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Joint knowledge of a group is the maximal knowledge that members of a
group can attain only by talking to each other. I propose a formal approach
and show how — at least in principle — group members can find out whether
a proposition is jointly known.

1 The Problem

On the one hand, communication serves to distribute knowledge. On the other hand,
knowledge is presupposed in communication. This is not a contradiction. The knowledge
that is presupposed in communication is the so called common knowledge, while that which is
communicated cannot be, by pragmatic principles. If ϕ is known by everyone, the Principle
of Informativeness discourages utterance of ϕ . As Williamson (2000) argues, an assertion
is licit only when what gets communicated is known to the speaker. This means that it
should not be known to the hearer (as far as the speaker knows, that is). The effect of the
communication is that it makes the assertion common knowledge, see Balbiani, Baltag, van
Ditmarsch, Herzig, Hosi, and de Lima (2008). The knowledge that can be so attained is
limited to what is known by all the speakers. This I call joint knowledge. This is the same as
the “implicit knowledge” defined in Halpern (1987), but that term strikes me as unfortunate.
A proposition is known jointly by a group if it follows from the union of all the propositions
known individually. The aim of this paper is to investigate this notion.

2 Definitions

Let G be a set, the group of agents. For each a ∈ G, let Ka be the operator “a knows
that”. I take it that Ka satisfies the postulates of some modal logic, be it KT (Williamson
(2000)), S4 (Hintikka (1962)) or S5 (Fagin, Halpern, Moses, and Vardi (1995)). All these
conditions are equivalent to universal elementary conditions on Kripke-frames. I use the
notation of propositional dynamic logic (PDL, see Goldblatt (1987)). So, Ka is based on a
so-called “program” κa, a ∈ G, which gets interpreted as a relation between states, called
here as usual worlds. We present the arguments assuming tacitly that Ka satisfies S5, the
relation associated with κa is an equivalence relation Ea ⊆W ×W , but little hinges on that.
Given w ∈W , the w-alternatives for a are all b for which a Ea b. These are also called the
epistemic alternatives for a at w. What is known to a at w is what is true in all w-alternatives
for a. Thus Kaϕ is tantamount to [κa]ϕ . The more alternatives w has, the less is known to a.
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It follows that knowledge increases when the Ea gets refined (so that the equivalence classes
shrink). Now, for a group H ⊆ G denote by “CHϕ” the fact that it is common knowledge for
all a ∈ H that ϕ . The standard definition is this. CH is based on a program γH defined by

(1) γH := (
⋃

a∈H

κa)
∗

This is to say that CHϕ is nothing but [γH ]ϕ . As we close the union (reflexively and)
transitively, this is again an equivalence relation. Common knowledge satisfies again the
postulates of S5. Notice that nothing less than the transitive closure suffices, and it has been
argued that these steps of iteration are strictly required in pragmatics. (See also the problems
of imperfect communication in Halpern (1987).)

The definition of joint knowledge is however much simpler.

Definition 1. Let Ua be the set of propositions known to a and let H ⊆ G be nonempty. The
joint knowledge of H, UH , is the deductive closure of

⋃
a∈H Ua. “JHϕ” is short for ϕ ∈UH .

JH is based on the program ιH , which is defined as follows.

(2) ιH :=
⋂

a∈H

κa

Notice that we require that H is not empty. If you are desperate, let ι∅ be the total relation
on the frame. For a world w′ to be a w-alternative according to what the members of H know
jointly, it must be an alternative for every member of H, for everyone needs to agree on
the alternatives to the world w. Since the intersection of equivalence relations is again an
equivalence relation, JH also satisfies S5. This generalises to the weaker logics KT and S4
as a consequence of the following observation.

Theorem 2. Let P be a variable for binary relations, xi variables over worlds. Let ϕ =
ϕ(P,x) be a second order formula relations of the following kind. It is made from formulae
of the form xi P x j using conjunction, disjunction, and restricted and unrestricted universal
quantification (which have the form (∀xi)(xi P x j→ ·) and (∀xi), respectively). If R and S
are relations on a set M satisfying ϕ , then also R∩S satisfies ϕ .

Proof. Let ϕR (ϕS, ϕR∩S) be the result of inserting R (S, R∩ S) for P in ϕ . By induction
on the formulae we show that for every first-order valuation β sending variables to worlds,
〈M,β 〉 � ϕR and 〈M,β 〉 � ϕS implies 〈M,β 〉 � ϕR∩S. For the atoms, this is clear. If
w R v and w S v then w (R∩S) v. The inductive steps for conjunction and disjunction are
straightforward. Suppose now that 〈M,β 〉 � (∀y)(x R y→ ϕR) and 〈M,β 〉 � (∀y)(x S y→
ϕS). Choose a w and let β ′(y) := w be a y-variant of β . If w is not a (R∩ S)-successor
of β (x), we trivially have 〈M,β ′〉 � (x Py→ ϕ)R∩S, since this formula is nothing but
(x (R∩ S)y→ ϕR∩S). Thus, let us assume that β (x) (R∩ S) w. Then β (x) R w and so
〈M,β ′〉 � ϕR. By the same reasoning, 〈M,β ′〉 � ϕS. Hence 〈M,β ′〉 � ϕR∩S, by inductive
assumption, and so 〈M,β ′〉 � (x P y→ ϕ)R∩S also in this case. β ′ was an arbitrary y-variant
of β . Hence 〈M,β 〉 � (∀y)(x Py→ ϕ)R∩S. Unrestricted quantification is similar.

Notice how joint knowledge can be defined without an auxiliary notion (as the EG

operator, which codifies “everybody in the group knows”, whose transitive closure is
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CG). Reflexivity is (∀x)(x R x), symmetry (∀x)(∀y)(x R y → y R x) and transitivity is
(∀x)(∀y)(x R y→ (∀z)(y R z→ x R z)), and so all three conditions are of the form required
by the theorem.

The axiomatisation of common knowledge proceeds by axiomatising the closure, which
is already part of PDL. The intersection is not part of PDL, however. The extension of PDL
with intersection is not straightforward, since intersection is not modally definable, see Passy
and Tinchev (1991) for a discussion. Adding the axiom 〈α ∩β 〉ϕ → 〈α〉ϕ ∧〈β 〉ϕ is not
enough (the converse implication is clearly false), and something much stronger needs to be
added as well, for example nominals, for it simply encodes that α ∩β is contained in α and
β , not that it is identical to them.

3 Communicating Knowledge

The main point of this paper is however not the axiomatisation of joint knowledge. The
question is its role in communication. We refer here to the framework of Brandt and Kracht
(2011) for communication in a network. A network consists of a set G of agents together
with with a set C ⊆℘(G) of so-called channels. The communication structure of Brandt
and Kracht (2011) further adds an addressing mechanism, whose role can be ignored here. A
channel C ∈ C allows to transmit a message from one member of C to all other members. To
make matters simple, we allow only the following kinds of messages to be sent: “?ϕ”, the
question whether ϕ is true, to which recipients may answer with “yes” (if they know that ϕ),
“no” (if they know that ¬ϕ) or “don’t know” (if they neither know that ϕ or that ¬ϕ); further,
“!ϕ”, the announcement that ϕ is true. To stay with the symmetrical flavour of Brandt and
Kracht (2011), “!ϕ” must be followed by the acknowledgment “ok” by each recipient. As
usual, we assume that all participants adhere to the pragmatic rules, in particular we assume
that they only answer truthfully.

The communicative steps always leave an effect. We concentrate here on the accumula-
tion of knowledge and leave the message scheduling out of consideration. We will however
later see that certain protocols are more apt than others for the accumulation of knowledge.
The announcement “!ϕ” as well as the answers to the question “?ϕ”, if received by b via
a channel C allow b to eliminate certain epistemic alternatives. Thus, if a formal model is
required, it will be a dynamically changing Kripke-frame. However, it is not necessary to
spell out the details to make the arguments clear.

In what follows I shall be concerned only with knowledge of nonmodal propositions,
as it is not subject to change by rounds of communication. Thus, the formula ϕ unless
otherwise indicated is assumed to be nonmodal.

There are basically two ways in which joint knowledge can become common knowledge.
The first is described in Balbiani et al. (2008). Some speaker, a, sends out the message “!ϕ”
through the channel H ∈ C . After that, ϕ is common knowledge for the group H. This is the
“push”-method, where someone distributes the knowledge. I should stress that this method is
not as straightforward as it appears. In practice, we need to know not only that a sent out
“!ϕ” via some channel C. It must namely also presupposed that the structure of the network
is common knowledge. To see this, think about some newsletter broadcast through the net by
some administration. Suppose I get that email and wonder whether a also got it. This in turn
requires that I know whether a is part of the email-list address to which this message was
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sent. (The possibility of registering black carbon copies in email messages complicates the
picture a bit. Basically, a recipient of an email knows about all recipients except other black
carbon copy recipients.) Additional worries may be whether or not a has actually read and
understood the message. Even face to face communication is not innocent in that respect.
Even if there is no logical addressing mechanism involved, people can hear the message only
if they are close enough, for example. And we may not always know who is within hearing
distance (think your house and someone in an adjacent room, or even wiretapping). It is
therefore far from clear who physically gets the message; that is, it is not clear what channel
is actually being used.

Once all that is granted, however, as is done in this framework, then the broadcast really
turns the message into common knowledge among the members of the channel as long as
the return acknowledgement is sent through that same channel as well. The second method
is where some a wants to know whether ϕ holds and sends out a request, “?ϕ”, through the
channel H. This is the “pull”-method. It turns out, though, that getting an answer to one’s
question is not that easy. One problem is that the channel might not reach everyone from
the intended group H, so that what we get is not what the entire set of agents know, but
something weaker. The network structure plays an important role in how we can gain access
to knowledge. I shall ignore these complications in the sequel.

To start we make even more drastic simplification and assume that each subset H ⊆ G
is a channel. To see that even in this simplified scenario matters are still not so trivial, let
us assume that b knows that p0, but not whether p1, while c knows that p1 but not whether
p0, and a wants to know whether or not p0∧ p1 is true. If a simply sends out the request
“?(p0∧ p1)” through the channel {a,b,c} then he would get no further. Neither b nor c are
in a position to answer his request and reply with “don’t know”. However, if a sends out two
requests, say “?p0” followed by “?p1”, he will reach his goal. b answers “yes” to his first
request and c answers “don’t know”, while b answers “don’t know” to the second request,
while c answers “yes”. After all this is done, a knows that p0∧ p1. Moreover, if the replies
are sent through the same channel, b and c also know this. For then c knows that b answered
the question “?p0” by “yes”, and b knows that c answered the question “?p1” by “no”. If
furthermore the senders and channels of the messages are common knowledge, then p0∧ p1
becomes common knowledge of {a,b,c}.

Consider now a second scenario. b knows that ¬p0∨ p1, c knows that p0∨¬p1 and d
knows that p0∨ p1. In this situation, asking either “?p0” or “?p1” gets a no further. None of
the others can answer positively or negatively to these questions. It seems then that what a
must ask depends on what the others know. Fortunately, the situation is not that bad. Here is
a strategy that always works.

Let “ϕ” be the formula about which a wants to know whether it is true. Consider a
conjunctive normal form δ of ϕ . This is a conjunction δ =

∧
j∈n χ j of maximal disjunctions

χ j. A maximal disjunction is a formula of the form stP, where P is a subset of the set Var(ϕ)
of variables of ϕ:

(3) stP :=
∨
p∈P

p∨
∨

p∈Var(ϕ)−P

¬p

Now suppose that ϕ ≤ stP, that is, that ϕ implies stP. Then if I know ϕ I also know stP.
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Moreover, by standard modal principles (distribution of Ka over conjunction),

(4) Kaϕ ↔
∧
j∈n

Kaχ j

Hence, to obtain knowledge of ϕ it is enough if I obtain knowledge of every maximal
disjunction implied by ϕ .

Let’s consider such a disjunction stP. If a asks b about stP, the following may occur: b
answers “yes” if b knows that stP, b answers “no” if b knows that ¬stP, and “don’t know”
otherwise. What however are circumstances in which b knows neither stP nor ¬stP for any
P? These are circumstances in which the knowledge of b concerning the variables Var(ϕ)
is zero, that is, if τ is a formula in the variables of Var(ϕ) that is known by b, then τ is a
tautology. For if b does not know ¬stP, then some alternative world does not satisfy ¬stP.
That is, some alternative satisfies stP. If this is the case for all P⊆ Var(ϕ), b in effect knows
nothing. Thus, as long as b knows something, he can answer “yes” or “no” to some of a’s
questions.

It follows after some reflection that the following strategy works for a independently of
what the other agents know. For all subsets P⊆ Var(ϕ) such that ϕ ≤ stP a needs to send
out the question “?stP”. If he gets the reply “yes” at least once, stP is jointly known. If no
recipient answers “yes”, stP (and therefore ϕ) is not jointly known. ϕ is jointly known if
(and only if) every such disjunct is jointly known.

Notice that the answer “no” played a subordinate role. Indeed, b will answer “no” just in
case his epistemic alternatives all satisfy ¬stP. In that case, the joint knowledge (since it
is not inconsistent) is exactly ¬stP. For a he could reach that conclusion also by looking
at the “yes” answers of b: b will answer “yes” to all stQ where Q 6= P. Hence the above
communication game can also be played with the following convention. There are only two
answers to “?ϕ”: “yes”, when the addressee does know that ϕ , and “no”, when the addressee
does not know that ϕ (but it is unclear whether or not he knows ¬ϕ). Even more can be
concluded: the strategy works even when a does not know what the answer “no” factually
means. The only thing that a needs to know is that “yes” means that the addressee knows
that ϕ . (This situation is not uncommon. It is very often not clear whether people simply
deny a claim or whether they wish to assert its falsity.)

4 Network Structure

The structure of the network has been assumed to be trivial, namely the powerset of G.
What if that is not the case? Let us go back to the initial scenario where a sends out the
request “?ϕ” through the channel H. This may be interpreted as a request to get to know
whether or not ϕ is joint knowledge for the group H only. But mostly a simply intends
to get an answer but cannot reach everyone through a channel. Such is the case if H 6∈ C .
There are two ways to look at the matter. The first option is that a is indeed interested in
knowing what the group H knows. In that case he can simply send out the request “?JHϕ”,
thus indicating that he wishes to know whether or not ϕ is joint knowledge of the group
H. This requires that knowledge operators are transitive, however, since a asks what the
individuals know about the joint knowledge of ϕ not about their knowledge of ϕ directly.
Let us grant however that knowledge is transitive. It is to be seen whether that is a solution
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to a’s predicament. Let us consider the case ϕ = stP. Suppose b is asked to answer “?JH stP”.
If stP is not an epistemic alternative for b, b knows that ¬stP, and therefore he also knows
that ¬JH stP if b ∈ H. (If b 6∈ H, he has no first hand knowledge of JH stP, but may acquire it
in the communication process.) So he will answer “yes”. In the other case, the answer may
be “no” or “don’t know”, depending on how much b knows about other people’s knowledge.
a can thus obtain full knowledge about JHϕ .

This shows how a can find out about what is jointly known by some group. This runs
into difficulties, however, as soon as the group H is not a channel or a 6∈ H. Clearly, this
can be the case. For example, let H = {ai : i < n} and the network only has the channels
{ai,ai+1 mod n} (so the network is a cycle of length n) and a = a0. In this case a can only
send messages to a1 and an−1, but not to, say a2, if n > 3. In this situation, a0 needs to rely
on the willingness of the others to complete the task. To achieve this, we need to change the
protocol.

Specifically, we need to assume that when a0 sends a query “?JHϕ” to a1 and a1 cannot
reply “yes”, then a1 will take up the matter and ask around to find out more. So, a1
will ask in particular a2 who either knows the answer or goes to ask a3, and so on. This
looks like a valid algorithm. However, it has a drawback. There is no guarantee that it
terminates. Initially, one may think that once the request took a full round to finally reach
a0, a0 could simply interrupt the chain and not send out any more requests. However,
some messages might bypass a0. To see this, let me change the network a little bit. Let
C := {{ai,ai+1 mod n} : i < n}∪{{an−1,ai} : i < n−1}}. Suppose the query moves around
the circle and finally reaches an−1. If an−1 does not know the answer, he will contact one of
the ai, and so set the entire chain once again in motion.

Further problems concern the fact that since everyone is allowed to issue a request it is
not clear whether the request for “?ϕ” that reaches a0 is actually a follow-up to a request he
initiated (rather than a1 or a2). In the absence of an external scheduling mechanism, calls
into the network will not die out if everyone is maximally cooperative. An example is where
everyone knows that p0↔ p1, but does not know whether p0 (and p1) or ¬p0 (and therefore
¬p1). If someone issues the request ?p0, the algorithm will run forever. Still, the surprising
fact is that if a is chosing his requests carefully enough, termination is guaranteed. Let the
protocol for queries of the form “?JHϕ” be as follows. If b 6∈ H, b will not give an answer
and instead issue the same query to all channels, unless b knows the answer offhand to be
“yes” or “no”. (Here we take advantage of the communication, because answers to queries
force updates across the network.) If b ∈ H and the answer to the query is “yes” or “no”
(because of this epistemic alternatives), that answer is sent and no further action is taken.
In the remaining case, b will not send out this answer and instead send out “?JHϕ” to all
channels. Upon receiving the answer “yes” or “no”, b will answer back to a with that same
answer. This means that the answer “don’t know” is in fact never used.

Call H totally connected if for every a and b there is a chain of channels connecting a
and b. Alternatively, let a VC b if there is a C ∈ C such that a,b ∈C. H is totally connected
if and only if V ∗C = H2.

Theorem 3. Let G be totally connected and H ⊆ G. Assume that ϕ is jointly known by H.
The maximally cooperative protocol for “?JHϕ” terminates if for all P ⊆ Var(ϕ) sender
sends out the request “?JH stP” for all stP ≥ ϕ in addition.

Proof. Here is the catch. Suppose that stP is true in every epistemic alternative for b. Then
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b knows that stP and he will answer the request “?JH stP” with “yes”. His answer will get
known to the entire channel to which the request has been sent. ¬stP will cease to be an
alternative for members of that channel. Thus, effectively, after a few rounds ¬stP will be
eliminated throughout H. The protocol will then require termination. If all requests are
sent out, and ϕ is jointly known, then at some point all alternatives incompatible with ϕ

will eventually be eliminated. At this point the answer to the question becomes known to
everyone.

This is reminiscent of the muddy children paradox. The more answers appear the more
knowledge is acumulated and allows to give answers to questions to which no helpful answer
existed before. The glitch here is that a clever initialisation by a can help to make even the
maximally cooperative process terminate without scheduling “from above”. However, the
problem is that for this algorithm to terminate we need that ϕ is known. We cannot eliminate
it. Suppose for example that ϕ = p0 and no one in the entire network knows either p0 or ¬p0.
Then the algorithm never terminates because no one is in a position to answer the request.

To remedy this, we propose a different algorithm. Instead of asking “?JH stP”, a sends
out the requests “J{b} stP” for every b ∈ H. Since b can always answer this question, this is
garanteed to terminate. The proof is now easy. Since b can be reached (by connectedness)
the request will eventually reach b provided that all members of the network try to pass on
requests to as many members as they are connected to.

Theorem 4 (Guaranteed Termination). Let G be totally connected and H ⊆ G. The maxi-
mally cooperative protocol for “?JHϕ” terminates if for all P⊆Var(ϕ) and all b∈H sender
sends out the request “?J{b} stP” in addition.

Consider again the query “?JH p0” in a network where no one knows p0 or ¬p0. In
this situation, b will respond “don’t know” to the question ?Jb p0”, and also to the question
“?Jb¬p0”. From this one can infer that both p0 and ¬p0 are possibilities for b. The algorithm
terminates for the simple reason that there is no supposition that anyone other than b himself
will know more about what b knows. That is to say, we assume that the protocol will not
make b send out a request for help on questions about his own knowledge.

Notice that the “envelope” JH and J{b} is crucial in allowing the participants to route the
requests. At the same time—because the message is interpreted as given verbatim—they
distort the original query because they ask about what the individuals know to be their
knowledge rather than asking about their knowledge directly. In other words, we assume
that knowledge satisfies S4.

Finally, there is a different solution to the problem. Change the protocol as follows. On
receiving the request “?JHϕ” an agent b will do the following. If b knows the answer he will
reply. Otherwise he will send out the request “JH−{b}ϕ” to all channels, provided that this
is not empty. However, H−{b}=∅ exactly when H = {b}. In that case, b will give the
answer as best as he can. I call this the group distribution protocol.

Theorem 5 (Guaranteed Termination). Let G be totally connected and H ⊆ G. The group
distribution protocol for “?JHϕ” terminates if for all P⊆Var(ϕ) and all b∈H sender sends
out the request “?J{b} stP” in addition.

How can we see that this is correct? At first, the query “JH stP” will be sent out into
the network and will distribute itself unchanged until it reaches some a ∈ H. This will then
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create another query, namely “?JH−{a} stP”. And so on, until a query of the form “?J{b} stP”
is issued that eventually reaches b. b will answer the query, and the answer will propagate
through the network until everyone knows it. At this point the query “?J{b} stP” will no longer
be propagated and will die out. When finally all such queries have been propagated, the
answer to “?JH stP” becomes known throughout the network, and the algorithm terminates.
When this has happened for all stP, the answer will be known for ϕ as well.

5 Conclusion

This paper is a modest attempt to characterise the notion of joint knowledge and show
how agents can find out whether a proposition is or is not jointly known by a group. In
closing, I would like to point out some wider significance of this endeavour.

Humans are thirsty for knowledge. Research or daily experience both continue to give us
new insights and knowledge. Thus, it is not to be expected that all joint knowledge can one
day become common knowledge given enough communication. What is more, there is so
much accumulated knowledge that it is not even possible to store all knowledge everywhere.
Thus, we seek to distribute the knowledge in a network so as to share the burden of storing
it. There is no difference in principle between a bunch of humans and a server farm, in
fact. There is a tradeoff between distributing knowledge in a network and storing it at each
location separately. Similarly, as humans we need to balance knowing something by heart
and having it available from somewhere on need. The terms of the tradeoff are not logical: I
have shown how we can get the desired answer. The tradeoff is in terms of effort, of which I
have said nothing above. I shall leave that to another occasion.
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