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Learning Adjuncts∗

Meaghan Fowlie

Human languages include adjuncts, which are grammatically optional el-
ements. Some adjuncts can also be repeated indefinitely. I consider four
learnable classes of languages and ask whether these classes include op-
tional and repeated elements, and what input a learner requires in order to
generalise from finite to indefinite repetition.
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1 Introduction

At the heart of linguistic study is the question of how such a complex system can be
learned by people so young and unformed that they cannot even survive on their own. In
describing existent human languages we often hope that the phenomena we encounter will
provide some insight into this puzzle: perhaps we have found a universal feature, meaning it
could be somehow “built in”, sidestepping the necessity for children to learn it; or perhaps
we have found a clearcut parameter on which human languages may differ, pointing out
a specific fact that children might automatically watch for. Language acquisition studies
children’s language learning directly, while formal language theory can be used to discover
what sorts of grammars are required to describe human language. Learnability theory is the
study of mathematical models of language acquisition.

This paper will explore learning models applied to two specific phenomena: optionality
and repetition. Adjuncts are by definition optional in that although a sentence will have a
different meaning without the adjunct, it is still perfectly grammatical, and the meanings
of the sentences differ systematically. For example, in (1) we see that the adjective red is
optional, and (1-a) entails (1-b).

(1) a. My love is like a red rose.
b. My love is like a rose.

Many human languages allow optional repetition of adjuncts, as for example English:

(2) a. My love is like a red red rose.
b. She’s really really really really really nice.
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In this paper I will look at several formal learning models and ask the following 2
questions:

1. Are optionality and repetition possible in this class of languages?

2. What kinds of sentences would the learner need to encounter in order to conclude that
a given element can be repeated indefinitely? Omitted?

2 Learnability

Mathematically, a learner is a function from an input text to a grammar.

...

input sentence 5 hypothesis grammar 5

input sentence 4 hypothesis grammar 4

input sentence 3 hypothesis grammar 3

input sentence 2 hypothesis grammar 2

input sentence 1 hypothesis grammar 1

Figure 1: Learning

For example, a very simple learner could simply remember every sentence it’s heard.
The grammar is then simply the list of sentences. No novel sentences would be generated by
this grammar.
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...

s5 {s1,s2,s3,s4,s5}

s4 {s1,s2,s3,s4}

s3 {s1,s2,s3}

s2 {s1,s2}

s1 {s1}

Input sentence Hypothesis grammar

Figure 2: Finite language learner

Such a simple learner cannot learn infinite languages and cannot generalize, so although
it is a valid learning model, in that it is a function from a text to a grammar, it is definitely
not a model of how babies learn language.

The kinds of patterns in the input that the learner is sensitive to depends on the assump-
tions that the particular learner makes about the nature of the language.

In current learnability theory, there are two types of learning: Gold learning and PAC
learning. They define what it means for a learner to have succeeded in learning a language.

Gold learning, or learning in the limit from positive data, is achieved when the learner
eventually converges on exactly the right language. Such learning is very hard; for example
there is no one learner that can learn all finite language plus even one infinite language (Gold
1967). However, there are some classes of languages that are known to be Gold-learnable.
None of these are human-like languages as of yet.

Probably Approximately Correct (PAC) learning is achieved when the probability that
the language is “close enough” to being correct is “high enough”. Close enough and high
enough are determined by thresholds set in advance.

Definition 1 (PAC learning). ∀0 < ε < 0.5,0 < δ < 0.5 a Probably Approximately Correct
learner outputs hypothesis grammars that are, with probability 1− δ , ε-close to correct.
(Valiant 1984)

Learners of Regular languages are much better understood than those for languages
higher on the Chomsky hierarchy (Chomsky 1959). Since human languages are known to be
Mildly Context-Sensitive (Joshi 1985), learning algorithms for such languages are clearly
more relevant to actual human language learning; however, as research into such learners is
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still in its infancy, and since our understanding of Regular learners has driven higher-level
learners (see for example Clark, Eyraud, & Habraud Clark et al. (2008)’s substitutable CF
learner and Yoshinaka Yoshinaka (2008)’s k,l-substitutable CF learner, which are extensions
of Angluin (1982)’s 0- and k-reversible learners to the context free level), I will look at
learners low on the Chomsky hierarchy as well. I provide here four examples.

3 Repetition and Optionality

Here I formalize the notions of optionality and repetition in language L. Note that it only
makes sense to define optionality and repetition of a string in a context.

Definition 2 (Language). Given a finite set Σ,Σ∗ is the set of all finite sequences of elements
of Σ. L is a language iff L⊆ Σ∗

Definition 3 (Context). A context is a pair (u,v) where u,v ∈ Σ∗

Definition 4 (Optional). x ∈ Σ∗ is optional in context (u,v) iff uv ∈ L and uxv ∈ L

Definition 5 (Repeatable). x ∈ Σ∗ is repeatable in context (u,v) iff ux+v ⊆ L, where x+

means 1 or more xs.2

It is not obvious what exactly it means to ask whether optionality and repetition are
learnable. A simple interpretation of is repetition learnable? is are there any learnable
classes L such that for some L ∈L ,∃u,x,v ∈ Σ∗ such that ux+v ⊆ L? That is, do any
learnable classes have even one incidence of repetition in even one language? This question
is easily answered: yes. For example, a∗ is 0-reversible and is therefore learnable, since
there is a learner for the class of 0-reversible languages. (See Section 5).

Slightly more interesting is to ask whether a certain learner can learn repetition. This
amounts to asking whether the class of languages it can learn includes some L such that
∃u,x,v ∈ Σ∗, x 6= ε , such that ux+v⊆ L. This question is also easily answered; it suffices to
find an example, and they abound. For example, clearly a learner of finite languages will not
be able to learn repetition, as indefinite repetition can only occur in infinite languages. All
the language classes I will look at in this paper contain a language with a repeating substring.

Or more interest is to ask what a learner must encounter in order to generalize to indefinite
repetition or optionality. For example, is hearing an element repeated once in a context
enough? (i.e. if the sample contains uxv and uxxv does the learner guess a language that
includes ux+v?) What other conclusions will it draw about x?

I will now consider four learners for four languages classes.
2Languages may also have repeated elements, as for example in (i-a). Notice though that this does not follow

our definition of repetition: (i-a) requires exactly two fly’s. One or three are not grammatical.

(i) a. Why won’t the fly fly away?
b. *Why won’t the fly away?
c. *Why won’t the fly fly fly away?

The difference between (2) above and (i) is that the repeated element (fly) in (i) has two-way dependencies, while
the repeated elements in (2) (red and really) only have one-way dependencies. The first fly is dependent on the
determiner the, and the is also dependent on it: without fly, the phrase becomes ungrammatical. The second fly
is a verb, and is thus dependent among other things on its subject (the fly), and the subject is dependent on it.
Conversly, in (2-a), red is dependent on rose, but rose is not dependent on red: the sentences is just fine without
either red. Similarly, in (2-b), really is dependent on nice, but not vice-versa.
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4 N-gram learners

An n-gram learner, for some n ∈ N, learns languages defined entirely by good substrings
of length n. It simply memorises all n-grams it encounters, and accepts/generates strings that
contain only n-grams from the list it memorized.

For example, suppose a bigram learner encounters ac, abc. Let o and n mark word
boundaries. The learner generates the following grammar:

o a b c n
o X
a X X
b X
c X
n

Table 1: Grammar 1

A word is a valid word of the language if it begins with o, ends with n, and contains
only bigrams from this grammar. This grammar does not generalize beyond the input strings:
only ac and abc are valid strings.

Suppose now the learner hears a third string, abbc. We update the bigram chart, adding
bb. (The other bigrams in this string are already present.)

o a b c n
o X
a X X

b X X
c X
n

Table 2: Grammar 2

Now we have grammar that generates an infinite language ab∗c, which is ac with zero
or more bs in the middle. For example, the bigrams of abbbbbbc are {oa, ab, bb, bc, cn},
just like those of abbc. The learner has generalized to indefinite repeatability from a single
repetition.

Generalising to x longer than one symbol, we have Theorem 6 which gives a sufficient
sample for learning ux+v.

Theorem 6. Let u,x,v ∈ Σ∗ and take n≤ |uxv|. For an n-gram learner to learn a language
containing ux+v, it suffices for the sample to include {uxdv|d ∈ N,1 < d < (n/|x|+2)}

Proof. Let k be the number of complete x’s that can fit in an n-gram.
For any k ≥ 0, the sample will need uxk+2v = uxxkxv. This is needed so that all n-grams

needed to cover any part of the first x and yet contain only xs are present. The n-gram starting
at the last symbol of the first x may be longer than |x|× k+1 so another x is needed on the
other side of the k xs.
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u1u2...um x1x2 . . . x|x| xk x1x2x3 . . .x|x| v1v2 . . .vt

1 2 . . .k|x|−1 k|x| . . .n

Notice that for k = 0 this means we have uxxv to give us the n-grams in the transition
from x to x, without which repetition is not possible.

For k ≥ 1 the sample will also need to include uxv, ...,uxkv so that the n-grams that
include any part of u and v and each possible number of x’s that can fit in the n-gram are
learned. Visually, for i < k:

u1u2 . . .um xi v1v2 . . .vt

1 2 . . . i|x|−1 i|x| . . .n

For the learner to learn ux∗v, i.e. as above but including uv, the sample need merely also
include uv.

5 0-reversible learner

A 0-reversible language is a regular language with the property that any two prefixes of
a valid sentence that share one suffix share all suffixes. A learner for a 0-reversible language
builds a grammar based on this assumption. The procedure is simple: we start with a prefix
tree of the input text. First final states are merged. Then we work from the end of the
automaton, merging states that share a suffix.

Definition 7 (0-reversible language). L ∈L0-rev iff ∀s, t,u,v ∈ Σ∗ if su,sv, tu ∈ L then tv ∈ L

Angluin (1982)’s 0-reversible learner generalizes directly from optionality to indefinite
repeatability. The learner starts with a prefix tree (Figure 3) and then merges states with any
suffix in common. For example, suppose we have two input strings ac and abc. First the
final states are merged since they share the suffix ε (the empty string) (Figure 4). Next, states
1 and 2 are merged, forming a loop, since the prefixes a and ab share the suffix c (Figure 5).

0 1a

2
b

3
c

4c

Figure 3: Prefix tree

A relationship between arbitrarily repeatable elements and optional elements is arguably
desirable in general. Another way of saying that an element may or may not occur in a
situation (in a context or after a state) is to say that the situation is the same whether the
element has occurred or not. If this is a situation in which element A may occur, and if the
situation is the same once A has occurred, then A may occur again, leaving us in the same



Learning Adjuncts 153

0 1a
2b

3/4c

c

Figure 4: Grammar after states 3 and 4 are merged

0 1/2a

b

3/4c

Figure 5: Grammar after states 1 and 2 are merged

situation. For example, the X-bar rule N’→(A) N’ means that whether or not A occurs to the
left of this N’, the result is another N’. This allows indefinite repetition of A. Similarly, in
Figure 4, once we get to state 1/2 we remain in state 1/2 no matter how many times b occurs,
until c occurs.

X’

Adjunct X’

X

Figure 6: X-bar adjuncts

In 0-reversible languages, optionality and repetition co-occur. x ∈ Σ∗ is optional in
context C if and only if it is repeatable in C. A pair of simple inductive proofs is enough to
show this.

Lemma 8 (0-reversible language: Optionality ∴ Repetition). Let u,v,x∈ Σ∗ and let uv,uxv∈
L ∈L0−rev. Then ux∗v⊆ L

Proof by induction on number of x’s. Base case: ux and u share suffix v.
u also has suffix xv
∴ ux also has suffix xv,
∴ uxxv ∈ L.

Inductive step: Suppose uxkv,uxk+1v ∈ L. Then uxk+1 and uxk share suffix v. uxk also
has suffix xv, so so does uxk+1. Then uxk+2v ∈ L
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Lemma 9 (0-reversible language: Repetition ∴ Optionality). Let uxkv,uxk+1 ∈ L for some
k ≥ 0. Then uv ∈ L.

Proof by induction on number of x’s. Base case: Suppose k = 0. Then ux0v = uv ∈ L
Inductive step: suppose uxkv,uxk+1v ∈ L,k > 0
uk−1,uxk share suffix xv
uxk also has suffix v
∴ so does uxk−1

∴ uxk−1v ∈ L

Theorem 10. Let L be a 0-reversible language over Σ. Then ∀k > 0,∀u,v,x ∈ Σ∗ we have
(uxkv ∈ L∧uxk+1v ∈ L)⇐⇒(uv ∈ L∧uxv ∈ L)

Proof. By lemmas 8 and 9.

This means that any learner for a 0-reversible language given a sample that contains uxkv
and uxk+1v for some k ≥ 0 will correctly hypothesize a grammar that generates uxkv for all
k ≥ 0.

6 Substitutable context free languages

Substitutable CF languages (Clark 2010) are the context-free equivalent of 0-reversible
languages. 0-reversible languages are defined by common suffix generalization: if two
prefixes share one suffix, they share all suffixes. Substitutable CF languages are defined by
common context generalisation: if two substrings share one context, they share all contexts.
This is a learnable class. Briefly, the learner tries all partitions of each input sentence and
hypothesizes CF rules of the forms A→ b and A→ BC where A,B,C are sets of contexts
and b ∈ Σ. In the sample, the right hand sides of the rules have appeared in at least one of
the contexts on the left hand sides of the rules.

Like with 0-reversible languages, optionality and repetition co-occur.

Lemma 11 (Substitutable CF: Optionality→ Repetition). Let u,v,x ∈ Σ∗ and uv,uxv ∈ L ∈
LsubCF Then ux∗v⊆ L(Gi).

Proof. By induction on the number of xs.
Base case: u,ux share context (ε,v).
u also has context (ε,xv) so ux also must have this context.
Therefore uxxv ∈ L(Gi).
Inductive step: Suppose uxkv,uxk+1v ∈ L for some k ≥ 0. Then uxk+1,uxk share context
(ε,v).
uxk also has context (ε,xv) so uk+1x also must have this context.
Therefore uxk+2v ∈ L(Gi).

Lemma 12 (Repetition → Optionality). Let u,v,x ∈ Σ∗ and uxnv,uxn+1v ∈ T [i] for some
n≥ 0 Then uv⊆ L(Gi).
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Proof. By induction on the number of xs.
Base case: Let n = 0. Then ux0v = uv ∈ L.

Inductive step: Let n > 0 and suppose uxnv,uxn+1v ∈ L. Then uxn−1,uxn share context
(ε,xv). uxn also has context (ε,v) so uxn−1 also must have this context. Therefore uxn−1v ∈
L(Gi) for all n≥ 0.

Theorem 13 (Substitutable CF: Optionality↔ Repetition). Let L be a substitutable context
free language over Σ. Then ∀k > 0,∀u,v,x ∈ Σ∗ we have (uxkv ∈ L∧uxk+1v ∈ L)⇐⇒(uv ∈
L∧uxv ∈ L)

Proof. By lemmas 11 and 12.

This means that any learner for a substitutable CF language given a sample that contains
uxkv and uxk+1v for some k ≥ 0 will correctly hypothesise a grammar that generates uxkv
for all k ≥ 0.

7 Clark & Thollard

Clark & Thollard (2004) describe a PAC (Probably Approximately Correct) learner of
probabilistic finite state languages. The learner is similar to Angluin’s 0-reversible learner,
except that the criterion for merging states is stricter: the similarity of the suffix sets of two
states must be within a pre-determined margin for them to be merged. One suffix in common
is not enough.

This learner can learn repeatability if the input is representative of the probabilities
in the generating grammar; i.e. under normal cicumstances. Unlike the 0-reversible and
substitutable CF learners, there is no “short cut”.

For example, suppose the language to be learned is ab∗c, with the distribution p(abnc) =
(1/2)n+1. This PDFA generates L:

0 1a:1

b:0.5

2c:0.5

Figure 7: L = ab∗c

The learner hypothesizes a DFA such that the states are the suffix sets in the sample. It
then considers possible “candidate nodes” to follow each node in the hypothesis grammar. If
a candidate node is similar enough to an existing node, they are merged (i.e. the existing
node is given a new transition). After the first iteration of the learner trained on L, the
hypothesis grammar will look like this:
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50% ac
25% abc

12.5%abbc
...

Next candidate nodes are considered. Since all strings start with a only one candidate is
proposed (shown as a square):

50% ac
25% abc

12.5%abbc
...

50% c
25% bc

12.5% bbc
...

a:1

Since these two nodes do not have similar suffix sets, they are not merged, and the
candidate becomes a real node:

50% ac
25% abc

12.5%abbc
...

50% c
25% bc

12.5% bbc
...

a:1

Next, more samples are drawn and candidates are proposed, one following b and the
other following c. Nothing follows c so the latter suffix set is empty.

50% ac
25% abc

12.5%abbc
...

50% c
25% bc

12.5% bbc
...

a:1
c:0.5

50% c
25% bc

12.5% bbc
...

b:0.5

Since the candidate node with transition b and the real node before it have similar suffix
sets, the two are merged, yielding a loop.
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50% ac
25% abc

12.5%abbc
...

50% c
25% bc

12.5% bbc
...

a:1

b:0.5

c:0.5

Clark & Thollard’s learner can learn any PDFA with an upper bound on the expected
length of strings and size of machine, along with µ-distinguishability, which means that
any pair of states is such that there is at least one suffix on which they differ by at least the
threshold µ .

Definition 14. For µ > 0 two states q1.q2 are µ-distinguishable if there is a string s such
that the differences in the probabilities of s as a suffix of q1 and s as a suffix of q2 is at least
µ .

Unlike for n-gram learners, 0-reversible learners, and substitutable CF learners, this
learner needs a representative sample to learn repetition: there are no short cuts. Repetition
is, however, perfectly learnable.

8 Conclusion

Optionality and repeatability are closely linked both conceptually–repetition is a form of
optionality–and in natural language– adjuncts tend to be optional and repeatable. This paper
surveyed some basic formal learners and found all to be capable of learning repetition and
optionality, and for 0-reversible and substitutible CF learners, optionality and repetition in a
context always co-occur.

None of these language classes suffice to describe human syntax. However, substitutable
CF languages are not a bad place to start. A major reason to conclude that two phrases
have the same category is if they are intersubstitutable. For example, here the man they
call Jayne and he are of the same category and are intersubstitutable. The fact that they
are intersubstitutable in the context (ε , stole money) is usable as evidence that they are also
intersubstitutable in the context (ε , shot Mal).

(3) a. The man they call Jayne stole money.
b. He stole money.
c. The man they call Jayne shot Mal.
d. He shot Mal.

However, they are not always intersubstitutable, for example in the context (They built a
statue of, ε).

(4) a. They built a statue of the man they call Jayne.
b. *They built a statue of he.
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Surely humans bring more to learning than intersubstitutability: they have access to context
and meaning if nothing else. Substitutability is still a very useful tool, and human learners
may well use it.

8.1 Further research

Future research on the learnability of adjuncts will look at learners for language classes
closer to human language: CFLs with finite context and finite kernal properties (Clark et al.
2008) and k, l-substitutable Multiple Context Free Languages (Yoshinaka 2009). I am also
running artificial language learning experiments asking exactly the same questions: what
evidence of repetition do human learners require to generalize to indefinite repetition?
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