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Representational Maps from the Speech Signal to
Phonological Categories: a Case Study with Lexical Tones

Kristine M. Yu

As the initial step in studying the acquisition of phonological cate-
gories from the speech signal, we describe representational issues for
the target of learning, a probabilistic distribution of phonological cat-
egories over a phonetic parameter space. Our model system of study
is cross-linguistic lexical tonal phonemes in tonal languages. We focus
on two representational issues: temporal resolution of the extracted
phonetic parameters and static and dynamic parameterizations of the
speech signal. In a human perception study and exploratory compu-
tational modeling, we find that coarse sampling of absolute f0 and
f0 velocity is sufficient for near-partitions of the phonetic parameter
space for single-speaker tonal spaces in a range of tone languages.
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Introduction

The phonetic realization of linguistic tone is widely believed to be simple and
limited to a single dimension of fundamental frequency (the physical correlate of the
auditory percept of pitch).

. . .tones typically involve a single primary acoustic dimension, namely, f0. This
contrasts with the multiple acoustic dimensions such as formants or spectral
peaks required for characterizing vowels and consonants. The variability problem
with tones is therefore at least limited to a single dimension. . . (Gauthier, Shi,
and Xu 2007:82)

. . .tone presents few, if any articulatory difficulties vs. consonants (which all
languages have). Second, tone is acoustically (hence perceptually?) simple, F0,
vs. consonants and vowels. (Hyman 2010:1)

In this paper, we show that the phonological representation of tone in terms
of phonetic parameters may indeed be simple, but not necessarily in the way that
has been described above. Even an entirely f0-based parameterization of tone can
be highly multidimensional, since we may choose multiple ways to parametrize
f0, e.g. with f0 height values and with f0 velocity values, and we may choose to
sample these values arbitrarily densely in time. Here we show that: (i) both f0 height
and f0 velocity are relevant parameters for a range of tone languages, even for the
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simplest level tone languages, and (ii) the relation between phonetic space and tonal
categories may be simple, but in a way that may not be unique to tone: we show that
coarse sampling of the relevant parameters suffices for good category separability—a
near partition of the phonetic space—in a range of languages, and that humans can
identify tones degraded to be coarsely sampled at a comparable level of accuracy to
that for intact tones.

The work in this paper bears on defining the target of learning in the acquisition
of lexical tonal categories from the speech signal, the initial step towards answering
our larger research questions: (i) what the relation between phonetic spaces and
tonal phonological categories is, i.e. how tones are phonetically realized, (ii) how that
relation between the phonetic space and phonological categories could be learned,
and (iii) how it is learned by L1 human learners. We frame our work broadly to
scientifically explicate the universal structure in the phonetic parameter space across
phonetically diverse tonal systems; we set up learning tonal categories as a model
system for learning phonological categories to integrate the study of the acquisition
of tone into the highly active research area of language acquisition in general. We
take the broad perspective of Welmers (1973):

In principle, the varieties and functions of tonal contrasts in language are of the
same order as the varieties and functions of any other contrasts; the problems
of tonal analysis are simply typical problems of linguistic analysis. (Welmers
1973:77)

Thus, we begin in §1 with preliminaries: we describe the learning problem in
the context of phonological category acquisition, motivate the study of the target of
learning (the map from the phonetic space to phonological categories), describe the
larger research questions and methodological abstractions taken in the study and
explicate our particular model system. In §2, we state the aspects of phonological
representation, and more specifically, of tonal representation, that are the focus
of this paper. These aspects are temporal resolution of the parameterized speech
signal and static vs. dynamic properties of the speech signal. We end in §3 by briefly
highlighting results from our own experiments and initial computational modeling
work addressing these aspects.

1 Preliminaries

This paper investigates the learnability of lexical tonal phonological categories
in tone languages. It is a preliminary step in the study of a much larger research
question:

(Q0) How do children acquire phonological categories from the speech signal?

We address (Q0) using computational learning methods, like previous studies of
phonological category learning, cf. de Boer and Kuhl (2003); Lin (2005); Toscano
and McMurray (2010); Vallabha, McClelland, Pons, Werker, and Amano (2007), and
moreover, we ground our modeling assumptions based on phonetic fieldwork and
perception experiments we conducted.
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While a complete answer to Q0 necessitates a battery of behavioral, physiolog-
ical, production, and perceptual studies on infants from the womb to adulthood,
particularly in the first years of life, our ability to probe infant knowledge of phono-
logical categories and connect this knowledge to their language input is limited, cf.
methodological approaches in Polka, Jusczyk, and Rvachew (1995); Werker, Shi,
Desjardins, Pegg, and Polka (1998). Thus, we make the choice to generalize our
study to any learner so that we can deploy mathematically-specified learners to
learn from examples we have very fine control over. The advantage of focusing on
computational approaches is that we can make a tight connection between the data
that a learning machine gets (the domain of the learner, D), how it went about
the learning (the functional/algorithmic form of the learner, A ), and the target of
learning (the codomain of the learner, C ). The challenge then is to also maintain
a tight connection between the computational modeling and what we know about
human learners.

Thus, we modify our original research question:

(Q0′) How could a learner A : Data→C acquire lexical tonal categories from the
speech signal in a way consistent with our knowledge about how humans do
it?

A key component in maintaining a tight connection between the computational
modeling and human cognition is to have a clear picture of what the target of
learning is (Dyson 2004; Minsky and Papert 1971). Thus, the goal of this paper is
to define the codomain, C , the target of learning in the acquisition of lexical tonal
categories: we define what it means to have learned the lexical tonal categories
of a tonal language; we study the learnability of tonal spaces, conditioned on
different representations of tonal examples, to understand how lexical tonal
categories are defined.

1.1 The Target of Learning: the Phonetics-Phonology Map

What does it mean to have learned the tones of a tone language, e.g. the tones of
Mandarin: Tones 1-4, respectively,

Ă
£ (high level), Ę£ (rise), ŁŘ£ (fall-rise), Ď£ (fall) (c.f.

Fig. 1)? We assert that it means that the learner has learned a representational map:

(1) A : Data→ representational map

and that this phonetics-phonology map is of the form:

Phonetics-Phonology: {sequences of phonetic parameter vectors} →(2)

{sets of phonological categories}

where the phonological categories are lexical tonal categories.
We show a familiar example of a well-studied phonetics-phonology map in Fig. 2,

a vowel formant plot (Peterson and Barney 1952). This is a two-dimensional map
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Figure 1: The tones of Mandarin (Xu 1997).

in 〈F1SS, F2SS〉 space (over the steady-state values of the first and second formants)
which maps unit-length sequences of phonetic parameter vectors 〈F1SS, F2SS〉 to
English vowel phonemes, cf. Table 1.

〈F1SS, F2SS〉 English vowel phoneme Note
〈240,2280〉 {/i/} Actual data point
〈460,1330〉 {/Ç/} Actual data point
〈475,1220〉 {/U/} Actual data point
〈686,1028〉 {/A, O/} Ambiguity
〈400,3500〉 {/i/} Not a data point

: :

Table 1: The representational map from steady state formant space to English vowel phonemic
categories from Peterson and Barney (1952).

There are two things to note from Fig. 2 and Table 1 which are general properties
of phonetics-phonology maps:

1. There are regions of 〈F1SS, F2SS〉 space where the same 〈F1SS, F2SS〉 point is
mapped to multiple English vowel phonemes: regions where vowel ellipses
overlap. This highlights that ambiguity in phonetic-phonological maps implies
a codomain of sets of phonological categories rather than of single phonological
categories.

2. The map is total within the vowel ellipses for 〈F1SS, F2SS〉 values, meaning that
all 〈F1SS, F2SS〉 points included in the sets of 〈F1SS, F2SS〉 values bounded by the
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Figure 2: A famous example of a well-studied phonetics-phonology map, the vowel formant
plot (Peterson and Barney 1952).

ellipses and not only the data points shown in Fig. 1 are mapped to a member
(or multiple members) of the set of English vowel phonemes. Further, because
the map is defined over a continuous space, it would never be possible to hear
all the 〈F1SS, F2SS〉 points enclosed in the ellipses because there are infinitely
many. Thus, in learning a phonetic-phonological map defined over a continuous
space, generalization occurs from a finite data sample to an infinite set.

As Pierrehumbert (1990) discusses, phonetics-phonology representational maps
have parallels to the “semantic” form-meaning representational maps in morphosyn-
tax:

(3) Morphosyntax : {sequences of morphemes} → {sets of meanings}

There is ambiguity in form-meaning mappings in morphosyntax, too, especially when
we abstract away from relevant context (e.g. pragmatic and prosodic context in
morphosyntax; morphosyntactic context in phonetics-phonology); moreover, we add
that generalization from a finite data sample to an infinite language occurs for both
learning problems. The major structural difference between the phonetics-phonology
and morphosyntax maps is that phonetics-phonology maps are defined in the real
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rather than the discrete domain.1 It is because of this structural difference that the
mathematical machinery for studying the two different maps diverges.2

Our current understanding of the phonetics-phonology map, after Pierrehumbert
(2003a), is in fact an elaboration of (2): we augment each phonological category
in the codomain with the probability that the sequence of phonetic parameter
vectors belongs to it; we elaborate the map from one mapping 〈F1SS, F2SS〉 to sets of
phonological categories, e.g.

(4) 〈F1SS = 686, F2SS = 1028〉 7→ {/A, O/}

to a probability distribution of the categories over 〈F1SS, F2SS〉 vectors, e.g.:

(5) 〈F1SS = 686, F2SS = 1028〉 7→ {p(/A/) = 0.45, p(/O/) = 0.55}

With our full model of the phonetics-phonology map as a probabilistic distribution
of phonological categories over a phonetic parameter space, the key questions
we need to answer to characterize the map are:

(Q1a) What kinds of phonological categories are to be represented?

(Q1b) What is the phonetic parameter space for the phonological categories
defined in (Q1a)?

(Q1c) What are properties of the distributions of the phonological categories of
(Q1a) over the phonetic parameter space of (Q1b)?

Phonological categories (Q1a) The choice of definition for the codomain of the
phonetics-phonology map, the set of phonological categories, revolves around how
contexualized the categories are. Peperkamp, Calvez, Nadal, and Dupoux (2006);
Pierrehumbert (2003a,b) argue for the set to be a set of positional allophones,
and for unification into phonemes using information from distributions of symbolic
allophones or by using knowledge of the lexicon; Dillon, Dunbar, and Idsardi (Unpub-
lished) argues for the set to be phonemes. Another option is to define the codomain
over phonological features (Lin and Mielke 2008; Mielke 2008). Answering this
question is not the focus of this paper, since we restrict attention here to tonal
phonemes.

1There are also approaches to studying morphosyntax that model morphosyntax maps as being
real-valued, cf. Widdows (2004): the co-occurrence of words in documents is used to determine
similarity of word meanings, measured in real-valued vector spaces.

2It is possible to define a discrete phonetics-phonology map and thus study the phonological
categorization problem using formal learning theory because we can represent the real-valued speech
signal digitally to arbitrary precision in the limit, cf. Appendix A, (Jain, Osherson, Royer, and Sharma
1999). In fact, one may argue that the phonetics-phonology map is most correctly modeled over a
discrete space because of precision limits in computing and biological systems (Blum 2004; Blum,
Cucker, Shub, and Smale 1997). However, at the current stage of inquiry it is not clear how studying
the phonetics-phonology learning problem using methods from formal learning theory gives us insight
into how the learning occurs, and thus we do not pursue it here.
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Phonetic parameter spaces (Q1b) It is answering (Q1b) that is the focus of this
paper: to characterize the domain of the phonetics-phonology map by motivating
which phonetic parameters are most significant for defining phonological categories;
these are the dimensions that we want to define the distributions over. The set
of phonetic parameters that may be extracted from the speech signal is obviously
infinite in size and therefore must be constrained by some metric for computational
tractability. For scientific purposes, too, we seek to limit the dimensionality of the
phonetics-phonology map, i.e., the size of the parameter set, in order to have a
succinct representation that is intelligible to the human scientist (Occam’s razor).
From the learner’s perspective, a succinct learning target prevents overfitting to
the input data and facilitates generalization to novel data (Duda, Hart, and Stork
2001:8-10), (MacKay 2003:343–349); from our scientific perspective, a succinct
characterization of the representational map facilitates our ability to understand how
the learning proceeds. In the best case, succinctness in the representational map
results in no loss of information, i.e. without any smoothing out of the distributional
modes corresponding to category structure in the phonetic space;3 otherwise, the
goal is succinctness with minimal loss of information.

We are in fact interested in characterizing three classes of phonetic parameter
spaces to answer (Q0′), which is a question about lexical tone acquisition in general:

1. a universal parameter space U for all tone languages

2. the language-specific parameter space L for a given tone language

3. the speaker-specific parameter space SL for a given speaker of a given tone
language.

By a parameter space, we mean the set of parameters over which the space is
defined. By universal parameter space, we mean the smallest universal parameter
space, the space which includes exactly and only the union of all language-specific
parameter spaces.4 To a first approximation, we assume:

(6) ∀L ,∀SL , U ⊇L ⊇SL .

This entails that the universal parameter space U can draw more distinctions
than any tonal language-specific parameter space L , which can, in turn, draw more
distinctions than any speaker-specific parameter space for that language, SL .

The assumption in (6) is motivated by the overarching idea based on empirical
work on infant speech perception development over the past few decades that infants

3A simple example of succinctness without information loss is the expression of a finite language
as a finite state automaton rather than as a list, since it takes fewer symbols to specify the finite state
automaton than the list, and exactly and only the same sentences in the language are expressed (Meyer
and Fischer 1971).

4The notion of a parameter space for all tone languages assumes that the class of tone languages is
definable as a subset of all natural languages. Whether the restriction of languages to tone languages is
available in acquisition is an open question, i.e. do children know they are learning a tone language,
and if they do, under what conditions do they do this, and how do they do this? For the scope of this
paper, we assume a restriction to a parameter space for tone languages for convenience.
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begin as “citizens of the world” in having a universal ability to distinguish between
sound categories and develop language-specific maps of the acoustic space through
exposure to language input (Kuhl 2004). For instance, one of the first results of
this kind was that English-learning infants showed behavioral responses consistent
with the ability to discriminate between a velar stop (a sound in English) and a
uvular stop (a sound not in English, but in Salish) at 6-8 months of age, but that by
10-12 months of age, they did not anymore (Werker and Tees 1984). Subsequent
work confirmed and built on these results to flesh out a developmental timeline of
perceptual reorganization of the acoustic space in which:

• Infants show a decline in their ability to discriminate nonnative vowel contrasts
between 4-6 months (e.g. Polka and Werker 1994).

• Infants learning a non-tonal language show a decline in their ability to discrim-
inate lexical tonal contrasts between 6 and 9 months (Mattock, Molnar, Polka,
and Burnham 2008).

• Infants show a decline in their ability to discriminate nonnative consonantal
contrasts between 6-8 and 10-12 months (e.g Werker and Tees 1984).

• Infants show improvement (facilitation) in their ability to discriminate na-
tive consonantal contrasts over the first years of life (Kuhl, Stevens, Hayashi,
Deguchi, Kiritani, and Iverson 2006; Sundara, Polka, and Genesee 2006).

• Infants may be able to discriminate some native contrasts only after exposure
to native language input5 (Narayan, Werker, and Beddor 2010).

• A nonnative contrast that infants show a decline in discriminating can be
learned by adult speakers of the same native language after significant exposure
to the nonnative language (Tees and Werker 1984).

The cross-linguistic variability in the dimensions of acoustic spaces for phonologi-
cal contrast and distributions of phonological categories over these spaces, as well
as the change in the dimensions and distributions for infants due to language input
show that the phonetics-phonology map must be learned from language input. It also
motivates the need to study the phonetics-phonology map using cross-linguistic data
to answer (Q0′).

The empirical evidence that: (i) language learners show decline rather than loss
in sensitivity to particular phonetic dimensions, (ii) they can reactivate sensitivity

5Based on results like these, an alternative assumption to (6) is that

(7) ∀L , L ⊇U .

based on the idea that sensitivity to some phonetic parameters may become activated only after
exposure to language input. We do not take this alternative assumption because there is, to date, little
supportive evidence for it. More importantly, a negative result for infant sensitivity to a speech sound
contrast is conditional on a given experiment using a given task. A positive result is conditioned in
the same way, as well, but shows that, at least under some conditions, infants show sensitivity to the
contrast, while a negative result does not imply that infants are not sensitive to the contrast under any
conditions.
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with later language exposure and training, and (iii) listeners show the ability to
use a wide variety of cues in degraded speech6 suggests that the model of the
development of language- and speaker-specific spaces of each language involves
parameter tuning/re-weighting rather than parameter selection. Even in cases where
sensitivity to some phonetic parameter may be vanishingly small, the model should
assign it a vanishingly small weight rather than remove the parameter from the
space.

Note that even for the purposes of studying the phonetic parameter space, we
must represent data with a set of initial parameters: this initial set should be exactly
U , which we assume to be a superset of the dimensions of L for any natural tone
language L , cf. (6), and which is a subset of the set of all acoustic parameters we
could extract from the speech signal. But these are not well-defined lower and upper
bounds on U ; we cannot know what U is before studying what it should be! Thus,
we make a guess and initialize the parameter set of U based on cross-linguistic work
on tonal production, perception, and automatic tonal recognition.

The distribution (Q1c) We assume that the distribution of phonological categories
over the phonetic space is continuous. Since the details of the distribution depends
strongly on how the phonological categories and the phonetic space is defined, we let
our study of those determine characteristics of the distribution. These characteristics
then inform how we constrain the type of distributions available in the hypothesis
space for the learner in modeling the actual learning of the representational map.

1.2 Methodological Abstractions

In characterizing the phonetic parameter space (Q1b) for lexical tonal categories
in this paper, we make three main methodological abstractions: (i) to sharpen the
probabilistic distributions of phonological categories into partitions over the phonetic
space, (ii) to use category separability as a metric for constraining the phonetic
parameter space, (iii) to limit the context available to extract the phonetic parameters
from, and (iv) to introduce linguistic structure into the unanalyzed speech signal.
Characterizing the phonetic parameter space with these methodological abstractions
in place still allows us to bear on questions (Q1a)–(Q1c).

Partitions over the phonetic space and category separability While the reality
is that the phonetics-phonology map is a probabilistic distribution of phonological
categories over the phonetic space, in characterizing the phonetic parameter space,
we make the methodological abstraction that the map is a partition of phonological
categories over the space: every point in the space maps to exactly and only one
phonological category.

The reason for the abstraction is that most well-understood computational al-
gorithms for classification give “hard” classifications, i.e. produce a partition of the
space, rather than a probabilistic distribution over it (Wahba 2002). Moreover, while
it is possible to elicit probabilistic confidence ratings in human perception experi-

6see Assmann and Summerfield (2004) for a general review of perception of degraded speech.
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ments, e.g. using magnitude estimation (Bard, Robertson, and Sorace 1996), we use
forced choice tasks in our perception experiments to match the hard classification of
the computational algorithms.

Along with the methodological abstraction of modeling the phonetics-phonology
map with partitions, we use the general metric of category separability to determine
how relevant/informative phonetic parameters are for defining the tonal categories:
more informative phonetic parameters define a space in which the tonal categories
are better separated. As discussed by Nearey (1989), this category separability
metric is data analytic because it is based on production data only, while ultimately,
perceptual separability from listening experiments is what is directly relevant for the
representational map. However, data analytic category separability certainly bears
on perceptual separability.

Limiting context for phonetic parametrization We have already proposed a map
(2) restricting the domain to phonetic parameters. We reiterate here that we are
abstracting away from non-phonetic context, e.g. morphosyntactic information (the
language model in automatic speech recognition), to constrain the research problem;
Jansen (2008) calls this the “pure speech” setting. Moreover, we restrict the temporal
domain for phonetic parameter extraction. The strongest such restriction is to restrict
the extraction of phonetic parameters to only the unit to the classified, e.g. only from
the syllable of the tone to be classified. In this paper, we start from this restriction,
but we will ultimately allow parameter extraction from the preceding and following
syllables as well. For fluent speech recognition, there is strong evidence that humans
extract parameters from temporal domains wider than the unit to be classified, e.g.
Ladefoged and Broadbent (1957); Wong and Diehl (2003).

Introducing linguistic structure in the speech signal While the original research
question (Q0′) assumes extraction of parameters from the unanalyzed signal, for
this paper, we extract parameters from speech segmented for syllabic structure for
convenience. This is like having an oracle tell the classifier where syllable boundaries
or onset/rime boundaries are. In future work, we can remove this extra information
by implementing a sonority detector to find syllables, as in Jansen (2008).

1.3 The Model System for the Acquisition of Lexical Tones

With the larger research questions and the methodological abstractions set up,
we turn to the model system under study.

The gross characterization of our model system is this:

• Data: monotones extracted from sentence-medial position in connected speech
over cross-linguistic tonal language sample

• Phonetic parameter space: acoustic parameter space, extracted from the
speech signal

• Phonological categories: lexical tonal phonemes (tonemes)
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Like any other system studied in phonological category acquisition, the one we
study here is a model system, and we study it with the same scientific motivation
that a biologist studies a simple model organism like baker’s yeast (the eukaryote
with the smallest number of genes) to illuminate gene regulation in more complex
systems such as humans (Fields and Johnston 2005). Clearly the model system can
only capture certain aspects of the process of phonological category acquisition, high-
lighting some while muting others. In this section, we describe how we instantiate
the model system for lexical tone acquisition to answer (Q0′).

Our research questions, as laid out in §1, dictate the following requirements for
setting up a model system for studying lexical tone acquisition:

• A representative cross-linguistic sample to address the language-specific devel-
opment of speech categorization

• A language sample relevant for modeling language input to infants

• Some controlled source(s) of variability to enable modeling the challenge of
categorization in the face of variability

Cross-linguistic tone language sample We chose a sample of tonal languages to
include: (i) register/level tone languages, with only level tones (Bole, Igbo), and (ii)
contour tone languages with contour tones and level tones (Mandarin, Cantonese,
Hmong)7. We summarize the diversity of the cross-linguistic tonal language sample
below in Table 2, using International Phonetic Alphabet notation for the tonal
inventory, and give recording details of the data currently available below in Table 3.

Language Area Tonal inventory Phonation
Bole Nigeria

Ă
£, Ă£ (H,L)

Igbo Nigeria
Ă
£, Ă£, Ă£ (H, !H, L)

Mandarin Beijing, Taiwan
Ă
£, Ę£, ŁŘ£, Ď£ creaky ŁŘ£, Ď£

Cantonese Hong Kong
Ă
£, Ă£, Ă£, Ą£, Ę£, Ę£ creaky Ą£

Hmong Laos/Thailand
Ă
£, Ă£, Ă£, Č£, Ć£, Ą£, Ę£ breathy Ć£, creaky Ą£

Table 2: Cross-linguistic sample of tonal languages recorded to provide language input

Language Dialect Recording location Speakers
Bole Fika Potiskum, Nigeria 3M/2F
Igbo Anambra Los Angeles, CA 1M/2F
Mandarin Beijing Beijing, China 6M/6F
Mandarin Taiwan Los Angeles, CA 6M/6F
Cantonese Hong Kong/Macau Los Angeles, CA 6M/6F
Hmong White Fresno, CA 6M/5F

Table 3: Details for recordings of language sample

7The language sample was also chosen to exhibit a variety of tone-voice quality interactions. While
beyond the scope of this paper, our cross-linguistic data and perception experiments suggest that the
parameterization of the speech signal for tonal representation must include voice quality parameters,
e.g. related to phonation, beyond simple f0-based parameters, cf. Lam and Yu (2010); Yu (2010).
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Language input to infants and sources of variability Because infants exhibit
perceptual knowledge before articulatory knowledge of speech sound categorization
(Kuhl 2004), we restricted parameters to acoustic parameters and abstracted away
from articulatory parameters.

Other work on learning tonal categories has emphasized that the majority of
the input to the infant consists of multiple words so that contexual variation due to
tonal coarticulation from neighboring tones is a regular part of the input the learner
receives (Gauthier et al. 2007; Shi in press). Specifically, Gauthier et al. (2007); Shi
(in press) claim that about 90% of parental speech to infants is multi-word utterances.
Moreover, the majority of language data an infant hears is not speech directed to
the infant, but, for instance, adult-to-adult speech. An estimate from van de Weijer
(1998, 2002) is that only about 14% of the input is direct speech to the infant.

Because of the large amount of input that infants hear that is adult directed
speech and multi-word utterances, Gauthier et al. (2007) modeled learning tone
categories based on speech from adults rather than infant-directed speech, (and in
general, research building tone recognizers is modeled on adult speech). This is
of course a working hypothesis; surely the presence of infant directed speech and
isolated words in the input could affect the character of the learning problem.8 We
follow this choice, taking our input to the learner to be adult connected speech. We
capture the role of contextual tonal variation in creating variability in the input by
collecting the full permutation set of bitones in connected speech for each language
in the sample, and we capture interspeaker variation by recording multiple speakers
of both genders.

This concludes our section on preliminaries, which we have deliberately kept
broad in scope to illustrate our model system of lexical tone in context of the study
of phonological (and language) acquisition in general. We now turn to describing
our exploration of the two issues regarding f0 parametrization discussed in the
introduction: coarse temporal resolution in parameterization and static and dynamic
parametrizations of f0.

2 The Parametrization of f0 in Representational Maps for Lexical Tone

Gauthier et al. (2007), the only preceding computational modeling study of
learning a tonal system (the four basic Mandarin tones), suggests that representing
examples to the learner as densely sampled f0 velocity contours results in more
robust tonal categories than representing examples as densely sampled f0 contours.

8For instance, note that the rationale for the ecological validity of adult connected speech given
above assumes equal weighting in infant attention to all input regardless of whether it is directed to
the infant. In fact, studies show biases for infant directed speech over adult speech and biases for the
infant for their mother’s voice and the importance of placing language input within social interaction
(Kuhl, Tsao, and Liu 2003). Thus, it is not unreasonable to hypothesize that despite the relatively small
amount of infant directed speech in the ambient input, it may be a rich source of information for infants
about learning tone patterns. In fact, work has found correlation between the amount of exaggeration
in infant directed speech in terms of the expansion of the vowel and tonal spaces in predicting an
infant’s ability to discriminate native consonant contrasts (Liu, Kuhl, and Tsao 2003; Xu and Burnham
submitted).
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Moreover, the study suggests that parametrization of the speech signal as densely
sampled f0 velocity contours (f0′) alone is sufficient for learning Mandarin tones. The
intuition for why f0 velocity might be more relevant than f0, and furthermore,
sufficient alone for tonal classification, is that the derivative of a constant function
is zero: f0 velocity provides a way of speaker normalization, of removing constant
shifts due to different pitch ranges.

We generalize this hypothesis as an initialization for U : UG is a d-dimensional
parameter space defined over d densely, uniformly spaced f0 velocity (f0′) samples
from the syllable; each of the d samples contributes a dimension to the space, and
the sampling rate is defined over time normalized by the syllable duration, tsyll, i.e.,
a sample taken at timepoint tsyll = i is taken at i/(d − 1) of the way through the
syllable:

(8) UG = {f0′(tsyll = i) | 0≤ i ≤ d − 1, d “large”}

UG assumes dense temporal sampling resolution and a parameterization including
only a dynamic f0-based parameter.

We hypothesize, in contrast, that:

(H1) Coarse temporal sampling resolution of the parameterized speech signal is
sufficient for good tonal category separability.

(H2) The parametrization of the speech signal as f0 velocity contours is not suffi-
cient for good tonal category separability cross-linguistically.

2.1 Coarse Temporal Resolution (H1)

Increasing temporal resolution means increasing the dimensionality of the pa-
rameter space: each additional sample adds a dimension. Thus, coarse temporal
resolution is necessary for a succinct tonal representation, which is desirable for
generalization in learning a phonetics-phonology and for scientific understanding, cf.
§1.1.

Linguistic models for the representation of tone implicitly advocate coarse tempo-
ral resolution. Chao (1930)’s tone letters used in the International Phonetic Alphabet
for representing tones, e.g. ŁŘ£, suggest that three samples (and more specifically, three
particular samples) over the tone are sufficient, as described in Chao (1968)’s model
of Chinese tone systems in his grammar of Chinese:

If we divide the range of a speaker’s voice into four equal intervals, marked by five
points, 1 low, 2 half-low, 3 middle, 4 half-high, and 5 high, then practically any
tone occurring in any of the Chinese dialects can be represented unambiguously
by noting the beginning and ending points, and, in the case of a circumflex tone,
also the turning point; in other words, the exact shape of the time-pitch curve,
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so far as I have observed, has never been a necessary distinctive feature, given
the starting and ending points, or the turning point, if any, on the five-point
scale. (Chao 1968:25)

The modus operandi in speech recognition, though, is to use a constant frame
rate, sampling features every 10ms over 30ms windows (Young, Evermann, Gales,
Hain, Kershaw, Liu, Moore, Odell, Ollason, Povey, Valtchev, and Woodland 2009),
and Gauthier et al. (2007)’s sampling rate (30 samples/syllable) is close to this.

However, a survey of sampling characteristics in the automatic tonal recognition
literature suggests that coarse sampling of f0 parameters can yield good performance,
as summarized in Table 4 below. In the table, we also indicate the clock used for
each study, by which we mean which temporal unit was used to define the (uniform)
sampling rate. For the studies where we describe the sampling in terms of “slices”,
this means that features were extracted as averages over the slices, i.e. smoothed.

Study Language Clock Sampling resolution
Zhang and Hirose (2004) Mandarin Absolute time Fine, 10ms frame shift
Gauthier et al. (2007) Mandarin Normalized to syllable Fine, 30 samples/syll
O. dé. lo.bí (2008) Yoruba Normalized to syllable Medium, 9 slices/syll
Wang and Levow (2008) Mandarin Normalized to tone nucleus Coarse, 5 samples/nucleus
Qian, Lee, and Soong (2007) Cantonese Normalized to rime Coarse, 3 slices/final
Zhou, Zhang, Lee, and Xu (2008) Mandarin Normalized to nucleus Coarse, 3 slices/nucleus

Table 4: Sampling characteristics of a selection of tone recognition studies

The predominance of coarse sample resolution and linguistically-tied clocks in
recent tonal modelling is very striking, compared to the predominance of high
frame rate and absolute time in sampling in general speech recognition. Note that
no study sampled fewer than 3 times per tonal domain.9 One automatic tonal
recognition study of Mandarin even found that coarse sampling, with 4 samples/tone,
outperformed dense sampling with 1 sample/10 ms (Tian, Zhou, Chu, and Chang
2004).

In summary, long-standing linguistic intuition and evidence from recent large-
scale automatic tonal recognition studies converge to suggest that coarse sampling
is sufficient in parametrization of tonal spaces. In our research, we confirm this
with experimental and computational modeling work: (i) a human tonal perception
experiment studying the effect of sampling resolution on Cantonese tonal perception
and (ii) computational studies of the effect of sampling resolution on category
separability over our cross-linguistic tonal sample.

9For Mandarin at least, the reason why is hinted at already in Chao (1968): “practically any tone
occurring in any of the Chinese dialects can be represented unambiguously by noting the beginning and
ending points, and, in the case of a circumflex tone, also the turning point.” Two f0 feature samples
is not sufficient to distinguish Tone 2 (rise) and Tone 3 (fall-rise) in isolation. Zhou et al. (2008)
empirically studied this in their multilayer perceptron Mandarin tone recognizer: in varying the number
of inputs to the neural network, they found that percent correct saturated after the number of inputs
was increased from 2 to 3, and that the improvement was due to improvements in classification from
Tone 3.
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2.2 Insufficiency of f0 Velocity Contours (H2)

The second hypothesis is that f0 velocity contours, regardless of sampling res-
olution, are insufficient for good separability of tonal categories. The obvious
counterexamples to an initialization UG in (8) are a level/register tone language and
a tone language with level and contour tones. The Mandarin tonal inventory that
is the target of learning in Gauthier et al. (2007) is unusual in having no level tone
contrasts.

We note that the level tone counterexample is not trivial, i.e. it is not enough to
reject UG with a thought experiment. Level tone sequences are not a series of step
functions, but may in fact be realized as if they are contour tone sequences due to
contextual tonal variation, cf. Figure 3 and Maddieson (1977:337).

Time (s)
0 1.003

P
itc

h 
(H

z)

50

150

L L H L H L

Time (s)
0 1.003

Figure 3: A sequence of tones in Bole, a tone language with H and L tones. Sequences of
level tones in a level tone language are not necessarily sequences of step functions. Rather,
they can show rises and falls due to tonal coarticulation. The sentence is ànìn némà méngò,
‘The owners of prosperity came back.’

If UG was the structure of the universal parameter space for tones, we might
expect many tonal systems to consist of purely dynamic contrasts. In fact, a striking
typological pattern in tonal inventories is that two-tone systems of this kind are not
known to exist, as noted as early as the 1960s:

The simplest language of [a pure contour tone system] would have two tonemes,
one a glide upwards and one a glide downwards, with the level of the end points
of complete irrelevance to the system. Here the contrast would be that of a
rising contour opposed to a falling contour. No system this simple has come to
my attention. (Pike 1964:9)

Instead, the dominant tonal system is an inventory of two level tones, H and L, like
Bole in our language sample; in the statistical sample of tone languages in Maddieson
(1978), about half of the languages are of this type.

To test the relevance of f0 velocity contours, we compare tonal category separa-
bility in our modeling using: (i) only f0 velocity (ii) only absolute f0, and (iii) both
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f0 velocity and absolute f0. Given our goal of modeling human cognition, it would
be useful to study how human tonal perception proceeds when only f0 velocity cues
are present. However, factoring out all cues in the speech signal, including f0 height,
except f0 velocity is not possible, although attempts of this kind have been made
by psychophysicists (Dooley and Moore 1988; Divenyi 2004). Thus, we confine our
studies bearing on (H2) to computational modeling studies.

3 Experimental and Computational Studies Bearing on the Parameterization of
f0 in Tonal Spaces

In this section, we briefly summarize results from our own experimental and
computational work bearing on the hypotheses H1 and H2. First, we discuss ex-
perimental results showing that human listeners can maintain tonal identification
accuracy with stimuli degraded to be coarsely sampled (§3.1). Then we discuss
exploratory computational studies of the parameterization of tonal spaces using
coarse and dense sampling of absolute f0 and f0 velocity (§3.2).

3.1 Coarse Temporal Sampling and Human Tonal Perception

In a Cantonese tonal perception experiment in which we manipulated the sam-
pling resolution in the stimuli presented to the listener, we showed that tonal identi-
fication accuracy under coarse temporal sampling down to 3 samples/syllable can be
as high as accuracy with the intact signal.

Cantonese tritones 〈waiĂ£, {wai
Ă
£, Ę£, Ă£, Ą£, Ę£, Ă£} , matĂ£ 〉 extracted from connected

speech by multiple speakers (3 M, 2 F) were presented to 39 native Cantonese
listeners in sound-attenuated booths at City University of Hong Kong and UCLA.10

The listeners were asked to identify the second tone in the tritone by a key press of the
corresponding orthographic label. Sampling resolution varied from the intact signal,
to 7, 5, 3, and 2 30.4-ms uniformly spaced samples (time-slices) per syllable. The
stimuli were blocked by sampling resolution, and block order was pseudorandomized
to be roughly uniformly distributed over sampling resolution.

The sampling resolution manipulation involved intermittently replacing the
speech with noise 10dB higher than the signal amplitude, as in multiple phone-
mic restoration (Bashford, Riener, and Warren 1992; Miller and Licklider 1950), cf.
Figure 4, using Matlab and Praat (Boersma and Weenink 2010).

A repeated measures ANOVA with SAMPLING RESOLUTION as a fixed effect and
SUBJECT as a random effect showed a main effect for SAMPLING RESOLUTION: F(4, 152) =
28.6, p < 2.2× 10−16. Bonferroni corrected pairwise comparisons with the family-
wise Type I error rate at 0.05 showed significant differences between the 2-sample
condition and all other conditions, and between the 3-sample condition and the
7-sample and intact conditions. Thus, on average, listeners were able to maintain
tonal identification accuracy down to 5 samples/syllable, and also, to some degree,

10Tritones rather than monotones or bitones were used to preclude a floor effect washing out any
differences between sampling resolution conditions.



Figure 4: Waveforms and spectrograms of sample stimuli for sampling resolution from intact,
to 7, 5, 3, and 2 samples/syllable over Cantonese tritones
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Figure 5: Comparison of tonal identification accuracy for different sampling resolutions. Tonal
identification accuracy was maintained from the intact signal down to 3 samples/syllable.
For all sampling resolutions, performance was also well-above chance (the blue line shows
identification accuracy for at-chance performance (1/6)), and the error bars show ±1SE.

down to 3 samples/syllable, but not down to 2 samples/syllable, cf. Table 5 and
Figure 5.

Resolution Percent correct (SE)
samp2 52.54 (2.41)
samp3 60.51 (2.76)
samp5 64.13 (2.83)
samp7 66.38 (2.91)
intact 67.46 (2.9)

Table 5: Tonal identification accuracy for different sampling resolutions averaged over the
listeners.

The Cantonese tonal perception results therefore support the hypothesis that
coarse temporal resolution may be sufficient for good tonal category separability.
However, the experimental results do not inform us as to what cues the listeners are
using in those few samples to identify the tones with reasonably high accuracy.

3.2 Computational Modeling and the Parametrization of f0

In this section, we briefly summarize results from initial computational modeling
bearing on hypotheses H1 and H2, regarding category separability under dense and
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Figure 6: A geometric characterization of linear discriminant analysis (LDA) for a two-class
problem, from Hastie et al. (2009:116). The objective is to maximize the ratio of the between-
class variance to the within-class variance. Thus, though the projection in the left panel along
the direction of the line connecting the centroids maximizes the between-class variance, the
within-class variance is high and there is large overlap in the two classes. The projection
on the right minimizes the ratio of between- to within-class variance and is the projection
chosen in LDA.

coarse sampling, and the insufficiency of f0 velocity contours for good category sepa-
rability. As an initial measure of category separability, we choose linear discriminant
analysis to aid in exploratory visualization of the multidimensional parameter space.

3.2.1 Linear Discriminant Analysis (LDA)
Linear discriminant analysis is both a dimensionality reduction technique and

a classification algorithm (Hastie, Tibshirani, and Friedman 2009:§4.3). As a di-
mensionality reduction technique, it chooses a projection of the data into a smaller-
dimensional space such that the projection maximizes category (class) separability,
where the class separability is measured as the ratio of the between-class variance (the
variance of the projected class means) to the within-class variance in the projected
data (the pooled variance about these means), cf. Figure 6.

As a classification algorithm, it defines a partition of the space by estimating
linear decision boundaries and classifies an observation into the class with the nearest
centroid, measured by Mahalanobis distance (a distance metric that is covariance-
adjusted). Under strong (and typically false) assumptions about the distribution
of the data, namely, that the distribution of data within each class is multivariate
Gaussian with a common covariance matrix, linear discriminant analysis is equivalent
to a Bayesian classifier (Hastie et al. 2009:439).

We are primarily interested in using linear discriminant analysis for the purposes
of exploratory visualization of data in low dimensions because our data, unsurpris-
ingly, fail to satisfy the assumption of multivariate normality with common covariance
matrices, and because we are interested in trying methods that allow more complex
decision boundaries than linear decision boundaries.
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3.2.2 Category Separability Under Coarse and Dense Sampling of f0-based Parameters
Our initial modeling extracts parameters from only the tone to be classified, with-

out any contextual information from neighboring tones, and we examine category
separability for tonal spaces from single speakers.

By using LDA as implemented in R (R Development Core Team 2010) by Venables
and Ripley (2002) to visualize our data, we compared category separability under
coarse and dense sampling of: (i) absolute f0, (ii) f0 velocity, and (iii) both absolute
f0 and f0 velocity. We calculated f0 averaged over coarse and finely divided uniform
subsections (time slices) of the syllable using VoiceSauce (Shue, Keating, and Vicenik
2009) and calculated f0 velocity by taking differences between these averaged f0
values in R. To avoid linearly dependent parameters in parameter sets including both
absolute f0 and f0 velocity, we calculated absolute f0 and f0 velocity separately with
differing coarseness of subsection division, since the number of f0 velocity samples
calculated from some number of absolute f0 samples is necessarily less than the
number of absolute f0 samples.

In general, our exploratory results suggest that for phonetic parameterization
without any contextual parameters in single speaker spaces, coarse sampling (3
samples each) of absolute f0 and f0 velocity is sufficient for good category separability,
and critically, category separability for coarse sampling of absolute f0 and f0 velocity
is comparable or better than dense sampling (18 samples) of f0 velocity. Below, we
exemplify our results with two examples.

In Figure 7, we show the phonetic parameter space for a Bole female speaker
for densely sampled f0 velocity (18 samples), densely sampled absolute f0 (18
samples), and coarsely sampled absolute f0 and f0 velocity (3 samples each) after
LDA dimensionality reduction. It is clear that category separability for densely
sampled f0 velocity (Figure 7b) is poorest, while category separabilty for coarsely
sampled absolute f0/f0 velocity (Figure 7c) is comparable to that for densely sampled
absolute f0 (Figure 7a).
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(c) Coarsely sampled absolute f0
and f0 velocity

Figure 7: The separability of Bole tones (H, L) for a single female speaker with coarse f0 and
f0 velocity is similar to that with dense f0 sampling and better than with dense f0 velocity
sampling.
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Figure 8: Category separability of Bole tones for a single female speaker with mean absolute
f0 only (8a), or one sample of f0 at the midpoint from a 9-sample subdivison of the syllable
(8b).

It is important to note that f0 velocity provides any evidence of category separabil-
ity at all: this shows that it may be a relevant parameter for even the simplest of level
tone systems, and more generally, that dynamic properties of f0 are relevant for level
tones, contrary to characterizations of level tones that suggest one f0 height sample
is enough to specify a level tone, while contour tones require multiple samples:

If an adequate synthesis of a tone can be made by specifying a single level, it
may be considered a level tone. But a tone represented by a pitch glide which
cannot be generated by rule from the environment (i.e. not by a default) requires
specification of several points. (Maddieson 1977:337)

In fact, category separation for the same speaker, using either only mean absolute
f0 or one sample of absolute f0 from the midpoint is poor, cf. Figure 8, and the
bimodal distribution of the L tone suggests latent category structure not captured by
the 1-dimensional parametrization, at least without a relational parameterization of
f0.

Results in a tonal system with many contours and levels, such as Cantonese, are
even stronger: with densely sampled f0 velocity contours (18 samples), the three
level tones show gross overlap, cf. Figure 9a. However, with coarse sampling of
absolute f0 and f0 velocity (3 samples each), cf. Figure 9b, a near partition of the
tonal categories, levels and contours, is obtained.

These results support Hypothesis H2: f0 velocity, regardless of density of sampling,
is not sufficient for good category separability across all languages. However, coarse
sampling of relevant parameters—both absolute f0 and f0 velocity—results in a
near-partition of the phonetic parameter space.

While highly preliminary, our modeling results using linear discriminant analysis
suggesting that coarse sampling of relevant features suffice for good category separa-
bility converge with results from automatic tonal recognition (Tian et al. 2004) and
our own experimental work (§3.1), and extends those results to a larger range of
languages.



f0 velocity, 18 samples, discriminant 1

f0
 v

el
oc

ity
, 1

8 
sa

m
pl

es
, d

is
cr

im
in

an
t 2

−6

−4

−2

0

2

4

6

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
● ●

●
●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●
●

●

●
●

●
● ●

●●
●

●
●

●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●

●

●

●
●

●
●

●

●

●●

●
●

● ●

●

●
●

●
●

●●
●

●

●
●

●

●
●

●

●

● ●
●

●
●

●●

●
●
●

●
●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●
●●

●

●●
●

●

●

●

●

● ●
●

●● ●

●

●
●

●
● ●

●

● ●

●
●

●
●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●●

●

● ●

●
●

●
●

●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●●

●
●

●

●

●
●●●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
● ●

●●

●

●

●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●
●

●●
●

●

●●
●

●

●

●

●
●
●

●

●● ●

●

●●●
●

●

●

● ●

●
●

●

●

● ●
●

●
● ● ●●

●

●
●

●

● ●●●
●

●
●●

●

●
●

●

●

●●
●

●
●

● ●
●

●

●

●

●
●

●
● ●

●
●

●

●

●
●●

●

● ●
●

●

●●

●

●
●

● ●●
●●

●

●

● ●
●

●

●

●
● ●

● ●●●
●
● ●

● ●
●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●

●
●

●
●

●● ●

●

●

●●
●

●●

●
●

●

●●

●
●

●

●●
●●●

● ●

●

●

●

●●

●●
●●

●

●
●

●●

●

● ●

● ●
●

●

●

●

● ●●
●
●

● ●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●●

●

●
●

●

●

●●

●

●

●
●

●

●
●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●● ●●

●
●

●

●

●
●

●

●

● ●
● ●

●

●
●●

●● ●● ●●
●●

●●
●●

●

●●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●●●
●

●

●

●● ●

●

●
●

●

●

●●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●
●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ● ●

●

●

●

●
●●

●●

●
●

●●● ●

●
●

●

●

●

●
●

●
●

●●●
●●●

●
●●●

● ●
●

●

●
●●●

●
●● ●

●
●●●●

●
●

●
●

●

●
●● ●●
● ●

●
●

●

●
●

●
●

●

●●
●

●
●

●

● ● ●
● ●

●

●●

●

●●

●
●

●●
●

●
●● ●

●

●●
●

●

●
●●

●

●
●

●

● ●

●

●
●

●
●

●
● ●●

●
●● ●●
●

● ●●

●

●

●●●

●
●

●

●

● ●
●● ●

● ●●
●
●●

●

● ●
●●

●● ●●
●

●

●●
● ●

●
●

●

●

●

●
●

●

●
●

●
● ●

●●
●

●
●
●

●

●
● ●

●

●

●

●

−6 −4 −2 0 2 4 6

tone
● T1
● T2
● T3
● T4
● T5
● T6

(a) Densely sampled f0 velocity

f0 velocity, 3 samples, discriminant 1

f0
 h

ei
gh

t, 
3 

sa
m

pl
es

, d
is

cr
im

in
an

t 1

−6

−4

−2

0

2

4

6

●
●

●
●

●
●
●

●

●
●

●●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●● ●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●

●
●

●●

●

●

●
●

●

●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
● ●

● ●

●
●●

●

●

●
● ●

●

●

●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●●● ●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●

●

●
●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●
●

●

●●

●

●

●
●

●●

●

●●
●

●

●
●
●

●
●
●
●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

● ●
●

●

●

●
●●
●

●
●●●

●
●

●

●

●

●

●

●

●

●

●

●
●
●

●
● ●

●
●

●

●
●

●●

●●

●●●
●

●
●
●

●
●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●

●

● ●

●
● ●

●●
●●

●

●

●●

●

●

●

●

●
● ●

● ●
●

●

●

●
●

●

●

●

● ●●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●

● ●●
●●

●

●●

●

●
●

●

●

●

●
● ●

●

● ●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●

●

●

●
●

●● ●

●

●

●

●●

●
●●

●

●

●

●
●

● ●

●●

●

●●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●
●

●●

●

● ●

●
●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●
●●

●
●

●

●
●

●
●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●
●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●●

●

●

●
●

●

●●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●
●

● ● ●
●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●●

●
●

●
●

●

●●
●

●

●●

●

●

●
●

●
●

●

●

●●
●

●

●

●
●●

●

●●
●

●

● ●●●
●

●

●
●

●

●●

●

●
●

●

● ●

●●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●
●

●
●

●●●

●

●

●
●

●●
●

● ●

●

●●

●
●

● ●
●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

−6 −4 −2 0 2 4 6

tone
● T1
● T2
● T3
● T4
● T5
● T6

(b) Coarsely sampled absolute f0 and f0 velocity

Figure 9: Category separability for the parameter space for a single male speaker of Cantonese.
Cantonese level tones (Tones 1, 3, 6) cannot be separated with f0 velocity information alone,
but coarsely sampled absolute f0 and f0 velocity parameterization results in a near-partition
of the phonetic space.
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We are currently implementing studies on the parameterization of the speech
signal using multiclass support vector machines (Crammer and Singer 2001) and
maximum entropy methods (Pietra, Pietra, and Lafferty 1997). Support vector
machines are well-understood algorithms that, like LDA, calculate optimal separating
hyperplanes (linear decision boundaries, i.e. lines in 2-D spaces) over a parameter
space for separating classes. Moreover, they effectively allow the calculation of
more complex, nonlinear decision boundaries in the parameter space by efficiently
calculating optimal separating hyperplanes in higher-dimensional parameter spaces.
Maximum entropy methods have the desirable property that the search space for
optimizing the parameter set is convex. This means that we can avoid getting trapped
in local minima in the search space, i.e. on a hypothesis for the characterization of
the parameter set in which all small movements in the search space result in a less
optimal hypothesis.

Conclusion

In conclusion, our work thus far suggests that coarse temporal sampling resolution
of the parametrized speech signal is sufficient for good tonal category separability,
given that relevant, informative parameters are sampled. This is supported by
exploratory modeling using linear discriminant analysis across the level and contour
languages of our sample and by the maintenance of tonal identification accuracy
under stimuli degraded to be coarsely sampled in a Cantonese tonal perception
experiment.

Our modeling work also suggests that the parametrization of the speech signal
as f0 velocity contours alone is not sufficient for good tonal category separability
cross-linguistically. The strongest evidence for this is the immense overlap of level
tone categories in mixed level tone/contour tone systems in a phonetic parameter
space defined only over f0 velocity, even for a single speaker. Category separability
in supervised learning gives an upper bound for category separabilty in unsupervised
learning; the failure of Cantonese level tones to be separated in a pure f0 velocity
space with LDA therefore implies that linear clustering methods cannot succeed,
either. Thus, Gauthier et al. (2007)’s suggestion that f0 velocity is sufficient for
learning tones cannot be generalized cross-linguistically, although we point out that
f0 velocity is a relevant parameter for level tone systems, a reflection of the fact that
level tones can be realized as contours due to tonal coarticulation.

Our future work will continue to home in on a definition of the target of learning
in the acquisition of tones from the speech signal. With a definition of tones that
is well-motivated by what we know about human tonal production and perception,
we can model how lexical tones could be learned from the speech signal in a way
consistent with what we know about human cognition.
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A The phonetics-phonology map learning problem in formal learning theory

As stated in Footnote 2 on page 6, it is possible to define a discrete phonetics-
phonology map and thus study the phonological categorization problem using formal
learning theory because we can represent the real-valued speech signal digitally to
arbitrary precision in the limit.

We assume the phonetics-phonology map is a partition of a finite set of phonolog-
ical categories, Cat, over the phonetic parameter space:

Phonetics-Phonology:

(9) {sequences of phonetic parameter vectors} → {phonological categories}

Choose any phonetic parameter vector ~v ∈ Rn, for finite n, e.g. 〈F1, F2〉 ∈ R2. Digitize
~v with an n-bit quantization, where n ∈ Z, and sample at some sampling rate s.11,12

Then at each timepoint t of sampling, each entry of digitized(~v)(t) is in PnF, where
PnF is the finite set of 2n different symbols from the n-bit quantization.

Consider the language L which is a set of pairs: 〈p, c〉 where p ∈ PnF, c ∈ Cat, and
assume L is in the class of r.e. languages. We would like to show that the class of
such languages, LPnPh, is learnable by constructing a learner φ : (Zn× Cat) 7→ G to
map from the class of languages to a class of grammars.

By assumption that the phonetics-phonology map is a partition, (i) each p is
paired with a unique c, i.e. L is a function (single-value language), and (ii) ∀p, p
is mapped to some c, so this function is total. Thus, L ∈ Lsvt, the class of total

11Note that discrete phonetic parameterization (beyond digital speech processing) is not unusual,
e.g. fundamental frequency is often parametrized as 5-valued (Chao 1930).

12This representation of the speech signal is based on Pierrehumbert (1990:379).
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single-value languages and therefore the class of languages of phonetic parameter
vector-phonological category maps is identifiable from positive data (Jain et al.
1999).

The learner for Lsvt in Jain et al. (1999) is not computable as it relies on an
enumeration of the grammars of all r.e. languages. Thus, even though recognizing
that LPnPh ⊆Lsvt is sufficient for proving it is learnable (in the Gold sense), we may
argue that this learnability result doesn’t reveal the structure of the learning problem
for phonetics-phonology maps.

However, we might also argue that the particular class of languages relevant
for the phonetics-phonology map is a proper subset of the class of total single-
value languages: LPnPh ⊂Lsvt. In particular, we can assume a fixed finite phonetic
parameter set for ~v, a fixed n-bit depth for quantization, a fixed sampling rate s, and
a finite, fixed set of phonological categories Cat. With these fixed bounds, LPnPh
is a finite subset of the finite languages. Since LPnPh has finite cardinality, the VC
dimension of this class is also finite and thus LPnPh is PAC-learnable: the class of
languages for phonetics-phonology maps is both computable and tractable.

Even with this result for computability and feasibility, we don’t pursue a finite
model for the phonetics-phonology learning problem. Although there may be grounds
to model the speech signal with a discrete representation based on finiteness in the
number of distinctions that human sensory systems can draw, that finiteness is vast:
the cardinality of LPnPh, even if finite, is of a vastness of the order of magnitude so
that idealization of phonetic parameterization as being real-valued and thus in an
infinite space is appropriate.

Rather than assuming finite bounds and concluding that phonetics-phonology
maps are learnable unconditioned on the choice of phonetic parameterization, as long
as the parametrization is finite, we model the speech signal in Rn to impose structure
on the vast hypothesis space for learning phonetics-phonology maps.
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