prefix zo- to express noun-class agreement with

izisebenzi, 'workers''.
In contrast, the Zulu sentences
(3) Izisebenzi ezincane zifuna umsebenzi .
(4) Izisebenzi ezide zifuna umsebenzi.
-(5) Izisebenzi ezinye zifuna umsebenzi.
{6) Izisebenzi eziningi zifuna umsebenzi.
(7) Izisebenzi ezihlanu zifuna umsebenzi.
are rendered in English, respgctively, by the sentences
Young workers want work. |
Tall workers want work.
Some workers want work.
Many workers want work.
Five workers wani work.

A1l of these sentences use the adjectival concord ezi-, rather
than the pronominal prefix zo- that we saw in the quantificational

Cushing 5

sentences (1) and (2), despite the fact that -nye, ''some'!, ;hingi,
“many'', -hlanu, "five", in (5), (6), (7), respectively, are quanti-
fiers semantically.

The same special treatment that Zulu gives to all and only
is also used for the class of quantifiers all n. The Zulu sen-
tences

(8) Izisebenzi zombili zifuna umsebenzi.
(9) 1zisebenzi zonhlanu zifunia umsebenzi.

Fof'example, are rendered'in English, respectively, by the sen~

.tences , .

" (10) Both workers want work.

All five workers want work.

.ﬂ¥ B6fh (8) and (9) use the pronominal prefix zo-, which we saw in

(1) and (2), with the stems ~bili, ''two'', and ~hlanu, 'five', ..
respectively, to express, respectively, *all two and all five.
Both in (10) is a suppletive form, by which Engiish expresses .the
non-occurring *all two. A comparison of (9) with (7) reveals

that the only thing that distinguishes five in Zulu from all five
is the use of ezi~ in the former and zo~ in the latter. As we

saw earlier, ezi- occurs with adjectives, while zo- occurs with
the special class of quantitative pronouns, which includes all

and only. Zo-, along with its analogs for the other noun classes,
also occurs with the so-called "absolute pronoun'', which expresses
I, you, it, and their plurals.

Séétioh'h; Simple and Relativized Quantifiers in English and
. - German .

Languages like English and German distinguish more or
less ;harp}y between simple quantification, in which a quantifier
refers to ''things in general!, and relativized quantification, in
which two specific classes or properties are referred to explicitly.

© Sentences like

(11) some things are worth studying.
Many things can be proven.
Few things are as interesting as linguistics.

Some but not many things are well-understood.
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are instances of simple quantification, and sentences like_
- {12) some phenomena are worth studying.
Many linguistic claims can be proven.
Few subjects are as interesting as linguistics.

Some but not many linguistic processes are well-
understood.

are instances of relativized quantification, because each of the
former mentions only one class or property, while each of the

latter mentions two. In (11) we have the properties of being

worth studying, being provable, being as interesting as linguistics,
and being well~understood, but in (12) we have all of these plus
the classes of phenomena, linguistic claims, subjects, and
linguistic processes.

The term ''relativized' was suggested to me by David Kaplan
(personal communication). Stolyar (1970) uses the term 'restricted
quantifiers' for the quantifiers in (2)(p. 154). Either term
should be comfortable for the linguist, because the phenomenon
they describe is bery similar to the familiar notion of the
restrictive relative clause. The sentence

(13) Aall theorems can be proven.
for example, is synonymous with the sentence

(14) A1l things which are theorems can be proven.
The phrase which are theorems in (14) is a restrictive relative
clause that restricts or relativizes the quantifier all to the
set of theorems. In (13) the same task is performed by collaps-

ing the espression all things which are theorems in (14) into
the relativized quantification all theorems.

Simple occurrences of the classical quantifiers in both
English and German can be collapsed into a single word. The
sentences -

Some things can be proven.
All things can be proven.

No things zan be proven.

. Cushing 7 -~

for example, can each be reformulated, respectively, as the
sentences B :

voF

Something can be proven.
Evergthing‘gan be proven.
Nothing can be proven.
giving us the relationships
- {15) some things = something
all things = everything
no things = nothing
This collapsibility shows us that there can be simple quanti-
fication with reference less general than to the class of all
things. Sentences like ' '
Some people have studied logic.
All people have studied logic.

No people have studied logic.

for example, can each be reformulated, respectively, as the
sentences

Someone has studied logic.

Everyone has studied logic.

No cne has stu&ied Iogic.
giving us the relationships

(16) some people = someone

all people = everyone

no people = no one
No one in (16) is spelled as two words, but this is undoubtedly
the result of orthcgraphic and pronunciation factors; rather

than to any semantic difference between no and the other two
quantifiers.
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Classical time .and place quantifications behave in a

similar way. Time sentences like
Linguistic claims are at some times false.

Theories must at all times be tested.

Unjustified claims should at no times be made.

for example, can each be reformulated, respectively, as

Linguistic clai%s are sometimes false.
Theories must always be tested.
Unjustified claims should never be made.
giving us the relationships
(17) at some times = sometimes
at all times = always
at no times = never
The synonymy of the place sentences
Linguistics can be studied at some places.
Linguists can be found in all places.

At no places is there a language that has
been fully described.

respectively, to the sentences

Linguistics can be studied somewhere.

Linguits can be found everywhere.

Nowhere is there a language that has been fully

described.
for example, ygives us the similar relationships
(18) at some places = somewhere
at all places = everywhere

at no places = nowhere

Cushing 9

for simple place quantifications,

Corresponding to (5), (6), (7), and (8), fespectiveiy; b
German has the folIownng relationships: L L

(15') einige Dinge = etwas
| alle Dinge = alles
keine Dinge = nichts
_(]6') einige Leute = jemand, irgendeiner
alle Leuter =rjéderman
kéine ieuter = niemand : E S
+ (17') einige Male = manchmal ‘ _ :  Yj e
- alle Male = immer, allezeit
‘ keine Male = nie, niemals, nimmer S Vf)ﬁw*'
'"3 (ISJ)_einige;PIEEZe =" irgendwo : ‘.i”' s i
| ialle platze = uberall, allenthalben | - . 24
" keine Platze = nirgends

We see that German marks the distinction between simple and ** s
relat;v:zed*quantlflcation somewhat more sharp]y than EngTash
‘does. . EN

“In most'of the English relationships the expanded form is
more or less predictabie from the reduced form. In (15) the
reduced form can be'obtained simply by dropping the p]ural v
marker and’ coalescing the two words into one, remembering to’
replace all with its equivalent every. In (16) we simply re-:i"
place people with one and coalesce, again replacing all with
every.  The relationships in (18) are just as'regular. We simply
replace place with where and all with every and coalesce. The ~
form sometimes in (17) is the clearest of all, since it involves
only coalescence, and even always retains a remnant of the all
that is contained in its meaning. Never, in (17), is entirely:’
suppletive, except for its initial n, because ever is quite dis-"
tinct from sometimes.
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There are clearly regularities in the German relationships,
but they are of a different character from the English ones.
Every reduced form in (15), for example, is identical to its
unreduced form, except for the s and the word boundary. In con-
trast, although alles, 'everything', contains alle, '"all", and
nichts, '"!mothing", undoubtedly has its origin in nicht etwas,
ot something!, the reduced forms in (15') share no common
rélationship with their unreduced forms of the kind in evidence
in (15). Each is formed in its own way. :

$imilar observations hold for the other German forms.

Both jemand, ''someone", and niemand, 'no one'', in (16') contain
-mand, a variant, perhaps, of man, ‘'one", which is also present
in jederman, "everyone'', but je means ''ever'' or each'!, not
‘some'', and nie means ‘''never", not ''no''. Both irgendwo, ‘'some-
where'', and nirgends, 'mowhere', in (18') contain irgend, '"some',
and the n in nirgends undoubtedly represents nicht, '‘not', but
why does the former represent Platze, ‘'place', by -wo and the
 latter by -s? A&llezeit, "always', in (17') is literally "all

time" from alle and Zeit, '‘time", but nimmer, 'never', is clearly
from nicht immer and so should mean '‘not always', rather than
Mnot ever'', and manch- in manchmal, ‘'sometimes', is from mancher,
which means "many", not ''some'. The morphological relationship
between the reduced and unreduced forms in German is clearly not
as simple as the corresponding relationship in English.

The main conclusion to draw from this brief analysis is
that German takes the distinction between simple and relativized
quantification very seriously and goes to great lengths to dis-
tinguish the two semantic phenomena in its surface grammar.
Whereas the English versions of the reduced simple quantifications
look very much like their unreduced forms and might, as a result,
be mistaken for relativized gquantifications, the corresponding
confusion is much tess likely in German. We might not have
noticed the distinction between simple and relativized quanti-
fiers, if we had restricted our attention to English, but in
German we simply cannot miss it.

, There are even some quantifiers, such as only, that can _
occur only in relativized form. We have already seen that Latin
includes only in its special class of quantificational adjectives
adn that Zulu includes only in a class with the quantifiers all
and all n, so there should be no hesitation to accept only as a
cuantifier. A sentence like

Only theorers can be proven.

Cushing 11

;is perfectly normal, but the corresponding simplie quantification

*Only things can be proven.

is semantically anomalous, at best, and the same can be said of
the simple place and time quantifications

*Linguistics can be studied only at prlaces.
(19} *Linguistic claims are false only at times.
There is one reading of (19), of course, that is perfectly
acceptable, namely, when it is used synonymously with the
sentence

Linguistic claims are false only at some times.

which contains a different quantifier. Even the seemingly
acceptable simple quantification

Only people can be linguists.

Es a Jitt!e peculiar, however, because what it says is already
included in the meaning of linguist.
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CHAPTER 2
QUANTIFIERS AND THE BOOLEAN OPERATORS
Section 1: Negation and !Interdefinability

Attham (1971) begfns a discussion of plurality quanti~

fiers with the following observations:

is,

(2)

(3)

The

can

(6)

The negation of the propésition
(1) Many men are lovers.
quite simply
(2) Not many men are lovers.
is equivalent to
(3) .Few men are lovers.
in turn is equivalent to
{4) Nearly all men are not Iovers.
negaticn of (3), namely,
(5) It .is not the case that few men are lovers.
also, more idiomatically, be written as
(6) ﬁot a few men are lovers.
is equivalent to (l), and also to

(7) Not nearly all men are not lovers.

Finally,

(8) Not nearly all men are lovers.

is equivalent to

and

(9) Many men are not lovers.

also to
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. (10) Not a few men are not lovers.

From these and other examples it can be seen that
many, few and nearly all are related as follows:

Il

(11) Many = not few = not nearly all not

Not many = few = nearly not all
Not many not = few not = nearly all
Hence few and nearly all can be defined in terms of

many and not. Indeed any two of many, few and nearly
-all.can be defined in terms of the third and negation. -

(B 1) - v s

Altham uses these relationships to develop natural deductive
systems for the three quantifiers many, few, and nearly ally: -:

As Altham points out, the same kind of relationship also
holds for the classical quantifiers. The sentence

- Some linguists have studied logic.
is equivalent to each of the sentences

It is not the case that no linguists have studied
logic.

It is not the case that all linguists have no
studied logic. . ‘

The sentence
No theory is perfect.
is equivalent to each of the sentences
It is not the case that some theory is perfect.
All theories are imperfect.
The sentence
All linguists should study logic.

js equivalent to each of the sentences
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It is not the case that some linguist should not
study logic.
No linguist should fail to study logic.

It follows that some, no, and all are related by the equivalences

not all not

{(12) some = nbt no

not some = no all not
not some not = no not = all

Just as many, few, and nearly all are related by the equi-
valences in {11).

The relations in (11) and (12) are reflected in the simple
time and place versions of their quantifiers. Cortesponding to
1,1 {17) and (18) we also have the relationships

(13) at many times = often, frequently

at few times = seldom, infregquently, rarely
at nearly all times = almost always
As (12) would predict, the sentences
(a) rLinguistic claims are sometimes false.
(b) .Theories must always be tested.

(c) Unjustified claims should never be made.

are equivalent, respectively, to each member of the corresponding
pair of sentences

(a) It is not the case that linguistic claims are
never false.

Tt is not the case that linguistic claims are
always true. .

(b) It is not the case that theories should sometimes
not be tested.

Theories should never be left untésted.

(c) It is not the case that unjustified claims
should sometimes be made.

-

ALY
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Unjustified claims should always not be made.
The sentences
(a) Linguistics can be studied somewhere.

. (b)  Linguists can be found everywhere.

(e) Nowhere is there a language that has been
fully described.

for example, are equivalent, respectively, to each member of
 the corresponding pair of sentences

(a) It is not the case that linguistics can be . . .
studied nowhere. ai

It is not the case that studying linguistics is
impossible everywhere. it

(b) It is not the case that there is somewhere that
linguists cannot be found. : -
R R F I :'3_%5
Nowhere is it the case that linguists cannot be,: ...
found. I

{c) It is not the case that somewhere there is a,
language that has been fully described.

LAty o :

Languages everywhere have not been fully described;
The syntactic relationships that hold among these sentences may
turn out to be quite complex, but the semantic relationships ..
are clearly thcse described in (12).
As (11) would predict, in conjunction with (13), similar
relationships hold for the simple time versions of Altham's
quantifiers. The sentences en ot ithee

{a) Linguists often propoge new universals. . ot ey

(b)  Linguists seldom prove their claims.

(c) Linguists almost always use English as their L
evidence.

for example, are esquivalent, respectively, to each member of
the corresponding pair of sentences
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{(a) It is not the case that linguists seldom propose
new universals.

It is not the case that linguists almost always fail
to propose new universals.

' “(b) It is not the case that linguists. often prove théir
claims.

- Linguists almost always do not prove their claims.

(c) It is not the case that linguists often do not use
English as their evidence.

P Linguists seldom fail to use English as their evidence.
v

English does not contaln collapsed place forms for these quanti-
flers.

&

Section 2: Conjunction and Disjunction

Altham suggests that a number of English quantifiers can be
analyzed semantically as the conjunctions of other quantifiers.
He proposes that a few, for example, as opposed to few, should be
analyzed as the conjunctiorn of some and not many, because a sen-
tence like
Ve

(14) a Ffew people understand quantifiers.
is syn9?ymous with a corresponding sentence like

klé) Some but not many people understand quantifiers,
Sentenéé (15), in turn, is synonymous with the sentence

N Some people understand guantifiers but not many
people understand guantifiers.

which has sentences, rather than quantifiers, as its conjuncts.
Actually, Altham anzlyzes sentences like {14) directly in terms
of sentences like (16}, without talking explicitly about the
conjunction of quantifiers themselves. We wlli see, however,
that the notion of quantifier conjunction and disjunction that
can be dertved from his approach is interesting in fts own right
and has an important theoretical application.
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Semantic Analyses of Specific Quantifiers

CHAPTER |

THE CLASSICAL QUANTIFIERS

Section 1:

The Universal Quantifier

Semantic analyses of specific quantifiers, like those of
other logical operators, are customarily given as part of a
definition of logical "satisfaction'. As Mendelson (1964)
descr|bes this notion, .

An interpretation consists of a non-empty set
D, called the domain of the interpretation, and an
‘asgignment to each predicate letter A, of an n-place
operation in D (i.e., a function fromiD into D), and
to each individual constant 2, of some fixed element
" of D.

For a given interpretation, a wf without free
variables (called a closed wf) represents a proposition
which is true or false, whereas a wf with free variables
stands for a relation on the domain of the interpretation
which may be satisfied (true) for some values in the
domair. of the free variables and not satisfied (false)
for the others. (p. 49)

The term "wf' in this discussion stands for '"well-formed formula'
and denotes, roughly, the logician's equivalent of what linguists
would call a ''grammatical sentence' in natural language.

To construct a formal definition of satisfaction, we let
there be given an interpretation with domain D and we let I be
the set of denumerable sequences of members of D. What we want
to define is

what it means for a sequence s=(b.,b. ,...) in ¥ to satisfy
a wi A under the given interpretation. As a preliminary
step, we define a function s* of one argument, with terms
"as arguments and values in D,

(1) 1If t is X 1=t s*(t) be bi'

(2) If t is an individual corstant, then s#(t)
is the interpretation in D of this comstant.
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(3) 1If f is a function letter and g is the
-cor—gspondlng operatlon in D, and tl""’En
are terms, then s*(f {(t ,..., t )) =

B(s%(E,) 5% (L)) 5. o5 BH(E))

Thus, s* is a function, determined by the sequence s,
from the set of terms into D. Intuitively, for a
sequence s=(b.,b,,...) and a term t, s*(f) it is the
element of D obtfiined by substituting, for each i, b,
for all occurrences of x, in t, and then performing the
operations of the interp%etation corresponding to the
function letters of t. (p. 50)

The function s*, in other words, is simply the familiar process
of substitution. |If a constant symbol occurs in a formula,
t@ﬁn s* maps it onto the individual whose name it is. For the

variable in a formula, s* substitutes the i individual In
s. 1f a function symbol occurs in a formula, then s¥* inter-
prets it as the operation it represents.

Mendelson defines'satisfaction.fnductively as follows:

(1) if A is an atomic wf A (t ,...,t ) and gj
is the corresponding relation ofﬂlhe interpfetation,
then the sequence satisfies A if and only if gj(s*(t ),

"”S*(En))’ i.e., if the n—tuple (s*(tl),...,s*(;n)j
is in the relation E?'

(i1) s satisfies ~A if and only if s does not
satisfy A. ,

(iii) s satisfies A > B if and only if either s
does not satisfy A or & satisfies B.

(iv) s satisfies (x,)A if and only if every th
sequence of I which differs from s in at most the i
component satisfies A,

Intuitively, a sequence s—(b ,b,,...) satisfies

a wf A if and only if, when we substigute, for each i,

a symbol representing b, for all free occurrences of
in A, the resulting proposition is true under the

'given interpretation.

A wf A is true (for the given interpretation) if
and only if no sequence in I satisfies A.

A is false (for the given interpretation) if and
only if no sequence in I satisfies A,

An interpretation'is said to be a model for a set
I of wfs if and only if every wf in T is true for the
interpretation. (p. 51)
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Mendelson's rule (i) says that a formula that consists of a
predicate symbol followed by some individual symbols is satis~"

,fieq if and only if the individuals that are substituted for the
.. individual symbols really do stand in the relation represented.
by the predicate symbol. .Rules (ii) and {iii) are just the

definition of negation and material implication, respectively.
Rule {iv) says that a formula of the form (x JA is satisfied
if and only if the formula A is satisfied no matter what indi-
vidual we assign as a value to x,. Since (x,) is Mendelson's

way of 'writing the universal quantifier, this amounits ‘to a

Y

semantic analysis of all and it seems to be correct.

Church (1956) gives an analysis of all that*is formulated

directly in terms of the truth-values truth (t) and faIsuty (f)

Like Mendelson's, his definition is inductive:

Ch- A wif consisting of a propositional wvariable
a standing alone has the value t for the value t of a,
and the value f for the value f of 'a.

CB" set_gggltgz,...,gn) be a wff in which £ is an
n-ary function variable, éhdﬁéﬁ}éq;-;:éﬁ,afe individual
variables, not necessarily all different. Let bl,b ,...,bm
be the complete list of dlfferent inleldual varlables -

: among al,az,...,gn._ Con51der a system of values b of £.
and b b2,..¢,b of bl,bz,..._lgm -and let a2 a2,...,§n be
the’ values whlch are thus given to al,az,...,gn in that
order. Then the value of f(al,az,...,a ) for the system

| of values b, bl’bz""’bm of £, b

_:order is b(al,azl...,an).

by» 2’""?Em in that

d. TFor a given system of values of the free variables
of ~A, the value of ~A is f if the value of A is t; and the
value of ~A is t if the value of A is f.

e. For a given system of values of the free T
variables of 4> B], the value of [A = Bl is t if e1ther
‘the value of B is t or the value of A is f; and the value
of [A > B] is f if the value of B is "f and at the same time
the value of A is t.

f. Let a be an 1nd1v1dual vurlable and let A be any
wif. For a given system of values of thé free varlables of
(¥a)A, the value of (¥2)A is t if the value of A is t for
every value of a; and the value of (Va)A is f if the value
of A is f for at least one value of a.
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Rule c, says that a formula that consists only of a propositional
variab?e has whatever truth-value 'is assigned to that variable.
Rules ¢ , d, and e are essentially the same as Mendelson's rules
(i), (i?), and (iii), respectively. Rule f, like Mendelson's rule
(iv), says that a universal quantification (Ya)A is true If and

"~ only if A is true no matter what individual is assigned as a
value to a, but it says this more directly than Mendelson's rule
does. If a single value of g_makes_ﬁ_false, then that is enough
to make (Vg)ﬂ_false as well. This gives us a semantic analysis

of (¥a), Church's symbolism for all, and it is the same analysis

as that given by Mendelson.

A much more elegant analysis of all is given by van Fraassen
(1971) in a somewhat more sophisticated notation and terminology.
According to van Fraassen,

A factual situation comprises a set of individuals
bearing certain relations to each other. Hence a situa-
tion can be represented by a relational structure
<D, R ""lﬂi"">’ where D is the set of individuals
in question and R,,...,R;,... certain relations on D.

If we wish to describe this relational structure in a
language with a quantificational syntax, we assign some
member of D to each variable as its denotation, and some
n-ary relation on D to each n-ary predicate as its
extension. The function used to make the assignment

to the predicates is called an interpretation function,
and the set D a domain of discourse. Together they
make up a model for the syntax. We can specify the
model...by specifying a domain D and interpretation

functior. f.... {pp. 107-108)

A model, in other words, is a set of individuals whose names are
the variables of the language and which stand, variously, in the
relations denoted by the predicates of the language.

The term quantificational syntax is used by van Fraassen
to refer, in essence, to a language that includes the universal
gquantifier, but we can interpret his discussion more generally
as applying to languages with other quantifiers as well. In his
formal definitions, vanh Fraassen abbreviates this notion as

Cs:

DEFINITION. A model for a QCS is a couple M=<f,D>,
hoce. =o . L,
where D is a nonempty set (the domain of M); £ is a
function (the interpretation function of M) defined for
each predicate of the QCS, and auch’that if P is an
n-ary predicate, then £(P) <D .
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A mapping d of the variables of a QCS into the domain D

of th? model M=<f,D> for that QCS is called an assignment
function (for M, or for D and for that QCS).

(p. 108)

Tru?h in a model is defined, for van Fraassen, relative to an
assrg?me?t of Yalues to the variables, He denotes the relation
d satisfies A in M by ¥ & Afd] and he defines it inductively as
follows:

?EFINITION. If M=<f,D> is, a model for a QCS and d an
assignment function for M, then k iz the least realization
such that -

(a) M E (x%= xz) [d] iff d(xl) = d(xz);

®) Mk @x...x )] LEF <d(x),...,d(x)> e£(BY;
() M I (A&B)[d] 1ff M EA[d] and M FB[d];

(d) M E («a)[d] iff M EA[d];

(&) M k= (xl)A[d] iff M FA[d'] for all assignments

d' for M which are like d except perhaps at
| b3} (symbolically, d' = x‘g)
for all sentences A, B, vafia%les xlg..;,x , and
= ~n
a-ary predicates EP of that QCS.

The s*mbol iff in this definition is an abbreviation for if and
onlgrlf: The notation ~¥ k= &/d] in rule {d) is used to denote
the.denlal of ¥ Fafd]. The notation ¥ ka4, meaning A4 is true in
gy_]s also used for the statement that M k A[d] for all )
~assignment functions d for M. -0

R9le (a) says that a formula that states the identity of
two variables is true if and only if the two variables are names
of.-the same individual. Rule (b) is essentially the same as
| Mendelson's rule (i) and Church's rule ¢ . The effect of rules
(c} and (d) is the same as that of MendeTson's (iii) and Church's
e ?nq ?, but van Fraassen chooses to adopt conjunction as a
g:;m;;;ys ?otiong rather than material implication. The choices
r ivalen ecause ei i i i

he Sty plus,negation.elther notion can be defined in terms of

. Again, the last rule gives us a semantic analysi
_gcause:this is what van Fraassen means by (x,). RzT;s(z; iii;
.i;h?afgrwglé of tﬁe form Qﬁ )é_is satisfied if and only If the
gem Als nagasfled.no.mat er what individual we assign as a
lue-to x.. Since this is exactly the effect of Mendelson's

ule (iv) and Church's rule f, i i
ule , it provides i
me semantic analysis. ’ 59 s with exactly the
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Section 2: The Existential and Nuill Quantifiers

Neither Mendelson, Church, nor van Fraassen gives an explicit
analysis of the existential quantifier some because of its inter-
definability with all. In Church's words,

It should be informally clear to the reader that not
both the universal and the existential quantifier are
actually necessary in a formalized language, if negation
is available. For it would be possible, in place of ( 3x),

to write always ~(x)~ __; or alternatively, in place of
(x)__, to write always ~( 3%)~__. And. of course likewise

with any other variable in place of the particular
variable x.

Both the universal and existential guantifiers are actually
necessary in an account of patural language, however, because

both occur naturally. Interdefinability for the logician is a
useful device that enables him to reduce the number of kinds of
expressions that he includes in the artificial language he con-
structs. Interdefinability for the linguist, however, is an
empirically discovered fact about the kinds of expressions that

do occur, despite him, in the natural languages he studies.

While a logician can choose to omit some from a formal language

he is constructing, the linguist must include some in a description

of a language in which it occurs.

The difference between these two perspectives on inter-
definability is underscored by the case of the nhull quantifier.
No is intuitively a quantifier. because it answers one of the
questions How many? Or How much?, and it is interdefinable with
both all and some, as we saw in 1,2,1. Although it is common,
however, for logicians at least to point out, like Church, that
the one of all or some that they omit could be included in their
formal language, | have found none who bother to do so for no.
Church, Mendelson, and van Fraassen, -for example, all state
explicitly that some can be defined in terms of all. Mendelson

tells us that

it was unnecessary for us to use the symbol E as a
primitive symbol, because we can define existential
quantification as follows :

(1) (Ex)A stands for ~((x) (~A))

This definition is obviously.faithful to the meaning
of the quantifiers. :
(p. 47)
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Van(gr?:s;en mentions in passing that 'we shall henceforth use
5:i,—5.7q or ~{x)-A" (p. 102) and Church discusses interdefina-
”"eéé;t;e;:'the 5255896 wchited earlier. None of these leogicians
ions the quantifier no, however, let alone gi >
formal definition or analysis.', ’ one give l? a

‘The linguist, in contrast must have some a
?gcause no occurs in the data. Such an account ES:UEZ ?Zriz;ated
in terms of these other quantifiers plus negation or it can be
for@ulateq explicitly as a separate clause in the definition of
satisfaction. For some, for example, Mendelson points out that
the following rule is deducible from (1): )

(2) A sgquehce s satisfies (Ex.)A if and only if
there is a, gequence s' which differs from s in at
most the i~ place such that s' gatisfies A.

(p. 52)

Mendelson ta%es:fl) as his definition of some and then deduces
(2) as a'derivative property of that quantifier. We could just
as,well,_howevgr, take (2) as an explicit semantic analysisJof
some by aqcludlng it as a further clause In the definition of
satisfaction, with the result that (1) would then be a deducible
property. The important point is that some correct analysis of
some must be included in our grammar. ! °

y Ig the.case‘of no.there are also two courses open to us.
We ?o;] define no as either not some or all not, as we saw

in ,.,I, a?d the one we do not choose will then be deducible
A satisfaction rule for no, such as .

(3) A sequence satisfies (No x.)A if and only if
Fhere Is no sequence s' which differs from s
in at most the i~ place such that s' satisfies A.
A?t:ind:!SO?IS notation, will also be deducible in either case.
Alre natively, we c?uld adopt'(3) as an explicit definition of
z ¥ |nclyd|ng it in the definition of satisfaction. If we
4c oo;e:to include explicit analyses for each of all, some, and
‘no then we can prove their interdefinability from these a;alyses.

Whichever course we adopt for some and no “up wi
Etzes??eagzsic]se@antic reﬁult. _The formula ”(édﬁ: i?g“u?SWIth
A Whegniz {f thefe is at least one individual that makes
iyt |§fa5519ned as a value to ''x'" and the formula
nakas truerdﬁeé iin?sogigi[f ghere is ?o‘individual that

) gned as a value to "x'l.
fzwtearlter, the formula ""(A11 %x)A" is true if andxonlyA?fwﬁA”
¢S 1rue no matter what individual we assign as a value to ''x'.
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Throughout this study we will, whenever possible, use the
simplified notation that was just introduced in the last para-

graph. English quantifiers will be used, capitalized, to represent

themselves in formulas and variables will not be etalicized. We
will also adopt the usual convention of naming expressions in a
language by including the expressions themselves ln quotation

marks.

Section 3: The Relativized Case

A1l of the analyses that we examined in the last two
sections are analyses of simple quantifiers, since no restriction
was placed on the individuals that could be assigned as values

to variables. We can easily derive relativized analyses by adding

such restrictions to those analyses.

The only difference between‘the members of each of the
following pairs of sentences, for example, is that the (a)
sentence of each pair .involves a simple quantifier, while the
(b) sentence involves the corresponding relativized quantifier:

(4) a. Some things can be proven.

b, Some theorems can be proven.
(5) a. Everythin§ can be proven.
b. Every theorem.can be proven.
{6) a. Nothing can be proven.
b. No theorem can be proven.
Sentence (5b) could just as well be
A1l theorems can be proven.
as far as our purposes are concerned. We can represent the (a)
sentences in our simplified version of Mendelson's, Church's, and
van Fraassen's notation by rewriting them as the formulas

(4a') (Some x) Provable (x)

(5a') (A11 x) Provable (x)

(6a')} (No x) Provable (x)

respectively. Formula (4a') is true if and only if there is at
least one individual that makes '""Provable(x)'" true when it is

Cushing 25

assigned as a value to "x", formula (6a') is true if and only if

“there is no such individual, and formula (5a') is true if and
~only If "Provable(x)'" is true no matter what individual we
asssgn as a value to Mx!,

Semantic representations for the (b) sentences in each
pair can be constructed in an analogous way, as follows:

(4')  (Some x) (Theorem(x), Provable(x))
- (5b6')  (AI1 x){(Theorem(x), Prgvab}e(x))
(6b')  (No x) (Theorem(x), Provable(x))

respectively. The only difference between the semantic’ repre--
sentations of the (a) sentences and those of the (b) sentences
Is the appearance of the extra predicate '"Theorem(x)". The
significance of the extra predicate in these formulas is that

it places a restriction on the set of individuals that are to be
considered in the quantification of the other predicate. An
individual is considered in the quantification of the second
predicate only if it makes the first predicate true, when
assigned as a value to '"x'". Formula (5b') will be true, for

‘example, even if there is an assignment function that fails to

satisfy '"Provable(x)", as long as that assignment function fails
to satisfy ”Theorem(x)” as well., Formula (5a') will be false in
such a case, however, whether or not the assignment function
satisfies "Theorem(x)'.

It follows that we can turn Mendelson's, Church's, and van
Fraassen's analyses of simple all into analyses of relativized
all in a very simple way. In Mendelson’s rule (iv) we restrict
the sequences of Z, in Church's rule f we restrict the values
of a, and in van Fraassen's rule (e} we restrict the assignments
d'. This gives us the following semantic analysis of relativized
all in the different notational frameworks of these three
logicians:

Mendelson: s satisfies (x,)(B,A) if and only if every
sequence of T which differs from s in at most
the ith component and which satisfies B
satisfies A.

Church: Let a be an individual variable and let A, B be
' any wffs. For a given system of values of the
free variables of (Ya)(B,A), the value of (¥a)(B,A)
is t if the value of A is t for every value of a
for which the value of B is t; and. the value of
(va) (B,A) is f if the value of A is f for at least
one value of a for which the value of B is t.
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M= (x,)(B,A)[d] iff M kA[d'] for all
assignments d' for M which are like d
except perhaps at x4 and for which M k= B{d'].

van Fraassen:

Each of these formulations is just a different way of saying that
the formula "(A11 x)(B,A)" is true if and only if "A" is true no
matter what individual we assign as a value to ''x'", as long as
that individual also makes 'B" true under that assignment,

Now we can either define relativized some and no in terms
of relativized all,as we did in the simple case, or we can
construct explicit semantic analyses for them analogous to (2)
and (3), respectively. Since the first predicate serves simply
as a restriction, the negations operate only on the second
predicate, so we get

(Some x)(B,A) = -(AH x) B,-A)

(No x)(B,A) = (A1l x) (B, -A)

as the interdefinability relationships.

To construct explicit semantic analyses we proceed as
follows. Formula (4b') is true if and only if there is at least
one individual that makes ''Theorem(x)' true when assigned as a
value to ''x'' that makes ''Provable(x) true under the same
assignment. Formula (6b') is true if and only if there is no
such individual. We can generalize this by adding exactly the
same restriction to (2) and {3) that we added to Mendelson's
rule for simple all. This gives us the following semantic
analyses . for relativized some and no, respectively:

{(7) A sequence s satlsfles (Ex.) (B,A) if and only if
there is a se%Hence s' which differs from s in
at most the i place and which satisfies B such
that s' satisfies A.

(8) A sequence s satisf|es {No x, )(B A) if and on]y if
there is no sequence s' which differs from s in at
most the 1th place and which satisfies B such that
s' satisfies A.

Rule (7) says that ‘'(Some x) {B,A)"is true if and only if there
is at least one -individuaj that makes '""B" true when assigned as
a value to "x" that makes 'A'". true under that assignment and
rule (8) says that "(No x)(B,A)" is true if and only if there
is no such individual,
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Section 4: Reducibility of the Relativized Quantifiers to the
Simple Case '

We have seen that the explicit semantic analyses for the
relativized classical quantifiers can be constructed from the
semantic analyses of the corresponding simple quantifiers by
requiring that the sequences or assignment functions that are
relevant to the quantification of the second predicate must
also satisfy the first predicate. This relationship between
the simple and relativized versions of the classical quantifiers
“enables us to reduce the latter to the former by constructing,
for any given relativized quantification, a simple quantification
that is equivalent to it.

Each of the sentences
(9) a1l logicians study quantifiers.
(10) a1l linguists study quantifiers.

for example, involves two predicates and can be represented
semantically as the respective member of the pair of formulas
(11) (A1l x)(Logician{x), Studquuantifiérs(xj)

(12)  (M11 x)(Linguist{x), Study-quantifiers{x)).

The symbols '‘logician'' and ''Linguist' in these formulas denote,
respectively, the properties of being a logician and being a
linguist and the symbol "Study-quantifiers' denotes the property
of being one who studies quantifiers. Each of these symbols

is undoubtedly further analyzable in a complete grammar, but for
our purposes we can treat them as primitive symbols.

The sentences (9) and (10) can be reformulated, respectively,
as the equivalent sentences

(13) Everyone who is a logician studies quantifiers.
(14) Everyone who is a linguist studies quantifiers.
in turn, are equivalent, respectively, to the sentences

These,

(15) Everyone is bUCh that if he is a logician then he
studies guantifiers.

(16)' Everyone is such that 1f he is a llngulst then he
studies gquantifiers.
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Since (15) and (16) are simple quantifications, representable
semantically as e - _

(17) (Al x)(Logjcian(x) > Study-quantifiers{x))
(18) (A1l x) (Linguist(x} = Study~quahtifiers(x)),

and (16) are equivalent, respectively,
(9} and (10), it follows
to (11) and (12),
We

respectively, and since {15)
to (13) and (14) and thus, respectively, to
that (17) and (18) are equivalent, respectively,
the semantic representations, respectively, of (9) and (10).

have reduced the relativized quantifications to simple quanti-

fications that are logically equivalent to them.

The same procedure can be used to transform any relativized
universal quantification
(19) (A1l x)(B,A)
into the equivalent simp]e'quantification
(200 (Al1x) (B = A)
by replacing the ordered pair of predicates

(21) (8,A)

with the single predicate
(22) B = A
A and B can be any well-formed formulas (wff) in the

As we saw on page 17, a wff can be either apen, that
that is, without free

In fact,
language.
is, with free variables, or closed,
variables, and its truth is relative to an assignment of indi-
viduals as values to variables. Replacing (21) in (19) with
(22) is really just another way of restricting the assignment
functions which are involved in determining the truth-viaue of

(23) (A1l x) A

to those which satisfy B.

ln Section | we saw that {23) is true under an assigament
function d if and only if every assignment function d' that
differs from d only in the value it assigns to ''x'* satisfies "A'.
In Section 3 we saw that (19) is true under d if and only if

every d' that satisfies ''8" satisfies ""A'. This is the same,
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intuitively, as saying that, in determining the truth-value of

9) unqer d, we look only at the functions d' that satisfy "'B"
”QF caring what happens under the functions d' that satisfy ”—B"I
his means that, for (19) to be true, every d' must satisfy eithér
1-B', in which case we do not care what it does to "A", or "A"

't follows that (19) is true under d if and only if every d'
atisfies - Y S
(24) -B V A.

;§|qce'(24) is equivalent to (22), however, it turns out that {19)
Efs*true under d if and only if every d' satisfies (22), that is
'if and only if (20) is true under d. "It follows that 219) is
jogically equivalent to (20). - ‘

A similar argument can be made for th i i
' & e exist
cases. We know that , xistential and null

(25) (Some x)(B,A)

~is true under d if and only if there is a d' that isfi

. hder d i d satisfies ''B"
which satisfies "A'. This means that (25) is true if and ofily if
-there .is a d' that satisfies both '"B'" and''A". it follows that
(25) is true under d if and only .if : S

sty B e
o

(26)  (Some. x) (8 A A) , o e

is true under d. . Since

(27) (No x) (B,A)" .
s true under d if and only if there s no d' that satisfies"

e L ai t satisf
"B which satisfies ""A", we see that (27). is equivalent t;es

(No x) (B A A).
analogously to the equivalence of (25) and.(26).

I? each case we have reduced a relativized quantificati

‘ %o a s[mpIe qgantificatiqn by replacing the ordeged pair of zgfs
21) with a single wff. Whereas in the universal case we re-
pla;?d‘(ZI) with (22), however, the existential and null cases *
required that it be replaced with the conjunction

B AA

;nsgead; This differe?ce between the universal case, on.tﬁe';ﬁe
| aan %]andrthe ex:ste?tlal and null cases, on the other, is.sfmp!y
: am;:g egjlon of thedlnterdefinability"relationshfps that hold

a some, an imi i i
Smond “:“: e s “ﬁﬁ.and of simitlar felatlonshlps that hold



CHAPTER 2: PLURALITY QUANTIFIERS

Section 1: Altham's Quantifigrs

1.1: The Principal Quantifiers

Altham gives semantic analyses for a plurality of quanti-

fiers, all of which are based on an intuitive notion of "manifold.

A manifold, according to Altham,

is simply a set rhat contains many members. In any
context, a certain number n iy fixed upon as being the
least number of objects that can form a manifold.
Having done that, a set is defined to be a manifold
if and only if it contains at least n members. Within
certain limits, the number n is arbitrary, but in any
context n must be greater than one, since it is certain
that there is no context in which one would say that
there were many Fs if there were only one F.

(p- 8)

A manifold, then, is simply the smallest set that we would con-
sider as containing many members in a given context. The number
n is the smallest number that we would consider as many in that
context. Manifolds themselves play no role in Altham's formal-
-tsm, but the number n is central to his analyses.’

Altham points out that many and nearly all are inter-
definable, as we saw in 1,2,1, but he still gives explicit
semantic analyses for both of them. As Iis usual in the logical
literature, his examples are relativized, but his analyses are
simple, .and these are formulated as part of a definition oF
satisfaction, For Altham,

An interpretation is a non-empty set D and a
function that assigns to every term an element of
D, to every predicate letter of degree n a set of
n-tuples belonging te D, and to every prop051t10nal
variable one of the truthuvalues,‘z or F.

(p. 40)
A term, in Altham's system, is simply a proper name or constant
symbol. If t is a term and | is an interpretation, then an
interpretation |' is said to be a t~variant of | if [' js like
| except at most in what it assigns to t. This relationship

between | and I' is similar to the relationship between d and d'
Ih van Fraassen's system. Like Mendelson, Church, and van
Fraassen, Altham defines satsifaction inductively, first for

B
]
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sntsonal varzabies, then for atomic sentences, and then for
ity, negatlion, conjunction, disjunction, material implica=-
'nd ‘the four quantlflers all, some, nearly all, and many.

The rules: for nearly all, which Altham denotes by ”NH,.é;d
1y, which he denotes by "M,
fqllows:

(28) If A is (Nv)B(v), then I satisfies A iff in every
" n distinct t-variants of I there is at least one
whlch satisfies B(t). Co
If A is (&)_B_(y_), then I satisfies A iff there
are n distinct t-variants of I,
satisfies B(t). -

i

every one of which:

{p. 40)

Rule (28) says that '"(Nearly all x)A" is true if and only if
every manifold of individuals contains at least one member that
makes. "'A'' true when assigned as a value to ''x''. Rule (29) says
at ' (Many x)A“ Is true if and only if there is a manifold of
dividuals every one of whose members makes "A' true when
signed as a value to !x''.

Because of its |nterdef|nab|!|ty with many and nearly all
;Altham does not give an analysis of few. Such an analysis can
e formulated within his framework in two ways, depending on
‘which interdefinability relatlonshlp we choose to base it on. .-
'Deflnlng few as not many gives us the rule

(30) If A is (Few v)B(v), then 1 satisfies A Iff there
are not n.distinct t- variants of. 1, every one of,
which satisfies B(t]. .

and defining it as nedrly all not gives us the rule

(31} If A is (Few v)B(v), then 1 satisfies A iff in
every n distinct t-variants of | there is at
least one which does not satisfy B(t).

;The two rules can easily be shown to be equ:vatent and all of the
"|nterdefunab4]|ty relationships we discussed in [,2,1 can be

“derived either from (28), (29), and (30) or from (28), (29),
and (31).

1.2: The"Secondarv dﬁantifiers

Altham discusses a number of other plura]:ty quantifiers,
mos ¢ of which he defines in terms of his three principal ones.

are formutated by him, respectively,
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First, however, he discusses two familles of quantifiers that are
independent of the notion of manifold. Altham points out that
many, according to (29), is identical, for any particular choice
of n, to the numerical quantifier at least n. If n is the

least number of things that we would consider to constitute many
things in a given context, then two sentenhces like

suggests two methods for solving this problem. First he
;' that a few be defined as some but not many, as we noted
2. ‘and that all but a few be defined as nearly all but not

Ly
Formaily, this gives us the relatlon

(o

2) (Ev)A(y) = (3V)A(Y) & -(MV)A(V)

Many things can be proven. equivalently, the relation

(33) (AW = (3WAW) & (Few VIAW)

At least n things can be proﬁen.
mean exactly the same thing. Altham denotes the quantifier at sfinition of a few, denoted by "F", and the relation
least n by the symbol “(aané)“ and defines the family of such 2 —

B8 (VALY = (WAW) & ~(W)AW)

quantifiers as follows:

afdéfinition of all but a few, denoted by "' 4",

(3, x)Fx = (Ax)Fx

it

Altham points out that, with these definitions, a few
but a few are interdefinable through negation. Just as we

_define all as no not and no as all not, we cap also define
few as all but a few not and all but a few as a few not. He
olnts out further, however, that, although (32) and (34) are

nvenient, they

(3 0Fx = (3x) (Fx & (3 _,y)(Fy & y # x)).

As an . analysis of the related family of numerically definite
quantifiers exactly n Altham also gives the recursive definition

i

X)Fx = ~(3x)Fx

“may-be thought unsatisfactory, since hy this analysis,
‘1f there is exactly one F, it follows that there are

a few Fs. And it may be thought that for there to be '
a few Fs there must be more than one. According to this
line of thought a few would be a quantifier lying some-
where between .many and some.

[

(3
0
(3 X)Fx = (3x)(Fx ¢ (3I Y (Fy & y # x)).
n n- ‘ -

He neglects to mention it, but the z_ln these formulas must be
a variable that does not occur free in Fx.

The first quantifier that Altham defines in terms of his (pp. 64-65)
manifold quantifiers is a few. He begins by pointing out that,
although a féw is superficially similar to few, it is semantically

a very distinct quantifier:

0 ”do justice to this idea" Altham invites us to take the
nalysis of a few embodied in (32), (33), and (34) as actually
n_gccount of the quantifier at least one and at most a few.

In Chapter 1 we distinguished few from a few. There are a
few Fs wag said to be equivalent to There are not many Fs,
and hence to follow from There are no Fs. No separate
treatment of few was therefore necessary. It was taken to
"be covered by the treatment of many together with not....
But There are a few Fs 1s different. So far from following
from There are no Fs is it that it is incompatible with the
latter, and actually entails There is at least one F. We
also briefly distinguished Nearly everything is F from

all but a few things are F. While Nearly everything is F
follows from A1l but a few things are F, All but a few
things are F actually entails that not everything is F.

The problem now is how to treat a few and all but a few,
since this is not obvious from what has been said so far.

(p. 64)

. Altham proposes a second method of anaiyzlng a few, now
,denoted by "f'', and he is quick to point out that his proposed
nalysis of f_actua]ly provides an account of the quantifier

t least a few. An analysis of exactly a few can then be ob-
ained as the conjunction of F and f, giving us "(fv)A(v) &
Fv)A(v)" or, equivalently, ”(FV)ATV) & ~{Mv)A(v)" as an analysis
Erbere are exactly a few individuals that have . Aa.

- ‘To define the semantics of f Ttself Altham gives us the
_xp]'crt analysis

(35) An interpretation I satisfies (£v)A(v) iff there
are at least m distinct t-variants - of I all of -~
h f

which satisfy A(t) (p. 65)
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where m is a positive integer strictly less than n, the number
chosen to define many, and strictly greater than one. As Altham
points out, this method of defining a few works only if n is
greater than two. What (35) says is that to say that a few
things have a certain property is to say that there is a set of
m objects, all of which have that property. The fact that a few
s being defined, rather than many, is accounted for by the re-
striction on the size of m. In all other respects, that is,
other than the fact that m is mentioned, rather than n, (35) is
identical to the analysis of many embodied in (29).

Once he has defined '"f", Altham then goes ahead and uses .
it to define two more quantifiers. He denotes very nearly all
by V and defines it by the formula

(36)  (Vv)A(v) = ~(fv)~A(v)

pointing out that it could also be defined explicitly by the
rule . :

(37) 1_satisfies(VV)A(V) iff in every m distinct t-

l;

variants of 1,.at least one satisfies Alt).

Except for the fact that (37) mentions m instead of n, the rule
is identical to (28), just as (35) is identical to (29) with the
same proviso. Finally, Altham suggests that all but at most a
very few might be defined in terms of 'V as

(38) (VWA & (3v)~AK),

analogously to his definition of " 4" in terms of "F",

Section 2: Rescher’s and Kaplan's Quantifiers

Kaplan (1966a) gives an explicit semantic analysis of the
plurality quantifier most, based on the discussion of most in
Rescher (1962). Kaplan includes the following clause in the
definition of satisfaction: : ‘

(39) f satisfies M & In <DR> if and only if
K(Ex[xeD and fi satisfies & in <DR>])

> K(EX[XED and fi satisfies =9 in <DR>]).
As for van Fraassen, the "D'" in (39) stands for the domain of the
model, a non-empty set of individuals. *R'", like van Fraassen's
'f1', i1s an assignment of denotations, that is, individuals as
values, to non-logical constants. Van Fraassen's "“f' assigns
denotations only to predicates only because his language has no
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dividual constants. The "f'" in (39) is like van Fraassen's
:an assignment of individuals in D as values to variables.
e symbol "K' denotes the set-theoretic function cardinality,
h chjmaps any set onto the number (firnite or otherwise) of its
nembers.  The Symbol “Ex” denotes the extension of the formula

‘hat appears in its scope, that is, the set of individuals that
ke the formula true, when they are assigned individually as
alues to "x''. The symbol "f*"denotes the assignment of

lues to variables that is identical to f except that it
15s5igns the individual denoted by ''x'' to the variable denoted

y '"a'".  The symbol "a' itself is a'variable that takes variables
s:values. In (39) "x" takes on all individuals in D as values,
ndependently of f. Rule (39) says that the formula '"M &' is
f@@ if and only if there are more individuals in D that make

' true than that make it false, when assigned individually as
alues to the variable in "®'" that is denoted in "M _&" by 'y,
ince “Ma” is Kaplan's way of writing most, this pr%vides us
with a semantic analysis of that quantifier.

Kaplan's logical framework is closer to that of van Fraassen
than to that of any of the other logicians we have considered,
but, as we just saw, his specific notation differs from van
raassen's. In 1l we will see that Kaplan's notation and frame-
ork are the best-suited to the development of a general theory
Fquantification and, in. fact, follow naturally from its under-
ying semantic structure,

::VKapian (1966b) generaliies (39) to get an analysis of the
fa@wly of quantifiers more than m/n. Rather than simply adding
clause to the definition of satisfaction, however, he intro-

dﬁces_the new notion of '"m/n-satisfaction', which he defines as
follows:

(40) f m/n-satisfies M, in <DR> if and only if
n s K(E[xs;D A fi m/n-satisfies & in <DR>])}
>m « K(D). '

As Kaplan points out, (40) provides a family of reinterpretations
frhis and Rescher's plurality quantifier symbol '"M'". These
Feinterpretations constitute the family of quantifiers more

than m/n, with the symbol '"M' interpreted more generally than

in (39). He notes that the interpretation of "M in (39) is
equivalent to the special case of (40) in which m/n is taken
0;?6;1/2 and that the existential quantifier is the special case
in.which (m/n)=0. Because of this systematically ambiguous use -
f ™" in Kaplan's rule, we will use the symbol 'Most'!, rather
han 'M'', from now on.in formulas that .represent most.

ﬂ Kaplan neglects to point out that (40) is circular, uniess
‘e specify that m/n-satisfaction is to be taken to be ordinary
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satisfaction for formulas that contain no oeccurrences of "M
(or-our '"Most'). We can reformulate (40} as an explicit analysis
of the family of quantifiers more than m/n, without the ambiguous
symbol '"M'" and the special notion of satisfaction that interprets
it, by introducing "More than m/n'* as a quantifier symbol for
each value of m/n and including the clause

(1) f satisfies More than m/nué in <DR>if and only if
n « K(E[xeD A fi satisfies & in.<DR>])
>m « K(D)
in the definition of satsfaction. Rule (41) says that the.
formula '"More than m/ny®" is true if and only if more than m/n
of the individuals in D make & true when they are assigned indi-

vidually as values to the variable denoted by o. This gives us
an explicit semantic analysis of the quantifier more than m/n

Section 3: The Relativized Case

3.1 Plurality Quantifiers that Do Not Involve Manifolds

Analyses of the relativized versions of Altham's numerical
quantifiers and of Rescher's and Kaplan's quantifiers are easy
to construct. Since the numerical quantifiers are defined
recursively in terms of some, we simply replace simple some
throughout these definitions with relativized some, which we
have already analyzed in I1,1,3. This gives us

Il

(3,20 (8x,Fx) = (3x) (6x,F)

(2 x)(6x,Fx) = (3x)(Ex, (Fx & (3__1y) Gy, (Fy & y#x))))

!

as an analysis of relativized at least n and

~{ 3x) (6x, Fx)

( §x) (Gx,Fx)

(3x) (6x,Fx) = (3x) (6, (Fx & ( 3Y)(_‘L,(FY & y#x))))

- n-1

as an analysis of relativized exactly n. The only difference
between these analyses and the simple anaiyses that we saw in
Section 1.2 is that individuals are required to belong to the
extension of 'Gx" before they can be considered -in the quanti-
fication of "Fx''. This requirement follows from our analysis of
relativized some in 11,1,3 and is exactly the intuitive content
of relativization, which we examined in I,1,4. As in the 5|mp]e
case, ''y'" must be taken to be a variable that does not occur
free in “fﬁﬁ or, this time, in "Gx'.
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- The relativization requirement that individuals must be in
the extension of the first wff in order to be considered in the
quantification of the second wff is particularly easy to state in
the case of Rescher's and Kaplan's quantifiers, because our analy-
ses of the corresponding simple quantifiers are already formulated
in terms of extensions. All we have to do is guarantee that only
assignments of individuals as values to variables that satisfy the
first wff are considered in the quantification of the second wff,
This gives us

(42) f satisfies Mosta(W,Q)fih <DR> if and only if
K (E[xeD and fi satisfies ¥ in <DR> and fi
satisfies ¢ in <DR>])
> K(E[xeD and fi satisfies ¥ in <DR> and
fi satisfies o in <DR>])

and

(43) f satisfies More than m/nu(w,¢) in <DR> if
and only if
n e K(E[XED A fz satisfies ¥ in <DR> A
f satisfies ¢ in <DR>])

> K(E[xeD and fz satisfies ¥ in <DR>])
as analyses, respeCtively,'of relativized most and more than m/ﬁ.
w§ereas (39) gives us the meaning of 'Most things are ¢'s' and (41)
gives us the meaning of ''More than m/n of all things are ¢'s", (42)
gives us the meaning of "Most ¥'s are ¢'s' and (43) gives us the

meaning of '"More than m/n of all ¥'s are &'s''. This is exactly
what we expect of relativization.. .

3.2: Plurality Quantifiers that Do Invoelve Manifolds

The relativization of most of Altham's quantifiers requires
a little more thought than that of his numerical quantifiers
because of their crucial dependence on the manifold size index n.
The numerical quantifiers at least n and exactly n both explicitly
contain 'tfh so the appearance of ”n“ in their semantic analyses
or recursive definitions poses no problem. Different choices of
n produce different quantifiers and that is all there is to it.
Many, in contrast, along with the various quantifiers that can be
defined in terms of it, is systematically ambiguous with respect
to n. For any part:cu]ar choice of n many is identical to the
specific quantifier at Ieast n and which such quantifier it is
identical to depends on our choice of n. No matter which value
of n we choose, however, many remains the same quantifier many.
This systematic ambiguity is precisely what distinguishes the
s,ngie quantifier many from the family of quantifiers at least n.
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Some fmplications of this systematic ambiguity become
apparent, when we examine sentences like

(44) Many linguists study. hieroglyphics.
(45) Many Coptic scholars. study hieroglyphics.

We would like to have a semantic analysis of relativized many
that makes the formulas

(46) (Many x) (Linguist(x),Study~hieroglyphics(x))
(47) {(Many x){Study-Coptic({x),Study~hieroglyphics(x))

the semantic representations, respectively, of (44) and (45).
Suppose, however, that we try to relativize our analysis (29)
of simple many in the same way that we relativized our other
simple quantifiers. All we have to do, according to this pro-
cedure, is to add a statement to (29) that restricts the indi-
viduals that are considered in the quantification of “B(t)

to the extension of another wff. This would transform  (29)
into the rule

(48) 1f A is (Mv)(c(v),B(v)), then ! satisfies A iff
. there are n distinct t- variants of | that satisfy
C(t}, every one of which satisfies gj;)

as a purported semantic analysis of relativized many.

Suppose now that we try to use (48) to determine the

truth-values of (46) and (47), the semantic representations of

(44) and (45), respectively. Rule (48) says that (46), and
thus (44), is true if and only if there are (at least) n

distinct linguists who study hieroglyphics, while (47), and thus

(45), is true if and only if there are some n distinct Coptic
scholars who study hieroglyphics, for some number n whose
value has been determined independently of (46} and (47). Such

a statement is clearly false, however, for {(44) and (45). Since

there are very few Coptic scholars in the world, we might argue
that (4#5) is true if we could find even twenty such people who
study hieroglyphics. We would say that some 1inguists study

hieroglyphics and that a few linguists study hieroglyphics, but

we would not say that many linguists study hieroglyphics. Since

there are substantially more linguists than there are Coptic

scholars, the minimal number of linguists that we would consider

to be many is substantially larger than the minimal number of
Coptic scholars that we would consider to be many. The problem
with (48) is its inherent assumption that the same choice of n
will do for both.
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Ve can remedy this defect in (48) very easily by writing
the manifold size index as a function of the first wff., This
gives us the rule

(49) 1f A is (Mv)(C(v),B{v)), then 1 satisfies A iff
there are n(C) distinct t-variants of | that
satisfy C(t), every one of which satisTies B(t)

as our semantic analysis of relativized many. Rules (28) and

(30) or (31} can be relativized in exactly the same way, giving
us . ..

(50} If A is (Nv)(C(v) B(v)), then ! satisfies A iff
: in every n(C) « dlstlnct t-variants of | there is
at least one that sat:sfles c(t) which satisfies
B(t)
as our semantic analysis of relativized nearlg all and either

(51) 1f A is (Few v){C(v) B(v) , then | satisfies A iff
there are not n(C) “distinct t- variants of | that
satisfy C(t), every one of which satisfies B(t)

or

(52} 1f A is (Few v)(C(v),B(v)), then | satisfies A
iff in every n(CT-dlstlnct t- variants of I that
satisfy C(t) there is at least one which does not
satisfy Ejz)

as our semantic analysis of relativized few.
With a little hindsight we can see that Altham's analyses
(28) and (29} and our analyses (30} and (31) suffer from an
?§ﬁquacy very similar to that of (48). <Simpie quantifications
ike T
(53). Many people are linguists.
| (54) Many pebpie are Coptic scholars.

are really equivalent to existential statements of a certain kind.
Sentence (53) means the same thing as

(55) There are many linguists.
and sentence (54) means the same tHing as

(56) There are many Coptic scholars.
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just as the simple quantifications

Some people are linguists (Somecne is a linguiStg

Some people are Coptic scholars (Someone is a
Coptic scholar)

: mean the same thing, respectively, as the existential statements
There are linguists.

There are Coptic scholars.

The number of Coptic scholars that there w?qld have t? be to

make us agree that (56) is true, however, is substantially
smaller than the number of Yinguists that there wogld have to

be to make us agree that {55} is true. As we saw in the case

of (44) and (45), the minimal number of iinguist that constitute
a manifold is substantially larger than the minimal ?umber ?F
Coptic scholars that constitute a manifold. The manifold size
index is a function of the wff in the simple case, as well as

in the relativized case, of many.

To accomodate the functional character of n, we must
replace (28) and (29), respectively, with the new formulations

(57) If A is (Nv)B(v), then | satisfies A_iff in every
n(B) distinct t-variants of | there is at least
one which satisfies B(t)

(58) If A is (Mv)B(v), then | satisfies A iff there are
n(B) distTﬁE?.gjvariants of 1, every one of which
satisfies B(t)

as our semantic analyses of nearly all and many, rgspectiVely,
and we must replace (30) and (31), respectively, with the new
formulations

(59) If A is (Few v)B(v), then | satisfies A iff
there are not E}Bj-distinct Ejvariants of 1,
every one of which satisfies B(t)

(60) If A is (Few v)B(v), then | satisfies 3_iff in .
every n(B) distinct t-variants of | there is at
least one that does not satisfy B(t)

as our alternative analyses of simple few. In what foilows
we will not always indicate the functional ?hafacter of.g
explicitly, but we will always assume that it Is to be inter-

preted functionally.
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Once we have determined that n is a function, the question
naturally arises as to which function n is. in other words, how
is the value of n determined by "'B'"" in the simpie case and by "'c"
in the relativized case? Although n plays a crucial role in the
meanings of a number of plurality quantifiers, however, semantic
theory does not have to provide an answer to this question. Since
the value of n in the semantic representation of any given many-
quantification is determined by a wff that appears in that quanti-
fication, there is a strong temptation to conclude that the value
of n must be included in the lexical entry of that wff, when that
wff is an atomic predicate, and must be provided by semantic
rules in other cases. Since the value of n that is determined
by the predicate "Linguist" in (46) is different from the value
of n that is determined by the predicate "Study-Coptic" in (47),
we might be led to conclude that the djfferent values of n must
be. included in the lexical entries of the respective predicates,
for example (assuming they are atomic). This conclusion assumes,
however, that the value of n is related logically to the meaning
of a predicate to which it corresponds, when, in fact, it is
related empirically to the reference of the predicate,

The meaning of the predicate 'Linguist' in (46) is some-
thing like '"one who studies linguistics' or 'one who studies
language'' and the meaning of the predicate "Study-Coptic' in (47)
is something like 'one who studies Coptic'', Taken together with
the fact that Coptic is a language, these meanings do logically
entail that n{Linguist) is at least as large as n(Study-Coptic),
that is, they do teil us something about the relative sizes.of a
manifold of linguists and a manifold of Coptic scholars. With-
out some empirical information about the actual state of society
at a given time, however, these meanings tell us nothing about
the actual values of n. As far as logic 1is concerned, society
could have developed in such a way that Coptic was the dominant
language, in which case Coptic scholars would be in great demand
and, therefore, in great supply as well, . The meaning of the
predicate ''Study-Coptic' would not be different under such cir-
cumstances from what it is now., It would still mean. something
like ''one who studies Coptic''. The value of n, however, would
still be substantially larger than it happens to be today.

Since the semantic part of the lexical entry of a
predicate is supposed to consist of all of the information that
makes up the meaning of the predicate (within the context of a
given grammar and general ‘semantic theory), it follows that the
values of n for specific predicates do not have to be included
in the lexicon. Since the value of n for a specific predicate

is determined empirically from the way in which the reference
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of the predicate fits into the actual state of the world, the
place for an explicit account of n is in a formal theory of
knowledge and beliefs, rather than a formal theory of linguistics
or semantic competence. Some interesting ideas on how the two
kinds of theories might interact in determining our concept of
the world are discussed, in effect, in Putnam (1966).

Given the new semantic analyses (57), (58), and (59)/(60),
the rest of Altham's simple quantifiers must be :nterpreted in
terms of them, rather than in terms of (28), (29), and (30)/(31).
Relativizing these quantifiers is straightforward, in terms of

(49), (50), and (51)/(52).
For the first version of a few we get
(61 (E) (B0, AW)=(39) (B(v),AW)) & - (1) (B() ,AW)
corresponding to (32}, or |
(F) (B(v),A(v))=( 3v) (B(v) ,A())5(Few v) (B(v) ,A())
corresponding to (33). For all but a few we get

( 4v) (B(v) ,A(v))=(Nv) (B(v) ,A(W)) & -(¥v) (B(v),A(v)

corresponding to (34).

For the second version of a few we get the EXP]ICIt
semant:c analysis

An interpretation | satisfies (fv)(B(v),A(v)) iff
there are at least m(B) distinct t-variants of | that
satisfy B(t), all of which satisfy A(t),

corresponding to {35). Since m, like n, is really a function of
the first wff in this analysis, it is also, like n, a function of
the wff in the simple analysis. It follows that (35) itself must

be replaced by

An interpretation | satisfies (fv)A(v) iff there are
at least m(A) distinct t-variants of 1, all of which
satisfy ﬂIﬁT

as our analysis of simple f. FExactly a few can now be defined
as either

(Fv) (B(v),A(v)) & (Fv)(B(v),A(v))
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or

(fv) (B(v),A(v)) & -(Hv) (B(v),A(v))

analogously to the simple case.

For very nearly all we get either the interdefinability
statement

(V) (8 (V) Alv)) = ~(fv) (B(v),~ (V))

corresponding to (36); or ‘the expl?cit analysis
1 satisfies_(Vv)(B(v) A(v))_:ff in every m(B)

distinct t-variants of | that satnsfy B(tT’ at
. least one satisfies A(t)’

corresponding to (37). Again, (37) itself must be replaced by
the funcitonalized rule

1 satisfies { gjgjg) iff in every m(B) dlsttnct
E-variants of |, at least one satisfies A(t)

FTnai]y, we get the expression
(Vv) (B(v) A(v)) & (3v)(B(v), A(V))

corresponding to (38), as a defln;tlon of re]at|V|zed all but
at most a very few.

Section 4: Non-Reducibility of the Relativized Quantifiersr'
: to the Simple Case

The relativized versions of the plurality quantifiers
exactly n and at least n can be reduced to their simple versions
in the same way in which we reduced the relativized existential
quantifier to its simple case in 11,1, 4. That sentences like

(62) Exactly 2093 linguists have studied logic.

At least 2093 linguists have studied logic.

are equivalent, respectively, to corresponding sentences 1ike

{63) Exactly 2093 people are linguists and have
studied logic.

At least 2093 people are linguists and have
studied logic.
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follows directly from our analysis of the simp!e exi§tent1a] )
quantifier in 11,1,2 and of the relativized existential quanti-
fier in 11,1,3. The respective equivalence of the se?tgnces |nf
(62) to the sentences in (63) is analogous to the equivalence o

formulas {25) and (26).

For the rest of our plurality quantifiers, however, such
a reduction is impossible, regardless, it §houId be noted, of
whether or not their analysis involves manlfolqs. .lh Iizi,h we
saw that a relativized existential quantifacaglon involving the
wffs "B and YA can be made simple by replacing the ordered ]
pair '"(B,A)" with the single wff 'BAAY, but that the §orrespond1ng
universal quantification can be made sim?le ?y replacing that'
ordered pair with ''"B2A". A careful examination of our analysis
of relativized many in Section 3 reveals that many is én?lqgous
‘to some in this respect, rather than to all. iﬁ_relat1vnzed
many can be reduced to its simple case, then t@ls ﬁan Ee done
by replacing '(B,A)" with ""BAA", rather than with ''B2A'.

The reason for this, in essence, is that many, like some,

makes an existential statement, as we saw in-cgnqection with
(53), (54), (55), and (56), rather than a conditional statement

of the sort made by alli. The sentence
(64) Many linguists study logic.

for example, is equivalent to the existential sentence

(65) There are many linguists who study logic.

just as the sentence
(66) sSome linguists study logic.
is equivalent to'the existential sentence
(67) There are some linguists who study logic.

In contrast, however, if we try to form a sentence with all that
is parallel to (65) and (67), we get

*Phere are all linguists who study logic.

which is not a sentence at all,
sentence to which the sentence

(68) a1l linguists study logic.

is equivalent,

In fact, there is no existential
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Unlike (65) and (67), and thus (64) and (66), sentence (68)
can be true even if there are no lihguists at all and thus
none who study logic, as long as any linguists who exist study
logic. The all sentence, unlike the corresponding many and
some sentences, makes no .¢laim about the existence of logic-
studying linguists. What it says is that whatever linguists

. there are, all of them study logic, even if there happen to

be none. Sentence (68}, in other words, is equivalent to the

-sentence

It is true of all people that if they are
linguists then they stfudy logic.

or, as we saw in 11,1,4, to the sentence

Everyone is such that if he is a linguist
then he studies logic.

Both of these sentences are conditional, rather than existential,
in character.

This is the reason that, as we saw in 11,1,4, relativized
all is reduced by introducing ''>", rather than "A". Since many,
like some, is existential, rather than conditional, like all, it
follows that if its relativized case can be reduced to the
simple case, this must be done by introducing a conjunction,
rather than a conditional. A similar argument would show that:
if the quantifier nearly all, which is interdefinable with many
in the same way in which all is interdefinabie with some, is to
have its relativized form reduced to its simple form, then this
must be done, as with all, by introducing a conditional, rather
than a conjunction.

As we noted earlier, however, such .a reduction turns out
to be impossible. We just saw that if the relativized quanti-
fication

(69) Many linguists study logic.

is reducibie to a simple quantification, then the simple
quantification it is reduced to will be

(70) Many people both are linguists and study logic.
In other words, if the relativized quantification

(71)  (Many x) (B,A)

is to be reduced to a~simple quantification, then the required’
simple quantification must be
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(72) (Many x){B A A).

i i itively, at least on the
This result also makes sense |ntu|t;ve s .
surface, as well as following from the foregoing argumen;.

When we examine {(69) and {70) more carefully, hgwgver,
i I1. Suppose it is
we see that they are not equivalent at al .
true that (71) is equivalent to (72). Since we canﬂt?ke ?liher
B=Linguist and A=Study-logic or B=Study-logic and A=Linguist,
it follows both that

(73)  (Many x) (Linguist{x),Study~logic(x))

is equivalent to

(74) (Many x) (Linguist(x) A Study-logic(x))

and that
(75) (Many x)}{Study-logic(x),Linguist(x))
is equivalent to | | o
(76) (Many x)(Study-ioéic(x) A Linguist{x)).
Since conjunction is coﬁmutativé, the'fbrhu]as
Linguist(*) A S&udy-logic(x)
Study-logic(x) A Linguist(x)

ivalent. 1t follows
equivalent, so (74) and (76) are equiva f
i;:t ?73) and 275) are equivalent, since they are equivalent,

respectively, to (74) and (76).

Formulas (73) and (75) are clearly not equivalent, however.
Formula {73) is the semantic representation of

(77) Many linguists study logic.
and formula (75) is the semantic representation of

{78) Many students of logic are linguists.
Either of (77) or (78).cou]d be true under cohdi;§0n§ thét would
make the other false, depending on the values of Qlengulst) and

i i i nd logic-students
Study~logic) and on the number of linguists and f
%ﬁere zre.g In other words, many A's can-be B's without many B's
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being A's. Since our assumption that (71) and (72) are equivalent
led to the conclusion that (73) and (75) are equivalent, when, in
fact, they are not equivalent, it follows that the assumption is
false. We cannot reducé the relativized quantification (71) to
the simple quantification (72), because the two formulas are not
logically equivalent. '

Since relativized many cannot be reduced to its simple
case, It follows that the rest of our manifold quantifiers, which
can all be defined in terms of many, can also not be so reduced.
The question remains, however, whethér Rescher's and Kaplan's
quantifiers most and more than m/n, whose definitions do not
involve manifolds, can have their relativized versions reduced to
the simple case. The reason that (77) and (78) are not equiva-
lent’ is related to the fact that n(Linguist) is different, in
general, from n(Study-logic). For there to be many linguists
there must be more than n(lLinguist)-1 of them, but for there to be
many logic-students there must be more than n(Study-logic)-1 of
them. Most, however, as we saw in 11,2,2, is equivalent to more
than 1/2 for any wff or wffs. Its '"index" does not vary, as does
n for many, but is always sjhply_i/z._ Similarly, each quantifier
more than m/n has the constant '"jndex' m/n for all wffs, unlike
many, which is systematically ambiguous with respect to its mani-
fold size index n. We have seen that the 'systematically ambiguous
plurality quantifiers cannot be reduced, but we can still ask
whether most and more than m/n, which lack systematic ambiguity,
can be reduced. IR

It is not difficult to see that this qlestion must be
answered in the negative. First we notice that both quantifiers,
like many, make existential claims (even if m = 0, by the way).
The sentence -

(79) Most linguists study logic.
is equivalent to
(80) More linguists study logic than do not.

according to our analysfs in ll,2,3{i, and (80), in turn, is
equivalent to the sentence

(81) More than fifty percent of linguists study logic.

Neither (80} nor (81) can be true, if there are no linguists, and
the same holds for analogous sentences with m/n-values other than
fifty percent. It follows that, as we saw in the case of many, if -
relativized most or more than m/n are to be reduced to their simple
forms, then it must be by introducing conjunction, rather than a
conditional. '
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in this case, however, it .is immediately obvious that such
a reduction does not work. The sentence (79) makes a statement
(81) about fifty percent of the class of linguists, but the pur-
ported conjunctive simple reduction ,

(82) More than fifty percent of all people are both
linguists and students of logic.

that Is,

(83) Most people are both linguists and students of
logic.

‘makes a statement about fifty percent of the class of people.
sentences (82) and (83) entail that more than half of all people
are linguists, but sentence (79) entails nothing about the size
of the class of linguists except that it is non-empty. Since
there are approximately three billion people in the world, (82)
and (83) can be true only if more than one-and-one-half billion
of them are linguists, but (79) will be tue even if there are only
a thousand linguists in the world, as long as more than five
hundred of them study logic. It follows that most cannot be
reduced by Tntroducing a conjunction, with similar arguments and
conclusions for other values of m/n. .

One might still object that a conditional reduction of
relativized most seems intuitively plausible, despite the fact
that most makes an existential claim. Can we say that (79) is
equivalent to the conditional sentence

(84) 1t is true of most people that if they are
linguists then they study logic.

as this objection suggests? It is not difficult to see that the
respective semantic representatlons of these two sentences are not

equ:valent
The semantic representation of (79) is of the form
(85) (Most y)(Linguist(y),Study-logic(y))

and the semantic representation of (84) is of the form
(86) (Most y)(Linguist(y) > Study-logic(y)).

The variable 'y is used in these formulas bniy because ''x'' is

already used .in the semantic analysis of most in (39) and (42},
for a different purpose. Formula (86) is equivalent to the

formula
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{87) (Most y){-Linguist(y) ¥ Study=logic(y)),
because the entailment .

(88) Lipguist(y) > Study-togic(y)
is equivalent to the disjunction

(89) ~-Linguist(y) V Study-Togic{y) »

 Formula (86) is true if and only if formula (87) is true and the

Iatter is the case if and only if (89) is true for most values of
"x"", that is, more than fifty percent. Formula (89) clearly is
true for most values of ', however, because most people happen
not to be linguists. It fol]ows that (88) is also true for most

values of "x'* and that both (87) and (86) are true.

Formula (85) itself, however, is clearly faise, despite
the truth of its purported reduction (86), because it says that
most linguists study logic, which, unfortunate]y, is not the
case. . It follows that (85) can be false, when (86) is true, so
the two formulas are not equivalent. ’

Someone might still persist in trying to find some way of

‘reducing relativized most to its simple form, but no matter which

of the other fourteen binary.truth-functional connectives we try,
we can always find a model that gives (85) and the proposed
reduction different truth-values. Relativized most cannot be
reduced to its simple form. '
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CHAPTER 3: PRESUPPOSITIONAL QUANTIFIERS

Section 1: The Notion of Presupposition

Keenan's (1971a) analysis of the ''genuinely new and

exciting quantifier" only depends crucially on the notion of

presupposition, which was first introduced in the logical litera-

ture by Strawson (1952). As Strawson describes the relation of

presupposition,

It is self-contradictory to conjoin S with the denial
of 8' if S' is a necessary condition of the truth,
simply, df_i; It is & different kiﬁdkof‘logi?al '
absurdity to conjoin S with the denial of §' if §

.is a necessary condition of the truth or falsity of

 §. The relation between 8 and S' in the first case

Keenan

is that S entails S'. We need a different name fOf
the second case; let us say...that S presupposes s'.

(p. 18)

(1971b) elabofateé on this notion as follows:

...a sentence S is said to be a logical consequence
of a set of sentences S5* just in case 5 is true in

every world (that is, under all the conditioms) in

which all the sentences of S* are true.. In such a
case we also say that S follows logically from S*,

and that S* logically implies 8. S

A sentence § logically presupposes a sentence S' .
just in case S logically implies S' and the negation
of 8, ~5, also logically implies S'. In other words,
the truth of 8' is a necessary condition on the
truth or falsity of S. Thus if S' is not true then
S can be neither true not false.

(pp. 45-46)

Horn {(1969) was really the first to propose Keen?njs analysis
of only, but he failed to point out that it qua!:ftes as a
quantifier. He offers the following formalization of the idea

of presupposition:

a. If (5= 5') and (-5 > S'), then S presupposes S°.

b. 1f (5~ S§') and (-S'~+>-S), then S entails S'.

- - 1 .
Rule b., of course, contains some redundancy, since (s +~ St}

-
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itself entails (-5 » -S8), but its form parallels that of a.
and so helps to clarify the difference between the two notions
being defined.

In short, a sentence S entails a sentence S', if we are
Jjustified in concluding $', given S, § presupposes S', if the
very fact that S makes sense, that is, can be true or false,
entitles us to conclude $'. In classical two-valued logic a. is
equivalent to the statement that S' is logically true, because
of the law of the excluded middle. n such a logic the only
presuppositions are the logically true (valid) propositions and
these are presuppositions of every proposition. It follows that
the notion of presupposition.can have non-trivial instahces, only
if we allow at least a third truth-value in our logic.

Van Fraassen (1971) develops a very sophisticated frame-
work for the description of presuppositional languages  and
other languages that involve more than two truth-values. Our
purposes require substantially less elegance and our discussion
will, it is hoped, be linguistically more intuitive and revealing.
Some authors, such as Wilson (1975), have recently objected to
the notion of presupposition and suggested that entailment
suffices to account for the facts of language. | will not
comment on these suggestions, except to point out that the results
of this chapter ipsis factis constitute empirical support for the
linguistic reality of the presuppositional analysis. ‘

One thing to notice about presupposition .is its close
similarity to relativization, which we have already examined in
some detail. In van Fraassen's general framework, as we saw in
Chapter' 1, the truth-value of a quantificational sentence under
an assignment. function d is determined by examining the assign-
ment functions d' that differ from d at most in their assignments
to the variable of quantification. As we saw in Sections 3 of '
the last two chapters, the realtivized versions of quantifiers
are obtained by restricting the functions d' to those which
satisfy some wff other than the one being quantified.

In the case of a sentence with a presupposition, some-
what similarly, the assignment functions d under which the sen-
tence can be either true or false are restricted to those which
satisfy some sentence other than the one whose truth-value s
is being determined. In both cases some assignment function d

or set of assignment functions d' is restricted to the set of

such functions that satisfy somE-wff or sentence other than the
the main one involved. '
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Section 2: Keenan's Quantifiers

2.1: Keenan's Analyses

Keenan (1971a) gives an explicit semantic analysis for
only and points out that the quantifiers all but and someone plus
are interdefinable with it. Denoting all but by the symbollfmlI
"(¥x but n')" and someone plus by the symbolism '"(3x plus n')",
he gives us the following definitions:

(90) (¥x but n') b: iff (only x, n') ~b2

1 ° . n
(31) (3 x plus n'} b: iff —(only X, n') bx

The symbols ''n'' and '"mt'" in (90) and (91) represent proper -
names and ''b "is the result of replacing each occurrence of 'n
in the closed formula '"b" with the variable "',

This particular notation arises from Keenan's re!uctance
to recognize open formulas as legitimate semantic entities.
Keenan calls the customary. use of variables in open formulas

deplorable, for free occurrences of variables _
function semantically in a quite different way

from bound occurrences. Namely, they function

as names. One of the purposes of logical syntax

is to assign symbols which are meaningful in
different ways...to different grammatical
categories, and to assign the same grammatical
category to symbols which are meaningful in the same
-way. Thus, if a language is logical, we know bow

a symbol is interpreted and what kind of role %t
plays in the definition of truth once we know }ts
grammatical category. But not to assign 'free
occurrences of variables a different grammatical
category from bound occurrences_ﬁndermines_this
attempt. Thus we use names - call them arbitrary
names if you like - where some other people would
use variables (calling them 'free' as a meta-
linguisti¢ afterthought). (pp. 261-262, n.5)

This argument defeats itself, however, b?cagse §xactlz thg

same objection can be made to Keenan's distinction betw§en names
and arbitrary names as he just finished making to thg dis- :
tinction between free and bound (occurrences of) variables.
‘Names serve to name, but arbitrary ‘'names' serve as place
holders, just as free variables do. '
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The real effect of pretending that free variables are
names Is to obscure the distinction between open and closed
formulas, thus depriving us of any way to represent properties
or relations independently of the individuals that have those
properties or stand in those relations. As we saw on page 17,
a sentence (closed formula) represents a proposition, while an
open formula represents a relation (or property), without speci-
fying what names can be truthfully substituted for the variables
of the formula. One might argue that a third kind of symbol,
completely different from either names or bound variables, should
be introduced for use in open formulas in place of Keenan's
“arbitrary names' or the more traditional free variables. |
would not take issue with such an argument. To paraphrase
Keenan, however, ''not to assign 'arbitrary' occurrences of names
a different grammatical category fron non-arbitrary occurrences
undermines this attempt (to assign symbols which are meainingful
in different ways,..to different grammatical categories). Thus
we use variables - call them free variables if you like -
where Keenan would use names (calling them 'arbitrary' as a
metalinguistic afterthought)."

The form of only that occurs in (90) and (91) Keenan
analyzes as follows:

(92) For a given set of conditions (state of the
world) C, (only x, n')b” is true under C just
in case (a} and (b) beldw both hold. It is -
false just in case (a) holds but the sentence
mentioned in (b) is false.  Otherwise it has
the third value zero. : : -

(a) b:, is true under C (where bg, is the

result of replacing each occurrence of
hinb by nt)

{b) (Vx)(b; > (x=n)) is true under C.

He replaces the logician's technical notions of interpretation,
assignment function, and model with the intuitjve notion ‘'set
of conditions (state of the world)" and ‘introduces a third
truth-value, which he calls ""zero', to give substance to the
presuppositional character of (a). Condition (a) must hold, if
the only-formula being analyzed is to be either true or false, .
rather than zero-valued. If (a) is true, then the truth-

value of the only-formula is the same as that of (b}. Condition
(a) is the presupposition of the formula and (b} is its

assertion, the sentence it is equivalent to, given that the

presupposition is fulfilled.
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Rule (92) accounts for the meanings of sentences like
’ (93) Only Fermat could prove his last theorem.

in which only occurs with a proper name. It tells us that {(93)
is true, if Fermat could indeed prove his last thgorem, but no
one else could; false, If both Fermat and someone e!se cou}d
prove the theorem; and of the third truth-value, neither true
nor false, if Fermat could not prove it.

Keenan.a]so gives the foilowing analysis of sentences like

(94%) only logicians can prove GSdel's theorem.

in which only occurs with a common noun:

: . n
(95) For a given set of conditions ¢, (only x, dx)'
b" is true under C just in case both (a) and
x B

(b) below hold: It is false as long as (a)
holds and the base sentence mentioned in (b)
is false, Otherwise it is zero valued.

(a) ( ax)(d: & bz) is true under C
(b} (¥ x)(bi 5 d:) is true under €.

Ruie (95) teils us that {94) is true, if there are logicians who
can prove Godel's theorem, but no one else can; false, if there
are both logicians and non-logicians who can prove the theorem;
and of the third truth-value, if every logician proves unegual to
the task. Again, Keenan defines all but and someone plus in terms
of (95), as .
mo.no, _
(¢x but dx) b 1ff {only x, dx) b
b

By .0 . h
(Ax but dx) b, i ff-(only x, dx)

X X

for sentences in which these quantifiers occur with common nouns.

Even aside from the peculiarity we discussed earlier, _
Keenan's notation is misleading, because it writes the proper name
or common noun that occurs with the quantifier as a_pért of the -
quantifier, rather than as the first wff in a relativized

quantification. His

(96) (only x, n') b:

(37) (only x, d:) b:
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. should properly be written in the form

(98) (only x)tx=n',b:)

{99) (only X)(d;,bg)

. respectively, in which the two wffs in each relativized quanti-

fication are explicitly exhibited. {t is easy to see from (98)
and (99} that the former is simply a special case of the latter.
Formula (28) arises from the replacement of the general wff
symbol "d ™' in (99) with the specific open formula 'x=n i,
Looking back at the analyses (92) and (95), we see that the same
relationship holds between them. Replacing g g (95b) with
Hy=p 0 automatically gives us (92b). Replacing ''d_ "' in (95a)
gives us - x '

(Ix) (x=n' & sz,

whicn is just a cumbersome way of writing (92a). This fundamental
relationship between (92) and (95), from which |t follows that
(92) is superfluous, given (95), is clearly revealed in (98) and
(99), but is hidden from view in Keenan's notation (96) and (97).

Keenan's analyses (92) and (95) are as concealing as
his notation. only and the quantifiers that are interdefinable
with it can occur only relativized, as we saw in I,],4. Rela-
tivization is an intrinsic part of their meaning. Rules (92)
and (95), however, which purportedly give us the meaning of only,
are formulated in terms of the simple reduced forms of the
classical quantifiers that are involved in that meaning, rather
than explicitly in terms of the relativized versions of those
quantifiers. To fully capture the necessarily relativized
character of only, (92b), if we use it at all, considering its
superfluity, should be expressed in the relativized form

(Vx)(b:,x=n') is true under ¢
and the conditions (a) and (b} of (95) should be written as
(109) (a) (ax)(dz,b:) is true under C

(b) (VX)(bg,d:) is true under ¢

Rule (100) reveals a symmetry in (a) and (b) that is hidden

in Keenan's formulation (95), especially in view of the
commutativity of "g". It also reveals that what is dgoing on in
only is relativization, rather than the simple conjunction and

- entailmert that (95) suggests.
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Despite the weakness we have discussed in notation and
formulation, Keenan's analyses {92) and (95) do accomplish, more
or less, what they are supposed to. In particular, the funda-

mental insight that only is presuppositional is clearly
expressed. Keenan uses this insight to formulate analyses of
three more forms of only, each of which involves both an assertion

and a presupposition.

The first of these is the quantifier-only n, that is, only
plus a natural number, which occurs in sentences like '

(101) only 63 logicians can pfove Cohen's independence
theoren.

Keenan's analysis of this only is stated in terms of the natural-
number quantifier, which he denotes by‘“(mx)“ for the natural
number m. As an analysis of this quantifier he gives us the

rule
(102) (mx) b: has the same truth value under all

conditions C as does
(3, ) (3xy) oo (3 ) ((x#x,) 8 (xy#x3)

a...&(xT#xm)a(xz#XB)s...a(xzfxm)

: n n N
a...a(xm_r#xm)abx}abxza...sbxm).

In other words (mx)bz has the same truth
value as the sentence whfqh says that there

are m distinct things such that b holds of
each one. (p.287) '

Keenan's analysis of m in (102) is really an analysis of at least
m and is somewhat more intuitive than the recursive definition of
at least n that we saw in 11,2,1.2. It is also considerably more
cumbersome than Altham's formulation, but is logically equivalent

to it.

Keenan uses the quantifier defined in (102} to formulate the
following definition of only m.

(103) (only-mx, dg) b; is true under C just in case

both {a) and (b) hold. it is false if (a) holds
and the sentence mentioned in (b) is true.
Otherwise it is third valued.

(a) (mX)(dQ & bg) is true under C

n

(b) ((m+3)x)(dx & bi) is false under C.
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As we would expect, {103) tells us that (101) is true, if there
are ex§ctly sixty-three logicians who can prove Cohen's theorem:
fa]se,lf'there are at least sixty-four logicians who possess th;t
skill; and third-valued, if there are at most sixty-two.

Next Keenan considers sentences 1jke
(104} only some logicians are intuitionists.

which contain the quantifier only some. He qiv : -
i . es us the f
analysis of that quantifier: - I ollowing

{105) (OR?Y'HX;_d;) b; is true under C just in case

both (a) and (b) below hold. it is false if (a)
holds and the base sentence mentioned in (b) is
false. Otherwise it gets the third value.

(a) (Bx)(ﬁz & bz) is true under ¢
(b) -(Vx)(d: ) b:)is true under C.

Sentence (104} is true, according to (105), if there are both
]OgICIa?S who are intuitionists and logicians who are not:
false, if all logicians are intuitionists; and third-va]uéd if
no logicians are intuitionists. ’

As we saw in connection with (95} and (100), Keenan's
notation is misleading and leads to analyses, in (103) and (105)
just as much as in (92) and (95), that are less revealing than ’
they whould be. Keenan treats only m and only some as the simple
reduced forms of relativized quantifiers, just as he treats only

in (9?)_and (95). Unlike only, however, which can occur only
relativized, both only m and only some can occur either simple or

relativized. A purported sentence like
- (106) *only things can pe proven.

in which only occurs simple, is semantically anomalous, at best
but the analogous sentences ’

(107) onily 29 things can be proven.
(108) only some things can be proven.

;n which only m and only some, respectively, occur simple, are
oth perfectly acceptable. In contrast to (106), the sentence

(109) only theorems can be proven.
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in which'only occurs relativized, is, as we saw in 1,1,4, as
acceptable as (107) and (108), as are their relativized analogs

(110) only 29 theorems can be proven.
(111) oOnly some theorems can be proven.

Since, as we have seen, Keenan's notation fails to distinguish
at all between simple and relativized quantifiers, his analyses
(103) and (105) fail to distinguish the acceptable simple quanti-
fications in (107) and (108) from the semantically anomalous one

in (106).

_ We can correct this defect in Keehan's analyses by pro-
viding both simple and relativized analyses for only m and only
some, while still omitting a simple analysis of only. This
solution may seem ad hoc at the moment, but the non-occurrence
of a simple analysis for only will follow naturally from our
discussion in 1V,2,2. A principled relationship between the
simple and relativized versions of quantifiers that have both
will also emerge during our development of Part IV.

As a simple analysis of only m we get the rule

(112) (0only m x) A is true under C, if both (a) and
(b) hold; false, if (a) holds and (b) does not;
and third-valued otherwise. ‘

{(a) (E%x) A
(b) —(Eh+1x) A

where ''3 x' is the at least m quantifier defined for n in 11,2,1.2.

only m in (112) is different from Altham's exactly m, defined for
n in 11,2,1.2, because it presupposes that there are m A's,
whereas Altham's quantifier asserts this. This seems to me to
capture exactly the intuitive difference between exactly n and

only n.

To get an analysis of simple only some, we replace "(Only m x)"
in (112) with "{Only some x)'" and the conditions (a) and (b),
respectively, with

(113) (a) (Some x} A
(b) -(AI1 x) A

Rule (112) tells us that (107) is true, if there are twenty-nine
things that can be proven, but not thirty such things; false, if
there are at least thirty things that can be proven; and third-
valued, if there are twenty-eight or fewer. Rule (113) says that
(108) is true, if some thrigs can be proven and some things cannot;
false, if everything can be proven; and third-valued, if nothing
can be proven. ’
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.The relativized versions of these quantifiers are just as
‘stralghtf?rward as the simple ones. Relativized only m can be
analyzed in terms of the relativized at least n quantifier "3 x"

= n

that we saw in 11,2,3.1 by replacing ''{Onl g i
12, ymx) A" in (112) with
"{Only m x) (B,A)'" and conditions (a) and {b), respectively, with

(118) (a) (3 x)(8,A)

(b) -(3,.x)(B,A)
This tells us that (110} is true, if there are twenty-nine, but
no? thirty, theorems that can be proven; false, if there are
thirty theor?ms that can be proven; and third-valued, if there
are twenty-eight or fewer such theorems.

| To get an_?na!yéis'of relativized only some we replace .
(Only m x) A" in (112) with "'{Only some x) (B,A)'" and conditions
(a) and (b), respectively, with \

(115) (a) (Some x)(B,A)
(b) ~(A11 x)(B,A)

This says that (111) is true, if some theorems can be proven and
some tbeorems cannot; false, if all theorems can be proven;
and third-valued, if no theorems can be proven.

The'last case that Keenan considers is that of conjunctive
only, which can occur only relativized, in sentences like

(116) only logicians and linguists get off on guantifiers.

?is analysis, as we might expect by now, takes the following
orm:

n n
(117)  {only s, b]x’ b2x"'f’b;x) b; is true under a

given set of conditions C just in case both (a)
and (b) below hold. It is false if (a) holds
and the sentence in {b) is false. Otherwise it
has value zero.
n
(a) (3x)(bix 4 b:) is true in C, for each i
between 1 and m.
n n n - n .
{b) (Vx)(bx > (be Vb, ...V bmx)) is true under C.
Rute (117) tells us that (118) is true, if there are both logi-
cians aqd linguists, but no one else, who get off on quantifiers;
False,_lf there are logicians, linguists, and other people who
appreciaFe the beauty of quantifiers; and third-valued, if either
no Ioglcrgns or nc linguists can be found who do so. As we saw
for each of the other forms of only, it can be reformulated in
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explicitly relativized form by replacing conditions (a) and (b)
with
(118) (a) (3) (b} ,b%) is true in C, for each i between"
1 and m
(b)  (vx)(b),b

n Vbn

. ny . .
‘e : C
Ix oy Y v bmx) is true in C,

respectively.

2.2: The Semantic Effect of oOnly

Writing our semantic representations in explicitly relativized
form enables us to see something about only that is not as clearly
evident in Keenan's notation. |If we take a careful look at our
analyses of only and compare them to the sentences they are analy-
ses of, we realize that the presupposition in each case can be
obtained by simply omitting only from the sentence. Rule (112),
for example, tells us that the presupposition of (107),

(107) only 29 things can be proven.

29 things can be proven.
Rule (113) tells us that the presupposition of (108),

(108) Only some things can be provermn.

Some things can be proven.

Similarly, rules (114) and (115), respectively, tell us that the
presuppasitions of (110) and (111),

(119) oOnly 29 theorems can be proven.
Only some theorems can be proven.
are
29 theorems c¢an be proven.
Some theoremé can be proven.

respectively,

I
e,
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The necessarily relativized forms of only aiso fit this
pattern, only a little more subtly, The case of only plus a
proper name, if we choose to consider it separately, is almost

- straightforward. Rule (100) says that the presupposition of

(98),

{only x)(x=n',b:)

=n! n K
() (x=n',b, )
which, as we noted earlier, is equivalent to
n
bn|.

This means that the presupposition of (93),

Only Fermat could prove his last theoren.

Fermat could prove his last theorem.
in accordance with the pattern.

The case of only p}us'a common noun is somewhat less straight-
forward. Rule (100) tells us that the presupposition’ of

(only x) (d},b7)

n.n
(ﬂx)(dx,bx)
This means that the presupposition of (94),

Only logicians can prove Godel's theorem.

(120) some logicians can prove GBdel's theorem.
To fit our pattern, however, the presupposition of (94) should: be

(121) Logicians can prove Godel's theorem.

‘because this is what we get when we simply omit only from the

sentence.

In fact, our pattern is preserved, because sentences 1ike
(121) are ambiguous. Sentence (121) can be read either as
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(122) a11 logicians can prove Godel's theorem.

or, perhaps a little tess commonly, as (120). [f (T2%) Es;USed
as a generic statement about the class of Jogicians, in. answer
to a request like Tell me something about logicians, then it

is equivalent to (122). Sentence (121) can also be used, however,

to answer a question like Is there anyone who can prove G3del's
theorem? When used in this way, (121) means the same thing as

There are logicians who can prove Godel's theorem.
and is thus synonymous with (120). We see that {121), on one of
its readings, is the presupposition of (94), again in accordance

with the pattern we saw in only m and only some.

A similar analysis works for conjunctive only. Rule {118)
says that both of the sentences

(123) Logicians‘get off on quantifiers.
(124) Linguists get off on quantifiers.

on thelir readings that are analogous to (120), as a reading of
(121), are presuppositions of (116).

(116) only logicians and linguists get off on quantifiers.
It follows that the conjunction of (123} and (124), namely,

(125) Logicians and linguists get off on quaﬁtifiers.".xl
is also a presupposition of (116). | |

We see now what all forms of only have in common, despite
the different analyses that we (based on Keenan)} have given for
them. In each case the presupposition of a sentence that con-
tains only can be obtained by simply removing the only. The
semantic effect of only is to "reaffirm' the truth of the sen-
tence to which it is added and then to assert that the extension
of the wff quantified in that sentence is limited to the classes

that appear in the sentence. only in (116) reaffirms (125) and

goes on to say that no one else gets off on quantifiers. oOnly

in (110) reaffirms (T19) and goes on to say that there are no
further theorems that can be proven. Similar statements can be
made about the other examples we have considered.

In particular, rule {100) tells us that the assertion of

(99) is
(126) (Vx)(b:,d:)
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so the assertion of (94)

Only logicians can prove Godel's theorem.

(127) Aanyone who can prove Godel's theorem is a logician.
Formula (126), however, is equivalent to
n..n '
(NO X) (_dx:bx) °

because of interdefinability and the commutativity of conjunction.
This equivalence tells us that

No one who is not a logician can prove Godel's
theorem. '

is the assertion of (94). Again we see that the effect of only
once it has reaffirmed, through presupposition, the sentence it is
added to, is to assert that the extension of the second wff is
limited to that of the first. This is the real significance of
the symmetry that we noted in connection with {100).

Section 3: Cushing's Quantifiers

in the last section we saw that the semantic effect of only
is to reaffirm as a presupposition the sentence to which it is
added and to assert further that the extension of the second wff
of that sentence is restricted to that of the first wff, as
specified by the sentence itself. The quantifier also has a
somewhat different effect. The sentence

{128} also linguists study quantifiers.

for example, presupposes that there are people other than
linguists who study quantifiers and asserts that at least some
linguists do.

The effect of adding also to the sentence
(129) rLinguists study quantifiers.

is to assert that (129) is true, on the non-generic reading we
discussed in connection with (121), while Informing us through
presupposition that the second wff (in this case the predicate
"Study-quartifiers”) of (129) holds of someone other than linguists,
as well. Whereas only presupposes the sentence to which it is
added, on its non-generic reading, also asserts that sentence on
that reading. Whereas only asserts that the extension of the
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second wff of that sentence has no members other than those
mentioned in the sentence, also presupposes that there are other
such members. It does not inform us, however, as to who or what
they are. -

Cushing (1972a) argues that also can be analyzed in Keenan-
style terms as follows:

(130) (Also x)(B,A) is true if both {a) and (b) hold;
false if (a) holds but (b) does not; and third- i
valued otherwise.

(a) (3x)(-B,A)
(b) (3x)(B,A)
in accordance with the foregoing discussion. Something like

"under conditions C'" should be understood wherever relevant in
(130) and forthcoming analyses.

"‘Both intuitively and from {130) we can see that also is
interdefinable with at least one other quantifier. If we deny
the sentence (128), we get the sentence :

{131) 1t is not the case that also linguists study
quantifiers. )

which says the same thing as the sentence

(132) Only someone other than linguists studies
quantifiers.’

This sentence presupposes the appropriate instance of (130a)
and denies the corresponding instance of {130b), just as we
would expect of the denial of (128).

Formally this gives us the interdefinability relationship
(133) only some...other than = not also

where ''..." stands for ~one, ~thing, -where, or whatever other
simple-quantification suffixes might exist. Cushing (1972a)
writes the quantifier on the left side of (133) as in contrast
some, which has the advantage of not requiring the indefinite
",..4 in its formulation. Only some...other than seems to
capture the meaning involved more exactly, however, than does -
in contrast some. Combining (130) and (133) gives us

(]34) (Only some...other than x)(B,A) is true if
both .(a) and (b} hold; false if (a) holds but
(b) does not; and third-valued otherwise.
(a) (3x)(-B,A)

(b) (¥x)(B,~A)
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- @s an explicit semantic analysis of this quantifier. Again we

see a certain symmetry in the wffs in the analysis, as we saw
in (100) for only.

) .Keenan (1971a) argues that also is not a quantifier, because
it violates what he calls the "predication property''. H;s
description of the property itself is very vague, but we can
get.some idea of what Keenan means by looking at his argument
‘against also. Keenan claims that

also does not meet the predication test in that

the denial of (58a) below does not deny merely

the meaning of also but rather goes all the way and
cactually denies (58¢) itself.

(58a) John also left.

(58b) 1t is not the case that John also left.

(58c) John left.

Had élso operated strictly as a predicational functor
we might have expected (58b) to still imply (58c) but
deny merely that John's leaving was in addition to

someone else's. But this is not the case. )

?Y this test, howeyer, even, some fails to qualify as a‘quanti—
ier,

Keenan argues, in effect,

that also is not a uantifi ‘
because the sentence - 9 ="

It is not the case that John élso left.

-(Also'x)(x=thn,Left(x)) |

implies (entails) the sentence

(135) 1t is not the.case'that John left.
-Left{John).

The sentence

It igs not the case that Fome man left.
- (Some x) (Man(x),Left(x))

however, aslo entails (135).

Even more to the i i i
the formula : | > point, it entaiils
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-Left(c) : EIFTEE : L

for every man ¢, not just John. It follows that  Keenan's .
reason for denying quantifier status to also applies even more
strongly to some, which is unquestionably a quantifier; if
anything is. |If we wish to admit some as a quantifer, we must
also accept also, pending more substantial arguments against it.

Where Keenan went wrong in this argument is in failing to
realize that also with a proper name is just a special case of
also with a common noun.. There is nothing particularly strange
or "ungquantificational' about the fzct that the denial of also
involves the assertion (134b), but this is all that Keenan's
objection to also amounts to. When we take

B = (x=John)

the formula (134b) reduces to (135), which Keenan objects to,
but (134b) is still all it really is. | suspect that what
really bothers Keenan about also is the appearance of ''-B"

in (130a) and | agree that it might seem strange that a
necessarily relativized quantifier that is itself relativized
to "B" should have a quantifier relativized to '"-B'" as its
presupposition. This Is. simply a peculiarity of also, however,
and has nothing to do with the question of quantifiers.

. The fact that also is a quantifier is underscored by '‘the
fact that its negation in English involves the Keenan-recognized
quantifier only, as a part of only some...other than. Keenan's
(58b) can be reformulated as the synonymous sentence '

]

Only someone other than John left,

and the semantic analysis of only some...ofher than also involves
relativization to the negation of the wff to which the quantifier
itself is relativized, as seen in (13h4a).

Sentence (132), in fact, is eqLiva]egt to the sentence.

(136) only non~linguists study éuantifiers.
which is representable semantically by the forhﬁfa.

(137)  (Only x)(-Linguist(x),Study~quantifiers(x)).
According to our analyéis bfionly, bésed on Keenan's, in

Section 2.1, formula (137) is analyzable semantically as the
presupposition and assertion, respectively

(138) (a) (Bx)(-Lfnguist(x),Stud?—qﬁantifiérs(x)i )

(b} (Vx)(Study—quantifiers(x),"Linguist(x))’
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‘as an .instance of (100). Because of the equivilence of contra-
positives, moreover, we know that -
Study-quantffiérs(x) o> ~Linguist{x)}
‘and | |
Linguist(x) = *Study;quantifiers(x)
are logically equivalent, so we can reformulate (i38) as

(139) (é) (3x) (-Linguist (x) ;Study-quantifiers(x))

(b) {(¥x) (Linguist(x),-Study~quantifiers(x))

by noticing that the simple reduced forms of the two (b) con-
ditions are equivalent. Formulas (139), however, are the analysis
of {132) that results from (I134). We see that Keenan's own
analysis (in our notation) of only gives us the same results

as our analysis of the negation of also. This constitutes very
strong evidence, given the correctness of Keenan's treatment of
only, for both the correctness of our analysis of alsoc and the
quantificational character of also. It is hardiy 1ikely that

?lso Is not a quantifier, when its negation or denial so clearly
s L] '

Section h; Definite Descriptions and Proper Names

As we saw in the last section, Keenan's basic approach can
be used to construct semantic analyses for .quantifiers other than
those he considers himself, other, even, than those he would
recognize as quantifiers at all. As a further example, we can
construct an analysis of only a few by replacing "'(Only m x) A"
in {112) with ""(Only a few x) A" and conditions (a). and (b},
respectively, with ' - '

(150)  (a)

(b) ~-(Many x)(B,A)

(A few x)(B,A)

where ""(A few x)A" is defined along the lines of 11,2,3. Again
we see that the presupposition of a sentence ]ike

Oniy a few liﬁguists understand quantifiers.

‘Is obtained by simpiy:removiﬁg the only, to gét, in this case
A few linguisfs ﬁnderstaﬁ& gquantifiers.

Only‘a few differs from Altham's exactly a few, whose simple

version we saw in 11,2.1.2 and whose relativized version we saw
in 11,2,3.2, in exactly the same way as Keenan's only m differs
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from the m instance of Altham's exactly n. Whereas exactly a few
asserts a few, only a few presupposes it. Both quantifiers ., .
assert not many. An analysis of a simple only a few is easily
obtained by replacing '"(B,A)' in (140) with "A" and taking it as
an analysis of "(Only a few x)A'.

As we might expect from their treatment in Zulu, which we
examined in [,1,3, the ''quantitative pronouns' all n can also be
given semantic analyses very similar to that of oniy. A sen-
tence that contains all n presupposes that there are exactly n
individuals that satisfy its first wff and asserts that all of
those individuals satisfyuits.seconﬁ_wff. A sentence like

(141) A1l six theorems have been proven.

presupposes that there are exactly six theorems (that are of
interest in the gien context) and asserts that every one of

them has been proven. A sentence like
(]42) Both.theorems have been proven;

which contains the SUppjetivé form bothiof the non—pécurrihg
*all two, presupposes that there are exactly two (relevant} .
theorems and asserts that each of them has been proven. .

It follows that we can analyze all n semantically in terms
of the following rule: ‘ .

(143) (A1t n x)(é,ﬁ)'?s true if (a) and (b) both hold;
: false if (a) holds and (b) does not; and third-
valued otherwise. ; L .

(a)' (ﬁx)B
(b) (¥x)(8,A) -

Rute (i43) telis us that (141) is true, If there are exactly
six theorems and all of them have been proven; false, if there
are exactly six theorems and at Teast one of them has not been
proven; and third-valued, neither true not false, if there are
fewer than six theorems or more than six theorems. It also .
tells us that (142) is true, if there are exactly two theorems
and each of them has been proven; false, if there are exactly
two theorems and at least one of them has not been proven; and
third-valued, if thére are fewer or more than two theorems.

I

Rule (143) seems to be the correct analysis of all n for
every value of n greater than or equal to 2. These are the
values of n for which the relevant ''quantitative pronouns"
exist in Zulu and for which all n exicts in English, if we
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recognize both as the occurring form of *all two. The most
natural thing to do now is to try to generalize, that is, to see

what ha , . g
what ppens to rule (143) when we try to'use i# for other values

Taking n=0 in (143) is not very | i
. Y Interesting, becuase |
presup?oses that there are no B's and then tells Gs that wha:-
::e;u?ts Fh:re are have A. Taking n=1, however, turns out to
Te Interesting. Letting n=1 ] ‘ ut i
ornarge, inter g eaves (b) unchanged, but it

(144) (3»';) B. .

!f T? expand (144) ?Xplicitly in the form in which we analyzed it
A?thaéggl;i’ but :;lng(?zz simplified notation, rather than

e See at. : o p ) e !
formula aa) of |t ) ‘is Just an abbreviation for the

(148)  (a) .(Ex)(B(x) A ~(Fy) (B(y) A y#x))
(b) (vx)(B,A) . =

Formula (b} has just been carried over fr
s e om (143), i
the case of (143) in which n=1. This makes (thi) :gd(g?iébss

the presupposition and ; .
H(AlT one X) (B, A éssérflon, respectively, of the formula

real SZ:Eegszs%:onEnoT.i: ”;s (145) th§ semantic analysis of any
N English, Tor example), and, if so, which ones?!
:ﬁdc?qu?swe;hthls question by looking carefaliy ag;in at (lhl)'
le ese sentences are ' i i
the sentonces synonymous, regpectuve]y, with

(146) The six theorems have been proven.
(147) The two theorems have been proven.

:izc?iél?G) and (147) are Synonymous, respectively, with (141)

n26 d2 » they must'have the same semantic analyses (143}, with

- _and n=2, respectively. It follows that taking n=1 in Zlh3)

sam;ttz:ﬁ;ds any fngllsh Sentence at all, should amount to the ’
as replaci Usix!t | i

Same thing. Thi: g;;gg E:e slx in (th) and the "two'' in (147)

(148) 7The one theorem has been proven.
as the sentence of which (145) is the semantic analysis,

We are not finished, however. Sentence (148), in fact, is

just an awkward, per 4 : L
sentence » P hap§ emphatic, way oF(saylng ;he:more natural
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(149) The theorem has been proven.

Since (149) means exactly the same thing as (148), emphasis and
stylistics aside, it must have the same semantic representation
and analysis as (148). It follows that (145) is the semantic
analysis of {149), as well as of (148),

It follows, in other words, that (145) gives us the semantic
analysis of the definite article the, when it occurs in the
singular., We can formalize this fact by rewriting (145) explicitly
‘as an analysis of the, as follows: '

(150) (The x)}{(B,A) is true, if (a) and (b) both hold;
false, if (é) holds but (b) does not; and
third-valued otherwise.

() (3B A =@ (M) A yA)
(b)  (¥x) (B,A)

Rule (150) says that (149} is true, if there is exactly one
theorem (in the given context) and that theorem has been proven;
false, if there is exactly one theorem and that theorem has not
been proven; and third-valued, neither true nor false, if there
ts no theorem or more thah one.

An analysis of plural the can be obtained very easily from
(150} by replacing (a), which says exactly one, with the corres-~
ponding formula for at least two. This gives us the rule

(151) (The x's) (B,A) is true, if (a) and (b) both
hold; false, if (a) holds, but (b) does not;
and third-valued, otherwise,

(a) (3,%) B
(b)  (¥x) (B,A)

where (a) is to be interpreted as in I1,2,1.2, According to (151),
the sentence : ‘

The theorems have been provén.'

is true, if there are at least two theorems and each of them has
been proven; false, if there are at least two theorems and at
least one of them has not been proven; and third-vaiued, if
there is only one theorem or if there are no theorems.

Rule (150) gives .us the semantic analysis of singular the,
but it also gives us a lot more than that. There is nothing in
(150) that limits B to the class of common nouns. "B' in (150)
denotes, in fact, any wff at all, - If we replace "'B" in (150) with
the formula -
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(152) Theorem(x) A Fermat-discovered{x)
for example, we get the formula

(153) (The x)(Theorem(x) A Férmat-discovered(x),
Proven(x)). ‘

‘According to rule (150), the presupposition and éssertion,

respectively, of (153) are

(154) (a) (3#)(Theorém(x) A Fermat-discovered(x)
A -(3¥§(Theorem(y)‘1 Fermat-discovered(y)
A y#x

(b) (¥x) (Theorem(x) A Fermat-discovered(x),
Proven(x)).

Formula (153), however, is the semantic representation of the
sentence

(155) The theorem that Fermat discovered has been
proven. '

if we interpret it analogously to how we have interpréted all of
our other relativized quantification formulas. It follows that
(154) gives us the presupposition and assertion, respectively, of
(155), as well as of (153). This tells us that {(155) is true,

if Fermat discovered exactly one theorem and that theorem has

been proven; false, if Fermat discovered exactly one theorem and
that theorem has not been proven; and third-valued, neither true
nor false, if Fermat discovered other than one theorem, that is,
either at Teast two or none at all. This seems to me to be exactly
the intuitive meaning of (155),

Expressions like
{156) the theorem that Fermat discovered
in (155) aré what logicians have traditionally called ''definite
descriptions', The expression (156) itself would normally be
written in terms of the definite-description operator "', as
(157)  (1x) (Theorem(x) A Fermat-discovered(x))
and the sentence (155) would be written as

{158) Proven ((1x)(Theorem(x) A Fermat*discovered(x)))

with (157) as the argument of "Proven', THe symbol '(1x)" can
be interpreted as the unique x such that and is the traditional
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logical representation of our "(The x)" in (150), the formal
semantic form of the singular the. In view of the fact that
(156) can be analyzed semantically in terms of (150) and repre-
sented semantically as (153), we see that (158) can be reformu-
lated explicitly as a relativized quantification involving the
two wffs (152) and '"Proven{x)'". This gives us

(159)  (1x) (Theorem(x) A Fermat-discovered(x),
Proven(x))

as an equivaient reformulation of (158), We see that the
traditional definite-description operator is really a necessarily
relativized presuppositional quantifier, just like only.

Definite descriptions have been discussed extensively in
the logical literature, since they were first discussed explicitly
by Russell (1919). Russell was the first to recognize that
definite descriptions are incomplete symbols, that is, that
they can be defined only in terms of the sentences in which they
occur, He proposed, in essence, that a sentence like (155)
should be analyzed as a conjunction, in this case, of (154a)
and (154b). Strawson (1950) disputes Russell's analysis and
proposes, instead, that (155) should be analyzed as presupposing
something 1ike (154a) and asserting some version of (154b). The
results of our discussion of (150) can now be seen as: independent
evidence in support of Strawson's analysis and against Russell's.:

Let us review our argument briefly. We began by examining -
Keenan's analyses of various .forms of only and found that, dispite
weaknesses in notation and formulation, they do account ° o
correctly .for the intuitive meanings of those expressions. We
then noted that only is treated in Zulu as one of a class of -
"quantitative pronouns", which aiso happens to ‘include expressions
of the form all n for values of n greater than or equal to 2,
Since all n is thus capable of being treated morphologically in
in a natural language as the same kind of thing as only, we then
suggested that it might also be possible to treat it semantically
in that way. Since we had found no serious fault with the con-
tent of Keenan's semantic. analyses of only, we constructed an

analysis of all n within his framework and found that this analysis

did indeed correctly express the meaning of that expression. This
gave us analyses of all n for all values of n equal to or greater
than 2, which are the values for which the ‘'quantitative pronouns'
exist in Zulu and for which the forms all n occur in English

(with both as a suppletive form of *all two). To maximize
generality we asked what sense, if any, it would make to take

n=1 in our analysis of all n and we found, upon doing this, that
an analysis of definite noun phrases results. The definite
article turned out, in effect, to be a suppletive form of #*a11
one, just as both is a suppletive form of #*all two. Reexamining
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our analysis, we realized that it is an analysis not only of
definite noun phrases, but of definite descriptions in general,
and that it coincides with Strawson's proposed presuppositional
analysis of definite descriptions, in contrast to Russell's con-
junctive proposal. Sentences involving definite descriptions
turned out to be necessarily relativized quantifications with the
presuppositional definite~description operator as the quantifier.

It is worth noting here that sentences that involve proper
names can also be analyzed as quantifications, because they can
be analyzed in terms of definite desgriptions. The sentence

(160) Edward Keenan is a linguist.
for example, is equivalent to the sentence
The unique x such that x=Edward Keenan is a linguyist.
and so can be represented semantically as either
(1x} (x=Edward Keenan, Linguist (x))
or
(161) (The x) (x=Edward Keenan,Linguist(x))
This is exactly the same phenomenon that we saw. in connection with
(96), (97), (98), and (99), where we saw that only with a proper
name is really just a special case of only with a common noun.
Ruie (150) says that (161) is true, If there is exactly one person
who 'is Edward Keenan and that person is a linguist; false, if there
is exactly one person who is Edward Keenan but that person is not
a linguist; and third-valued, neither true nor false, if there is

either no one or more that one person who is Edward Keenan. This
seems to me to be a correct account of the meaning of (160).



CHAPTER 4: GENERALIZED QUANTIFIERS

Section I: General izations of Reiativization

1.1: Definite Descriptions and thée Classical Quantifiers

In the last section we saw that sentences that involve
definite noun phrases and sentences that involve definite -de-
scriptions in general are both analyzable as necessarily rela-
tivized presuppositional quantifications. When we compare the
two kinds of sentences, however, an important difference emerges,

A sentence like .
(162) The theorem has been proven.

s

can be represented semantigélly as, .
(163) (The x) (Theorem(x),Proven{x))

and the sentence
{164) The theorem that Fermat discovered has been proven.

can be represented semantically .as

(165) (The x) (Theorem(x) A Fermat-discovered(x}),
" Proven(x))

Formula (163) has the presupposition and assertion, respectively,
(166) (a) (Hx)(Theorem(x) A -(3y) (Theorem(y) A y#x))

(b) (Vx)(Theorem(x),Proﬁen(x))

‘and formula (165) has the presupposition and assertion, respectively,

(167) (a) (Ix) (Theorem(x) A Fermat-discovered(x) A
' - A -(3y)(Theorem(y) A Fermat-discovered(y)
y#x}) . . _

(b) (ux) (Theorem{x) A Fefmat~disco§eréd(x),
Proven(x)?

Both (166) and (167) follow from the analysis of the in (150).

The only difference between (162) and (164) is the fact that
(164) contains the restrictive relative clause that Fermat
discovered and (162) does not. As we saw in },1,4, however, a
quantifier with a restrictive relative clause is equivalent to
a relativized quantifier. |In this case we can interpret (164)
either as the relativization of (162) to the wff '"Fermat~
discovered' or the relativization of the sentence

The thing Fermat discovered has been proven.

to the wff "Theorem. In the first case the set of theorems is
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restricted to those that Fermat discovered and in the second case
the set of things discovered by Fermat is restricted to those that
are theorems. The two alternatives are logically equivalent and
differ only in form. We will see that a very hatural generaliza-
tion of the definite-description can be developed, if we adopt

the latter alternative.

Formula (165) can be reformulated in a way that explicitly
reveals the relativization of "Fermat-discovered' to '"Theorem'.
This gives us ‘

(168) (The‘x)(Theorem(x),Fermd%-discovered(x),Proven(x))
as a more revealing éemantic representation than (165) and

(169) (a) (3Ix) (Theorem (x) ,Fermat-discovered (x)
A -(Hy)(Theor§?(y),Fermat~discovered(y)
A y#Ex

{b) (¥x)} (Theorem(x) ,Fermat-discovered{(x),
Proven(x))

as the presupposition and assertion, respectively, of (169).
Formula (169a) presents no problem of interpretation, because
it involves only the kind of relativization we have already
discussed. It is constructed by relativizing both the formula

(Fy) (Fermat-discovered{y) A y#x)

and the formula

(Ex)(Fermat"discovefed(x) A -(Hy){Theorem(y},
Fermat-discovered(y) A y#x))

to the wff '"Theorem!',

Formula (169b}, however, does pose a problem, because we
have not yet developed a way to interpret universal guantifications
that involve three wffs. We can figure out how to interpret such
formulas by remembering that (169b) is supposed to mean the same
thing as (167b) and that both express the assertion of (164) .
Sentence (164) presupposes that there is one and only one theorem
that Fermat discovered, as expressed in (1567a) and (169a), and
asserts that whatever theorem Fermat discovered, that theorem has
been proven. The most natural way to write this assertion for-
mally is as the formula

(170) (Vx)((Fermat-discéve}ed(x) A Theorem{x}) = Proven(x))

that is, the assertion that if x is both a thing discovered by



Cushing 76

Fermat and a theorem, then it has been proven (for all values of
i), Formula (170) clearly expresses the intended meaning of -~
(167b) and (169b). . =T _

what is even:more important for our purposes, however, is
that (170) expresses this meaning in a way that is very similar™
to the way in which we reduced relativized all to simple all in
11,1,4. We saw there that a relativized universal quantification
can be turned into an equivalent simple one by replacing the
ordered pair of wffs "(B,A)" with the single wff "B = A", which’
represents a conditional or entailment. In such a case "A'"is
the main wff of the quantific¢ation and '"B" is the wff to which
the quantification is relativized. In the three-way quantification
(168), similarly, thereare two wffs to which the quantification -
of the third wff is relativized. Again we can reduce this rela-
tivization by introducing-an ‘entailment with both relativization
wffs as antecedents and the main wff as consequent. Instead of
replacing ''(B,A)'" with "B > A''; in other words, we replace
1(¢,B,A)" with '""(C A B) > A'. We see that definite descriptions
are not, strictly speaking, telativized quantifiers, as we said
they were in 11,3,%, but are more accurately described as a
generalized form of quantification that involves three wffs, one
primary and two to which that one is relativized. '

The meaning of such-a generalized quantifier can be deter-
mined either through reduction, as we just saw, or explicitly ~
in terms of a double restriction on the Kaplan or van Fraassen
assignment functions or the Mendelson I sequences that we use to
determine the truth-values of quantificational sentences. In
fhct, we can completely generalize the universal quantifier by
permitting any finite number of main wffs and any finite number
of relativization wffs, distinguishing the two kinds of wffs in
semantic representation by separating them with a semi-colon,
rather than a comma. In van Fraassen's framework this gives us a
semantic analysis like the following:

ME (ﬁj{gf], j=1,...,m, for all assignments d' for
M which are like d except perhaps at x and for

for which gx_kgi[g_%], i=1,...,n.
Rule (171) provides us with semantic analyses of éentences like

(172) Every theorem that was discovered by Fermat that
we know about has been proven and published.
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for which n=3 and m=2. The semantic representation of (172)
is the formula '

(173)  (A11 x) (Known (x),Fermat-discovered{x), Theorem(x);
. Proven(x),Published{x)}

the truth conditions of which are given by (171). The truth con-

ditions can also be determined from the simple reduced quanti-
fication

{(A11 x) ((Known(x) A Fermat-discovered(x) A Theorem(x))
» (Proven(x) Published{(x)))

because of the equivalence

(17%) (Al x)(B],...an;A],...,Am) has the same
truth-value (under f, d, C, ‘etc.) as
(AT1 x)((BI A L., A Bn) D.(AI AL A Am))

Whic? follows dfr?ctly from (171). Either {171) or (174) can be
considered as giving the meaning of generalized all.

| Atgensralized existential quantifier can be defined analo-
gously to the universal one defined in (171) to give us i
analyses of sentences like ° semantie

- (175) Some theorems that Fermat discovered that we know
about have been proven and published.

The meanings of such sentences can be accounted for by the van
Fraassen-style analysis

176) M ; i

( 7 ) _}'"1 (Some x)(é],--"g‘)ﬂ ,---,ﬂm)[_(j_] iff
M F éj[gfl’ j=1,...,m, for at least one
assignment d' for M which is like d except

perhaps at x and for which Mk Bi{d'], i=1,...,n
or by the equivalence
(177) (Some x)(B],...,Bn;A],...,Am) is true if and only
if (Some x)(B] A...AB AA A ... Am) is true
which follows directly from (176). An analysis and reduction

equivalence for no can be obtained by replacing "Some'! i 176
and (177) with "No'' and "at least one' in (176? with “n;R.( 76)

. Now that we|h§ve analyses for the generalized universal and
existential quantifiers, we can easily construct an analysis of
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the definite description as a general ized quantifier as well. The
generalized definite descrlptson appears in sentences like

(178) 1The theorem that Fermat discovered that we know
about has been proven and published.

and requires three kinds of wffs in its semantic analysis and
representation, in order to account properly for its presuppositions
and assertions.

First we notice that (169a) is most prOperly formulated as a
generalized quantification, now that (]76) Is avallable to us. We
can reformulate (169a) as' the formulaf :

(179) (a) (ﬂx)(ThEOrem(x);Fermat~discovered(x),
- (3y) (Theorem(y) ;Fermat~discovered(y),
y#x))

whose meaning can readily be obtained from (176}, if we distin-
guish carefully between the commas and the semi-colons. Formula
(169b), similarly, should be reformulated as the formula

(179) {(b) (¥x) (Theorem(x),Fermat- dlscovered(x)
Proven(x))

in which the two different kinds of wffs are again dlStIHQUIShed
by a semi-colon.

Both (179a) and {179b) can be analyzed in terms of (176) and
(174), respectively, because each involves only two kinds of wffs,
main wffs and relativization wffs.  In (179a) the wffs "Fermat-
discovered(y)! and "y#x'' are both relativized to the wff "Theorem
(y)'" and the wffs ""Fermat-discovered{x)" and "-("y) (Theorem(y);

Fermat-discovered(y),y#x)' are both relativized "Theorem(x)". In
(179b) the wff ”Proven(x)“ is relativized to both of the wffs
""Theorem(x)' and “"Fermat-discovered(x)'. In neither case is there

anything that is not accounted for by our analyses (176) and (174).

When we combine {179a) and (179b) as the presupposition and
assertion, respectively, of (164) and (168), however, we see that
the wff ""Fermat-discovered(x)' plays a dual role. In (179a)
HFermat~discovered{x)}!" Is a main wff, relativized to '"Theorem(x)'',
but in (179b) it is a relativization wff, one of the wffs to which
"Proven(x)' is relativized. A general ana1y5|s of sentences |ike
(165) must clearly d:stlngu:sh such dual-role wffs from both the
relativization wffs and the main wffs of those sentences.

It follows that we should semantically represent sentences
Tike (164) and (178) by formulas of the form - :

(180) (Thehx)(C]T...,Cn];ﬁl,...,Bn ;A],,..A )_

Cushing 79

in which the C, are the relativization wffs, the B. are the dual-
role wffs, and the A, are the main wffs. AdoptangJour van
Fraassen-style analy%es for generalized all and some, we return
to Keenan's framework and get the following analysis of
generalized the:

A,...,A 1} is

] nz’ 1 n3

true under a given set of conditions, if both (a)
and (b) hold; false, if (a) holds but (b) does
not; and, third-valued otherwise.

(a) (Bx)(C](X),---,Cn'(X);B](X),---,Bn (x)
1 2
-Cﬂy)(C](y),.--,Cn](y);B](y),---,
an (Y) sY#X) )

(b) (wx)(Cy,...,C B
1

(181) (The x)(C],...,C ;B ,B
M

pree

Again, the key to understanding (181) is the placement of the semi=
colons. The presupposition, (a), relativized the B, and a
supplementary wff, first the one that begins with “1(3y)” and

then "'y#x', to the C,_ and the assertion, (b), relativizes the A,

to both the €, and tKe B To account for sentences like (162)l

we take the B, to be vac&ous and we rep]ace the comma in (163)

with a semi- calon

To get the semantic analysis of (164) we first write it in
the form (180) as

(182) (The x)(Théorem(x);Fermat-discovéred(x);
Proven(x))

in which ny=n,= n3~1 and C] = Theorem, B]=Fermat—discovered, and

A]=Proven. This gives us

(183) (a) (3x)(Theorem(x);Fermat- dlscévered(x)
(3y)(T2e?;em(y) ;Fermat- d15covered(y),
y#x

(b) (¥x){Theorem(x),Fermat-discovered(x);
Proven(x)) ‘ :

as the presupposition and assertion, respectIVeiy, of {182)

and thus of (164). The meaining of (16%) is given by (183) and

the meanings of (183a) and (183b) in turn, are given, respectively,
by {176) and (171). : :

We can get the meaning of (178), similarly, first by giving
it. the semantic representation
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(184) (The x) (Theorem({x);Fermat~discovered(x),Known (x);
o ProVéH(x),Published(x))

According to (181), the semantic analysis of_(184) is provided
by the presupposition and assertion, respectively,

8 3 )(Theorem(x);Fermat-discovered(x),
(185) {a) (3 Known(x),-(3y) (Theorem(y) ;Fermat-
discovered(y),anwn(y),y#x))

(b) (vx) (Theorem(x),Fermat~discovered(x),
Known (x) ;Proven (x} ,Published(x)).
According to analysis (185), formula (184) presupposes that
there is exactly one known theorem discovered by Fermat and
asserts that whatgver theorems were discovered bY Fefm?t have .
been proven and published. This Is exactly the intuitive meaning

of (178).

1.2: Comparative Quantifigrs

We can use the framework developed in the preceqing section
to construct semantic analyses'for ari entirely new kind of con-
struction, the comparatiyg’SQantifiers. Ea§h of the following
sentences provides some answer to the questions of How many?
theorems or theorjes are provable or testable and so can be
considered as involving quantifiers:

{186) More theorems are provable than #heories.
(187) More theorems than theories are provable.
(188) More theories are testable than provable.

{189) More theoriés are testablé than theorems are
provable.

Sentences (186} and (187) are clearly synonymous and so should
have the same semantic representations. The otber two have )
different meanings and require different semantic representations.
Because of the Tnuitive similarity. of more to most and more t?an
m/n we will formulate dgf analysis along Rescher's and Kaplan's
Tines, rather than van Fraassen's.

Each of (187} and (188) invoives three wff§, 50 we are
tempted to give them semantic representations 1like

(190) (More x)(Theorem(x),Theory(x),Prdvab]e(x))

(191) {(More x)(Theofy(x),Testab!g(x),Provable(x))
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respectively. When we examine the intended meanings of these
formulas, however, an important difference emerges. Formula (190)
makes a comparison between its first and second wffs with respect
to the third. It says, assuming that it represents (187), that
there are more theorems than theorjes that are provable. Formula
(191), in contrast, makes a comparison between its second and
third wffs with respect to the first. It says, assuming that it
represents (188), that more theories are testable than provable.

It seems, at first, to follows from these facts that there
are two different more. quantifiers, one that compares the first
two of three wffs with respect to the third and one that com-

pares the second and third of three wffs with respect to the
first.. If we denote these, respectively, by “Horeiz“ and ”More23“,

then we can replace the proposed semantic representations (190)
and (191) of sentences (187) and (188), respectively, with the
more precise semantic representations

(192) (Morelzx)(Theorem(x),Theory(x),Provable(x))
{193) (Mor§23x)(Theory(x),Testab]e(x),Provable(x)).

These formulas express the difference between (187) and (188)
that we just discussed by distinguishing two different more
quantifiers in the two sentences. -

Formulas (192) and (193) have a certain plausibility as
semantic representations of (187) and (188), respectively, but
there are two serious problems with them. In the first place,
our solution is ad hoc. Our subscripting device, in these
formulas, has no more principled basis than would the use of two
entirely different symbols for the two quantifiers in {192) and
(193). We might just as well call one Q' and the other ''P'' as
call them '"More o and "More _". In the second place, there seems
intuitively to'&e no real di?%erence between the quantifiers in '
(187) and (188) at all. Although the quantifier works differently
in the two sentence, it is difficult to see two really different
meanings in the guantifiers of the two sentences.

One possible solution to this problem would be to assume
that there is a single more quantifier, but that its effect in
a particular senterice depends on the semantic character of the
wffs that make up the sentence. "More'' 'in (190). compares
"Theorem' to '"Theory'', on this analysis, because it makes more
sense to compare theorems to theories with respect to provability
than it does to compare theories to provable things with respect
to theoremhood. "More' in (191) compares "Testable' to "Provable',
similarly, because it makes more sense to compare theories with - .
respect to testability and provability than it does to compare

'theordes and testable things with respect to provability. This

solution seems plausible enough, but there is serious question
as to whether it cculd be made precise in formal terms.
Even if formalizatvion of this proposal turns out to be
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possible, ‘moreover, it would clearly involve a very compli-
cated system of cross-referencing of predicates in the lexicon
plus supplementary recursive rules for other wffs to enable us
to determine which wffs it makes more sense to compare than
which others. This lTeads us to look, at least, for a simpler
solution to the prob]em of the different interpretations of
more, .

It turns out that a very simple solution to this problem
can be formulated in terms of the semi-colon device that we
introduced in the last section.  If we look for a moment at
(189), rather than (187) and (188), we see that there are really
two kinds of wffs involved in these comparisons, in the sense of
two classes of wffs, each functioning. dlfferent]y in determ:nlng
the meaning of the sentehice. This is just what we Saw in the
case of the generalized universal and existential quantifiers in
Section 1.1. What we are comparing in (189) are testable thecries

and provable theorems. We can express this fact formally by
grouping '"Theory'’ with "Testable" and '"Theorem' with "Provable"
and separating theé two groupings with a semi-colon. This gives
us the formula

(194) (More x) (Theory(x),Testable(x};Theorem(x),
Provable(x))
as the semantic representation of (189).
The most important characteristic of (194) is that it is

capable of being completely generallzed We can admit semantic
representations of the general form :

- (195)  (More x)(B],...,B AI""’Am)

in perfect analogy with the generalized cniversal and existential
quantifiers in (171) and (176), respectively. To give meaning
to such formulas, so they can, in fact, serve as semantic
representations, we also’ glve them the following semantic
analysis:

(196) f satisfies (More a}(B],rr.,Bn;A],...,Am) in <DR>
if and only if .
K(ELxéD'aﬁd f* satisfies B in <DR>,i=1,...,n])

> K(E[xsn and'f _satlsfses A in <DR>,j=1,...,ml)

Comparing this formula to formula (39), we see that simple most
is just the special case of more in which n=m=1 and A]w-B]

Comparing (196) to (43) shows us that relativized most is the
special case of more in which n=m=2, A]=B}; and A2=-82.
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Rule (196) uses '"'x'' as the variable that indicates members
of the extension of the formula in the scope of YE", so we will
have to use a different variable in semantic representations. With
this proviso, the rule clearly provides us with the correct
semantic analysis of (189), because it tells us that {194), with
some other variable in place of ''x', is true if and only if the
number of testable theories is greater than the number of provable
theorems. It also gives us the correct semantic analysis of (187)
and (188), if we represent these sentences, respectively, by the
formulas

. |
Provable(y);Theory(y),

(197) (More y) (Theorem(y),
Provable(y))

(198) (More y)(Theory(y),Testabie(y);Theory(y),
Provable(y))

Rule (196) says that (197) is true if and only if there are more
provable theorems than provable theories and that (198) is true
if and only if there are more testable theories than provable
theories. This accords exactly with the intuitive meanings of
those sentences.

As we have noted, (196) aslo tells us that the sentences
Most theories are testable.
More theories are testable than not testable.

are synonymous, as we would expect from a correct analy5|s of
more. Most important, however, is the fact that (196) gives us
the semantic analyses of kinds of sentences other than those for
which we constructed it. We can account for the meaning of a.
sentence |ike

(199) More testable theories have been proposed than
provable theorems have been published,

for example, by simpiy taking n=m=3 and B]=Theory, Bz=Testable,
BB#PropOSed, AT=Theorem,'A2=ProVabIe, and A3=Published. This

gives us the semantic representation

(200) (More y) (Theory(y) ,Testable(y),Proposed{y);
Theorem(y) Provable(y) Publlshed(y))

whose meaning is given automatically by (196). Rule (196) says
that (200), and thus (199), is true.if and only if the number
of testable theories that have been proposed is greater than the
number of provable theorems that have been published. As we
have seen before, the key to interpreting such formulas is the
placement of the semi-colon, that is, the division of the wffs
into two differently functioning classes. The fact that (196)
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accounts for the meanings of sentences other than those=that
were considered in arriving at it is strong evidence for the '
correctness of both the rufe and the framework that underlies it.

Section 2: Presupposition and Truth-Value

2.1 Truth-Values and Untruth-Values

We have examined relativization and found that it can be
general ized to account for sentences that irvolve more than two
wffs in their meanings. A similar generalization can bg
developed for the notion of presupposition. We can begin by

examining the presuppositional analyses that we gave in Chapter 3.

The first thing we noted about presupposition in 11,3,]
was that it makes sense only if our logic allows more than two
truth-values. Each of the analyses we later constructed con-
sisted of two conditions, which were combined in the ana}yses
to account for three truth-values for the sentences analyzed.
{f we introduce a little redundancy into our analyses, we can
reformulate them in such a way that there are three conditions,

one for each truth-value,

The sentence

(201) only logicians can prove Godel's theorem.

for exampie, has the semantic representation

(202) (only x)(Logician(x);Prove-GSdei(x))

where the semi~colon has now been introduced in the obyi9us .
place. The meaning of (202) is given by the presupposition and
assertion, respectively,

(203) (a) (Hx)(Logician(x);Prove-GﬁdeI(x))
(b) (¥x) (Prove-Gddel (x);Logician(x))-

Formula (202), and therefore sentence (201), is true, if both
(a) and (b) hold; false, if {(a)} holds and (b) does not; and
third-valued, otherwise.

We can reformuiate (203) in terms of three conditi9n§ by
explicitly writing out the formulas that correspond individually
to the three truth~values, as follows:

(204) (a) (E@x)(Logician(x);Prove-Gddel {x))
A(¥x) (Prove-Gddel (x) ;Logician(x))

| S =-Sa, S]=Sa A -Sb, and_52=5a AS
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(204) (b) (3x) (Logician(x);Prove-Gddel (x))
A - (¥x) (Prove-Godel (x) ;Logician(x))

(c) -(EX)(Logician(x);Prove—GHdeI(x)L

Formula (204a) is true, if both (203a) and (203b) hold. Formuia
(204b) is true, if (203a) holds but (203b) does not. Formula
(204¢c) is true, otherwise. It follows that (202) is true, if
(204a) is true;, false, if (204b) "is true; and third=-valued, if
(20bc) is true. It is not difficult to show that one (and only
one) of these cases must hold, o '

Ordinarily we try to eliminate redundancy in linguistic
analyses, but in this case we have found it useful to introduce
some. Reformulating (203) as (204) has enabled us to establish
a one-to-one correspondence between the truth-conditions of our
analysis and the truth-values of our logic. It might not be
clear how to generalize (203) with respect to truth-value, but
generalizing (204) is simply a matter of introducing more truth-
values and assigning one truth condition, like those of {204),
to a given sentence for each of those truth-values. |f the
meaning of a sentence S involves n truth-values, its analysis
will consist of n statements of the form

(205) s has truth-value | under conditions c, if
Si is true under C

either for i=1,...,n or for i=0,...,n-1, depending on the
numbering system we choose. If we denote the third value by !
0, as Keenan does, and truth and falsity by 2 and 1, respectively,
then a sentence S is presuppositional, in the sense we discussed
in Chapter 3, if there are two sentences Sa and Sb such that

0 b*

Multiple truth-values have been interpreted in various ways
in the logical literature, a particutarly interesting one being
the tense-logic of Prior (1956), for example. - An intuitively
natural interpretation of multiple truth-values as a generali-
zation of presupposition, which is what we are interested in,
can be obtained by reversing the numbering system suggested by
Keenan. Instead of using 0 to denote 'neither true nor false!,
we can denote truth by 0, falsity by 1, and other truth-values
by the other positive integers in sequence. No matter what kind
of sentences we are dealing with we will always need truth and
falsity, 0 and ), and we can get as many additional truth-values
as we need by simply taking more integers in order.

With this numbering system it hecomes more natural to view
"truth-values' as "untruth-values!, denoting ''degrees of
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untruth'' or "modes of untruth', that is, ways In which a sentence
can fail to be true. Keenan himself says that "The effect of the
third values is to distinguish two ways a sentence can be untrue'
(1971a, p. 276), but for some reason he chooses to denote that
CMthird" value by "zero'', rather than trying to develop a principled

numbering system.

In the system suggested here a true sentence, since it Is
not untrue at all, would naturally have an untruth-value of 0.
A false sentence is untrue in the first possible way, namely, the
failure of its truth conditlion or asgertion, so it is natural to
give it the untruth-value 1. A presuppositional sentence whose
presupposition fails to hold is untrue in the secorid possible way,
so it is natural to give such a sentence the untruth-value 2. -As
we introduce new ways in which a sentence can fail to be true,
we can keep track of them by introducing additional untruth-
values. It follows that we replace (205) in semantic analyses with

(206) S has untruth-value i under conditions C, if
Si is true under C

for i=0,...,n=1. 1in our discussion of presuppositional sentences
just after (205) we must interchange S, and S, to get the correct

account of presupposition. We will nog in generai discuss
multiple untruth-values explicitly after the next section, but

whatever we say in |l or |V about sentences can be applied
eaually well to the truth-conditional formulas S of sentences

with more than two.

2.2: Multiple Untruth-Values

We have seen that ''ordinary'' sentences involve two untruth-
values and that the semantic analyses of sentences with pre-
suppositions require three. To get a clearer idea of what it
might mean for a sentence to involve four untruth-values we can
examine a sentence like

(207) only the author of Syntactic Structures really
believed it.

which contains the two presuppositional quantifiers only and
the. '

Sentence (207) differs cons;derabiy from the superficially
similar sentence

(208) o©nly authors of Syntactic Structures really
believed it.

which is analyzable in terms of (100). The semantic representation
of (208) is
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{209) (Only x) (Wrote-$5(x);Believed=5S{x))
the presupposition and assertion of which are, respectively,
(210) (a) (3x) (Wrote-55(x);Believed-§5(x))
(b) (Vx)(Bé]ieved~§§(x);Wrote-§§(x))
Formula (2039), and thus sentence (208) has untruth-value 0, if

both (a) and (b) of (210) hold: 1, (a) holds but (b) does not; .
and 2, otherwise. In terms of (206) we get

(211) S = (3x) (Wrote-35(x) ;Bel ieved-5S (x))
A (¥x) (Believed-SS (x);Wrote~§5(x))

S = (3x) (Wrote-5$5(x) ;Believed-5S(x))
(vx) (Believed-5S(x) ;Wrote=55(x))

S, = - (3x) (Wrote-55 (x) ;Bel ieved-§5(x))

as the semantic analysis of (209) and (208).

Sentence (207) also differs considerably from the super-
f|c1ally similar sentence

(212) 7The author of Syntactic Structures really believed
it.

The semantic representation of (212) is the formula

(213)  (The x) (Wrote-55(x);Bel ieved-55(x))
and its presupposition and assertion, respectively, are

(214)  (a) () (Wrote-§S(x);=(3y) (Wrote-SS{y);y#x))

(b) (3x)(Wrote-§§jx);Believed-§§fx))

where we have taken the B of (181) to be vacuous, as noted in
connection with (181) and? (162). Formula (213), and thus sen-
gence (212), has untruth-value 0, if both (a) and (b) of (214)
hold; 1, if (a) holds but (b) does not; and 2, otherwise. In
terms of (206) we get

(215) s

(3x) (Wrote-$S5{(x);-[3y) (W
0 A (Vx)(Wrote §S( ) Eellggzg gggz%)Y#xj)

w
Il

(3x) (Wrote-$5 (x) ;- (Iy) (Wrote-SS(y) ; y#
‘ A-(Vx)(wrote-§§(x);§e1igse:—gggzg)y <)
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(215) 52 = "(Ek)(Wrote-§§(x)3‘(3y){Wrote-§§(y);y#x))
as the semantic analysis of (213} and (212).

As we saw in [1,3,2.2, the semantic effect of only is to
presuppose the sentence to which It s added and to limit the
extension of the main wff of that sentence to its relativization
wff. Both intuitively and from that analysis we see that (207)
presupposes (212}). If it is not the case that the author of
Syntactic Structures really believed it, then he cannot be the
only one who really believed. This .would be quite a different
state of the world from the cne in which the author of Syntactic
Structures really believed it, but someone else really believed
it, too. In the latter case (207) would be false. He believed
it, but he was not the only one who did. In the former case,
however, the question of his being the only one does not even
arise, because he is not a believer himself. Sentence (212)
must be true in order for (207) to be either true or false, that
is, in order for the question that (207) answers to come up at
all. if (212) is true, that is, if the author of Syntactic
Structures really believed it, then (207) is false or true,
respectively, according as there was or was not someone else who
believed it. It follows both that (207) presupposes (212) or,
equivalently, (213) and that it asserts (210b), the assertion
of (208) and (209).

To say that (207) presupposes (212) is to say that (212}
must be true in order for (207) to be either true or false. |If
(212) is not true, then (207) must have a truth-value other than
truth or falsity, that is, an untruth-value other than 0 or 1.
This automatically requires the ‘introduction of a third truth-
value or untruth-value to account for the semantics of (207).
Sentence (2]2), however, can itself be untrue in two distinct
ways. Since it is itself presuppositional, we already need to
recognize an untryth-value other than 0 or 1 to account for its
semantics, before we even get to consider (207). Sentence (212)
will have this other untruth-value, if its own presupposition,
formula (214a), is false.

This gives us the following situation for (207). Sentence
(207) is true, if {212) is true and (210b) is true. Sentence

(207) is false,: if (212) is true but (210b) is false. |If (212) _

is untrue, then (207) is neither true nor false, but has an
untruth-value different from 0 or 1. Sentence (212), however,
can be untrue in either of two quite distinct ways. It can have
untruth-value 1, that is, it can be false, simply because its
assertion {214b) is false, while its presupposition is (214a)

is true. It can also have untruth~-value 2, however, if its
presupposition (214a) is false. We see that there are two very
different ways in which the presupposition of (207) can fail,
that is, two very different ways in which the question answered
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by (20?) can fail to arise, or, in still other terms, two
very different ways in which (207) can fail to be either true
or false.

Sentence (207) can fail to be either true or false either
?ecause its presupposition is false or because its presupposition
is neither true nor false. These are clearly two distinct ways
in which (207) can fail to be true and so must express two
distinct untruth-values, by the very definition of untruth-
value. . |t follows that we need two, not just one, untruth-
values different from 0 and 1 to accpunt for the semantics of
(207). As usual, 0 expresses the case in which both the pre-
supposition and the assertion are true, | expresses the case in
which the presupposition is true but the assertion is false, and
2 expresses the case in which the presupposition is false. The

- new untruth-value 3 expresses the new case in which the pre-

supposition fails to be either true or false, because its own
presupposition is false.

Explicitly in terms of (206) this gives us the untruth
conditions

i

(216) So (3x)(Wrote4§§(x);-(3y)(Wrotetﬁﬁ(v);Y#x))
A (Vx)(Wrote-§§(x);BelEeved~§§(x))
A (Vx)(Be]ieved-§§(x);Wrote-§§(x))

w
Il

| (Bx)(wrote-§§(x);~(3y)(Wrote-ﬁi(y);y#x))
A (¥x) (Wrote-S$5(x);Believed-55(x))
A -(Vx)(BeIieved-§§(x);Wrote=§§(x))

tn
H)

g = (3x) (Wrote-$5(x) ;- (Fy) (Wrote-55 (y) ;y#x))
A —(Vx)(wrote—§§(x);8ef?eved-§§(x))

S3 = ~(3) (Wrote-58 (x) ;- (Fy) (Wrote-5S (y);y#x))
as the semantic analysis of (207). Formula (216)S. is the con-
Junction of (215)S_ and (210b). . Formula (216)S, is the conjunc-
tion of (215)S. and the negation of (210b). Formula (216}S. is
the same as fofmula (215)S. and farmula (216)s. is the samezas
formula (215)S,. ' Each of khese formulations i% derived from

our foregoing giscussion of sentence (207) and new untruth-
values for more complicated sentences can be introduced in a
similar way. '



Cushing 90

Pant 111

Quantifiens as Logical Functions

CHAPTER 1: THE BINDING PROPERTY

Section 1: Quantifiers and Propositional Functions

As was first recognized by Mostowski (1957), the key to
defining a general notion of quantifier is '""the elementary fact
that quantifiers enable us to construct propositions from pro-
positional functions with one argument' (p. 13}.. Intuitively
a propositional function is a mapping from n-tuples of individuals
to propositions and is denoted by an open wff with n free variables.
Given a sequence of individuals, a propositional function Nsays
something'' about those individuals and we can determine what it
says by taking those individuals and the values of the variables
in the wff that represents the propositional function. A pro-
positional function of no arguments, represented by a closed wff,
which has no free variables, amounts to a proposition, because
what it says is independent of what values are assigned to which
variables. -

Like other logicians, Mostowski formalizes the notion of
propositional function, in essence, as a mapping from n-tuples
of individuals to truth-values. A propositional function assigns
to each sequence of individuals one of the truth-values "truth"
or '"falsity', without regard to any notion of proposition. This
formalization is less intuitive than talking explicitly about
propositions, but it has the advantage, for philosophers, of
avoiding the ontological problem of determining what "kind" of
entity propositions are. OQur purely linguistic purposes do not
require us to worry about this problem, however, any more than
the atomic physicist has to worry about what "kind" of entity,
in the ontological sense, his u-mesons, neutrinos, and quarks
are. We can therefore adopt the more intuitive interpretation
with a clear conscience. A principled philosophical justifi-
cation for this decision can also be formultated, more or less
along the lines of Putnam (1971}, ‘

As Stolyar (1970) explains,
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The operation of ‘binding with a quantifier or,
as it is called, quantification, converts a one-
place predicate into a proposition. To convert
a many-place predicate into a proposition by
means of quantification, we need to put as many
quantifiers in front of it as there are distinct
variables, thus binding each individual variable
by means of a quantifier. (p. 152)

As iIIUStration,'Stolyar'givgs“éigﬁt'ekamples of universal
and exjstential quaht!fitatjqn; as follows:

o (vx) (W)R(x,y)* ""'f6r evéry x and every y, the
. st proposition R(x,y) holds'';

2. (Vy)(Vx)R(x,y)"i”fbr'every y and every x, the
: proposition R{x,y) holds";

3. (¥x)@YVIR(x,y)  'for every x, theré,exisfg ay
such that R(x,y) hoids";

b, (3y) (vx)R(x,y) ‘'there exists a y such that, for
' every x, the proposition R(x,y)
holds'';

5. (3x)}(¥y)R(x,y) 'there exists an x such that, for
every y, the proposition R(x,y)
holds't; ‘ '

6. (¥y)(Ix)R(x,y) ."for every Y, there exists an x
such that R(x,y) holds'!

7. @x)(W)IR(x,y) ‘'there exists an X and there éxists
o a y such that R(x,y)} holds'

8. (@y)(@x)R(x,y) ''there exists a y and there exists
an x such that R{x,y) holds."

These formulas constitute all possible universal and existential
quantifications of 'a binary predicate, that is, of an open wff
of two free variables, which represents a propositional function -
of two arguments. oo ST R '

-~ Stolyar goes on to expl3in that, just as a quantifier, turns.
a one-place predicate (open wff with'one free variable) into a
proposition (closed wff), it is also the case that s
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If a two-place predicate is bound by a single
quantifier, for example, (¥x)R(x,y), then the
resulting formula expresses not a proposition,
but a logical function of the second variable,
which is not bound by the quantifier (and we say
that it is a free variable). This formula is a
cne-place predicate. R

To illustrate this point, Stolyar gives the following examples:

Suppose, for.example, that x and y are variables ..
for real numbers (in which case we usudlly say - -«
"x and y are real numbers") and suppose that <

. is the symbol for the two-place predicate
(relation) that we know as "less than." Then

(¥x) (¥y) [x<y] and (¥y) (¥x) [x<y] are false
. = propositions

(¥x) @y) [x<y] . is a true
: propesition, .but

(Fy) (¥x) [x<y] : ig a false
proposition;

(3x) (¥y) [x<y] is a false
- propoesition, but

(¥y) () [x<y] - is a true
proposition;

() (Iy) [x<y] and.

(FEy) (3x) [x<y] ' ' _are true
: propositions;

(¥x) [x<y] . — is a logical
. function of y;

(Ty) [x<y] : : . is:.a logical - .-
: function of x.: .-

o1 o

tn each case the first (right-most) quantifier turns the binary

predicate into a unary predicate and the second qgquantifier, if
there is one, turns that unary predicate into a ‘'sentence', that
is, a formula representing a proposition. SR RIS
We can generalize Stolyar's observations to say that
fiers map m-argument propositional functions onto m=-1-argument
propositional functions, From the three-argunient propositional
function -

QUantf-
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x+y=z ‘ ‘

for gxamﬁlé, we can get each of the two-argument propositional

functions

(¥x) (x+y=z)
(¥y) (x+y=z)
(Vz) (x+y=2z)
through universal quantification of. ghe respective variables.

For the same three-argument propositional function we can. also
get each of the three existential quantifications

() (x+y=z)
(Fy) (x+y=2)
(3z) (x+y=z)

each of which is a propositional function of two arguments,
and we can do exactly the ‘'same thing with any other quantifier
as well,

Most generally, in accordance with our discussion in I1,k,
we can say that quantifiers map n-tuples of m-argument proposi-
tional functions onto m-l-argument propositional functions. We
can universally quantify the ordered triple of two-argument
functions o o :

(1) (Theorem(x),Logician(y),Provable{x,y))
for example, to get the s?ngle one-argument function

(2) (AT y)(Theorem(x),Logician(y);Pquable(x,y))

and then (2), in turn, can be existentially quantified to pro-
duce the zero-argument function or proposition represented by

(3) (some x)}Ail y)(Theorem(x),Logician{y);Provable(x,y)).
The wffs "Theorem(x)" and '"Logician(y)" in these formulas

explicitly contain only one free variable each, but they can
always be considered as functions of two arguments, in which

-the second plays no role. The presence of '"Provable(x,y)! in

(1) automatically makes (1) a function of two arguments, so it
makes sense to use the two-argument interpretatior of the other
two wffs in (1).

Formula (1) represents the relation of provability that can. .
hold between theorems and logicians. Formula (2) represents
the property that theorems can have of being provable by all
logicians., Formula (3) represents the proposition that some
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theorems have the property (2), that is, th?t some theorems can
be proven by all logicians. .a11, plus the*:nql?ated placeTgng_.
of the semi-colon, turns the triple of propOSItlonal.functlons in
(1) into the single propositional function (22.._A d1Fferent
placement of the semi-colon would produce a defer?nt result, as
would the quantification by all of a different varla?le. Some
then turns the propositional function (2) into the different

one (3), which has one fewer free variablg. In eéch case the
quantifier reduces the total number of arguments in the propo-

sitional functions involved by one.

To make this point even clearer, we can easily construct
an example in which each wff has-a full complemenF of free '
variables, in contrast to the. situation we noted in cgnnectlon
with the last example. Let us examine the ordered pair of two-

argument propositional functions

{(4) (otder(x,y),Bigger(x,y))

and the ordered triple of two-argument propositional funptions”:
(5) (Hotter(x,y),Thicker(x,y),Next;to(X,Y)){

Through universal quantification we can turn (Q?;intp the single
one-argument propositional function :

(6) (Al y) (01der (x,y);Bigger (x,y))

which represents the property of being bigger than everything
younger, and through existential quantification we c§n_turn
(5) into the single one-argument propositional functlonl

-

(7)  (some y) (Hotter {x,y),Thicker(x,y);Next=to{x,y))"

which represents the property of being next to somthing cooler
and thinner. Many-quantification can then be applseq to turn
the ordered pair of one~argument propositlonal.anctlons

((6); (7))

into

(8) (Many x)((A11 y) (0lder (x,y);Bigger (x,y)}; (Some y)
‘ (Hotter(x,y),Thicker(x,y);Next-to(x,y)))

which repfesents a sing]e zero-argument propositionai function,
that js, a proposition. : 4 Co ‘

Formula (8) represents the proposition that many things that
are bigger than everything they are o]der‘thén are ngxt E?lsome
things they are hotter and thicker than. This |5'a'pec?LLar .
proposition because of its complexity and'the-low}likellhoqd :

Y
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that anyone would ever want to assert it, but it is perfectly
acceptable from both the syntactic and semantic points of view.
With a little more ingenuity one could undoubtediy come up
with a more natural example, but (8) suffices for our purposes.
Its meaning is obtainable directly from the semantic analyses
of the quantifiers it contains that we gave in I1. '

The most important thing to notice in our discussion of

-{8) is that the number n of predicates, wffs, or propositicnal

functions is entirely independent of the number m of free variables
or arguments that they contain. The effect of the quantifier

in each of the cases (6), (7), and (8) is to reduce m to m-1

and n to 1. Quantifiers map n-tuples of propositional functions
onto propositional functions and they reduce the total number of
arguments in those functions by one.

It follows that quantificational sentences can always be
given semantic representations of the form

OF (0 xp)ee @y X ) (A G )08 s )

irnwh$dh‘the Q. are QUantiFiers and in which some of the commas
between successive Aj's may be replaced by semi-colons in

specific cases. It is worth noting that we arrived at the
semantic representation schema (9) and the generalizations it
incorporates by eschewing the usual ontological scrupies about
Propositions and talking freely in terms of propositional
functions as mappings from n-tuples of individuals onto pro-
positions., We might have missed these general izations If we had
restricted ourselves to Mostowski's less intuitive formal charac~
terization of propositional functions as mappings from n-tuples
of individuals to truth~values.

Section 2: Keenan's Conception of Binding

Keenan does not give an explicit definition of the property
incorporated in (9), but only a vague discussion of "“'the intuition
behind it." He expresses the peculiar idea that binding has
something to do with conjunction, more specifically, that it
arises from the interaction of quantifiers with other operators
like conjunction. ‘Keenan gives the formulas

G0 Gy e Ly
1) (3x)(c(x) & L{x))
and observes that, whereas in {10) we can determine the truth
or falsity of the two conjuncts 'C(j) and "L ()" independently

of each other, we cannot do the same in the case of “C{(x)" and
"LOOM in (11). "What were independently meaningful sentential
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parts of the operand sentence have become bound together in the

resultant sentence''(P. 265). . “

Keenan's observation is, of course, correct, but it misses
the point as an explanation of binding. As traditional logical
terminology suggests, it is primarily the variable, "', that is
bound in (11), not the conjuncts "C(x)" and "L(x)". The guanti-
fier "3, meaning some, takes the free variable ''x'' and turns it
into a bound variable. This means that what is a variable in

(12) ¢(x) & L{x)

in the sense that its value can 'vary'' by having various indivi-
duals substitute for it to produce sentences like (10), is no
longer a variable, in that sense, in {11)}. The "x" in (12) is
"free" to take individuals as-values, but the "x" in (11) cannot
do this, because it is ''bound" to the quantifier. We have already
seen In I1,3.2.1 that Keenan has difficulty with the distinction
between free and bound variables and tries to overcome this ‘
difficulty by introducing & new distinction between names and
“arbitrary' names, which is subject to exactly the same ohjec-
tion as Keenan raises to the distinction between free and bound
variables. Keenan's misconceptions about binding undoubtedly
stem from his confusion about this distinction,

That bjnding'has nothing at all to do with conjunction can
be seen even more clearly from the formula

(306 (x)

in which the ''x" is just as tightly bound to the quantifier as
it is in (11), but in which there is no other conjunct, like the
L(x)" in (11), that is "bound" to “C(x)'. Both "x" and 'y are
free in (4) and (5), as a further example, but 'x" is bound in
(8) and "y" is bound in (6), (7), and (8), eventhough neither
(6). (7), nor (8) contains any conjunction (except indirectly
through their simple reductions).

The reason Keenan's conjuncts are ''bound' to each other,
in his sense, is, in fact, precisely that the variable they
contain is bound to the quantifier, in the usual sense. Bound
variables are more like co-occurrence indices than what one
usually thinks of as variables. Their main function is to tell
us which argument in a propositional function the quantifier they
occur with is eliminating, when it reduces m to m-1. Mathe-
maticians often use the term ''dummy variable! in a similar way,
to refer to symbols that look like variables, but are really not,
because they lack the freedom to vary. It is worth noting, in
passing, that the sense of variable which Keenan tries to re-
place, by changing free variables to "arbitrary names', is the
sense in which variables are really variables, while the sense
which he keeps, namely, "bound ‘variables, lacks the basic pro-
perty of variability that makes real variables variables. This
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This reversal is just another reflection of his fundamental

confusion on logical notation. . :

Section 3: Vacuous Quantification

There seems to be general agreement among logicians that
vacuous quantification, at least in the universal and existential
cases, coincides with the identity function. Stolyar points out,
for example, that the typical universal and existential quantifi-
cations can be written in the general forms :

(]3) (VXI)@(...Xi...) |
(14) (ﬂxi)¢(...xi...)

respectively, but he goes on to say that

The requirement that x, appear free in ¢ is not
obligatory: we may assiime that, for a predicate
formula ¢ that is independent of x, (V¥x)}®¢ and
(3x)® simply coincide with &. (p. 157)

Church adds a footnote to his semantic rule for ali to the
effect that

If A does not contain the individual variable a
as a free variable, the value of (¥a)A is the
same as the value of A, for any system of values
of the free variables. If A contains no free .
variables, and if a is any individual variable,
(Ya)A has the same denotation as A.

' (P. 176, n. 313)

Carnap (1958) also adopts the convention that a universally or
existentially quantified formula has the same truth-value as
the wff being quantified, if the variable of.the quantifier
does not occur free in the wff. ‘ '

Keenan, however, is as confused on this question as he is
about binding in general. He gives us the formulas

(15} (vx)C(j)
(16)  (vx) (Ax) (C(x) & L(x))
and tells us that

These strings are intuitively meaningless because
they purport to be saying something about
everything but do not. Analogous strings in
English would be: For all x, John came early and
For all x, someone came early and left late.

Thus we do not count them as legitimate meaning
representations.... (p. 261)
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As we saw in {1,1,1, however, formalas (15) and"(iS)‘arq“hoti’
"intuitively meaningless' at all. ' According to the semantic '~
analyses we saw in that section, a formula of the form .

(17)  (¥x)A

says that "A'" is true no matter what individual we assign as a
value to "x''. Formula (15), therefore, says that "C(j}' is true
no matter what individual we assign as a value to ''x'", Is this
"intuitively meaningless? s it "intuitively meaningless" to
say that (16) is true under an assignment function d if and only
if the formuia B :

(18) () (c(x) & L(x))

is true under every assignment function gfuwhich is like d except,
perhaps, at "x'", that is, if and only if (18) is true no matter
what value we assign to 'x'"? The fact is that (15) and (16) are
"'saying something about everything,'' because, as we saw in |I,1,1,
to ''say something about everything' is' to say that "'something' is
true no matter what value we assign 'to some variable, whether or
not that variable occurs free in the formula that that '‘something"

is represented by. o _ . o

It does make sense, in other words, to talk about a formula
being true for all values of variables it does not contain. To
Fule out such talk would significantly complicate the definitions
of truth and satisfaction by permitting quantifiers to be partial
functions, rather than requiring them to assign a value to every
propositional function. In Quine's words,

Suppose x 1s'a function, or one-many relationm,

which assigns an entity to each variable. 1In

Tarski's terminology, x is said to satisfy a

formula y of L if y comes out true.for the values

of its free variables which.are assigned to those .

variables by x. Vacuously, then, if y isa . . .

statement (hence devoid of free variables), y

is satisfied by every function x or by none

according as y is true or false. o
= ' = ' (p. 142)

We can say a formula is true for all values of a variable it
does not contain, if we can say it is true without mentioning
that variable. We can say that ' '

(19) Provable(x‘,xz, x3)

for example, is true for certain values of "x.',"x_!", and "' L
S0 we can say it is true.for those values of “xl“, “xz“, and x3“
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and for all values of 'x_", because it does not matter what the

value of "x." is. This, however, is the same as saying that the
formula

(20) (A1l xs) Provable(x],xz,XB)

is true for the specified values of ''x ”,”xz”, and "x.'". It
cannot be ''intuitively meaningless', i% it Ts. true,

We can consider it established that vacuous quantification
is both intuitively meaningful and formally motivated. When we
try to generalize it beyond the universal and existential cases,
however, we discover that its generglly accepted identification
with the identity function must be considerably weakened. We
cannot say, in general, for any quantifier, that a gquantifier
leaves a formuia unchanged, if the formula does not contain the
variable of quantification as a free variable. We cannot even
say, in fact, that the truth-value of the formula is left un~-
changed in such a case. To say that a formula is true for no -
values of a variable, for example, 'is to say that its negation is
true for all values of that variable, because of interdefinability.
If we say that (20) is trye for the same values of ''x "ot M,
and "x,'" as is (19), in other words, because (19) does not“con-
tain ”;5“, then consistency requires us to say that

(21) (No XS) Provable(x',xz,x3)
is false for exactly those vaIuesrdf Mx ', x,"", and “x3“ for the
same reason. This follows from the requiremént that (21) must
be equivalent to

(22) (an xs) -Provable(x],xz,xB)
which is false, whenever (20) is true.

A no-quantification has the truth-value opposite to that of
the wff it quantifies, in contrast to all quantification, which
teaves the truth-value of that wff unchanged, when the variable
of quantification does not occur free in the wff. The indivi-
duals that satisfy a no-quantification are exactly those that
fail to satisfy the corresponding all-quantification. It follows
that we cannot identify vacuous no-quantification with the
identity function, as we can in the case of vacuous all- and
some- quantification. One thing that does remain constant in
vacuous no-quantification, however, is the number of arguments,
that is, free variables, that appear in the formuia. Just as
non-vacuous quantification reduces the number of arguments by
one, as we saw in Section 1, we now see that vacuous quanti-
fication leaves that number unchanged. We can replace the more
stringent condition of identity with the identity function with
this weaker result for vacuous quantification in general.
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Section 4: The Formal Definifiéhhdfksinding

We are now in a position to give a complete and precise
formal definition of the binding property. Throughout the rest

of this study we will use the symbol ''L' to denote a fixed language

or set of languages and the symbol '"R' to denote the set of pro-
positional functions, also called ''relations', that are ‘expressed
by the formulas of L. The symbols "R;" and "R™, respectively,
will be used to denote the subset of é that consists of j-aﬁgu-
ment propositional functions (j-place relations) and the n-
Cartesian power of R, that is, the spt of n-tuples of members of
R. The most interesting case for the linguist is, of course, the
one in which L consists of all and only the possible human
languages or actual human languages, but we will formulate our"
results in terms of L in order to maximize generality. '

As the formal definitfon of binding we now get the
following formulation:
Definition 1 (The Binding Property): ‘Let F be a mapping
from R" into R. F is said to be binding in L, if
there is an .integer i, 1<i, such that,'for_all

jk’ k=],--=,n, the set
n
F(X R. )
k=1 Jk
is a subset of

(a) Rm, Osms<i;

(b} R

m=1"

. n _
where m = max Iy

This definition partially characterizes the kind of semantic
entity that is expressed by semantic representations of the form.
(9) and that are interpreted intuitively as quantifiers. Both
"m'" and '"n'' have the same meanings in Defintion | that they have
in (9). Condition (b) of the definition expresses the semantic
character of binding in non-vacuous quantification, as discussed
in Section 1. Condition (a) expresses the semantic character of
binding in vacuous quantification, as discussed in Section 3.

It says, for example, that ”Unidersal quantification of the
fifth variable' has no effect on the number of arguments of pro-
positional functions that contain fewer than five arguments, as
we saw in connection with {20) and (21). '
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Section 1: Quantifiers and Sets

As we saw in | and Il, a quantifier is a semantic operator
that answers one of the questions How many? or How much? The
sentence

(23) Some things are worthwhile.
' ¥
for example, answers the question How many things are worthwhile?
and the sentence S v

(24) Many linguistic claims can be proven.
answers the question How many linguistic claims can be proven?

Another way of formulating this intuitive characterization
of quantifiers is to say that quantifiers give some indication as
to the sizes of sets. Sentence (23) tells us that the set of
worthwhile things is not empty and sentence {(24) tells us that
the set of provable linguistic claims contains at least n members,
where n is the manifold size index. "~ In Section 2 we will forma-
lize this relation between quantifiers and sets and in Section 3
we will examine the role that it plays in distinguishing quanti-
fiers from similar, but non-quantificational, operators. In the
next chapter we will combine these results with the binding pro-

perty, which we analyzed in the last chapter, to develop a

complete formal semantic answer to the question What is a quanti-
Ffier? '

Section 2: Set-Theoretic Relations

The relation between quantifiers and sets is most clearly
illustrated by the analysis of most that we examined in 11,2,2,
Kaplan's analysis is formulated explicitly in terms of sets and
their cardinaiities. It tells us that a formula of the form

(25) Most a ¢

is true under an assignment f of individuals as values to
variables if and only if the relation

(26) K(E[xeD and fi satisfies ¢ in <DR>])
> K(E[XQD and fz satisfies ~¢ in <DR>])

holds. The symbol ''o'* in this analysis is a metalanguage
variable that takes object-language variables as values and the
symbol ''x" is a metalanguage variable that takes individuals in

D as values. The object-language is the tanguage under analysis,
according to the usual terminology, and the metalanquage is the
language in which the analysis is expressed. Both (25) and (26)
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are metalanguage formulas, with (25) serving as a schema for
object-language formulas. |Its instances are obtained by re-
placing "o'' with object-language variables and 'o! with object~
language wffs. B : '

Formuia (26) is a metalanguage sentence that expresses a
relation between the cardinalities of the two sets

(27) E{an and fz satisfies & in <DR>]
(28)  ElxeD and £ satisfies =4 in <DR>]

Formula (27) denotés the set of individuals in D that make the
formuta ' ‘

(29) xeD and f: satisfies & in<DR>

true, when assigned as values to """, and formula (28) denotes
the set of individuals in D that make the formula

(30) xed and Fz'satisfies % in <DR>
_true, when assigned in that way. Since an individual makes (30)
true if and only if it makes (29) false, it follows that (28) is
the complement of (27). : o :

, An ihdividual makgs (29) true if and only if it makes each
of the formulas '

(31) xeD
(32) fz satisfies & in <DR>

true. It follows that an indi&idua] belongs to the set (27)
if and only if it belongs to both of the sets

(33)  Elxe] '
(34) E[FY satisfies o in <DR>].

The set (33) is the set of individuals that belong to D, so it
is simpiy D itself, Symbolically, we have

(35) EIXED] =D,

The set (34} can also be written more compactiy,. if we intro-
duce a new notation through the following definition:
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(36) ¢?‘= E[fi satisfies & in <DR>],
<DR> '

Combining (35) and (36), we can say that an individual makes (29)
true if and only if it belongs to the set

(37) b n o¥
<DRf

which is the intersection of (33) and (34).
v
In a similar way we can denote the set of individuals that
make (30) true by : :

(38) (-¢)%
<DR>f

Since an individual makes (30) true if and only if it makes (29)

false, it follows that (38) is the same set as

(39) cComp &7
<DR>

the complement of (34), written in accordance with (36).

The equivalence of (38) and (39) gives us
~ (40) D o Comp & | o |
. <DR> . . - :“

as a more compact way of writing (28), just as (37) is a more
compact way of writing (27). - .

Combining (37) and (40), we can now reformulate (26) as

(51) K(D n 9%) >K(D n Comp &%),
<pR> - ; <DR>

Formula (41) is very clearly a relation that involves only sets
as arguments and formula (25) is true under f if and only if ,
(41) holds. This follows from the equivalence of (41) and (26).
It is a basic property of quantifiers that they can always be
expressed in this way, in terms of a truth condition (or set of
untruth conditions) that is expressable entirely in terms of set
theory.

We can formulate this property most generally as follows
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To account for quantifiers in their full generality, as we dis-
cussed this in I1,4, we adopt the convention that, for a quanti-
Tler that involves more than two untruth-values, the relation R
in Definition 2 can be an ordered set of such relations, one for
each untruth condition of the form |1(206).

Definition 2 (Set-Theoretic Expressability): -Let <DR>

: be a fixed model of L, let F be a mapping from
R" into R, and let g be the set of assignments
of individuals in D as values to variables in L.
F is said to be expressable in set theory with
respect to L ‘and DR or set-theoretically ex-
pressable in L and <DR>,if there is a function s
from g X R into 2V and a set-theoretjc relation

R. in (20)n+l such that, for every A. in R,
F ‘ oY *

Mostowski (1957) develops a general formal notion of quanti-
fier, but he takes for granted that he is dealing only with set-
theoretic operators and so does not bother to discuss set-
theoretic expressability explicitly. For our purposes, however,
something like Definition 2 is esseAtial, because, as linguists,
we are concerned with whatever operators happen to occur in
natural languages and we must have a way to distinguish those
that are expressable in set theory, in a very precise sense, from
those which are not. This will become much clearer in the next
section, where we examine two semantic operators which are both
binding and which differ only in that one is expressable in set

' theory, in the sense of Definition 2, while the other is not.

(42) f satisfies F(A],...,An)'if and only if
RF(D,s(f,A]),...,s(f,An)). o

If F is set-theoretically expressible in L and

<DR>and (42) holds, then RF is said to be the

set-theoretic relation expressed by F under s in
L and <DR>and s is said to be the set assignment
of F with respect to R In'L and <DR>. "We also

Section 3: Horn's QOperators:

say that F is expressable as RF under: s and that )
' We can gain an appreciation of the significance of set-
theoretic expressability by comparing a couple of similar operators
with respect to quantificational status. Horn: (1969) points out
that only acts like a certain class of guantifiers in various ways,
but he stops short of saying that it is a quantifier. He proposes
the following analyses .of only and the similar operator even: '

F is expressable under s,

The symbol P in this definition, as is customary in set theory,
is used to denote the set of subsets of D, because the cardinality
of that set is equal to'ZK(D). As usual, we are interested pri-
marily in the case in which L is the set of possible or actual
human languages and <DR> is the usual every-day model of those

languages, but we express the definition in its full generality. (43) Only (x=a, Fx)

' The fact that quantifiers are always ,expressable 7in set P: Fx
theory was first pointed out to me by David Kaplan (personal
communication), but the detailed formalization that we just

carried out and that we will use later in our full characterization
of quantifiers is my own. The .fact that the binding property
alone does not suffice to characterize quantifiers was first made
clear to me by Barbara Partee (personal communication).

A: -(Hy)(y#x & Fy)
(44) Even {x=a, Fx)
P:  (3y) (y#x & Fy)

!H_our example, in which we. showed that the semantic ' A Fx.
analysis of (25) can be formulated set-theoretically in the form:

(41), we have , From the interdefinability of all and some and the equivalence of
’ . s - oL . ‘ )

the formulas

F

Most ¢ . .. S y#x & Fy

=l ~(y=x) V -Fy)

é(F,A)'= A? for all A in R, fin g

<oré - (Fy = y=x}

RF(a,b) = (K{a n b) > K{a n Comp b)) for all a,b in 2P,
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it follows that (43) is just an earlier notational variant of
Keenan's (1971a) analysis of only, which we examined in 11,3,2.1.

The set-theoretic expressability of oniy follows fEOM‘that
of all and some, because Keenan's and Horn's equivalent analyses
of only, as special cases of our analysis I[(100), are.expressable
in terms of all and some. The set-theoretic expressability of ali
and some can be demonstrated by finding set-theoretic relations R
and set assignments s such that (42) holds for each of the two
quantifiers. : : o

The presupposition of only is of the form
(45) (Some x)(B;A) -~ . oo

Formula (45) is true under an assignment f If and only if there
is at least one individual that makes ''B' true, when assigned
as a value to '"'x', that also makes 'A" true, when so‘'assigned.
This means: that (45) is-true if and only if there is at least one
individual that makes both !'B'" and "A' true, that is, if and only
if the set of individuals with both the properties ''satisfies B!
and "'satisfies A", which we can abbreviate simply as ''B" and "'A™,
respectively, contains at least one member and so Is not empty.

This gives us

(46) D o BS 0 AX £

'<DRf <DR£
where '\'"" denotes the empty‘ée;,fas a set-theoretic formulation
of the truth condition of (45). In terms of Definition 2 this
gives us . .

I = Some x

n=2

s(f,A) = 'A?

<DR>

RF(é,b,c) =(anbnc#ir),

as the function, number of wff arguments, set assignment, and
set-theoretic relation, respectively.

H

The assertion of only, corresponding to the presupposition.
(45), is of the form

(47)  (A11 x) (A;B).
Formula (47) is tiue under f if and only if eﬁery individual that

makes 'A'' true, when assigned as a value to ''x', makes 'B" true,
when so assigned. This means that (47) is true if and only if
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every member of the set of individuals that have the property

""A" is a member of the set of individuals that have the property

""B', that is, if and only if the set of individuals that have "AM

is a subset of the set of individuals that have "B, This gives us
(48) DAY c

B
<DR§ <DR

as a set-theoretic formulation of the truth-condition of (47) and

F=All x

n =2

s(f,A) = A?
<DR>

as a description of aliwin terms of Definition 2.

The pair of relations expressed in (46) and (48) together
represent the set-theoretic relation expressed by only. A second
"D' is not needed in (48), because its presence is already entailed
by the first "D, intersected with s(f,A), and the subset relation.
We could express both (46) and (48) more compactly without men-
tioning D at all, but a good reason for including it in our set-
theoretic relations will emerge from our discussion in IV,2.

Just as (43) is a special case of 11(100), the analysis in
(b4}, similarly, is a special case of 11(130), obtained by taking
B=(x=y) and A=F. Formulas 11(130), however, constitute an analysis
of also, not even, which Horn claims (44) is. Before investigating
this discrepancy we can first notice that 11(130) is expressable
in set theory, because its presupposition and assertion are both
existential quantifications. Its assertion is (45), the pre-
supposition of only, and is thus expressable in set theory as (46).

13

Its presupposition is
(49) (Some x) (-B;A)
which can be expressad set-theoretically as

(50) D n (Comp B?) nA; £ A
<DR> <DR> - :

because of the equivalence of (38) and (39). It follows that
also is expressable in set theory,



Cushing 108

Horn claims that even is analyzable as in (4k4), which we,
have just seen is expressable in set theory, but it is clear
intuitively that even is not expressable in set theory. Even.
does presuppose (44P) and assert (44A), as Horn suggests, but
the two conditions in {44) do not exhaust the meaning of even.
Even a is F does presuppose that somecne other than a is F and
assert that a is F, as (44) says it does, but it also presupposes
that a's being F was unexpected. Alsoc a is F, in contrast, has
the same presupposition and assertion, exactly, that (44) gives
to even, but it lacks this presupposition of unexpectedness. |t
follows that (44) is, in fact, an analysis of also, rather than
even, whose semantic analysis requi#es both (44) and some ana-
lysis of the ''psychological’ or pragmatic notion of unexpected-
ness, It is precisely this 'extra'' element of meaning that makes
us feel intuitively that even is not a quantifier. Even a is F
not only gives an answer to the question How many things (or
people} have F?, but it also tells us that the answer it does
give is unexpected. Also a is F lacks this extra information
and qualifies as a quantifier. '

In exact accordance with these intuitions, the pragmatic
notion unexpected cannot be expressed formally in set theory.
Even expresses both the set-theoretic relations contained in (46)
-and (50) and the non-set-theoretic relation unexpected by the . .
speaker. ~ It follows that the quantifier also and the non-quanti-
fier even differ only in that the former is set-theoretically
expressable, while the latter is not.

Horn himself points out that "the difference between also
and even is, of course, the notion of expectation presupposed
by the latter'" {p. 106), but he proposes an analysis of even ..
that conspicuously ignores this fact, he gives no analysis of -
also at all, and he does not discuss the significance of the
difference he points out. His failure to examine also and its _
relation to even in more detail leads him to make ‘the erroneous
claim that . o SR o ' B

the combination of the presupposition in (54) [our (44)7])
with the assertion -Fx has no surface iealization as
such; but must emerge as something like

(55) ©No, (others did but...) Muriel‘didn't.
- (p.. 105)

As we saw in il,3,3, the combination of the presupposition of
also with the negation of its assertion yields the semantic
analysis of the quantifier only some...other than and so does;,
in fact, have a surface realization. : ' :
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CHAPTER 3: THE FORMAL DEFINITION OF QUANTIFIER

Section 1: Elementary Quantifiers

In the last two chapters we examined the two basic semantic
characteristics of quantifiers, the binding property and their
expressability in set theory. The binding property singles out
one of the arguments of the propositional functions the quantifier
operates on and set-theoretic expressability guarantees that what
the quantifier says about this argument has something to do with
the number of individuals that can’ $erve successfully as its
values. The truth-functional connectives, for example, are not
quantifiers, because they are not binding. No matter how many
arguments the members of an n-tuple of propositional functions
may have, their conjunction and disjunction will each have the
same number of arguments as the conjunct or disjunct with the
largest number of arguments. There is no number such that the
conjunction or disjunction of propositional functions with more
than that number of arguments always has one fewer than that
number of arguments. An operator like even, on the other hand,

is binding, but it is still not a quantifer, as we saw in
Chapter 2, because what it tells us about the bound argument

has to do with more than the number of values that that argument
can have. In other words, 1ts meaning is not expressable in
set theory. St

We now have the basis for a formal explication of what it
means tc be a quantifier: a quantifier is a set-theoretically
expressable binding operator. There is stili one thing missing
from our analysis, however, as we can see by comparing the
semantic representations of quantificational sentences with their
surface forms.

‘Each of the following sentences contains two or more
instances of the quantifiers all or some: :

(51) Some theorems can be proven by all logicians.

(52) a11 theorems can be proven by some logicians in
some systems.

{53) some theorems can be broven by some .inguists in
some systems. '

Their semantic representations, respectively, are

(54) (Some x) (Some y) (Theorem(x),Logician(y);
Provable(x,y)) ‘
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(55) (A1l x)({Some y)(All z)(Theorem(x),Logician(y),
System(z) ;Provable(x,y,z))

(56) (Some x) (Some y) (Some z) (Theorem({x), Linguist{y),
System(z);Provable(x,y,z),
where '"Provable" in (54) denotes the two-place relation
provable by and in (55) and (56) the three-place relation
. provable by in. Each of the semantic representations has the
same number of instances of YAll" or "Some', respectively, as
the sentence it represents has instgnces of all or some. )

When we look more closely, hHowever, an important
difference emerges. There is no reason to consider any instance
of some in (51), -(52), or (53} to be any different from any
other instance. Two of them make reference to theorems, two
to logicians, one to linguists, and one to systems, but what "
they say about these different things is the same. -Similarly; °
one instantce of all in-(52) makes reference to theorems and :
the other to systems, but they both seem clearly to be instances
of the same semantic operator all. ) S

The situation in (54}, (55), and {56), however, is vwery '
different. According to Definitions 1 and 2, bindihg and set-
theoretic expressability are properties of mappings, that-is,
functions, from R" into R, a fact that is reflected in the form
of our semantic representations. Viewed as mappings, however,
neither all instances of .''Some" in (54), (55), and (56) nor the
two instances of "Al1" in (55) are the same. S e

Both instances of ''Some' in (54) represent mappings from r3
into R, but the first tells us something about the first argument,
. llxlﬂ’ O-F ! . . B ey

by

(57) (Theorem(x),Logician{(x)},Provable(x)},

while the second tells us something about the second argument, 'y'.

Both instances map the two-argument ordered triple (57) of pro-
positional functicns onto one-argument propositional functions,
but the first maps it onto :

(58 (Some x)(Theorem(x),Logician(y);Prévable(x,y)L
while the second map§ it onto | |

(59} (Some y}(Theorem(x),Logician(y);Provable{x,y)."
Formulas (58) and (59) represent two very different one-argument

propositional functions. Formula (58) represents the property
of being a logician who is able to prove some theorem and it
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doeﬁ not“even appear explicitly in (54), because the y-instan
of '"'Some applfes to (57) first. Formula (59) represents thece
property_of being a theorem that can be proven by some logicia

. a.very”different property from the one represented by (58? "
Since ''Some x'" and ”gome y'' provide different members of R.for
the same member of » they must be different mappings.

‘Similar remarks hold for the other quantifiers in (54
égfg,(a?d (56). "Some y' i? (54) and (55) is manifested(?n),
both (5 ) anq (52), regpectively, as some logicians, but in 55)
;;tgsna :apPLng ffom(gh)into R, rather than a mappi;g from R§

K, as it ig in . MAMD X" and YA11 2t}
mappings_From RE into R, but they bind differenénasggéeizs :g;h
?o6are different mappings. Ehe three instances of "Some'' in
| 5_)-are all mappings from R" into R, but they too are djffer t
Mappings for the same reason. -

Exactly the same situation hoid ir .
uat. s for mappings fr i
R. "Some x" maps the three-place relation PRinS om R into

(60) - Provable(x,y,z),
for egamp]e, onto the two-place relatijon
(61)  (Some x) Provable(x,y,z)
while '"Some y" and "'Some z' map (60), respectively, onto
(62) (Some vy) Provable(x,y,z)
(63) (Some z) Proyabfe(x,y,z).
It we let
X = the Barcan formulia

A. N. Prior

-~
i

Z = quantificational §

5

for ex
ample, for the free occurrences of !x!', Tyl and ngie g

(60), (61), (62), and (53)
, » then these formulas i
represent, respectively, the sentences semantically

(64) The Barcan formula can be proven by Prior in
quantificational SS'

(65) Something can be broven by Prior in Quantificational 5.
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(66) The Barcan formula can be proven by someone in
quantificational S5. .

(67) The Barcan formula can be proven by Prior in
something.

These sentences clearly have very different meanings and (67) is
even a little peculiar because of our failure, for the sake of
simplicity, to specify that "z ranges over the set of systems,
as we did specify in (55) and (56). Since (61), (62), and (63)
produce the very different sentences (65), (66), and (67), _
respectively, for the same assignment of individuais as values
to variables, they must represent different relations or pro-
positional functions. Since these different propositional
functions are produced by quantification from the same propo-
sitional function (60), the quantifiers involved must be different,
We see that something is clearly missing from our proposed
formal characterization of quantifiers as set-theoretically
expressable binding operators. Although all is simply all and
some is just some, when they occur in English sentences, our
"~ formalism forces us to represent different occurrences of all
and different occurrences of some by very different mappings.

This kind of situation might be considered acceptable, if
we were concerned only with assigning semantic representations
to sentences, as long as it was clear how to assign the appropri-
ate mapping to a given occurrence of one of the quantifiers. All
we would have to do would be to pick a different varjable for
each occurrence and keep our variables straight.

If we are concerned with answering the deeper theoretical
question 'What is a quantifier?", however, this situation poses
a serious problem. Quantifiers in surface representation, that
is, quantifiers as they actually appear in natural language, do
not involve variables at all. Variables do not appear in
sentences. In semantic representations of sentences, however,
there can be "quantifiers" that differ only in that they occur
with different variables. There is only one some in English and
there is only one all, but our theory requires us to distinguish
infinitely many '"versions'' of some and all by associating each
quantifier with a variable every time it occurs.

A fully adequate answer to the question 'What is a quanti-
fier?" must tell us what it is about all different versions of
some that makes them all ''versions' of the same quantifier. We
know that "All x'', “All y", and "All 2" are all instances of the
same quantifier all ard that each of these instances is a
mapping from R into R, but we still have not determined what it
is that makes these three mappings instances of the same quanti=-
fier, while the three mappings "All x", “Some y*', and "Many z't,
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for example, are not. To answer the question "What is a quanti-
fier?' we have to figure out what it is that makes some binding
set-theoretically expressable mappings from R" into R instances
of the same quantifier and other such mappings instances of
different quantifiers. We have to figure out how to “factor out"
the variables to get at the quantifiers.

We can begin by making the following definition:

Definition 3 (Elementary Quantifier): Let F be a
mapping from R into R. F is said to be an
elementary quantifier in L if.F is binding and
expressable in set theory.

An elementary quantifier is the kind of thing we have been using
to represent quantifiers in our semantic representations. Our
problem now is to determine the conditions under which two
elementary quantifiers represent in semantic representation the
same intuitive quantifier in surface representation.

The solution that immediately suggests itself s to say
that two elementary quantifiers represent the same quantifier

- if they both express the same set-theoretic relation. Since

elementary quantifiers are set-theoretically expressable, there
is a set-theoretic relation expressed by each one and it is the
set-thecretic relation that' expresses, in some sense, the
meaning of the quantifier. Since elementary quantifiers re-
present the same surface quantifier if they differ only in the
variable that they bind, it makes sense to take the precise
notion of set-theoretic relation identity as the criterion of
surface quantifier identity, This will, in fact, turn out to
be the solution to our problem, but there are a number of
technical intricacies that must be untangled, before we can make
the solution precise formally. . :

Section 2: Normal Forms

We cannot say simply that two elementary quantifiers
represent the same quantifier if they express the same set-
theoretic reiation, because the number of propositional functions
that elementary quantifiers Operate on can differ, even if the
elementary quantifiers bind the same variable. The sentences

(68) 411 theorems can be yroven.

(69) All theorems that have been broven have
teen published,

for example, nave the respective semantic representations
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o (70) 0 (A x)(Theorem(x);Provabie(x))

(71} (A1l x) (Theorem(x),Proven{x);Published{x))

The elementary .quantifier "All x" occurs in both semantic re-
presentations and clearly represents the same surface quantifier
all in both cases. Despite this, however, "All x'' in (70) ex-
presses a different set-theoretic relation from that expressed
by "All X" in (71).

The set-theoretic relation expressed by '"All x" in (70)
is given by

(72) Rypy (esbse) = (anbcc)
under the set assignment

(73) s(f,A) = A;
<DR>

as we saw in 111,2,3. Since (70) is a mapping from R? into R, it

expresses a set-theoretic relation that involves three sets. The

same reasoning that gave us (72) also shows that the set-theoretic
relation expressed by "All x"" in (71) is given by :

_(7#) RAI] x(a;bfc,d) = (anbccd)

under the same set assignment (73). Since "All X' in (71) maps

R3into R, it expresses a set-theoretic relation that involves

four sets. Since the set-theoretic relations (72) and (74)
involve different numbers of sets, they must be different re-
lations., The two elementary quantifiers "All x'"" express different
set-theoretic relations in (70) and (71), despite the fact that
they represent the same surface quantifier all.

The relations in (72) and (74), though different, are also
clearly very similar. They involve different numbers of sets,
but what they say about those sets is the same: the intersection
of all but the last of them is a subset of that one. If we can’
figure out a way toc express this kind of similarity formally,
then we may be able to save the notion that similarity of set-
theoretic relations is the criterion for quantifier identity.

As we saw in ii,4, tne main effect of an elementary quanti-
fier is to express 2 relation between the different classes of
propositional functions that are separated by semi-colons. The
propositional functions that are separated by commas always end .
up being conjoined in the semantic analysis, regardless of
which quantifier is involved.
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Formula (70), for example, is equivalent to the formula
(75) (A1l x) (Theorem(x) > Provable(x))

in which the semi-colon has been replaced by material imblication.
Formula (71), similarly, is equivalent to the formula

(76) (A11 x){(Theorem(x) A Provable(x)) = Published(x))

in which the semi-colon has again been replaced by material
implication and the comma has been replaced by conjunction.
If we leave the semi-colons in and only change the commas to
conjunctions, then (70) remains the same, but (71) becomes

(77) (A1l x) (Theorem{x) A Provable(x);Published(x)).

The form (77) works, in fact, even for those quantifiers, such as
many and most, that are not reducible, as is easily verified. We
cannot eliminate the semi-colon in such cases, as we can with all,
but we can always turn the commas into conjunctions.

Formula (77) contains exactly the same number of quantified
propositional functions or wffs as does (70). It also expresses
the same set-theoretic relation under the same set assignment,
because the relation

(78) (e A )T = ofn ¥

DR : <D£> <DR>
always holds. We will see later that properties like (78) make
(73) a particularly useful set assignment.

We can generalize these results to get a normal form for the
representation of elementary quantifiers. Since the commas in a
semantic representation act like conjunction and end up as inter-
section operators in the set~theoretic relations, we can guarantee
uniform set~theoretic reiations for elementary quantifiers that
represent the same surface quantifier by requiring that the commas
not appear in the normal form. This gives us the following
definition:

Definition 4 (Normal Form): Let F and Q be elementary

quantifiers such that F maps R" into R, Q maps Rk
into R, and there is a set assignment s such that

both F and Q are expressable under s. Let RF-and R
be set-theoretic relations such that F is Q
expressable as RF under s and Q is expressable as RQ

under s. Q is said to be the normal form of F | L,
written T
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(79) q = Foorm in Lo

if there are integers nj, j=0,...,k, such that

0 =n £ «v. €0, =n

0= "M k
D .
and for all aiez s 1=0,...,n,
(80) RF(aO,...,an) = RQ(bO,...,bk),

where
b=a., b, = a,, j=l,...,k,
R s
j-1
and k is the least value for any such Q. |If k is

the minimal value such that (79) and (80) hold,
then k is said to be the order of F in L and we
write

k = order(F) in L.

The normal form of an etementary quantifier, in other words, is
the elementary quantifier which is equivalent to the given
elementary quantifier, but whose semantic representation and
analysis contain only semi-colons, all the commas having been
rewritten as conjunctions.

The most general form of the universal (elementary) quanti-
fier, for example, is, as we saw in Ph,h,101, : ‘

(81) (A11 x)(B ceasA )

"Bn;Ai’ 0

e
the semantic analysis of which we gave as 11(171). The normal.
form of this elementary quantifier, however, according to
‘Definition &4, is . J

(82) (A11 x) (8;A).

Formula (82) has no commas, at least as far as the "Al] x'! is
concerned, and every instance of (81) can be rewritten as .an
instance of (82) by taking B to be the conjunction of the B,'s
and A the conjunction of the Aj's. L !

More explicitly in terms of Definition 4 we first rewrite

(81) as

(83) (A1l x?(Al,...,An<;An +],...,An)

1 ]
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in order not to confuse the n in (81) with the n in (80). In
other words, we rename the n in (81) as the n, in (83) and we
rename the m in (81) as the n in (83). We also rename the B's
as A's for notational uniformity and we continue numbering what
were A's in (81) consecutively after the new A's of (83). This
makes the n in (83) equal to n+m for the n and m of (81). In
terms of the actual schemas (81) and (83), we are renaming

B], Bn’ Al’_Am in (81) as AI’An]’An}+!’An’ respectively, in (83).
Again for the sake of uniformity, we will rewrite (82) in the
form

| (84) (Ali x)(BI;BZ)

replacing the B of (82) with B, and the A of (82) with B,.

Since (83) and (84) are just notational variants, respectively,
of (81) and (82), anything we say about ‘the set-theoretic
relations of (83) and (84) will hold equally well for those of
(81) and (82).

"Al1 x' in (83) is a mapping from R" into R and "A11 x'' in

(84) is a mapping from Rz into R. This gives us k=2 in Definition
b. We know that (84) is expressable as (72) under the set
assignment (73) and we can rewrite (72) as

(85) Rapy x(bgsbysby) = (by 0 by < b))

again to get it into the notation of Definition 4. As we would
expect, (85) confirms the fact that k=3.

By reasoning similar to that which led us to see that (70)
is expressabie as (72) under (73) and that (71) is expressable
as (74) under (73), we can also see, inductively, that (83) is
expressable as )

(86) RAII x(ao,...,an)z(aon...nanl E_an]+]n...nan)

“under (73). This, however, is exactly what Definition 4 requires

of an elementary quantifier and its normal form.,

First, we see that there are integers n., j=0,1,2, such
that J
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All we have to do is to take n a;-ih'(SB). flfawe‘now;fake;_”

by = a,

b] aln...qan]

1]
o

0...0a
nl+} n

2 .
and if we rename the RA!T « of (85} as RAH N and the RAI] %

of (86) as RRI? , Jjust to keep them separate, then we get the
relation
i(aoﬁ...na.ni E_an]+i n'..l:n 35) ?=(b0 n by E.bz)
and its more compact form
B7) Rap) x(agseeosa,) = Ry, x(Pg> Py 05)-

Again we sée that the elementary quantifier represented by (82)
or (84) is the normal form of the elementary quantifier repre-
sented by (81) or (83). . ,

It follows from (87). that the order of "All x' is 2,
Similar reasoning reveals that the order of "Some x'' is 1,
because even the semi-colon turns into conjunction. in that case,
and the order of ''The x'" is 3, because its semantic analysis
requires, as we saw in 14(181), three differently functioning
classes of wffs. It is also not difficult to see that .the onl
elementary quantifiers expressable under the set assignment (73)
that have English surface forms -and are of order 1 are the
numerical quantifiers and those of the form '"Some o' or *'No o'.

The integers n. in Definition 4 mark off the differently
functioning classes df wffs or propositional functions in a
semantic representation. |[|f the wffs in a semantic representation
are numbered consecutively beginning with 1, then the integer
nj Is the subscript of the wff that appears immediately to the

left of the jth semi-colon (or the right-most parenthesis, if

n. = n). We have succeeded in abstracting away from the number
o% wffs in a semantic representation,”that’is, the number of
propositional functions operated on by an elementary quantifier,
so that only the set-theoretic relation remains.
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Section 3: The Standard Set Assignment

Now that we have a normal form for the representation of
elementary quantifiers, we can represent every elementary quanti-
fier by its normal form. We can try to formulate our criterion

- of quantifier identity in terms of the identity of set-theoretic

relations expressed by the normal forms of elementary quantifiers,
identifying elementary quantifiers that differ only in the number
of propositional functions they operate on. There is still one
further obstacle, however, that has to be taken care of. Set-
theoretic expressability is formulated in Definition 2 in its
most general form, in terms of both sét-theoretic relations

and set assignments. The problem now is that the same set-
theoretic relation can be expressed by very different elementary
quantifiers under different set assignments. Just as we normal-
ized the number of wffs an-elementary quantifier operates on, we
also have to standardize our set assignments in some way.

As an example, we can take the set;theoretic relation
(88) Rc(a,b,c) =(anbcc)

which we saw in the last section as (72) and ‘the notational
variant (85). Formula (88) gives us the set-theoretic relation
expressed by normal all under the set assignment (73),
reproduced here as
89) s, (F,A) = a2
) <DR>

R_, In other words, is the set-theoretic relation expressed by the
elementary quantifier F] that maps (AI’AZ) onto (All a)(Ai;AZ)’

Under other set assignments, however, (88) is expressed by other

elementary quantifiers. |If, instead of (89), we take the set
assignment :
— ¢
(90) s, (f,A) = Comp AZ

<DR>

which is perfectly consistent with Definition 2, then (88) is
expressed by the different elementary quantifier F2 that maps

(AI,AZ) onto (All a)(Az;Al). Both F] and F2 are set-theoretically

expressable binding mappings from Rz into R, so both of them are
elementary quantifiers. Both express the same set-theoretic
relation (88), but.they are different elementary quantifiers,
because they produce different results from the sanie pair of wffs,
They manage to express th:z same set-theoretic relation, because
they do so under different set assignments.
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More complicated examples can also be constructed. - |f we
take the set assignment defined by

A? if m is even
(91)  s,(F,A) = {OF
Comp Af if m is odd
: <pDR>

where m is the number of arguments in A, as in Definition I, then
we get the elementary quantifier defined by

F](A];Az) if m],mé are both even
(A1l u)(A];-Az)if m, is even, m,
(AT a)(—A];AZ)if m,

FZ(A];AZ) if m,m, are both odd,

(92) Fy(A|,A,) =

Like both F] and FZ’ F3 is an elementary quantifier of order 2.
Also like FI and FZ’ F3 expresses the same set-theoretic relation

R defined in (88), but under the djfferent set_assighment (9Tfﬁ

By choosing the appropriate set assignment, we can even'
find non-binding operators that express R.. This constitutes a
proof of the logical independence of the binding and set-
theoretic expressability properties and justifies our decision
to express Definition 2 in its full generality. .Under the set
~assignment : : : S

D if ¥ satisfies A,

(93) s, (F,A) =
by if f satisfies —A

for example, we get the foilowing instances of (88):
(94) D nD <D if f satisfies A and T satisfies A2

(95) D nD <A iff satisfies A, and f satisfieé_-AZ

(96) D n A c D if f satisfies —A] and T satisfies A2 .

(97} D a X A if f'safisfies A, and f satisfies A,

Of these formulas, however, (94), (96), and (97) are true, no :
matter what A] and A2 are, as long as the respective conditioq_’

on f-holds. Formula (45), in 60ntrést, is always false, inde-.
pendently of A] and Az, as long as f satisfies the first but not

the second. It follows that R is expressed under 5y, by the
mapping defined by '

is odd

is odd,.m2 is even
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falsity under f if f satisfies A
(98) Fy(Aj3R)) = qbut not A,

truth under f otherwise .

1

This, however, is the definition of material impli¢cation. In

other words ”FQ{A];Azjn is just another way of writing YA 2 A

This mapping is not an elementary quantifier, because it is not
binding, but it expresses R. under Sy all the same.

As a final example, we can get much more specific and take
D to be the set of non-negative integers. |If we take the set
assignment

(99) ss(f,A) = the set of integers which have the
same parity as m

then Rc is expressed under 55 by the mapping defined by

truth - if m, ,m, have the same parity
(100) Fo(a,3A,) =

falsity otherwise:

If Ai and AZ both have an even number of arguments or both have
an odd number of arguments, then F3(A];A2) is logically true.

Otherwise, it is logically false. R_ turns out to be just a

. : c .
variant of the relation "have the same parity" that can hold
between integers. Like F,, F5 is not an elementary quantifier,
because it is not binding. '

We began with a single set-theoretic relation (88), and we
have managed to find five different set-theoretically expressable
mappings that express that relation. Three of these are binding
and so are elementary quantifiers and two are not binding and so
are not elementary quantifiers. Clearly an infinite number of
such mappings, both binding and non-binding, can be constructed,
S0 we cannot take identity of set-theoretic relations as our
criterion of quantifier identity, even if we restrict ourselves
to normal forms.

If we examine our five mappings carefully, however, we see
that the three binding operators arise from set assignments that
are defined, directly or indirectly, in terms of the set
assigriment (89), while the two non-binding operators are defined
independently of (89). The joint action of binding and set-
theoretic expressability produces operators that bind an argument
and say something about the size of its extension. In other
words, the correlation between binding and (89) is no accident.
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The set assignment (89) maps each propositional function onto its
extension with respect to the bound argument or variable. Any
other binding mapping, if it binds the same argument, must also
make reference to that extension. This is exactly the semantic
significance of the binding property.

‘Because of this basic character of (89) or (73), we intro-
duce the following definition:

Definition 5 (Standard Set Assignment): Let s* be the
set assignment defined by

(101) ~ sx(f,8) = @‘;_f»

<DR>

s* is said to be the standard set assignment.

The standard set assignment enables us to caorrelate elementary
quantifiers with their set-theoretic relations in an intuitively
natural way. As is clear from formula (101), it is really a
schema depending on a. In other words, there are infinitely

many standard set assignments, one corresponding to each

variable or argument that could be quantified, but what {101)
says about each such argument is the same. Other set assignments
are definitely of interest from a mathematical and meta-theoretical
point of view, in our proof of the independence of set-theoretic
expressability and binding, for example, but (101) is all we

nead 'to complete our formal characterization of quantifiers.

Section 4: Quantifiers as Equivalence Classes

In Section 1 we defined an elementary quantifier as a set-
theoretically expressable binding operator and we pointed out
that a surface quantifier seems intuitively to be associated in
some way with the set-theoretic relation that is expressed by the
elementary quantifier that appears in its place in semantic
representation. In Section 2 we noted that there can be elementary
quantifiers that seem intuitively to express the same set- |
theoretic relation, but that differ in the number of propositional
functions they operate cn and so are different elementary quanti-
fiers. We got around this problem by defining a normal form for
elementary quantifiers through abstraction away from the number
of propositional functions. What we did, in essence, was to
partition the class of elementary quantifiers into equivalence,
classes with equivalence taken to be the property of having the
same normal form. A normal form was then taken to be repre-
sentative of &1l elementary quantifiers whose normal form it is.

in Section 3 wé noted the further problem that a‘given sét;
theoretic relation can be expressed by any number of different
elementary quantifiers of different normal forms by choosing
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different set assignments. We got.around this problem by
choosing s* as the standard set assignment because of its intui-
tive interpretation as the .extension of a propositional function
or wff with respect to a given argument or variable and because
of its occurrence as a part of the other set assignments that
produce binding mappings. This solution can also be interpreted
in terms of equivalence classes. |f we say that two elementary
quantifiers are equivalent if they express the same set-theoretic
relation under some set assignment, then each set assignment
defines an equivalence class in a partition of the class. of
elementary quantifiers. |In this case, however, we singled out
one of these equivalence classes for special attention, rather
than singling out one member of each class as representative

of its class.

The formal definition of quantifier can be obtained by
taking yet another equivalence-class partition of the class of
elementary quantifiers. What we have really done -in the last
two sections is to determine how to express in formal terms the
intuitive notion that elementary quantifiers represent the same
surface quantifier if they express the same set-theoretic
relation, that is, that quantifiers are determined by set-theoretic
relations. This is formulated explicitly in the following
definitions: - CL .

Definition 6 (RelatidﬁaT:Equiv319nce); Let q, and 9,
be elementary quantifiers and let s be a set
assignment such that beth 9, and q, 'are expressable
in set theory under s, ,We say fhat,-_qI and g, are

relationally equivalent under s if the same set-
theoretic relation is expressed under s by their
normal forms.

Pefinition 7 (Standard Elementary Quantifier): Let q
be an elementary quantifier. We say that q is
standard if it is expressable in set theory under
g%, : :

Definition 8 (Quantifier): Let Q be a set of standard
elemtary quantifiers. Q is said to be a quantifier
if there is a standard elementary quantifier q such
that every member of Q is relationally equivalent
to q under s* and Q is closed under relational
equivalence under s*, The order of Q, written

order(Q),

is defined to be the order of any of its members.
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Definition 9 (Quantificational Relation): Let Q be a
quantifier and tet q be a member of Q. The set- .
theoretic relation expressed by the normal form =
of g under s* is said to be the guantificational
relation expressed by Q. .

In accordance with our previous discussion, Definition 6 says
that we will treat two elemtary quantifiers as the same entity.
under s if their normal forms express the same set~theoretic
relation under s. This means that we will really be talking
about normal forms in what follows. Definition 7 fixes s as
s*, because this is the only“s that really corresponds to our,,
intuitions about quantifiers, and it tells us to be concerned, .
only with those elementary quantifiers that are expressable
under s*, Definition 8 identifies a quantifier with the set-
theoretic relation that is expressed by the elementary quanti-
fiers that represent it in semantic representation, subject to.
the foregoing comments about normal forms and the standard sef |
assignment.. Definition 9 underscores ‘this identity by expligj;ly
associating the quantifier with the relation. U

]

From one point of view, Definition 8 is the culmination
of our study, because it provides us with a clear and precise
explication of what a quantifier is. In fact, however, a lot...
remains to be done. As we will see in Part IV, the main
significance of Definjtion 8 is really that it provided the
background that makes Definition 9 possible. Quantificational
relations provide us, as we will see, with the basis for an
explanatory formal. theory of quantifiers in natural langauge,
including a principled way to represent quantifiers and modal
adverbs in the lexicon of a generative grammar. ‘

____‘..w-.f““—.".”"" "
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Pant 1V
The Theony of Quantificational Relations

CHAPTER 1: ULEXICAL REPRESENTATION OF QUANTIFIERS

Section 1: Explicit Forms of Quantificational Relations

The discussion in the ]asf chepter was rather abstruse,
but it was Important, because it provided us with a rigorous
theoretical foundation for the key notion of quantificational
relation. The quantificational relation expressed by a quanti~
fier is the relation that must hold among the extensions of the
wffs or propositional functions operated on by the quantifier
in order for the quantification in which the quantifier occurs
to be true. In the case of multi-untruth-valued quantifiers,
this notion can be generalized in the obvious way. HMore im-
portant than this general correlation between quantifiers and
their quantificational relations, however, is the specific
fact that guantificational relations contain all of the semantic
information that needs to be included in the jexical entries of

quantifiers.

As an example, let us consider the quantificational rela~
tion expressed by the universal quantifier. We saw in I11,3,2
that all is of order 2 and that the quantificational relation
that is expressed by it is given by

(1) Ra”(bo,bl,bz) = (by n b, < by)
under s*., We can express R 1 in an explicit form, without
reference to the set argumeﬁ%s b., by performing some formal
manipulations to *'factor out' the component relations that make
it up. In other words, we can express R_,, in algorithmic form,
as a sequence of consecutive operations gpplied to the set-
triple (bo,b],bz). Clearly this will do away with the arti-

ficial notational difference between formulas Iike (11(72) and

111(85).

To begin with, we can ''"factor out' the basic relation of
subset,

<.
to get

(2) Rypq(bgsbyaby) = clby n by,by)
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as a reformulation of (1). This says that Ra is the relation

of subset, holding between the two sets by N é: and b,. Next

we can ''factor out' the intersection relation, speC|fying that it
holds of the first two sets in the triple (b i’ 2) This can

be indicated by rewriting (2) in the form

'(3) R ](b b],bz,) = (E)ntz)(boyb]’bzabB)

where the subscripts ""12" tell us that the intersection applies
to the Ist and 2nd set arguments ofi the triple. What (3) tells
us is that the effect of R 211 ©n the trlple of sets (b b2) is

achleved by first taklng the :ntersectlon of b and b] and then

taking that intersection to be a subset of bz.

The usefulness of (3) consists in the fact that the set
arguments appear explicitly on both sides of the equation. As

a result, we can omit them altogether to get the more concise form

~(#) Rall {eony,)

The only information.that. (3) contains that (4) lacks is the '
order of the gquantifier, that is, the number of wffs that the.. .
guantifier's normal form operates on. This is one less than the
number of set arguments that the quantificational relation
operates on, as we have seen. We can correct this defect in
(4) by simply adding an initial order component to get

as the complete specification of R_,.,. The semi-colon in (5) .
serves merely to keep the order co%ponent separate from the rest
of the relation and is related to the semi-colons we have used
before only indirectly, through the definition of order. We _
will also find it useful to use the same algorithmic factoring
procedure to get explicit forms of the set-theoretic relations
expressed by elementary quantifiers that are not normal forms.
To be consistent with the use of an order component in quanti-
ficational relations, we will usean initial integer in these
other cases to indicate one less than the number of set arguments
taken by the relation. :

Explicit forms can be obtained for each of the other
quantificational relations we have seen in a similar way. In
iI11,2,3 we saw that the set-theoretic relationh expressed by

(6) (Some x)(B;A)
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under s* is given by
(7) Rsome x(bo’bl’bz) = (bO n b] n b2 )
In 111,3,2 we noted that some is of order 1, according to
Definition 4, so we can get R s the quantificational relation

expressed by some, from the ndPRs1 form
(8) {Some x} B

rather than from (6). The set- theoret:c relation expressed by
(8) under s* is given by

(9) R o (bgsby) = (by i by # 4) |
but if we keep in mind that b0 is always interpreted as D, then

we can reformulate (9) as

(10) Rsome(bO’bI) = (b0 n b] # Comp bo)

since A=Comp D. The symbol '"Comp' denotes the function that maps
a set onto its complement, the set of individuals that do not
belong to it.

Now we can factor out the relations in (10). Flrst we can
take out the # to get

some(b bl) = *(bo n b],Comp bO)

.

and then we can reorder the arguments of # to get

some(b b]) = #(Comp bofbo n b])

The reordering 1s possible because = s symmetric and we do it
to get the two occurrences of b0 together. This will simplify
things a little later on.

Now we factor out first the Comp and then the n, using
subscripts again to indicate which arguments they refer to at
this stage. This gives us, in sequence, -
bo‘n b})

(b 1) = (#,Comp],nz3)(b0;bo;bi)

Sc,me(b ) = (#.Comp,) (bo’

SOME
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Now the reason for the reordering becomes clear. We can
collapse the two occurrences of b0 into one by factoring out

the function Pair], which reduplicates the first member of an

n-tuple. This gives us the explicit form

(b ]) = (#,Comp],n Pair])(bo,b])

23°
in which the ordered pair (b b]) appears explicitly on both

some

'sides of the equation. As a result we can drop it altogether
and add the order of some as an initial component to get

{(11) Reome = (1;#;Comp],n23,Pa|r])
as our complete specification of R .
some
In 111,2,2 we saw that the set-theoretic relation expressed

by simpie Most aunder s* is given by

(12) R (bo,bl) = (K(b0 n b!) > K(b, n Comp b]))

Most o 0

The normal form of Most o, however, is of order 2, because ail
instances of most involve two differently functlonlng classes of
wffs, so we get

(13) R o {Bgsbysby) = (K(by'n by b,) > K(bg b]' n Comp b,))

! 0

in place of (12) as the quantificational relation expressed by
most. .

most

Now we begin the process of factorization. The first
thing to take out of (13) is clearly >, giving us

(b bz) = >(K(b0 nb

most l

Next we take out the function K, which maps each member of an
ordered n—tuple of sets onto its card:nallty, and we get

most

Now we take out the two intersection functions, which differ only
in their subscripts, to get

(14) R (b b yby) = (>?K’n23k’0123)(b0’b] 2,b b],Comp b2)

most

- The right-most intersection function operates first, to turn

n‘bz),K(bO n.bE n Comp b2))

(bgs r,=f(>’K)(b0an b, n bz,b0 n b] n Comp b,)
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(b bysby,b 0,b],COmp b,) into (b n b] n b2’b0?bi’C°mp.b2) and

then the other intersectson function operates, to turn this 4-
tuple into (b0 n b] fn bz,b n bI n Comp bz). Taking the function

Comp, out of {(14) now gives us

most(b b2) = (>,K,023h,n123,ﬁomp &)

(bbbb E)

2? O’Ji’

and taking Patr‘23, which redupl!cates the fl.st three members
of an n-tuple, out of thts formulation prcduces

(15) R (b I’b ) = (> K, n23b,n}23,Comp6,Pair123)
(by,by,b,)

which has the argument triple (bo. ], 2) occurring expllCltly

on both sides of the equality. This again enables us to drop
the set arguments entirely from {15) and, addlng an initiai
order component, we get

(16) R

st ™ (z;a,K,nZBk,n‘23.cOmp6,Pa1r123)

L

as the quantificational relation expressed by most.

Section 2: Manifold Quantifiers

Altham gives intuitive reasons for thinking "that a naturat
way to analyze sentences involving plural quantification is in
terms of notions belonging to set theory" (pp. 7-8), but he
immediately goes wrong, when ae tries to formalize this idea for
many. He introduces a new primitive symbol, "M', meaning '"'is a
manifold!, and transcribes a quantiflication of the form

{(17) Many B's are A's
in the form

(18)  (3x) (Mxs (¥y) (yex =+ (B(y} & A{y))))

The sentence
Many men are lovers.

for example, is written by Altham in the form

(3x) (Mxe(vy) {yex + y is a man and y is a lover))
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Such a formulation is not s;rictly set~theoretic, however,
because it depends-on the inew notion'M, which, ‘though deflnable
in set theory, does not “beiong“ to set theory proper.

Even if we correct thls deficiency in Altham's‘formu]ation,
however, we still find ourselves on the wrong track. We can make
(18) strictly set-theoretic by using ''M'" as a set variable,
rather than as a primitive predicate symbol, and defining "manifold!
explicitiy in terms of this new '""M''". This gives us

(19)  (3) (HD* AK (M)=na (¥x) (xeho (B (x) 48 (x))))

instead of (18), as an analysis of many *in' terms of nofions
belonging to set theory,' as Altham wouldsay.:: The number n, of
course, is the manifold size index and K is again the cardinality
function. |If we try to derive an explicit set-theoretic relation
from (19), however, we find that this Is impossible, because of

the quantificational character of (19) itself. The presence of
quantifiers in the formula that gives us the set-theoretic relation,
that Is, (19), makes it impossible to factor out any of the com-
ponent relations to get an explicit relat|on depend|ng on D B,

and A. . Cr b et :

We can still get an explicit set-theoretj¢.relation ex=: ..
pressed by many, however, by going back and starting over again.
The problem with Altham's formulation (18).:and our more precise
formulation (19) is that they are. unneceséarlly complicated,
using quantifiers to say something that could be said just as
well without them (This fact was pointed out'to e, ina ~
different context, by David Kapian (personal communication)).

Our analysis of many in 11,2,3.2 says that (17) is true under an.
interpretation if and only . If there are n distinct’ t-variants of -
that interpretation that satisfy B, every one of which satisfies
A. Set- theoretlcally, all this means is that theré must be at i
least n distinct individuals in the extension of "B with respect
to the quantified variable that are also in' the ‘extension of A
with respect to that’ variable. -in other words, ‘the number of
individuals that belong to both of these extensicons must be at
least n. {t follows that the very simple formula "

(20) K(b n BZ n AZ) > n
<DR® <DR>

gives us the set-theoretic relation expressed by relativized many
under s*. Since many, like most, is clearly of order 2, we get
(20) also as the quantificational relation expressed by many.

In contrast with the quantificational (19), the non-binding
(20) is easily made explicit. First we factor out the relation
“"at least n' to get

(>n) (K(D n BE n AZ))
<DR> <DR>
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and then we factor out the cardinality function to get

(>n,K}{D n Bf n A ))
<orY <pRf

Finaily, we take out the intersection relation to get

(>n,K,n,.) (D, BF, A%
123 <DR§lDR§

and we drop the EXP]ICIt set argumis;s and add an inlttai order
component to get

(21) R = (2;>n,K,n,,.)

many - 123

as the quantificational relation expressed by many.

Section 3: Qdantificationa! Relations and Lexical Entries

As we noted in Section 1, guantificational relations contain

" all of the semantic information that needs to be included in the

lexical entries of quantifiers. [f we assume that the results of
our general logical analysis of quantifiers in 11l is included
within universal semantic theory, then we can construct semantic
analyses of specific quantifiers, of the traditional sort that
we examined in Il, directly from the explicit quantificational

-relations that we derived in the last two sections. The quanti~

fier specific information, which is what must be included in the
lexical entry, is entirely contained in the guantificational
relation. -

The 'semantic part of the lexical entry for all, for example,
would be the ordered triple (5) and the obvious conventions for
transforming this ordered trirle into a semantic analysis would
be incorporated in universal semantic theory on the basis of
our discussion in the last two Parts. We could then start with
(5) and go through the following derivation:

(2;¢,0,)

(£:0) (bgsb;b,)
(£) (b n by,by)

nb, cb,

by N by

o o
Dn Wf E_éf
<pDR> <DR>

D n E[fz satisfies ¥ in <DR>]§E[f2 satisfies ¢ in <DR>]

(22) E{xeD and fz satisfies ¥ in <DR>]§E[f§ satisfies ¢ in <DR>].
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Formula (22) gives us a Kaplan-style analysis of relativized ‘all,
which is, in fact, the normal form of all. The statement

f satisfies All a(¥;0) if and only if (22)

is logically equivalent to each of the notationally variant
dnalyses of relativized all that we saw in 1], 1,3. We see that
Kaplan's notational framework follows naturally from the theory
of quantificational relations, as we have developed it in this

study.

The derivation that wékjust égu was constructed by reversing
the process by which we constructed the guantificational relation
(5) in the first place. It illustrates how we can construct a
similar derivation for any such explicit quantificational relation.
Most, for example, is an even clearer case than all, because the
semantic analysis of most that we have examined is aIready
formulated in Kaplan's notation. We begin with the relation (16)
and then unravel, step by step, the various Forma]tzatlons that
are encapsulated within it, -arriving at the derivation o

(2;>,K,n Comps,Palr]23)a

23&’ 123’
(>, K, »No3h D ]23,Comp6,Pa|r]23 (b b],b Y D

(> K034 53 Cortpg, ) (by, b *bz’bo’bl’bz)3‘. R

(>,K, n234’n123)( »bysb bo,b Cqmp?bzl
(>, Ksnp3,,) (b 0 by by»bgsysComp by)
(>,K) (bo n b] n bz,bo n b} n Comp bz)
(>) (K(bg n by n by),K(bg n by n Comp by))
K(bg n by n by) >K(bg n by n cOmp b2)
K(Dn ¥ n Qf}>K(D n Tf n Comp ¢f)

<DR> <DR? ) <DR> o <DR>
K(D n E[f* satisfies ¥ in <DR>]"n E[f® satisfies o

X X X X
in <DR>])>K(D n E[Fz-satisfies ¥ in <DR>]
n E[f* satisfies - in <DR>])
X X

(23) K(E[an and fi satisfies ¥ in <DR> and’fz satisfies &
in <DR>])>K(E{X€D and fi satisfies ¥ in <DR> and

fg satisfies ~& in <DR>]).

be determined. It is clear, howev
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The last line (23) of_this derivation is exactly the analysis of
relativized most that we constructed in 11,2,3.1.

Given an explicit quantiflcatuonal relation like (5), (11),
(16}, or {21), our theory automatically provides us with a-com-
plete semantic analysis of the corresponding quantifier. It
follows that we can take these quantificational relations as the
lexical entries of quantifiers in a generative grammar, insofar
as these contain semantic information. Exactly which set-theoretic
relations, such as cardinality, subset, greater than, and "'pair", '
are required is an emp:rtca] question, whose answer is still to

5@' that there will be & very

limited number of such relations and these can be taken to be
substantive universals in semantic theory.
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CHAPTER 2: SIMPLIFICATION. AND RELATIVIZATION.

" Section 1: Simple Quantification and the Universal Domain

Throughout this study we have equivocated on the meaning
of simple quantification. Given a simple quantification like.

{24) (Some x) A

we have sometimes lnterpreted the ﬁ&antafler involved to. mean
something and we have sometimes tnterpreted it to mean someone,
without ever speC|fy|ng_how to choose the appropriate inter-
pretation in specific cases. The semantic representation of

{25) Something is provable.
we have taken to be

(26) (Some x) Provable(x)
and the semantic representation of

(27) Someone is a linguist.
we would take to be

(28) (Some x) Linguist(x)
but no principled basis has been provided for explaining why the
"Some x'"' in (26) is realized as something in (25), while the
“Some x'"' in (28) is realized as someone in (27). It turns out
that the quantificational relations introduced in Definition 9
provide us with a very natural framework for expressing and
explaining the distinction between simple and relativized

quantifiers, on the one hand, and the distinction between the
varieties of simple quantification, on the other.

Intuitively, it is clear that the difference between (26)
and (28) lies in the predicate, that is, in the quantified wff.
We interpret '"Some x' in (28) as someone, because only people
can be linguists and someone refers to people. We interpret
"Some X" in (26) as something, because only non-people, that is,
things, can be provable and secmething refers to things. The
problem is how to express this very simple intuition in formal
terms.

The problem is easily solved in terms of quantificational
relations. A quantificational relation, formally speaking, is
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an ordered set, whose first member is a positive integer, the
order of the quantifier, and whose other members constitute an
algorithmic sequence of consecutively applied set-theoretic

.operators. These operators operate on (n+1)-tuples of sets, the

first of which must always be D, variously called by logicians
the domain of discourse, and by mathematicians the universal set.
We will call D the universal domain as a compromise.

- The universal domain is the set of all individuals that
can be talked about, that is, that can be referred to by a
bound variable like "x'. it followg that we can distinguish
between the snmple quant:flcataon in (26) and the sumple
quantification in (28) by allowing our theory to recognize two
universal domains, rather than one. In other words, we can
reinterpret the symbol '"D" to be a set variable, rather than a

set constant, and permit it to take two values, D and D
we can take to be the set of things and D, we can take tg be lhe

set of people, with the value of D determining the surface
realization of the simple quantification in which it occurs.

In accordance with the intuition about (26) and (28) that
we discussed above, the choice of D] or D2 can be made to depend

on the quantified wff in the simple quantification. -Presumably,
the predicate '"Linguist' would be listed in the lexicon {(or
somewhere else) as [+Human] (or some equivalent notation) and the
predicate '"Provable' would be listed as [-Human]. A redundancy
rule would assign D, to a predicate marked [+Human] and D, to a
predicate marked ﬁuman], automatically making (25) the surface
form of (26) and (27) the surface form of (28). Other rules
would also be necessary for more complicated wffs, but these
would parallel the formation rules for semantic representations.

Let us examine this intuitively plausible proposal in more
detail to see if It works out technically. We saw in i1V,],1 that
the quantificational relation expressed by some is

(29) (I;#,Comp],n23,Pair]).

Through similar reasoning we can see that the quantificational
relation expressed by no is obtained by replacing "'#"' in (29)
with "= to get

(30) (];=,C0mp],n23,Pa:~]).
Since "Linguist(x)' is [+Human], combining it with (29), as
indicated by (28), gives us

, . s X
(31) (#.Comp].,nzs,Paar]}(D2 Lsnguast(x)f)c

<DZ,R>
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D, appears in (31) precisely because ”Ljngqist(x)ﬂuis [+Humait] .
From (31) we can construct‘the-following derivation: ‘ it
(f,Compt,OZB)(D 2,nguast(x%) N
' <D, R> .
| 2
(#, Comp])(Dz,D2 n ngguéit(x)f)
2 _ . .

(# Comp D,,D, n L|ngu15t(x) )
2772 < R>' OE .

. Comp D # D, a Llngulst(x)f e - o Ce
: <D,R> o S .

(32) ~ Comp D, % D‘ n $[f¢ satfsfies.Lingﬁ?st(x);jnst R>1;

The symbol ”5“ appears in (32), rather than the’ ”E“ that we have

seen before, simply because "x'' is already used as an obJect-
language argument of ''Linguist', Since the o!d ''a'' has become
“x” in (28), the old "'x'' must become Hytt, o .

* o 4 . L

_ A serlous prob]em becomes apparent in formula (32), when we
focus our attention on the set Comp D The complement functlon
originally appeared in Rso e in Iv,1, % as a.result of the
appearance of the empty 3et A in its. non eprIC|t form. Slnce
we need Comp anyway for other quantsflcatlonal reIations and
since D is automatically the first argument of any quantlflcatlonal
relatlon, we could avoid |ntroduC|ng a new symbol FIAM by writing
it as ”Comp D". When we let D take on two values, however, Comp
D is no longer always the same as X. Comp. D, is st|l] A, if we |
let D, be the set of all things that exist at aill, but it will.
not be A, if we take D, to be the set of non- human things, as we
suggested above. In the latter case, Comp D, would be the same
as D,. Comp D., similarly, is not A; if we take D, to be the set
of péople, as We want to. It Is samply -the' set of "non-human’
things. L

It follows that (32) does not say what we want it to. |If
Comp D, is not X, but the set of non~human things, ‘then (32}f
cannot possibly be false and -the corresponding formula R

(33) Comp D, =D, n E[f, satisfies LlngU|st(x) in <D R>]
2 2y y e

T

for no, which we can derive in a similar way from (30}, cannot,
poss:ny be true. Formula (32) says that, the set of people who
are linguists is not the same as the set of non-people. This
cannot be false, even if there are no linguists. at all, because
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there are non-people. S|m|lariy, (33) says that the set of

people who are linguists is the same as the set of non-people,

a statement that cannot possibly be true, because people are not
non-people, whether they are linguists or not. The problem is
that we want (32) to say that the set of people who are linguists
is not the same as the empty set, not that it Is not the same as
the non-people set, and we want (33) to say that the set of people
who are linguists is the empty set. Comp Dz, however, Is not

the empty set.

We can get (32) and (33) to say what we want them to by
making a slight modification in the quantificational relations
from which we derived them. The set of people who are linguists
cannot possibly be the same as the set of non-peopie, but it can
be a subset of that set, if it is itself empty. This is important,
because what we want (33) to say 1s precisely that the set of
people who are linguists is empty. In other words, we can get
(10} to say that the set of people who are linguists is empty by
formulating it to say that that set is a subset of the set of
non-people. Formally, what we have to do is to replace in-
equality and equality in (32) and (33), respectively, with non-
superset and superset, respectively. We want (32) to have "%,
instead of "#'", and we want (33) to have ''s"' instead of ''='",

We can get (32) and (33) into this form by replacing ''#"
in (32) with "¢,." and "=" in (33) with "' We use these symbols,

rather than sup€rset symbols, because we a%ready need the subset

relation and the subscript device, so we mlght'as well use them,
rather than IntrodUCtng a new relatton and symbol - |nto our theory.
What we get is

(34) (1;#2],Compl,n23,Pair])

instead of (29), as the explicit form of R and
: some

(35)  (15¢5),Compy,ny5,Pair))
instead of (30) as the explicit form 0f=Rno'
In place of (32) we get
X . e . . . '
(36) D, n EIFY satisfies Linguist(x) in <DZR>] ¢ Comp D,
and in place of (33) we get
X . e o . SO
(37} b, n g[fy satisfies Linguist(x) in <D2R>] < Comp D,

Formula (36) says that the set of people who are linguists is
not a subset of the set of non-people, a statement that is true

if and only if the set of people who are linguists is not the



Cushing 138

empty set. This is exactly what we want it to say,.as a semantic
analysis of (28). Formula (37) says that the set of people who
are linguists is a subset of_the set of non-people, a statement

that is true if and only if the set of people who are linguists is

the empty set. This.is exactly what we want it to say as. a
semantic enalysis of :

(No x) Linguist{x)
the null analog of (28).

We see that our. proposa! for J:stlngulshlng the two -
varieties of simple quantification exemplified in (25) and (27):
by having our theory,recogane two distinct universal domains -
works. We had to modify slightly two of the quantificational
relations that we had constructed on the assumption that D was.
single~valued, but no fundamental problems. seem to arise. .We.
noted that Dy could be taken to be. either the set of non-human:
individuals or things or the set of all individuals, human or ..
otherwise. Since the former set can easily be denoted by ‘Comp-
D,', we might as well take the latter choice as.our interpretation
o DI’ with [-Human] still a feature determ|n:ng choice of. D‘

We developed the variable interpretation of D to distinguish
between -thing and -one, but we can use it more generally to
dlstlngu15h the other varieties of ssmpIe gquantification that we
saw -in I,1, L as well, All we need to do to account for the simple
tlme and p]ace quantlflcatlons that we examined in that section .
is to introduce two more universal domains. D,, a conceptual
equivalent of which is used by Prior (1957) to”develop a system:
of tense-logic, can be interpreted as the set of times and D
can be interpreted as the set of places, just.as D, is inter-
preted as the set of people and D, is the set of t%lngs We will
see in our final chapter that the seemingly entirely different
category of modal operators can also be accounted for in our
theory simply by introducing another universal domain, DS.

Section 2: Simple and Relativized Quantifiers

Our theory of quantificational relations also provides us
with a framework within which to understand some of the intuitive
facts about relativization that we saw in I,1,4. What we said
there was that a quantification is simple, if it involves one .
wff (or propositional function), and relativized, if it involves
two wffs. Later, in I},4, we said that a quantlficatlon is
generalized, if it lnvo]ves three or more wffs. We can make
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these [ntuitive notions more precise by turning them into
criteria for classifying quantifiers, rather than surface
quantifications, as foI]ows-

Definition 10 (Simple, Relativized, and Generalized
Quantifiers): Let Q be a quantifier and let .

-ordertQj Q is said to be

(a) simple, if n=1;
(b) relapivized? if n=2;

{(c) generalized, if n>3.

Inlll,3,2 we saw that some, no, and the numerals are the only
quantifiers that occur in English whose members are of order 1,
that the members of all are of order 2, and that the elementary
quantifiers that belong to the are of order 3. It follows,
according to Definition 10, that some, no, and the numerals are
the only English quant:flers that are simple, that all is a
relativized quantifier, and that the is generalized.

Given Definition 10, we can begin to make some sense,
formally speaking, of the intuitive discussion of relativization
that we had in 1,1,4. First we need another definition, as
follows:

Definition 11 (Simple Occurrence of Relativized Quantifier):
Let Q be a relativized quantifier and let '

(38)  (Qa) (v;@)

be a formula (semantic réprésentation) that contains
Q. Formula (38) is said to be a simple occurrence
of Q if "Y' is of the form

(39} aeD.
in such a case we also wri;e..
(40) (ca)e

as an alternate (equivalent) form of (38) and we
say that (40) is a simple occurrence of Q.

Simple occurrences of relativized quantifiers, in other words,
are a device for making -relativized quantifiers, in the sense
of Definition 10, look like simple ones, in the same sense, when
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‘the first quantified wff is general. .

It makes sense to write (38) aé.(hﬁ); whén iyl is . of the
form (39), because of what happens when we take '¥" to be (39)
under the standard set assignment. Suppose we take most as our
example and replace "¥'' in (23) with (39):_ This gives us the
formula ' A
(41) K(E[XED and fi satisfies aeD in <DR> and fi
satisfies ¢ in <DR>]) > K(E[xeb and fi satisfies
aeD in <DR> and #i satisfies =¢ in <DR>])
as the truth condition of

(42) (Most ) (¥;0). . o N >
when Hyn iS,(39); The assignment function:fi satisfies the -
formula 'aed", however, if and only if x is a member of D, 50 |

the statement _ o . R T

fi satisfies aeD in <DR>

'séyé t;e ;ame.thing as -
xeD
This means that.(ha).ﬁays}fhe‘éamé thiﬁg as
K(g[xeD and xeD and fz satisfies ¢ in <DR>1)
| > K{E[XED and xeD andifi sgtisfies 2% in <DR>J)
which itself reduces to

'

(43) K(E[xeD and fi'satisfies ¢ in <DR>])
> K(E[xeb and fz satisfies ¢ in <DR>])
because the second ''xeD' is superfluous. Formula (43), howgver,
is exactly what we found the truth condition of most t? be in
11,2,2, when we naively took it to be a simple quantifier.

We see that a formula-like‘

(44) (Most a)d¢ . _ | _ f , ) !;‘,

is Eeé!ly.an abbreviation for (42) under the conditions speci.-
fied in Definition 11. Relativized quantifiers can have simple
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occurrences, but they are still semantically relativized. The
genuinely simple quantifiers, |ike some and no, are genuinely
simple for deeper semantic reasons that we have already examined
in great detail and gummarized in Definition 10.
‘ t

.~ Definition 11 enabies us to explain the fact, noted in
1,1,4 and #11,3,2, that only can occur only relativized. All we
need to do is to apply the definition to the presupposition and
assertion of only and see what happens. The presupposition of

(45)  (Only o) (¥;0) , s

as we saw in 11(100), is the relativized existential quantifi-
cation

(46) (Some ) (¥;¢)

and the assertion of (45) is the relativized universal quantifi-
cation

(47) (A1 o) (e;¥)
The set-theoretic relation expressed by (46) is given by

(48) D n ¥ n @? # 2
'<DR§-<DR>

as we saw in 11(46), and the quantificational relation
expressed by (47) is given by

-(49) D n ¢g < T?
<DR> <pR>

as we saw in t11(48), Technically, we should use a slightly
modified version of (48), as we discussed this in our last
section, but (48) will suffice for our present purposes.

Definition 11 tells us that any simple occurrence

(50) (only a)e
of only is semantically of the form (45) with

(51) ¥ = (aeD).

It follows that the presupposition and assertion, respectively,

of (45) are of the form (46) and (47), with the stipulation that f

(51) holds. This means that the set-theoretic relation (48)
of the presupposition becomes

g te



[
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D'n (aeD)? n ¢$ # A

<DR> <DR>
which reduces, first, to

Dnbn ¢$ £ A
<DR>

and then to

(52) D n 0% # 2
<DR£

It also means that the quantuflcational reiataon (#9) expressed by

the assertion becomes

o
Dnd. c (aeD)‘
<DR§ ~ <Rt

which reduces to

(53) Dn

Formulas (52) and (53) give us, respectively, the set-theoretic.
relations expressed by the presupposition and assertion of (50).

Formula (52) presents no problem, because it gives us the
quantificational relation expressed by the simple existential
quantification

(54} (Some a) @ o ‘ : ;.‘, ,{T

A1l it says is that there are some things that have the property
and this can be either true or false.

Formula (53), however, is peculiar, because it can never .be.
false. What (53) says is that the individuals that have the .
property ¢ are individuals, something that we knew anyway, whether
or not there even are any such individuals. The point is that the
intersection of D with any set, even the empty set, is a subset of
D, so there would never be any point, other than a pedagogical or
exposstory one, of asserting that this is true of a particular
set.

' Getting back to English, this explains why the ‘sentence
(55) *oniy things are provable.

which we saw in 1,1,4 and 11,3,2, is semantically anomaloge. :The
presupposition of (55) is ' -

*- (56) sSome things are provable.

a surface realization of (52), and its assertion-is
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o (57) *a11 pro&ebleitb{ngs*ére things}

a surface realization of (53). Sentence (56) is perfectly normal,
but (57) telis us nothing we did not know .already. Sentence (55)
is not semantically anomalous because it is meaningless or self-
contradlctory It iis true if there is even one provable thing
and it "lacks itruth value" if there are no provable things, JUSt
1ike any other sentence whose, presupposntlon fails to hold. The
reason (55) is ‘peculiar is that there are no conceivable. c;rcum-
stances under which it would be false. For our purposes, the
most signlflcant aspect oF this snfﬂ%tlon is the fact that ‘it
follows directly from one “of the most fundamentaI notions of set
theory, the fact that the un;versa] domazn sncIudes everythlng
that there is. . :

The two deflnltlons cf this section a]so enable us to
make some sense of the comparative facts of quantification in
Greek, Latln, German, and English that we discussed intuitively
in 1,1, Semantically, we have seen that some and no are simple

”“quantlflers, unlike nearIy all of. the other quantufrers we have

discussed, because of the normal- form properties of their set-.
theoretlc relatlons We can now see. that it.is this fact that

' underlies “the speC|aI treatment given to some_ and no . in, Latin

and Greek. As we saw in I,1,2, both Ianguages treat the rela- _
tivized quantifiers in more or less the same way, as adJect|ves,
but "they both provide special treatment for each of the two
semantical!y simple quantifiers some and no. Some numbers. also
receive special treatment in both languages, but the numerical
quantlfiers are -also- easnIy shown to be S|mple, just 1ike some
and no.’ Latln generailzed its treatment of some, and no somewhat
by using it also for a silghtly broader cTass of quantiflers,
such as other. which are closely related to some 1n meaning, but
this does not alter the basic contrast with its treatment of the
general class of relativized quantifiers,

In our intuitive discussion of English and German quanti-
fication in 1,1,4 we pointed out that quantifications in those
languages that snvolve the classical quantifiers can collapse
their quantifiers and their first quantified property into a
single word, if the quantifications are simple. Not surprisingly,
at. this point, two of the. collapsible quantifiers turn out to be
the semantically simple ones some and no. The thlrd collapsible
quantifier is the relatnvuzed quantlf;er all, whlch is inter- ...
definable with these two snmple quantlflers in-the’ sense . that we.
discussed tntuntively in 1,2,1 and that we will examine in depth,
in the next chapter. No other re]atiV|zed quantuf:ers are

FURTIRA v S,
’ . PR A -
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collapsible in this way, so the collapsibility of all can be

viewed as being attributable to the pressure for surface uniformity
brought to bear by this deeper semantic interdefinability.

SectiOn 3: Reducibility

Although both processes involve the apparent transformation
of relativized quantifiers into simple ones, the phenomenon of
reducibility that we examined in Ii is very different from the
simplification phenomenon that we analyzed in the last sectlon.

A simple occurrence of a relativized quantifier stlil contains
the second wff as a quantified wff. Formuta (42) furns into (hb)
with ¢ quantified in both. The first wff, ¥, disappears, because,
in terms of any real contribution to the meaning of the sentence,
it was never really there. As an instance of 'a=D'", it adds no
information to (42) that could not be expressed in (44),‘s|nce

D itself is already an'argument of any Set-theoretic”refation.

Reducnblllty, in contrast, replaces the two" wffs with some
truth-functional combination of them and ‘it places no restrlctlons
on the form of Y. Whether or not a relativized quantification is
reducible to a simpie occurrence is a property of the quantlfier
itself, not of the form of the wffs it operates. on. As we saw in
i1, the universal quantifier is reducubie, but most IS not, re-“
gardless of the form of ¥, ) *

[

 We can formaltze these facts as follows.”
Deflnstlon 12 (Reducnblltty and Reduced Form of Relativized
Quantefler) Let Q be a relativized quantlfser.,fQ ‘
is said to be reducible or reducible to its simple
form if there is a truth- functlonai mapping t from
_ R2 into R such that, for every ¥, eR, the simple )
occurrence

(58) (Qa) t(¥,o)
is equivalent to the fetmuia‘l

(59)  {Qa)(¥;2), L
The lmportant thing to realize about this definition is that (58)
is a simple occurrence, as defined in Definition 11, because .
t{¥,%) is a gingle member of R, This contrasts wlth the expllcrtly
relativized quantification (59), in which Qu operates on the.
ordered palr (¥,8) of members of R This also explains, of _
course, the appearance of a comma in (58), initead of the semi-
colon of (59). As long as we speC|fy_that we are dealing only

Cushing 145

with normal forms, we couid get by with commas in formulas Iike
(59), but we will retain the semi-colon for clarity.

The fact that some relativiéed quantifiers are reducible
and others are not is easily explained in terms of their quanti-
ficational relations. The quantificational relation expressed

by the formula
(60) (A1l a)(¥;¢)
for example, is given by

(61) D n Wf < ¢f
<DR> <DR>

as we saw in connection with (22). It follows that the set-
theoretic relation expressed by any simple occurrence

(62) (A11 a)T
is given by

(63) D c I'%
<pR>

because (62) is just an abbreviation for

(64) (A1l a)(aeD;T)

as specified in Definition 11, and s*{a=D)=D.

What Definition 12

says is that all is reducible, if there is a truth-functional

mapping t such that
(65) T = t(¥,9)

and (62} is equivalent'to (60) for that T.

One of the most useful properties of the standard set
assignment, provable directly from Definition 5, is the set of

relations

(66) s*A = n(s*,s*)

wn
Ea

-l
H

u(s*,sx)

§¥-

Comp s*
s*(truth) =D

s*(falsity) = A
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and their inverses. In other words, the extensnon of a con-
junction is the intersection of the extensuons of the conJuncts,

and so on. We have already used the third ‘relation in (66), when
we took 111{38) to be the same as 111(39) in 111,2,2. It follows
directly from (66) that, if we can find a set vy that is expressable

entirely in terms of ? 2% .

4 <DR> QDRﬁ D, A, n, U, and Comp, then we can
take

(67) s*(r) = )
s0

(68) T =s'(y),
The inverses of (66) then-give us t.

With a little reflectson we can see that formula (61)
equivalent to the formula :

(69) D < (Comp W%) U @?

<DR> <DR>
The equivalence is easy to illustrate in terms of Venn diagrams
and just as easy to prove from the basic properties of the
set-theoretic operators involved. . |f we:now take = - o

(70) y = (Comp W?) y Q?
<DR> <DR>
* and apply'(68),~then we get. .
(71) T = s*-]((Comp W?) U @? )
<DR> <DR>

Applying (66) to (71) gives us, first,

K= %
r=s ) (Comp ¥V s ‘(qs)
. <prE <prf

and then

-¥Vd.

(72) T

The disjunction in (72), however, can be rewritten as a material
implication, giving us :
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(73) T = ¥o0
aﬁd
t =5,
Comparing (69) to (63) and comb|n|ng (73) with (62) gives us the

result that (60) is equivalent to, and thus reducible, in the
sense of Definition 12, to

(74) (M1 )y > 8), -

This is exactly the result that we got intuitively in 11,1,4.

As an example of a non-reducible quantifier we can take
most. |If most is reducible, then we should be able to find a
truth~functional mapping t*such that the reIatnv:zed
quantlflcatlon expreséed by

(75) (Most»q)(w;¢) .
is.equivalent to the sihple occurfence
(76) (Most a) t(y, ¢)

The quantlflcat:onal relation expressed by (75), as we have already
seen, is given by

(77) K({D n ?F n ¢:) >K(D n WF n Comp , ¥, %.
<DR> <DR> <DR> <DR>

If we take I' as in (65), ‘then the set- theoretlc relatron expressed

by (76). is given by

(78) K(DrxP“) >K(D n Comp rf)
<DR> <PR>

as we can see from (43). It follows that most is reducible, if
(78) is equivalent to (77) for some choice of t in (65).

It is not difficult to see that there is no such t.
Formula (66) tells us that (77) is equivalent to

(79) KD n (¥ A ¢)f) > K(D n.{y A -)% )
<DR> <DR>

and that (78) is equivalent to

(80) K(pnrT ) > KD a (-1)% )
<DR> <DR>
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Formulas (79) and (80) can be equivalent only if the formulas

¥ A

(81) r

(82) ~f ¥ A-d

both hold. From (81), however, we can derive the formuila

“T = ~¥ V -

which is incompatible with (B2), ifuwe expect both -equations to
be identities, true for all ¥ and ¢. |t follows that there is
no t that wiill make (77) and (78) egquivalent via (65) and thus -
that most is not reducible.

It is worth pointing out that the question of non-reduci-
bility vs. reducibility does not depend on the explicit forms :
of the quantificational relations, but on.their interaction: with
the values of s*, [t is the set-theoretic content of the
relations, not their form, on which reducibility depends.. The
explicit form of simplified a1l in (63) is just the relation

83) (;2) -

which is almost the same as the explicit form of relativized
all that we saw in (5). The explicit form of. SImpllfled ‘most,-
as given in (78), is the relation P w

(84) (I;>,Kfn23{n]2,00m?#,Pairlz?. . .j | o

which is exactly the same as relativized most in 16), except
for the initial “order" number and the subscripts.’ Neither '(83)
nor (84) gives us any clue from their form alone as to the
possible reducibility of their relativized versions.

N
s
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CHAPTER 3: THE GROUP STRUCTURE OF QUANTIFICATION

Section I: Quantificational Relations and'tﬁterdefinabil}fy

in 1,2.1 we examined the following relatnons that hold
among’ the%three ciassncal quantifiers:

x;‘

é(BS) fsom ‘=inot no = not all not
not some = no = all not
not some not = no not 311

We can gain a better understandjng ‘of these relations by examlnlng
the way in which they refject the quantificational relations of
their quantifiers. To begln wnth we have to equalize the number
of set arguments involved, because some and no are of order I, but
all is of order 2, This means that the relations in (85) hold
strictly of the elementary quantifiers that are members of the
quantiflers involved, rather than the quantifiers themselves. |If
we take care to interpret (85) in this way, then we can still .
treat the relations as holding of the quantifiers, as they would
in the case of quantifers of equal orders. :

What we want to do is to compare the set-theoretic .
relations ‘expressed by the members of all, some, and no to see
if the relations in (85) can be seen in them in some form. We
get the same results, whether we compare simplified all with some

‘and rio or relativized some and no with all, so we will consider

only the former case.

As we saw in IV,2,1, the quantifibational relation
expressed by some is "

(86) Reome ™ (l;izi,Comp!,n23,Pair])

and the quantificational relation expressed,by no is

(87) Rno = (1;c Compl,n23,Pa1r )

S’ |
Comparung (86) and (87) makes their relat:onshlp obvious. The
only idfference between the two relations is that (86) has a
'EEH where (87) has a ''<"'. Apparently the fact that

some = not no

;nd

no = not some '
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_is reflected in the fact that‘ihe_f??st relational conponent of

each relation is the negati.a of that of the other. .
As we saw ip ]V,l,l,_fhe_qrantificatioga!_relatgom
expressed by allfis . . ST

(88) R = (2;¢,n

all 12)

This means that the foirmula
(89) (At1 a){¥;¢) Rt

.is true if and only if the relation (88) holds of the two sets

s*{¥) "and s*(¢) in that order, preceded by the set argument D,
To compare (88) properly with (86) and (87) we must first trans-
~form it into the set- theoretlc relatlon expressed by a s;mpie ‘

v occurrence

| _.(90) (An a)rb. 4 ( L
Asgye.eaw in Iv,2,2, (90) ss rea!ly of the form
(81) (All a) (aeo;.qs)

whzc? is true if and only nf (88) hoids of the sets o, D, and
s*(d : .
) . _ R PR S

' if we actually apply (88) to these sets, ‘we get. |n sequence,

(s,ny,) (0,0, o3 a
<DR§

(c)(Dn D, ¢ )
<DR>.

(92) D nDc o
<DR>

D <

$
<DR

”(<D§£ o R

Ve R

This gives us

1
(93) R,y = (1;9)

where the 1's indicate one less than the number of set arguments
invoived, not the order, as the set~theoretic relation expressed
by simplified all.
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A direct comparison of (93) with (86} and (87) tells us
nothing about the origin of (85). There seems, on the surface,
tc be no relation between the form of (93) and the forms of the

other two relations. We can transform (93) intoc a more reveal ing

form, however, by applying a little set algebra. According to
(69), (92) is equivalent to the formula :

(34) D < (Comp D) v @f
& e <DR> . s %
0 8 _
Since taking Comp's reverses the order of 'the subset relation
and turns unions into intersectlon§‘ formula (94), and therefore
formula (92), is equ:valent in sequence to -

Comp D> Comp((Comp D) v ¢?

<DR>

Comp D > {Comp Comp D) n Comp . @?

(95) Comp D 2Dn Comp' @?.
<DR>

Putting (95) into explicit form, we get, in sequence '

(<. )(Comp 0, D n Comp Qf)
oo <DR>

Comp])(D D n Comp ¢£

(c,y»
21 <R

(c,,,Comp )Ny )(D D,Comp & )

Compl,nZB,Pair ) (D, Comp @f)

(C s
. —21 <DR>

(96) (<,,,Comp,,n,.;Pair, ,Comp,) (D, o )
—~21 17723 1 2 <DR>

From (96) we get-
1 .
(97) Rypr = (I;Ezeromp],nzg,PalrI,Compz)

as an equivalent form of (93) for the set-theoretic relation
expressed by simple all. . :
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Formula (97) is significantly more complicated in- its
formuiation than (93) and is thus less useful for some purposes.
As the lexical entry of all, for example, we would most l:keiy
choose the relativized version of (93), rather than that of 97),
because of the forimer's greater simplicity. For.our present :
purposes, however, (93) ‘is useless, as we have seen, but (97) is
exactly what we peed. Formula (97) is exactly the same as
formula (87), except for the additional fihal component, Comp..
What this shows is that the equivalence of no and all not, as
expressed in (85), is a reflection of the final Comp, in the set-
theoretic relation expressed by all. - This result should not -
be surprising in view of. thg relauwns contauned int (66)

The other tnterdeflnabllsty reiationshlps we have dis-
cussed are reflected set-theoretically in exactly the same way.
tn 1,2,1, for example, we saw Altham's relationships

(98) many = not few = not nearly all not
not many = few = nearly all not

, not many not = few not = nearly"all.
For these quantifiers there is no need to equaiize the number
of set arguments, because all three of them are of order 2.

.. As we saw in IV,1,2, the quantlf:catlonal relatlon ex-
pressed by many is

(99) R = (232, "’”123’

According to the analysis‘that we just made of the classical
quantifiers, the quantificational relation expressed by few, since
it is equivalent, according to (98), to not many, should be the
same as (99), except that its initial relational component

should be the negation of >n. This gives us

(100) R = (2;<n,K,n

few 123)
as the quantificational relation expressed by few.

If we expand (IOO) in the usual way, we gét the derivation

]

(<n,K,n.,.)(D,¥ P 8%) _ . :
]23<DR><DP; S P

{<n,K}{Dn w n &%
<orS <orf

bt

e

T R T

R

(<n) (K(D n Y?
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23))
:DRE

<DR>

K(D n ¥¢ no%) < n

<R} <prf

K(D n E[Fz satisfies ¥ in <DR>]
n E[Fa satisfies ® in <DR> 1) < n

(]0]) K(£[xeD and f satisfies ¥ in <DR>
&

and f satisfies ¢ in <DR>] n

Formula (101} is clearly just a Kaplan-style notational variant
of 11(5}) and thus is exactly the analysis of few that we want.
We got it by applying a relationship we discovered to hold in
the case of some and no to the quantificational relations of the
analogous quantifiers many and few. Again we see that Kapian's
notational framework follows directly from our underiying set-
theoretic theory of quant:flcatlon. '

Since nearly all is equivalent to few not, according to
(98), our analysis of all and no suggests that the quantificational
relation expressed by nearly all should be

(102) R = (2;¢n,K, ”123’c°mp3)

nearly’ all’
Expandlng (102) gives us the derivation

(xn,K,n ,Comp ) (D, y& , @ )
123 37 orb<ort

{<n,K,n, .. ) (D, ?f,Comp Qf)

]23 <DR> ' <DR>

(<n,K) (D n Tf n Comp & )
<DR> <DR>

(<n)(K(D n T n Comp % ))
<DR> <DR§

K(on v¢ nCme)
<DR£ <DR>'

K(D n ;[fz satisfies ¥ in <DR>
n E[fi satisfies -9 in  <DR>]} < n
(103) K(E[XED and f:- satisfies ¥ in <DR> and

fz satisfies -4 in <DR>]) < n,
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Formula (103) says that nearly every ¥ has ¢ if there are fewer
than n ¥'s that lack ¢. In other words, there is no set of n
¥'s, every one of which has -¢. It follows that in every set of
n ¥'s there is at least one that has ¢. This, of course, is
exactly the analysis of nearly all that is contained in 11(50)
and, again, we obtained it by applying our analysis of the set-
theoret:c content of interdefinability in the classical case to
a different quantifier.

Section 2: Outer, Inner, and Dual Negation

The results of the precedlng $ection can be generallzed in
the following way:

- Definition 13 (Outer, Inner, and Dual Negation): ket Q:.
be a quantifier and let the- quantlftcatlonal relatlon
expressed by Q be gtven by "

(104) RQ = (n-R R RB,...,RR 2 k ],Rk) B

A quantuf;er Q is said to be the outer
negation of if there is an elementary
quantifier q in Q  such that the+set-
theoretic relation expressed by g is
given by '

(105) Rq'l' = (rf;-R]1R2-JR'3:'-_':Rk_2,Rk_],Rk)'“
A quantifier G* is said to be the ‘inner
negation of Q if there is an elementary
quantifier g* in Q* such that the set-
theoretic relation expressed by g% is
given by

(106) Rq* = (n; RI’RZ’R3""’Rk~2'Rk—]’Rk’compn+l)
A quantifier Q' is said to be the dual negation
of Q if there is an elementary quantifier q'
in Q' such that the set-theoretic relation
expressed by q' is given by

]

(107} Rq' = {n; R],Rz,R3,... k 9 k I,Rk,Comp +])

The set whose members are Q Q , and Q is sald
to be the negation set of Q.

We have to formulate this definition in terms of the set-
theoretic relations expressed by elementary quantifiers, rather
than the gquantificational relations expressed by the quantifiers
themselves, because.of the possibility that the quantifiers may
have different orders. We have already seen that this possibility
is realized in the case of the classical quantifiers.

LR
a2
&
4‘5.
F
4
&
f
.
b
e
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The fact that each of the relations

(108) Q' = -
+*
Q = @
Q' = -0

holds, as in (85) and (98), follows directly from (104), (105),
(106), and (107), as do both the existence and uniqueness of
the negation set for any quantifier. In fact, it was our desire
to establish a set-theoretic basis for the reiatlons in (108)
that led us to |ntroduce Definition 13 in the flrst place. We
will soon see that (108) Ts useful in proving a very fundamental
result about the formal structure of the class of quantifiers.
As an example of Definition 13 we can refer to our earlier
discussion of all and some. As we saw in the last section, the
only dnfferenc? between all and some is that the first relational
component of R all is the negation of the first relational com-

ponent of Rsome

and that Rall has an extra final component Compz.
It follows that : SR ‘ . 4

. a]] - (some)l ;: : .‘4, . - ‘ ~.

in the notation of nglnlgson 13. Formulas (108), however, tell
us-that the dual negation of any quantifier, when dual negated
always produces a result that'is equivalent to the quantifier
itself, a fact that we can also get directly from Definition 13.
This means that we also have the formula

some = (all)'

-

and that we should be able to express ‘this set-theoretically as
stated in the definition. '

Since the quantlflcagional relation expressed by ail can be
written as

Rany = (2iSeny)

as in (88), the set-theoretic relation expressed by relativized
some should be given, according to Definition 13, by
2

(103) R = (2;$.n]2560m93)

Does this work? Expanding (109) in the usual way gives us the
derivation
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{(,n,,,Comp.) (D, y& £ e%)
i' 12 3" <DR><DR£

ia
w
&

{¢,n,,) (D, e ,Comp 9%)
12 <DR>f <DR£

() (D n ¥f,Comp ) )
<DR> <DR>

(110) D.a ¥ ¢ Comp ¢F o
<DR> <DR> ’::,‘“'

Intuitively, formula (110) says that ”(Some a) (¥:8)" is true’ Jf
and only if the set of individuals that have ¥ is not ent:rely
coritained in the set of ind|V|duals that' lack @ "This meahs
that there is an individual that has ¥ that has & as well.
Formally, it is not difficult to show that (110} is equivalent
to the formu!a ' .

b n Comp ¢
£

<0R§ <DR
which, as we already saw in Ill(hS), gives us the set theoretlc
relation expressed by relativized some. We see that our set-
theoretic definition of dual negation works in either direction,
whether we take Q to be some or we take it to be all.

The fallowing result also follows derctly from Defunitlon 13,
buit we will prove |t from (108) because or its, more compact
formulatlon. :

. . '5. )
Lemma 1: |If Q is a quantifier, then the following
relations hold:

(@) (@) =@ =" =0q
() (@) = (@) ="
© @)= @H =

() (@)= @"H =q"
Proof: From (108) we get each of the follow:ng relat:ons
@) (@) = ~(Q }oo= ={-Qm)- = Q-
@) = (@9)- = (@)- = ¢

@) =@ =0 =0

]

R e
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b) (@) =-@Q)-=-(@)-=-0=0¢
(@) = (@)= (-0)- = -0 =0
() @) =-(") =-(0) = -0 = @
@) = (@) = Q- = -¢- = ¢’
(@ (@)Y =-(@)=-(@)=-(-0)=0=¢
@) = -(@- = —(-0- = ¢ = "
Q.E.D.

The fact that two immediately successive applications of ''-"

yields the identity function follows directly from the set-
theoretic character of our quantifiers. Some languages or dialects
use double negation in "their surface grammar to express negative
concord, but considerations of simplicity and economy would argue
against permitting such a device on the level of semantic repre-
sentations. This argument justifies the reasoning of (a), (b),
(c), and (d). : : :

The structure described in the lemma is not an unfamiliar =
one. [f we replace the symbol "Q'" with the non-zero real variable
Mx'" and interpret ', 'Y and "V oas Yadditive inverse', “mu]ti—
plicative inverse!, and ''negative reciprocal’, respectively, °
rather than as outer, inner, and dual negatlon, then the relatlons
of the lemma turn intc the 1dent1t|e5

=ty~1
@) - 1 ={(x ") =-(-x) =x
i
x
B -_1 =D =
-]
X
-1 _ -1 _ 1
() -(x ") = (=x) = =~
1 _ 1 _ 1
(d) ( ';(') - -x - " [
In fact, the structure in the lemma is quite common. [f we take
Q to be a musical theme or melody, for example, and interpret '+,
Hxt o and "1, respectively, as inversion, retrograde, and retro-

grade inversion, then all of the relations of the lemma hold. This
shows that the structure we are dealing with is very general and
suggests that we might be able to learn something about quanti-
fiers by investigating these alternative models,
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We can deepen our insight into the nature of this structure
by abstracting away from the class of quantifiers and focusing on
the negation (inverse) operations themselves, as follows:

Definition 14 (Negation Functions): Let 9> i=1,2,3, be
functions defined on the class of quantifiers (in
a given language L) as follows: For all quantifiers

Q,

g,(Q) =g

Sy #* ' W
9,{(Q = ¢

g;(Q) = 0",

The functions g, are said to be the negation
functions on the class of quantifiers iin LY.

The function 9; is called the dual negation

Funétion, the function 9, is called the inner

negation function, and the function g3 is called

the outer negation function.

The need to specify the language L in Definition 14 results from

the fact that we are defining functions on a class of quantifiers.

in contrast to Definition 13, in which we were talking about
individual quantifiers, each expressable in set theory, whatever
language they might be in. Functions are not well-defined, if
their domains are not explicitly specified. ‘ ‘

Lemma | now immediately yields the following result:

Lemma 2: if gi, = 1,2,3, are the negation functions on
the class of quantifiers (in L) and g, is the

identity function on that class, then the following
relations hold:

(@) g; 0g; =g, i=1,2,3

(b} g9,09,=9g,09, = 83
(c) g,09;=9g509, =g,
(d) 9309, =g, 049;=09,

where "o'" is interpreted to mean furction
composition.

Cushing 159

In other words, the composition of any negation function with
itself is the identity function and the composition of any
negation function with either other negation function is the
remaining negation function. Each condition in Lemma 2 is simply
a restatement of the corresponding condition in Leema | directly
in terms of the negation operations themselves, as characterized
in Definition 14. From Lemma 2, however, we get the following
further basic resuit:

Theorem: The set whose members are the negation functions
and the identity functien on the class of quanti-
fiers in L is the elementary Abelian 2-group of
order 4 with function composition as the. group
operation. The set of restrictions of these
functions to the class of quantifers in L which
equal their own dual negations is the elementary
Abelian 2-group of order 2.

It is difficult to imagine a more tightly-knit structure than the
one described in Lemma 2 and identified in the Theorem. As we
saw in connection with Lemma 1, this is the structure not only

of the interaction of quantifiers and negation, but also of the
interaction of non-zero real numbers with their various inverse
operations, among other things.
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Prior suggests that these criteria can be generalized by

CHAPTER ﬁ: QUANTIFIERS AND MODAL LOGIC
' , permitting L and M to be mappings from R] into RO’ that is, by

permitting them to operate on open statements, rather than re-
stricting them to the closed statements that represent members

of R,. He points out that, ""if, however, this extension of the
notion of a statement is to be permitted when applying Yukasiewicz's
definition of 'modal’, we must also count the ordinary theory

of quantification as a modal system" (p. 6). He explains, in his
own notation, that if we take L to be All a and M to be Some u,

then the conditions (111) adn (112) are satisfied, &s follows:

Section 1: Modal Logic and Dual Negation

The existence of dual negations, which we examined in the
last section, suggests a possible connection between quantifiers
and modal togic. Prior (1957) summarizes the defining character-
istics of a modal logic, first set down by Kukasiewicz, as

follows:

To count as a modal logic, according to Fukasiewicz,

a system must contain .a pair of one-argument operators
forming statements out of statements, with the following
properties: . The more powerful modal operator, which we
may symbolize as L, must be such that Lp is a stronger
form than p, and yet not so strong as to be never true.
That is, 'If Lp then p,’ but not its converse must be a
logical law, and the simple NLp must not be one. And the:
feebler modal operator, which we may symbolize as M,

- must be such that Mp is a weaker, more non-commital form

' than p, and yet not so non-commital as to be never false. .
That is, 'If p then Mp', but not its converse, must be .a -
logicai law, and the simple Mp must not be ome. Finally,
Mp must be equivalent to NLNp and Lp to NMNp.

(pp. 2-3)

(113) {(a} (A1l a) ¢ > o
(b) ¢ > (Some a) &
(c) (Some a) & = -(All a) -¢
(d) (A1 o) ¢ = -(Some o) -¢
(14) @ ¢ o (A1l a) &
(b) -(All a) ¢
(c) (Some &) & > &
(d) (Some a) ¢.
Each of the formutas in (i13) is an instance of the corresponding
formula in (111) and is logically true. Each of the formulas in
(114) is an instance of the corresponding formula in (112) and
is not logicaily true. This remains the case, even if we take

tﬁese quantifiers in their most general form, as mappings from
R" into R, and replace (113) and (114) by the resulting analogs.

In the notation and terminology that we have been using, the
formulas in (111) must be logically true (valid) and the formulas
in (112) must not be:

(111) (a) L o oo

(b) d o> M@
If the classical quantifiers all and some form a modal logic,

(¢) Mo = -L-0 the question naturally arises whether other guantifiers do as
well. We already know that (11ic) and (111d) are logically true

(d}) L ¢ = -M~¢ for quantifiers M and L, if L is the dual negation of M. Taken
together, all they say is that any quantifier is equivalent to

(112) (@) ¢=1L2¢ the dual negation of its dual negation, a fact that we proved in the

Theorem of Chapter 3. It is this fact that suggests a connection

(b} -Lo between quantifiers and modalities, but we must check the other
six conditions to see whether they also hold. Can we show that

(c) Mé oo any quantifier and its dual negation form a modal logic, in

@ Prior's modified sense of Kukasiewicz?

d) M@

Unfortunately, the answer to this intriguing question is
"'No''. As a counterexample to the proposed generalization, we

where L and M are mappings from RO into RO“
can let L=Nearly all o« and M=Many a, sc that (11lc) and {111d),
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respective[y,Kbecome the formulas
(Many o) = -(Nearly all o) -9
. (Nearly all a) - = -(Many o) -%.

As we have seen before, these two formulas are logically true,
because many and nearly all are mutual dual negations. This is
the significance, in part, of (98). Formulas (i1la) and (111b),
however, become, respectively,: : o R

(115}  (Nearly all a3§'3.¢
{(116) & > (Many o) @

neither of which is logically true. If both (115) and (116)
were true logically, then . ; ‘

(Nearly all a)® > (Many a)¢

would also be. As Altham shows and as we can see infuitive]y,
however, it is not. It follows that many and nearly all do not
constitute a modal logic, in the sense we have outlined.

It follows that dual negation, by itself, does not provide
us with the Tink between modality and quantifiers in general that
it provides between modality and the classical quantifiers. We
can establish a very close relationship of a different sort,
however, by extending the treatment we gave to.negation to the.
binary truth-functional operators. This will enable us to
generalize the mode of lexical representation that we developed
for quantifiers in Chapter 1 to include modal operators, such as
adverbs, as well, - ; : :

Section 2: ConJunctlon and DISJUHCtIOﬂ of Quantlf:ers

Definition 13 can be extended to: blnary truth functlona]
operators as follows: ; .

Definition 15 (Quter thnectloh) Let Q, and Q, be QUantfr
fiers such. that thereare elementary quafitifiers .
in Q] and q2 in Q2 such that - - _ U ST

1

1 ”1;-.- '
(1:7) Rq] (n],R],RZ,RB,..o,RkﬁZ,Rk_],Ek)
- nZ _ 2
(118) qu = (n RI,RZ,RB,.,=,Rk_2,Rk_l,Rk),
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Let ¢ be a truth-functional mapping from Rz
into R. A quantifier Q is said to be the outer
connection ¢ of Q. and Q, or the outer c of Q, .
e, e ] . 42 —_ =
and Q,, written :

(119) @ =¢(Q,Q) or=0 ¢cq,
if there is an elementary quantifer g in Q such -that
n_ o, o102 a '

(120) Rq = (n’C(RI’RI)’RZ’BB""’Rk-Z’Rk*l’Rk)

where n=max(n],n2). For any c, C(Q]’QZ) is said

to be an outer connection of Q] and QZ'

We could alsc define notions of inner and dual connectlon, along
the lines of Definition 13, as mappings from R X R" into R, but,
al though these mappings are worth studying, they are of no use to
us here. Much of the discussion in Partee (1970) can be inter-
preted as an informal account of some of the propertaes of inner

conjuncticon,

As might be expected, the instances of Definition 15 that
will really be of interest to us are those in which ¢ is con-

‘junction or disjunction. One example of outer conjunction that

we have seen is Altham‘s_ana]ysis of a few. As we saw in |1(32),
a few can be analyzed in terms of some and many. Since many is
of order 2, we W|II consider the relativized case, which, as we
saw in II(GI), can be written as

(121) (A few o) (¥,2) = (Some o) (¥,8) A-(Many «)(¥,0).

We know that the gquantificational relatlon expressed by many
is given by
(122) Rmany (2;>n,K, n]23)
as we saw in (2]), and that the set-theoretic relation expressed
by relativized some is given by '

2 = (7. L
some (2,&;912,Comp3}

(123) R

as we saw in (109). According to Definition 13, the quantifi-
cational £elat|on expressed by not many, since it is the same
as (many)., is gtven by

(124; R (many)* = (2;<n,K,n]23)
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which Is also tha same as R » because few = not many. Formula
(121) suggests that a few i £ outer conjunction of some and
(many)*. We can show that this is true by findihg set-theoretic
felations R, and DJ such that (123) can be written as (117), (124)
can be wrlteen as %118), and the set-theoretic relation expressed
by (121) can be written as {120).

To apply Definition 15 we first try to find the set-theoretic
relation expressed by relativized a few directly from (121).
According to (121), the formula :

{(125) (A few a)(¥Y;0) + . a¥

is true if and only if both L .
(126) (Some o) (¥;9)

and |

{127) (Many+ a)(?le) : 4 N
are true. Since (126) is true under f if and only if 123) holds
and (127) is true if and oniy if (124) holds, it follows that"
(125) is true if and only if both (123) and (124) hold. This tells
us that the set-theoretic relation expressed by (125) is the con-
junction of (123) and (124), wh:ch is glven by I

(128) (( Ny, ,Comp,) A (<n Kyny,)) (D, ¥ @“)
£50y > Compy 123770, 22 O

In other words, f satisfies (125) if and only if (128) holds. °

Formula (128) is just another way of writing

(129) (4,0 IZ,Comp3)(D ¥, ¢

<DR><DR>
A {(<n,K,n )(D , a)
123 <DR£ <DR>
which expands in the usual way to .
(130) (D n ¥3 n 0l £2) A (K(D n ¥5 f@?) < n).
<DPR> <DR> <PR><DR>

In other words, the set-theoretic reiatlon expressed by (125) is
given by the conjunction of ' '

(131) D n ¥ n ¢$ £ A
<DR> <DR>

and

(132} K(b n Wf n ¢f) < n
<DR> <DR>
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as we might have expected. Unfortunately, it still is not clear
how (131) and (132) apply to DeflnltEOﬂ 15. :

This is not difficult to discern, however. Formula ({132)
says something about the cardinality of the intersection of D,
s*(¥), and s*(8). Formula (131) also says something about thus
intersection, but not, at least explicitly, about its cardinality.
If we can reformulate (131) in terms of cardinality, then we will
be well on our way to the outer conjunction, because we wa]l have
made (131) and (132) comparable _ :

s o .

First we notice that what (131} says about the intersection
of the three sets is that it is not empty. . Th:s, however, is
just another way of saying that its cardlnality is greater than
zero, so we can reformulate (131) as

(133) KD n ¥¥ n ¢%) > 0.

<DR; <DR;

Given (133) we can rewrite (130) .as

(134)  (K(D n.wg n @?) > 0) A (K(D n wg n @?) < n)
<DR> <DR> <DR> <DR>

and, since the explicit form of the relation expressed by (133)
is

we can rewrite (129) as
(136) (>0,K,n,,.) (D, ¥%, &%)
123° <DR£ <pri
A (<n,K,n,,.) (D, ¥3, 8%)
‘ 123" Cpricort

This enables us to write (128) in the form.

(137)  ((>0,K,n.,.) A& (<n,K,n D)0, ¥, &%)
]23 _ ]23 ) <DR£<DR£
which coliapses very naturally into
(138)  (0<...<n,K,np,,) (D, ¥3, %)
. 123 <DR§ <DR> .
as the formula for the set-theoretic relation R .
a few
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Formula (137) says that the cardinality of the intersection
is greater than 0 and less than n, while (138) says that it is:
between 0 and n. These are clearly just two ways of saying the
same thing. It follows that .

(139) R, oy = (2;0<---<n,K,n]23)
is the set-thedretic relation expressed by a few in its reIatuvuzed
for (121). It is also not difficult to show that (139) is the
quantificational relation expressed by a few, ‘because a3 few is

‘clearly of order 2. ' : _ L.

In terms of Definition 15, if we take

n! = nz = 2
k =3

R} = (>0)

RY = (<n)

RZ = K

Ry = Ni23

c =A

then (117) becomes (123), and its equ1valent form (135}, (118)
becomes (124), and (120} becomes (139). It follows that a few '
is, in fact, the outer conjunction of the two quantifiers some
and the outer negation of many, as we were trying to show.

Section 3: Outer Connection and the Classical Negation Set

The most interesting aspect of outer connection, for our
present purposes, is the interaction of outer conjunction and
disjunction with the negation set of the classical quantifiers.
In general, the outer connection of a quantifier and each member
of its negation set form a three-way partition, as follows:

Pefinition 16 (Constant, Redundant, and Significant
Outer Connections): Let Q, and Q be gquantifiers,
¢ a truth-functional mapp}ng from R2 into R, and
n the order of c(Q ’QZ)' The outer connection
c(Q!,QQ) is said to b& o '

(a) constant, if

Rc(Q,,QZ)(D,S*(¢]),s*(¢2),_._’S*(Qn))
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is either logically true for aIT‘Qj, Qouenns O
or logically false for all ¢],¢2,---¢n;.

(b) redundant, if

C(Q],Qz) = Q for either i=! or i=2;

(c) significant, if it is neither constant nor

redundant.,

We have already seen that the outemconjunction of some and few
is significant, because it coincides with a few, which is a
different quantifier from either some or few, and it produces
neither only logically true nor only logically false truth con-

ditions.

If we let Q and Q, vary over the union oF the unit set and
negation set of a spec:?nc quantifier Q, then sixteen outer
connections result for any given ¢, as follows:

2.

o

1.
12.
13.
4.
15.
16,

QcQ
Qc Q'
QcqQt
QcQ
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If we take c to be conjunction or disjunction, then we can ignore
5, 9, 10, 13, 14, and 15 because of the commutativity of c. These
are repeated as 2, 3, 7, 4, 8, and 12, respectively. Numbers 3 and
8 are constant because of the laws of excluded middle and non-
contradiction If ¢ is conjunction, then they are both
logically false, as in Definition 16(a), and if ¢ is disjunction,
then they are both logically true. We can also see immediately
that 1,6, 11, and 16 are redundant, because they are outer con-
junctions or disjunctions of a single quantifier with itself. It
follows that 2, 4, 7, and 15 are the only possibly significant
outer conjunctions or disjunctions on the list,

L Lo

For c=conjunction we get the {a) members of the following
pairs and for c=disjunction we get the (b) members: R

(150) (a) Q A q (b} Q V Q
(k1) (@) @ A Q* - (b a V o )
(h2) (a) @ &gt () oV gt
(143) (a) o*a qQ* () *V ot

as the significant outer conjunctions and disjunctions of a
quantifier Q and the members of its negation set. If we let
Q=all, then both (a) and (b) of (140) are redundant, because (a)
reduces to all and (b) reduces to all’, which is some. In (141},
(a) is identically false and thus constant, because all and all*
cannot both be true, and (b) is significant, because all V all#
is a quantifier different from both all and all* that produces
both true and false sentences from propositional functions it
operates on. Quantifier (142a) is also significant for a similar
reason, but (142b) is constant, because its truth condition is
identically true. Both (a) and {b) of (143) are redundant,
because (a) reduces to ali* and (b) reduces to all*.

It follows that

(144} a11 V a11*

(145) a1l1'A a11?t
are the only significant outer conjunctions or disjunctions of
all and its three negations. Examples of {(144) ‘include sentences
1ike

(146) Everyone or no one now understands guantifiers.
which is represented semantically by

(A1 V Al1#x) Understands-quantifiers{x)

. because all*=no. Examples of (145) include sentences like
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(147) Someone but not everyone now understands gquantifiers.
which is represented semantically by
(A11' A AlTY x) Understands-quantifiers(x)

because all' = some.

If we let Q=some, then (140a)} is redundant, because it re-
duces to some', and (140b) is redundant, because it reduces to
some. Quantifier (thla) is significant, but (141b) is identically
true and so constant.: In (142), (a) is constant, because it is
identically false, and (b) is significant. Both (a) and (b} of (143)
are redundant, because (a) reduces to some™ and (b) reduces to
some*. This gives us

(148) some A some™
(1L3) some' V some*
as the only significan outer conjunctions or disjunctions of
some and its three negations. Examples of (148) include sentences

iike‘

(150) Someone now understands quantifiers and someone
doesn't.

which is represented semanticaliy by
(Some A Some™ x) Understands-quantifiers (x)

because some* = some not. Examples of (143) includes sentences
like (146), because some' = all and some* = all* = no. Not
surprisingly, (150) is.logically equivalent to (147), because
some = all' and some* = all®,

The functions that produce (144), -(145), (148), and (149)
do not form a group, as we saw the negation functions do in the
Theorem of Chapter 3, but, together with the negation functions,

they do give us the following structural result:
Theorem: tLet h;, i=1,2,3, be functions defined on the
class of quantifiers as follows: For all quanti-
fiers Q, ' '

h,(Q)-= Q+ A @'
hy(Q) =Q Vva*
hs(Q) = Q" v g
hy(Q = Q A @
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' A caery )
Let g:» i=1,2,3, be the negation functions and 9y

the identity function on the class of quantifiers.:
The following relation hqlds'between_the 9; and the

h.:
J
asn o [fhyyy TP is 0dd )
9;° Ny=9;42° hifhiofhjr"'hi*Z? M=} U LT
I hj “’ i'F i=2 -.:P.«""f

= ht = }
MiERy =,
l . e . . o . Ly - &.!
= h¥ =
hy =hy=h
he! = h+ = hj
3 3 4
+
' = = E ¥
hy, hy, h3
“and o
*_ il . :
hy=hi=h »
hy =hy =h,
! * l -~ ’.: *
Py = hy =hst .
4 7 U3 T

interpreted in ‘the obvious way,.ére:easif? verified
and collapse naturally into (151)y. ™

_ Q.E.D.

Formuia (151} is of no further use to us and is inciuded only

for the sake of completeness, because it summarizes the relation-

ship between the negation functions 9, and the all-some signi-
ficant outer connection functions hj' - The hj‘themselves are of
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considerable further importance, however, because it is they
that provide the link between quantification and modal ity
that we are trying to extablish, as we will see-in the next
section,

Sectionh 4: Quantifiers and Modalities

L,1: Modalities and Stété-Descrip%ions

The results of the pFeéedingﬂsection can be summarized
as in Taple 1. The first column of the table

function of Q Q=all - Q' = some function of Q' . .

94(Q) = Q Q Q- g, (@) =

9,(Q = ¢* - - 950" = ¢*

h(@ =Q A0 -QA-0- @ AQ . hy(Q) =gt A Q!

5@ -0 0 e g -t

9,(Q =g - e o gen=q

h (@ =av @ eve --v-e' A @)=y
Table 1

L .

contains the identity and negation functions and the all-some
significant outer. conjunction and disjunction functions for the:
unit plus negation set of ali, The second column contains the
expansions of these functions in terms of Q=ali. In the fourth
¢ofumn.we have the same fumctions forv.somé-(=211'}) expressed in

" teems.of alluvand“in the' third colunn we:have the expansions of
:.these funétions: in terms.of Q=some. Specifying that Q=all in

the second column and that Q'=some in the third column is
important, because the outer connection functions h; may not be
significant for other choices of Q. . 4

The reason for listing the entries in Table | in the order
given becomes clear, when we compatre the table with the
following table from Carnap (1956, p. 175):

-
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Modal Property of | Semantical Property

a Proposition With'N' With '0' - of a Sentence
Necessary Np -O—p ' L-true
Impossible N-p _19p L-false
Contingent -Np A N-p 0-p A Op Factdal
Non-necessary -ND T O-B o ‘vNen;L-trde
Possible .'~N-p 0 p: * ' Non-L-false, ~
Noncontingent NP ¥V N-p -o-p v —Op L-determinate *
Table 2

Carnap uses ''N'' in this table to denote logical nece55|ty and

ndu to denote logical possibility. The symbol "p' is a pro-
position variable. With a littie examination, we see that

Table ]| and Table 2 are exactly the same, except for the notation.
it we replace "N" with "Q" and "0 with "Q'" and we drop the
general argument '"p' altogether, then the second and third columns
of Table 2 become the second and third columns of Table 1.

" The correspondence between these tables suggests that we
can treat modalities as quantifiers in a generative grammar.
Carnap's own analysis of Table 2 suggests a way of doing this.
Carnap begins with the notion of a state-description in a semanti-
cal system S,, which he defines as ''a class of sentences in §
which contains for every atomic sentence either this sentence
or its negation but not both, and no other sentences'' (p.9).

By an atomic sentence he meahs, as usual, ‘''a sentence consisting
of-a predicate of. degree n followed by n- |nd:v1dual constants”

(p. 5)

-CarnaP"POintS.out that such a set of seritences. - ¢

obviously givés a complete description of a possible

. state of the universe of individuals with respect to
all properties and relations expressed by predicates
of the system Thus the state-descriptions represent
Leibniz' possible worlds or Wittgenstein's possible
states of affairs.. - .  {p. 9)

Yo

He then defines the following semantical properties of sentences
in terms of the satisfaction relation between sentences and
the class of state-descriptions:
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(152} A sentence f; is L-true (in Sl).=Df.ci holds
in every state—deserlptlon {in § ) (p. 10)
Ly is L-false {in Sl) DE ~r is. L—true
(p. 11)
ci is L-determinate (in § ) “pf Z, is either
L-true or L-false.
(p. 11)
&5 is L-indeterminate or factual (in S ) =Df
Ci is not L—determinatei ;\. | ‘ (p.I12)

and he uses these notions“té_éxplicéte the various modalities.

The semantical notion correspondlng to each modality is
displayed in the fourth column of Table 2. By comparing. each
modality with its semantical explication, we can easily determ:ne
the relationship of the modalities to quantification, As we
see from the first line of Table 2, Carnap equates’ necesssty
with L-truth. According to (152), this means ‘that a proposition
is necessary, or necessarily true, if the sentence that exXpresses
it holds in every state-description. This gives us a corres-
pondence between all (=every, for our purposes) and necessity, as
suggested by the first lines of our tables. Carnap equates im-
possibility with L-falsity, so a proposition is impossible,
according to (152), if the sentence that expresses its negation
is L-true, that is, if this- negation sentence holds in every
state-description. This gives us the correspondence between
impossibility and all* (=all not) that is suggested by the
second lines of our tables. Contingency Carnap equates with
factuality, so a proposition is contingent, according to (152),
if the sentence that expresses it is not L-determinate, that
is, neither L-true nor L-false. This means that neither the
sentence nor it negation hoids in every state-description, giving
us the correspondence between contingency and all* A all‘' that
is suggested by the third lines of our tables, :

Non-necessity is correlated with non-L-truth in Table 2, so
a proposition is non-necessary, if the sentence that expresses
if does not hold. in every state-description. The correspondence
between non*nece55|ty and a1i? (-not all) that is suggested by
the fourth lines of our tables follows. On the fifth line of

Table 2 we have possnbiltty equated with non-L-falsity, telling

us that a proposition is possible, if the negation of the sentence
that expresses it does not hold in every state-description. This
gives us the correspondence between possibility and all’ that is
suggested by the fifth lines of our tables. Finally, Carnap

v

AL
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equates the modality of non- contingency with the property-.of
being L-determinate, so a proposition is noncontlngent if
neither the sentence that expresses it nor the negatlon of that
sentence holds in every state-description. This gives us a
correspondence between noncontingency and h (all), as suggested
by the last lines of our tables. :

4,2: Lexical Repreeentation of Nodalities

The point of Section 4. Iis thqt each modality that Carnap
considers can be expressed in terms of all and one of the g. or
h; functions, as indicated in the second columns of our tabies,
if we take the quantification to be over the class of state- .
descriptions. A similar anaIysns ‘of the third columns of the
tables shows that they can be expressed in terms of some as well.
This gives us a very natural mode of lexical representation for
modalities, whether they appear as modal adverbs, verbal auxili=
aries, or anything else. All we have to_do is to introduce a
fifth value for the universal domain variable ipt, |n”add|t[on
to the four that we allowed in IV,2,1. Just as D, is the set of
thlngs, D2 is the set of people, D 3 is the set of times, and Dh

is the set of places, so DS will .be the set of state- descrlptlons
or '"possible worlds'', : .

The notion of “poss:ble worlds“ has f:gured promtnently in:
modern logic for some time and has more recently been applied
to problems of linguistic theory. Kripke (1963) discusses a -much
more sophisticated formalization than Carnap's notion of state-
description and appies it to problems of modal-logic semantics.: {
Lakoff (1968) applles the '"possible-worlds'' notion to the probiem
of coreference in natural language and Cushing (1972b) investi~
gates its possible relevance to the phenomenon of sentence pro-
nominalization, As we now see, it also provides us, in con-
Junction with the formal semantic theory of quant:flcat|on that
we have developed here, with a natural and reveal ing way of
handling modalities in natural language in the semantic com-
ponent of a generatlve grammar.

If we add D to the restricted set of universal domains
recognized by ouﬁ semantic theory, then modal adverbs }ike
necesessarily and possibly can be represented semant:caliy
the lexicon as . »

necessarily: all, D=DS ’

possibly: g](ell), D=DS
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respectively. Aall itself, of course, will be represented in terms
of its explicit quantlflcatlonal relation, as we saw in IV,1. A
sentence Jike :

Everyone may now understand quantifiers.

whuch is normally lnterpreted contlngentiy, can be represented
semantically as the simple quantification (occurrence)

(153) (hI(all) x](ell X, ) (x,eD_,x,eD i X, understands -

15552 %5555
i

quantifiers in x])

2

because contingency éﬁd everyone will be represented as
contingency: h](all),D=DS)
everyone: all, D=02
respectively. Definition 11. dealsreXplicitly only with semantic re~
presentations of s;mple occurrences that contain only one: instance

of "aeD", but it is easily generalized to account for formulas
like (353)'that contain two or more such instances.

We can also use this mode of lexical representation for
modalities other than those which Carnap considers. This con-
stitutes empirical support for our framework in the form of pre-
dictive power for data not yet analyzed. - All we have to do, in
fact, to account for other modalities is to choose quantifiers
other than all (or some). Modal adverbs like probably and unlikely,
for example, can be represented semantically in the lexicon as

probably: most, D=05
unlikely: g3(most), b=D
respectively, and sentences like

Probably someone still doesn't understand quantifiers.
can be represented semantica]ly in the form
(Most x )(gz(Some) x5) (x 18D5X,eD,y5 X, understands
' quantifiers in x]))

A modal adverb like most certainly can be represented lexically
as '

TIPS
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almost certainly: gi(many), D=D5

because nearly all=(many)', and so on. The fact that our mode of
lexical representation can be used for a class of data more
general than the one that was used in its construction reflects
well on both the correctness and the explanatory power of the
theory that underlies it. :

Section 5: Truth Existence, and the Bar Notat:on

As Joseph Emonds. (personal communlcatlon) has pointed out to
me, an important point remains to be made before we conclude our
study. Cushing (1972b) argues that there is good reason to
expect that sentences and noun phrases will have parallel semantic
structures, as follows:

In projective geometry there is a systematic parallelism
between points and lines. There is a 'principle of duality'
which states that for any theoreém about points there is a
parallel theorem about lines, and- 'vice versa. I do mot' ™
know whether such a strong principle can be shown to hold:
for general formal systems, but that there is considerable
parallelism of a weaker sort is clear. A formal language
contains terms and (well-formed) formulas,: @ The terms are
taken to refer to objects in some model and the formulas
are taken to refer to situations involving objects in the
model. There is thus a parallelism between the existence’
of an object-referent for a term and the existence of a
situation-referent for a fermula, i.e., between the
existence of a referent for a term and the truth-value
of a formula (that is, of the proposition represented by
the formula). We can conclude from this that terms and
formulas have, in this sense, parallel semantic structures.
In natural languages the role of term is played by the
theoretical construct NP and the role of formula is played
by the theoretical construct 8. We are thus led to expect
NP's and S's to have, in a real sense, parallel semantic

structures. - (pp. 191-192)

As, an example of this parallelism, Cushing examines the phenomenon
of sentence pronominalization in English and compares it to the
more familiar process of noun-phrase pronominalization. He

points out that

there is a feature [+definite] on NP's in Erglish that
determines what pronoun an NP can be cotreferential with.
A [+definite] NPcan be coreferential with it and =z
[-definite] NP can be coreferential with one if positive
and none if negative. We get
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The Hatter ate a piece of the cake an& Alice
ate a piece of it too.

The Hatter ate a piece of the cake and Alice
ate one too.

The Hatter ate a piece of the cake, but Alice
ate none. o

where underlining 1ndicates coreferentiality.
; B (p. 192)
Having already shown that ”there is a feature [+F} on S's in

English that determines what pronoun an $ can be coreferential
with', so that 'a [+F] S can be coreferential with it, just as

. a [+definite] NP can, and a [~F] § can be coreferential with so

if positive and not if negative'! (p. 192), Cushing goes on to
argue that the NP feature [definite] and the sentence feature [F]
are really one and the same, so that 'both NP's and S's are

specified with respect to the feature [+definite]...." (p. 192).

Cushing points oﬁf that

These conclusions bear out the suggestion by .the
Kiparskys (1968) that perhaps 'there is a syntactic
and semantic correspondence between truth and existence
...at some sufficiently abstract level of semantics’',
though in a somewhat different form from what they
expected.

(p. 193)

and then goes on to consider the syntactic aspect of this
correspondence. First he points out that

Arguing entirely from the syntax of Engllsh inde-
pendently of logical and semantic considerations,
Chomsky (1970) and Jackendoff (1968b) have shown that
NP's and S's have parallel syntactic structures, as
well as the parallel semantic structures I have argued
for here. To capture this syntactic parallelism
formally, Chomsky-Jackendoff proposed .the follow1ng
formal notations: ‘

N = N+complement
vV = yp
N =NP
V=5
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and the convention that paféllgl facts about, or
processes occurring ir, NP's and $§'s should be
stated in terms of X, (p. 193)

He then argues. that '*This bar notation,"plus the fact that [tf] is
really {iﬂeffnite], enables us to express both NP and S pronomi-
nalization as a single unified process" {p. 193).

The specific analysis and rules .that Cushing developes for
NP and S pronominalization need not concern us here. The import-
ant point, from our present point 'of view, is that a significant
parallelism was shown to exist on both the syntactic and semantic
levels between sentences and noun phrases. Two seemingly un=~"
related processes were shown to be instances of a single under-
lying process, manifesting itself in one way, when it occurs in
NP's, and in another, when it occurs in S$'s. R

This is exactly what we found in the case of quahtifiers_and
modalities, as far as their semantics is concetned, in the first
four sections of this chapter. It is not difficult to see, in
fact, that the same conclusion can be drawn for time and place
adverbials as well, based on our discussion in |V,2,1. There
seems, on the surface, to be a significant semantic difference
between the forms something, someone in '

(154) (a) Something is interesting.
(b) Someone finds linguistics interesting.

onh the one hénd, and the forms sometimes, somewhere, may (or
possibly) in :

(155) (a) Linguistics is sometimes interesting.
(b) Somewhere linguistics is found interesting.

(c) Linguistics may (possibly) be the most
interesting of all. o

on the other. Something and someone in (154} are noun phrases
acting as the subjects of their respective sentences. They are
clearly related to the instances of some in’ e

(156} (a) Some things are interesting.
(b) Some people find linguistics ihteresting.

respectively, which act as modifiers of the nouns things and
people. Sometimes, somewhere, and may in (155), however, are
a very different kind of form. Rather than acting as the modi-
fier of a noun phrase, each of these forms acts as a modifier
of its entire sentence. Sometimes 'in {155a) tells us that the
sentence
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(157) (a) Linguistics is interesting.

is true at some times. Somewhere in (155b) telis us that the sentence
(157) (b) Linguistics is found interesting.

is true at some place. May in (155c) tells us that the sentence
(157) (c) rLinguistics is the most interesting of all. .

may, possibly, be true. The some forms in (154) and (156) are all
more.or less nominal in character, functioning either as noun
phrases or as modifiers of noun phrases, but the relevant forms in
(155) are all, loosely speaking, modifiers of sentences:; a time
adverbial, a place adverbial, and a part of the verbal auxiliary.

Despite this striking $urface semantic difference, however,
we have found, in IV,2,1 and the ‘last four sections, that the rele-
vant forms in (154) and (155) ‘are really exactly the same on a
deeper level. The sentences in (154) can be represented semantically
in the form

" (158) {(a) (g](all) x)(xéD];Interesting(x))
(b) (gl(all) x)(xeDz;Finds-interesting(x,Linguistics))

respectively, and the sentences in (155) can be represented semantically
in the form :

(159) (a) (g](all) x)(xeD3;lntgresting(!inguistics) at x)
(g](all) 3)(xeDu;Found-interestihg(linguistiqs)at x}
(g](all) x)(xeDS;MostFFnteresting(]inguisfic;) in x)

respectively. Although there are differences, of course, in the
quantified predicates of these formulas, which reflect other aspects
of the meanings of the sentences they represent, we see that the
forms we are presently interested in are all represented in exactly
the same way, as the dual negation of all. The difference in
meaning arises solely from the different choices of D, Something,
someone, sometimes, somewhere, and may can be listed in the lexicon,
respectively, as ' : c

something: g](all), D=D,

[

_someone: g](gll), D=D
soqetimes: g](gll), D=D3
somewhere: - g](gll), b=D,
may: g, (all), D=D,

as we saw in the last section. Although the first two of these forms

‘are NP forms in surface meaning and the last three are § forms,

our theory has revealed that they are really fundamentally the
same in their underlying semantics.
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Chomsky (1970} shows, in effect, that there is also a syn-
tactic parallelism between quantifiers and modalities to go
along with the semantic parallelism that we have developed here.
As a part of the bar notation that we saw earlier; he introduces.
the notion of "'specifier" with the rule

X > [Spec, X] X

"where [Spec, X] will be.analyzed as the determiner and [Spec, V]

as the auxiliary (perhaps with time adverbials associated)".

(p. 210} and he demonstrates a substantial parallelism in the. -
syntactic behavior of [Spec, X] for X=N and X=V. Since quanti-
fiers occur syntactically in English.as part of the determiner
and modals occur as part of '"the verbal auxiliary (perhaps with

time adverbials associated)', this syntactic result corresponds . .
very nicely with the semantic analysis that we have developed. ..,

None of these results should be surprising, if we look again

at the quote with which we began this section:

There 18 a parallelism between the existence of an object-
referent for a term and the existence of a situation-

referent for a formula, i.e., between the existence of a

referent for a term and the truth-value of a formula.

As we have noted again and agaln, a quantifier is a semantic
operator that answers one of the questions How many? or How much?
In view of the fact that a quantifier in a noun phrase tells us
How many? obejct-referents the NP has, this parallelism should
lead us to loock for quantifiers that tell us How many? situation-

referents an $ has. As we have seen this role is played by what. .-

turns out on the surface to be modality. Just as taking D=D ,
tells us How many? people there are who have the property spéci-
fied by some surface NP, so taking D=D. tells us How many? ways
the world could be arranged in which tﬁe proposition specified

by a surface S would be true, that is, How many? possible worlds.

are correctly described, in part, by S. We see once again, with
Cushing (1972b) and the Kiparskys, that ''there is a syntactic
and semantic correspondence between truth and existence...at
some sufficiently abstract level of .semantics.'
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