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The standard way of formally representing generalization is intended to represent three
notions simultaneously: force, scope and order. In:

∀x(ϕx),

the first of these parameters is indicated by the symbol “∀” standing for universal force;
replacing it with the symbol “∃” indicates existential rather than universal force. The second
parameter is represented by the bracketing; variation comes to the fore when there is more
than one indicator of generalization. Thus:

∀x(∃y(ψxy)),

differs from:
∃y(∀x(ψxy)),

in the scope of generalization. The last parameter is indicated by the letter immediately
adjacent to the generalization symbol. Variation here is indicated by case. Use of minis-
cules, indicates that the generalization is of the first-order; use of majuscules, that it is of
the second-order. Accordingly:

∀F(∀x(Fx))

contains a second-order generalization, in addition to the first-order generalization.
What the standard notation for generalization is designed to do, and indeed excels at, is

displaying propositional structure. It graphically represents how the force, scope and order
components interact to make up propositions expressing generalization, and it allows us
to typify these propositions in a completely discriminable manner. On a glance, universal
generalization can be distinguished from existential, first-order from second-order, first-
order universal from second-order existential, and so on for the various combinations of
the parameters. The beauty of the notation is that the structure over which both the truth-
conditions and inferential capacities of generalizations are defined is represented as a single
composition of force, scope and order, and it is this that explains its perseverant utility. It
characterizes what we mean by the logical form of generalization.

This representational success is a core part of the analytic story about generalization,
but it does beg a foundational question: What is it that makes these representations logical
representations? The answer is readily at hand: it is because they are made up of logical
parts, put together in a logical way. Comprehending this answer, however, requires some
prior information - we need to know in what sense force, scope and order are logical notions.
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This is, of course, a very big question, but there are expectations we have for any account
of this logicality: It should position us to answer a range of fundamental questions about
the extents of logical force, scope and order. Are universal and existential the only forces,
or are there others? Are the possibilities of scope at a factor of n! for n-many operators, or
are there limitations? Or perhaps more possibilities than the n! allowed by linearly ordered
operators, as in the case of branching quantifiers? What is the difference between orders
of generalization; are there orders greater than two? Are there dependencies among these
factors — does scope depend on force, or force on order, for instance?

Frege’s epochal breakthrough in understanding generalization was the insight that an-
swers to questions of logicality spring from the alignment of force, scope and order with the
semantics, syntax and ontology of generalization. As discussed in Heck and May (2013a),
initially in Begriffscchrift, Frege develops the core representational aspects of generaliza-
tion. That Frege focuses on propositional structure is unsurprising, given his emphasis in
that work on presenting a notation in which the formality of inference is explicitly repre-
sented, in which proofs could only be given in a rigorous, gap-free manner. It is only later,
however, when Frege, spurred by pointed criticisms in reviews of Begriffsschift, engages
with Boolean logic that he begins to address logicality in the broader context.1

For Frege, the key is that the fundamental logical notion is that of a function; accord-
ingly, what the logical notation — the conceptual-notation — represents is a structure of
function and argument. But if in Begriffsschrift, Frege was concerned with justifying the
formality of these representations, in Grundgesetze he takes this for granted, and shifts his
attention to explicating what is represented, the functions themselves. Frege characterizes
the functions in terms of their arguments, distinguishing between the base case, in which
objects are arguments, and higher cases, in which functions themselves are arguments. The
base and higher cases are organized hierarchically: The base case is the first-level; functions
that take the base-case as arguments are second-level; those that take second-level functions
as arguments are third-level, and so on. Frege’s notation directly reflects this hierarchical
relation. This, when we write:

Θ( f (x)),

what we are representing is a second-level function taking a first-level function as argument.
Thus, that the functional ontology is hierarchical fixes both the syntax and the semantics
of functional representations; it entails that every well-formed logical formula expresses a
well-formed proposition.2

Within this conception, Frege identifies one hierarchy of special importance for logic,
the conceptual hierarchy. Concepts, by Frege’s lights, are functions that have truth and
falsity as their values.3 Thus, first-level concepts take objects to truth-values, second-level
concepts take first-level concepts to truth-values, third-level concepts take second-level to
truth-values, and so on. In this context, Frege analyzes generalization as a second-level
concept. Thus, the sentence:

1This is in 1881, in his paper “Boole’s Logical Calculus and the Concept-script”. See Heck and May
(2013a).

2Of course, the irony is that the most well-known system for which this ideal fails is Frege’s own.
3That is, they are characteristic functions. Since for Frege, truth and falsity are logical objects, concepts are

mappings from the logical objects to a specified sub-set of the logical objects. See Heck and May (2013b) for
discussion.
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All men are mortal,

contains the concept

All ζ are ξ ,

which maps a pair of first-level concepts onto a truth-value. Thus, on Frege’s view, general-
izations express conceptual relations; they are concepts that relate concepts. Their logicality
emerges through their definability relative to the functional hierarchy.4

Frege’s conception of generalization has proved to be extraordinarily fruitful. Notably,
we now understand that force distributes over a class of conceptual relations that is inclu-
sive of the generalization relation; these are the generalized quantifiers. From this perspec-
tive, universal and existential force are instances of quantificational force, that is, concepts
related in terms of the cardinalities of their extensions.5 Moreover, Frege’s way of char-
acterizing scope has been deeply explored within contemporary syntactic theory.6 For the
remainder of this brief note, however, we want to offer some remarks on the third aspect,
that of the order of generalization, or as we will now consider the matter, the order of
quantification.

On the Fregean conception of quantifiers as conceptual relations, the order of quanti-
fiers is directly given by the conceptual hierarchy. Because quantifiers relate concepts, it
follows that their lowest order will be second-level relations, that is, relations between ba-
sic first-level concepts. The next order up will be third-level relations, relating second-level
concepts, and so on up the discrete steps of the hierarchy. Now Frege’s way of rendering
the orders of quantifiers can be re-phrased. Rather than classifying the quantifiers in terms
of their arguments, they can be classified over the types of things that make up the exten-
sions of the arguments. Done this way, we obtain the familiar categorization of quantifiers
as first order, second order, etc, for every finite order in the theory of simple types. Thus,
first-order quantifiers range over a domain of objects; second-order quantifiers range over
properties of, or relations among, those objects; third-order quantifiers range over proper-
ties of properties, relations among properties, and so on. Here we focus on the distinction
between first- and second-order quantifiers.

Roughly speaking, the notion of order for a quantifier can be articulated either syntac-
tically or semantically. The syntactical notion of order for a quantifier is determined by the
grammatical category that the terms quantified over occupy, whereas the semantical notion
is determined by the type-theoretic level (over a given domain of objects) at which the no-
tions being quantified over can be found. Intuitively, we might think of these notions as
locked together, given that the role of the syntactic representation is to reflect the seman-
tic characterization. However, when the syntactic and semantic notions are made bit more
clear, it turns out that the boundaries between them, as well as the different orders within
each, might in fact be more flexible than the intuitive picture would indicate.

4Frege’s conception bears more than a passing relation to Boole’s although there is a fundamental difference
in how they see the relation of primary and secondary propositions. See Heck and May (2013a). Note that in
Frege’s system we can also define non-relational quantifiers, those that take only a single concept as argument.

5In this area, our depth of understanding is very much due to Ed Kennan’s seminal contributions to the
theory of generalized quantifiers. Although Keenan and Stavi (1986) is often singled out (along with Barwise
and Cooper (1981) and Higginbotham and May (1981)), this is a sample of Ed’s extensive and extremely
influential investigations.

6See May (1977, 1985).
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Consider a quantified statement of the form QαΦ(α), where Q is either ∃ or ∀ and α

is a syntactical constituent. We leave the syntactical category of α unspecified to allow for
the formula Φ(α) to be obtained by replacing α for constituents of varying categories. If
α replaces a constituent of category NP then the quantifier in QαΦ(α), is (syntactically)
at the first order; if α replaces a constituent of category VP then the quantifiers is at the
second-order, etc. There is in fact a tradition going back to Prior (1971) that emphasizes
how items of any syntactic category — and not just those of category NP — are available
for quantification. Prior points out that such “non-nominal” quantifications are ubiquitous
in natural language. Not just second-order quantifiers fall under this heading:

He is something I am not — kind;

but also quantifiers binding constituents of other syntactic categories, for instance AdvP:

I hurt him somehow.

Notice that constituents of category AdvP combine with VP’s to return VP’s, and thus can
be thought of as representing a mapping from properties into properties, an intrinsically
higher-order notion.

From a semantic point of view, quantifiers can be given a treatment that is parallel to
the syntactic one. First order quantifiers range over individuals members of the universe
of discourse D, so that ∃xΦ(x) is true if some member of D falls within the extension
of Φ, and ∀xΦ(x) is true if every member of D falls within the extension of Φ. At the
second-order, ∃XΦ(X) is true if some subset of D falls within the extension of Φ, and
similarly, ∀XΦ(X) is true if every subset of D falls within the extension D. From this point
of view, (codified in the theory of generalized quantifiers), first-order quantifiers such as ∃
and ∀ denote collections of subsets of the domain, and QxΦ(x) is true if the extension of
Φ is among the subsets denoted by Q. And analogously, second-order quantifiers denote
collection of collections of subsets.

The point to keep in mind is that whether a quantifier is properly characterized, from
a semantic point of view, as being first- or second-order is completely determined by the
type-theoretic level of the entities it applies to. This is perhaps most clear by considering
notions other than quantifiers, such as for instance objectual identity between members
of D. There is no question that statements of the form a = b are essentially first-order
statements: they hold, or fail to hold, of pairs of (not necessarily distinct) objects. And yet
a case can be made that asserting a = b involves higher order notions, in that it implies that
every property of a is also a property of b. We propose to express this distinction by saying
that the first-order notion of objectual identity expresses, but does not assert, a second-order
claim (see Antonelli and May (2012)).

The same distinction applies in the case of quantifiers, although it might not be as ev-
ident unless we broaden our horizon beyond consideration of just the two quantifiers ∃
and ∀. In particular it is important to look at binary first-order quantifiers, i.e., quantifiers
that relate two subsets of the domain (syntactically, these are quantifiers that take not one
but two formulas as argument, as mentioned). A prime example is the Aristotelian quan-
tifier All, which relates subsets A and B precisely when A ⊆ B. While All clearly involves
no reference to notions other than first-order, the case is not as clear for other first-order
quantifiers.
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Consider for instance the “Frege” quantifier F, relating two subsets A and B precisely
when there are no more A’s than B’s — or, in Boolos (1981) suggestive rendition, when
“for every A there is a (distinct) B.” It is clear that from a semantic point of view, F is a
first-order quantifier, just like All: the former, just like the latter, applies to pairs of subsets
of D. However, the relation expressed by F involves higher-order notions, since it implies
(it is in fact equivalent to) the existence of an injective function mapping the A’s into the
B’s. We characterize such a distinction by saying that F expresses — but does not assert —
the existence of such a function.

The notion of order of a quantifier, whether specified syntactically or semantically, ap-
pears therefore not to be fine-grained enough. Quantifiers that are first-order — in that
they represent predicates over, or relations between, subsets of the domain — might in
fact be quite different to the extent that they involve higher-order notions. That such a
finer-grained classification is needed is clear in fact from considering the vastly different
expressive power of quantifiers that are, from a semantic point of view, first-order. Con-
sider the Aristotelian quantifier All in comparison to the Frege quantifier F. The latter does
not add to the expressive power of ordinary first-order languages, and in turn can be used to
express the generalizations ∀ and ∃. But the former is vastly more expressive, as discussed
in Antonelli (2010). It in allows a categorical characterization of the structure N of the
natural numbers, and is therefore not reducible to ordinary first-order logic.

Frege, to his dismay, gave into the seduction of second-order logic, with its invitation to
much richer mathematical results than are available in first-order logic. To Quine, second-
order logic, with its bloated ontology of abstracta, was repugnant. But what our brief
remarks highlight is for both Frege and Quine, the concern is with second-order logic,
that is, with systems in which second-order claims are asserted. Expression of second-
order notions is fundamentally weaker than asserting them, while still allowing for the
mathematical richness that gives logicism its grip on our imagination.
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