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Robust empirical support has been found for the idea that certain prop-
erties of the grammar are naturally non-symmetrical, as evidenced by
the fact that certain logically possible word orders remain unattested
in cross-linguistic inventories. It is proposed here that these linear
non-symmetries arise as a result of the selection relation that drives
syntactic structure building. A theory-independent definition of se-
lection is offered and is shown to derive linear order non-symmetries
with minimal assumptions about the properties of the grammar. The
generative mechanisms of a number of diverse grammatical frame-
works are evaluated and are shown to each instantiate at least one
operation that satisfies the selection definition provided here.

Keywords syntax, selection, linearization, typology, (Combinatory) Catego-
rial Grammar, Principles & Parameters, Tree Adjoining Grammar

Introduction

Empirical evidence, both within and across languages, repeatedly homes in on the
observation that certain properties of the grammar are non-symmetrical. These non-
symmetries of human language present themselves across a number of typological
domains and have been explored within a variety of theoretical frameworks. For
example, licit and illicit orderings of verbal clusters in West Germanic have received
analysis in both the transformational framework (Haegeman and van Riemsdijk
1986) as well as the generative Tree Adjoining Grammars (Kroch and Santorini
1991). Likewise, both Combinatory Categorial Grammar (Steedman 1996) and
Head Driven Phrase Structure Grammar (Pollard and Sag 1992) provide a means of
accounting for the possible and impossible binding relations between the nominal
elements in an expression of a language. Given that each of these frameworks
endeavors to provide a description of the grammars of human language, their mutual
success across a number of domains is unsurprising. Nevertheless, the existence of
diverse and successful grammatical frameworks raises the question of whether or not
there are any properties that hold across these distinct frameworks and, moreover,
whether such properties may be responsible for observed non-symmetries in language.
I propose that the obligatory presence of selection functions in grammars of human
language is a candidate for just such a property.

Following a brief introduction to the Bare Grammar framework of Keenan and
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Stabler (2003) — a framework compatible with all of those mentioned above — I
provide a theory-independent definition of what I refer to as a selection function: a
function that establishes an immutable local dependency between elements of the
language. Using linear order patterns within and across languages as a testing ground,
I show how the presence of these selection functions can account for documented non-
symmetries with only minimal assumptions about the grammar. Having established
the potential for selection functions in grammar to account for non-symmetries of
language, a variety of grammatical frameworks are explored and are each shown to
contain selection functions as defined here.

1 Bare Grammar Framework

The claim made here is that non-symmetric properties of human languages arise
as the consequence of the obligatory presence of selection relationships between
elements of the language. The verifiability of such a claim, however, obviously hinges
on the existence of a definition of selection that is applicable across a variety of
generative frameworks. In order to provide a formal definition of selection without
being overly dependent on framework-specific properties of the grammar, I make use
of the Bare Grammar (BG) framework developed in Keenan and Stabler (2003). The
minimal restrictions imposed by the BG model on the grammar allow this framework
to be compatible with diverse theoretical frameworks. Thus, a BG definition of
selection, as will be discussed in Section 4, can be employed across frameworks
relatively unhindered by specific properties of a formalism.

In the BG framework, the licit expressions of a given language L are derived
by the four-tuple grammars formalized below, though we allow that the grammar-
identifying subscript be omitted when it is clear from context.

Definition 1 (Bare Grammar). A bare grammar G is defined as



VG, CatG, RuleG, LexG
�

,
where:

VG = vocabulary items (strings)
CatG = categories
LexG = lexical items, a subset of VG× CatG
RuleG = partial functions from (V∗G× CatG) j into V∗G× CatG for any j.

Thus, the BG formulation of the generative grammar for a given language will
require the specification of: the strings of the language (VG), the categories of the
language (CatG), the possible pairings of strings and categories of the language
(LexG), and the generative mechanisms by which fixed-length sequences of lexical
items of the language can be successively combined into larger structures through
the structure building functions of G (RuleG). The language generated by such a
grammar is formally defined as the set of expressions that are either in the lexicon
of the language (LexG) or are outputs of the rules of the language applied to those
elements:

Definition 2 (Language). For any grammar G let LG =
⋃

n Lexn, where Lex0 = LexG

and for all n≥ 0, Lexn+1 = Lexn ∪
¦

F(t) | F ∈ RuleG, t ∈ Lex∗n ∩ domain(F)
©

.
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At several points in the discussion, the string component str and category cat of an
expression play a role; these are straightforwardly defined as below.

Definition 3 (String Component & Category). For any x ∈ 〈V∗, Cat〉 ∈ LG, str(x) = V∗

and cat(x) = Cat.

A benefit of using the BG framework is that it provides a means of identifying
structural similarities across expressions of the language without making a commit-
ment to the structural properties of the grammar itself — that is, BG allows one to
identify expressions as having the same structure without identifying what that struc-
ture is. The framework is designed such that the precise structure of any particular
expressions of a language is an intrinsic result of the generative mechanisms of the
language — expressions that are derived by the same rules are analyzed as sharing
the structural characteristics engendered by those rules. If one takes an expression of
the language and substitute its elements piecewise, the structure of that expression
will remain identical so long as the generative rules that derived that expression are
maintained. Properties that an expression has are said to be structural properties
if all structurally identical expressions also have those properties and, analogously,
relations between expressions are said to be structural relations if all other sets
of structurally identical expressions also bear those relations to each other. Such
piecewise substitutions are formalized as rule-preserving automorphisms, as defined
below.

Definition 4 (Automorphism). A function h from LG to LG is an automorphism of G
iffh is a bijection and h is rule-preserving in the sense that h(F) = F for all F ∈ RuleG.
For any grammar G, AutG represents the set of such automorphisms.

The notion that such automorphisms are rule-preserving — that is, that h(F) = F for
all F ∈ RuleG — simply means that if F is considered as a set of pairs {〈K , J〉 | F(K) = J},
where K is a sequence of expressions in LG in the domain of F , then this set is identical
to the set {〈h(K), h(J)〉 | F(h(K)) = h(J)}, letting h(K) denote the pointwise applica-
tion of the automorphism h to the elements in the sequence K. Conventionally, then,
this notion is simply the requirement that the function h commute with the structure
building functions of LG.

The structural properties that remain constant under such automorphisms are
termed the invariants of the language.

Definition 5 (Invariant). The invariants of a grammar G are the fixed points of the
automorphisms of G.

The intuitive idea captured here is that the invariants of a grammar G are those
things that must be held constant under substitution — that is, the things that cannot
be changed without affecting the structure of an expression. Thus, the property is a
subject will be an invariant property of a language if for any expression u that has
that property, then in any automorphism h of the language, h(u)— an expression
whose derivation mirrors that of u in the sense that all of the same rules are applied
and are applied in the same way — also has the property is a subject. It is a trivial but
nevertheless welcome truth, then, that the structure building functions themselves
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are invariant properties of grammars. Non-trivial invariants in certain grammars are
the ‘functional’/‘grammatical’ elements such as voice and case markers. Crucially, in
identifying these invariants, it is only necessary to specify that the rules be preserved,
no additional restrictions on the details of the rules themselves need be imposed.

Within the BG framework overviewed here, Keenan and Stabler explore additional
restrictions that may be placed on the grammars of human languages. The aspects of
BG just discussed, however, are sufficient to provide a definition of selection that is
provably invariant, has consequences for linear order relation, and can be applied
across grammatical frameworks.

2 Selection

Providing a definition of selection that allows it to define invariant relationships
across a variety of grammatical frameworks is not a straightforward task, not least
of all because selection, in name, at least, is not explicitly incorporated into all
of the frameworks mentioned here. Even within the Principles and Parameters
framework, wherein categorial and semantic selection are frequently mentioned,
the selection relationship goes without formal characterization. Nevertheless, the
generative mechanisms across all of these frameworks do generate syntactic and
semantic relationships between elements of the grammar using what I call selection
functions, a formal definition of which is provided at the end of this section.

In each of the frameworks evaluated here, these selection functions put expres-
sions of the language together in a fixed way, where this fixedness can be understood
as a resulting from the properties of the expressions themselves. These expressions
go together in a fixed way because they bear a certain local relation to each other:
the selection (selector-selectee) relation. This selection relation is a byproduct of
the category membership of the expressions — it is not a single lexical item that acts
as a selector or selectee in relation to another lexical item, but rather a category of
lexical items that act as a selector or selectee in relation to another category of lexical
items. Moreover, this selection relationship is responsible for encoding the semantic
dependency that arises in a local domain between expressions of a language. Each of
the conditions outlined below captures the intuition that the selection relationship is
established in a local, fixed way between categories of expressions in a language.

2.1 Selection: The Conditions

In this section, I further explore the notion of selection that was just discussed
and is summarized informally below.

Definition 6 (Selection Function, Informally). A selection function in a grammar G
is a function that takes elements of the language and puts them together in a fixed
way, as determined by the category membership of those elements.

I posit three specific conditions that must hold if a rule of a given grammar is to be
considered a selection function. This discussion and definition of selection functions
will allow me to defend the hypothesis below.
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Hypothesis 1. (Selection). Grammars of human languages are selection grammars.

Definition 7 (Selection Grammar). A grammar G is a selection grammar if and only
if it contains at least one selection function.

In the course of discussing the conditions on selection functions, I will outline
generative systems that Hypothesis 1 rules out as possible grammars of human
languages. A formal definition of selection, including a formalization of each of these
conditions, is then provided.

2.1.1 Condition (i): Sequence Length
The most obvious condition to be imposed on the selection functions in a grammar

stems from the fact that these selection functions “put elements of the language
together” — they must operate over more than a single item of the language. The
selection functions of a grammar are, thus, only those with an arity of at least two.
Grammars which generate expressions using only unary operations, such as the
admittedly undergenerating approach to Dutch below, are ruled out by Condition (i).

Example (Unary Grammar). Let GUn =



VUn, CatUn, RuleUn, LexUn
�

with
VUn = {dee,hond, eet}
CatUn = {N, D,Det, V,S}
LexUn = {〈dee, Det〉 , 〈hond, N〉 , 〈eet, V〉}
RuleUn =

�

UN, UD
	

where U1, U2 ∈ RuleGUn
are defined as:

U1(〈hond, N〉) 7−→ 〈dee hond,D〉
U2(〈dee hond, D〉 7−→ 〈dee hond eet, S〉

Condition (i) will also have the effect of ensuring that selection functions of a given
grammar do not vacuously satisfy Conditions (ii–iii), discussed in the following
sections, as Condition (i) requires these functions to have an arity greater than one.

2.1.2 Condition (ii): Category Closure
The condition of category closure formalizes the idea that the selection relations

that hold between elements in the grammar hold due to the categorial status of those
elements — that selection is a property of categories, not individual expressions of
the language. Thus, Condition (ii) requires that for all selection functions in the
grammar, if an element α is in a sequence in the domain of a selection function,
then all items that are of the same category as α can stand in the place of α in that
sequence. The domain of a selection function is, then, closed under replacement by
elements in the same category, rendering the applicability of the selection function
determinable solely by the category of the elements in a given sequence.

While category closure can be imposed independent of the categories used within
a grammar, it forces grammars of human languages to be those that make natural
and reasonable generalizations over categories. Grammars that fail to make general-
izations over the categories, like the model grammar for feminine DP formation in
French below, are thus ruled out as possible grammars for human languages.
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Example (Non-Category Closed Grammar). Let GCO =



VCO, CatCO, RuleCO, LexCO
�

,
with a1 . . . an ∈ RuleCO defined as:

a1(



la,Dfem
�

,



abbaye, NPfem
�

) 7−→



l’abbaye,DPfem
�

a2(



la,Dfem
�

,



abeille,NPfem
�

) 7−→



l’abeille, DPfem
�

a3(



la,Dfem
�

,



abondance,NPfem
�

) 7−→



l’abondance, DPfem
�

...
an(



la, Dfem
�

,



zoologie,NPfem
�

) 7−→



la zoologie, DPfem
�

Rules like those in a1, . . . , an are not selection functions because they fail to allow
the interchangeability of the elements that are of category NPfem and, thus, are
not category closed. Grammars with only rules like these, while perhaps adequate
in terms of generative capacity, are not possible grammars of human languages.
Grammars of human languages must include rules — selection functions — that make
use of the category system in determining which sequences of elements are in the
domain of those rules. Such a restriction is empirically motivated given the task
that learners of a language face and the competence that speakers of a language
exhibit in certain linguistic domains. When the speaker of French encounters a
new feminine noun, the speaker knows immediately how to combine that feminine
noun with the definite determiner, because the speaker’s knowledge of language
involves generalizations across categories. Likewise, the learnability of human
language grammars seems contingent upon the learner being licensed to draw broad
generalizations from limited input.

In addition to supporting generalizations such as these — which, in fact, amounts
to accounting for the natural generalizations that a speaker’s knowledge of a language
includes — Condition (ii) will also enforce a certain level of fine-grained detail in the
category structure of a language. Specifically, if selection functions by definition are
closed under replacement by elements in the same category, then two expressions of
the language must be of a different category if they behave differently with respect
to the selection functions in a language. That is, if two expressions of a language are
superficially quite similar but nevertheless fail to be in the domains of the same sets
of selection functions, then they must be categorically distinct. This is illustrated by
looking at the complete gender system of a language like French where, while nouns
may be similar with respect to their denotation and their ability to host number
marking, they must be divided into at least two classes, feminine and masculine,
if a function that combines them with a determiner is to be considered a selection
function. Thus, Condition (ii) captures the fact that the assignment of categories to
base and derived expressions in human languages is not fully arbitrary but, rather, is
used to determine how those expressions behave with respect to certain generative
mechanisms of the language: the selection functions.1

1In terms of the phonological aspects of language, Condition (ii) has the effect of preventing
selection functions which are sensitive to the string component of the elements in their domain (e.g.
notions such as ‘heaviness’).
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2.1.3 Condition (iii): Constancy Under Permutation & Sub-composition
Condition (iii) is responsible for capturing the fact that selection functions, as

described informally above, put together elements of the grammar in a fixed way. The
thrust of this idea is that, just as the sequences in the domain of a selection function
will be determined by the elements in the sequence — here, their categories, the
classes of which may encode both syntactic and semantic information — so too will
the output of the selection function. That is, the category of an element determines
what it selects or what it is selected by and, moreover, its category also determines
the end result once that selection relationship has been established by the rules
of the grammar.2 Thus, if a sequence of elements is in the domain of a selection
function, then any rule of the grammar that combines those elements in any order
must combine them such that the output of the rule is identical to that of the selection
function.

Given, then, any sequence of elements in the domain of a selection function,
there are two logically possible means of designing an alternative rule for combining
those elements. The first of these is to design a rule that takes as its domain a
permutation of the sequence of elements in the domain of the original selection
function. Condition (iii) will allow that such alternative rules exist in the grammar of
the language but, as just noted, will require that the output of those rules match the
original selection function. Thus, Condition (iii) will allow grammars such as that
below, which includes two functions that combine one place predicates with their
arguments, as the output of the selection rule is matched by that of the alternative
rule.

Example (Permissible Permutation Grammar). Let GPP =



VPP, CatPP, RulePP, LexPP
�

with R ∈ RulePP defined as:

f (〈John, DP〉 ,



fell, P1
�

) 7−→



John fell, P0
�

g(



fell, P1
�

, 〈John,DP〉) 7−→



John fell, P0
�

h(〈John, DP〉 ,



fell, P1
�

) 7−→



John fell, P0
�

However, grammar such as the following, which, like that above, includes only three
functions, are not possible grammars of human language, as Condition (iii) is not
met.

Example (Impermissible Permutation Grammar). Let GIP =



VIP, CatIP, RuleIP, LexIP
�

with R ∈ RuleIP defined as:

f (〈John, DP〉 ,



fell, P1
�

) 7−→



John fell, P0
�

g(〈John,DP〉 ,



fell, P1
�

) 7−→



fell John, P0
�

h(



fell, P1
�

, 〈John, DP〉) 7−→



John fell, P3
�

2The constancy under permutation enforced by Condition (iii) is similar to the notion of Category
Functionality, defined in (i).

(i) Category Functional. For any grammar G, a function f n ∈ RuleG is category functional iff there
is a function g from (CatG)n into CatG such that for all n-tuples σ in domain( f ), cat( f (σ)) =
g(cat(σi), . . . , cat(σn)).

Condition (iii), however, places restrictions that are stronger than those of category functionality, as
it enforces identity of both string and category components and, moreover, requires that any such
category selection function — i.e. g in (i) — be indifferent to the order of elements in the tuples in its
domain.
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The second logically possible design for an alternative rule that combines the
elements in a selection function is to combine subsets of those elements. In this case,
if selection functions combine elements of the grammar in a fixed way, then rules
that combine subsets of those elements in a way different than the selection function
should be disallowed, as exhibited in the grammar below.

Example (Impermissible Sub-composition Grammar). Let GIS =



VIS, CatIS, RuleIS,
LexIS

�

with R ∈ RuleIS defined as:

f (



John,DPnom
�

,



cake,DPacc
�

, 〈ate, P2〉) 7−→ 〈John ate cake, P0〉
g(



cake, DPacc
�

, 〈ate, P2〉) 7−→ 〈cake ate, P1〉
h(



John,DPnom
�

, 〈cake ate, P1〉) 7−→ 〈John cake ate, P0〉

Given that empirical evidence such as constituency and prosody may necessitate the
presence of such ‘sub-composition’ rules in the grammars of human languages, an
appropriate definition of a selection function should allow that they exist. Condition
(iii) will allow for such sub-composition functions only if the grammar also includes a
function that can compose with the sub-composition function and produce an output
identical to that of the selection function. That is, so long as the sub-composition
function combines the subset of elements in the same way that they were combined
in the full selection function and, thus, can be composed so as to match the output
of the selection function. This allows for grammars of the type below.

Example (Permissible Sub-composition Grammar). Let GPS =



VPS, CatPS, RulePS, LexPS
�

with R ∈ RulePS defined as:

f (



John,DPnom
�

,



cake, DPacc
�

, 〈ate, P2〉) 7−→ 〈John ate cake, P0〉
g(



cake,DPacc
�

, 〈ate, P2〉) 7−→ 〈ate cake, P1〉
h(



John,DPnom
�

, 〈ate cake, P1〉) 7−→ 〈John ate cake, P0〉

Therefore, though Condition (iii) allows for both permutation and sub-composition
of the elements in the domain of a selection function, two characteristic properties
of selection functions are nevertheless maintained. First, it is the elements them-
selves that define the functional output of their combination, as the end result of
the permutation or sub-composition functions will always match that of the original
selection function. Second, the relationship established between the elements in the
domain of a selection function is an obligatorily local relationship. While permutation
and sub-composition are permissible, neither of these deviations from the original
selection function will disrupt the locality of this relationship.

2.2 Selection: Defined

Conditions (i) through (iii) were posited in order to capture the aspects of
the informal definition of selection given above. Having carefully explored the
implications of these conditions on the functions that satisfy them and the grammars
that contain such functions — hypothesized here to be all grammars of human
languages — a formal definition of a selection function can now be provided. In
order to accurately capture the second aspect of Condition (iii) — constancy under
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sub-composition, a condition that will only be invoked if the grammar has functions
that exceed an arity of two — the definitions of i-Composition and Rule◦ below are
used.

Definition 8 (i-Composition). For any functions f of arity j and g of arity k and for
some i such that 1≤ i ≤ j:

domain( f ◦i g) =
n




s1 . . . si−1 t1 . . .tksi+1 . . . s j
�

| (t1 . . . tk) ∈ domain(g) and



s1 . . . si−1 g(t1 . . . tk)si+1 . . . s j
�

∈ domain( f )
o

f ◦i g(s1 . . . si−1 t1 . . . tksi+1 . . . s j)
def
= f (s1 . . . si−1 g(t1 . . . tk)si+1 . . . s j)

Definition 9 (Rule◦). For any G = 〈V, Cat, Lex, Rule〉, Rule◦ is the closure of Rule under
i-Composition:

Rule◦
def
= closure(Rule,

�

◦i | i ∈ N
	

).

Finally, along with the three conditions discussed above, each of which are in-
tended to characterize the nature of a selection relationship, an additional restriction
characterizing the usefulness of the selection relationship is imposed. This restriction
requires that the domain of a selection function in a grammar not be empty — that
is, not only must grammars of human languages contain selection functions as de-
fined by Conditions (i)–(iii), they must make use of these selection functions in the
generation of expressions of the language.

Definition 10 (Selection Function). For any function f in a grammar G, f is a
selection function in G iffdomain( f ) 6= ; and for all n-tuples σ ∈ domain( f ), the
following conditions hold:

Condition (i): Sequence Length. length(σ)> 1.

Condition (ii): Category Closure. For any x ∈ σ, for any σ′ such that σ′ is
the result of replacing x with y 6= x , σ′ ∈ domain( f ) if cat(x) = cat(y).

Condition (iii): Constancy Under Permutation & Sub-composition. For
any σ′ ∈ domain(g) for g ∈ RuleG, if | {x | x ∈ σ} ∩

�

y | y ∈ σ′
	

|> 1, then
either:

a. σ′ is a permutation of σ and g(σ′) = f (σ) or
b. ∃k ∈ Rule◦ of G such that σ = s1 . . . si−1σ

′si+1 . . . s j ∈ domain(k ◦i g)
and k ◦i g(s1 . . . si−1σ

′si+1 . . . s j) = f (σ).

The additional restriction placed on the cardinality of the set intersection in
Condition (iii) captures the fact that human languages do seem to allow a certain
amount of malleability in the selection relationships. The perfect auxiliary, have,
for example, may combine directly with a verbal element, have gone, or with the
progressive, have been going. Likewise, nominal elements are found in selection
relationships with both verbs and prepositions. Condition (iii) allows for this mal-
leability by evaluating the fixed output of a given selection function only if there
exists another rule in the grammar that puts together more than one of the elements
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in the sequence of the selection function. If such a rule exists, then this rule must,
as discussed above, combine the elements in a way that matches the output of the
selection function. In the case of non-complete overlap between the alternative rule
and the original selection function, the second clause of Condition (iii) requires that
the grammar contain rules that can be i-composed with the alternative rule so as to
match the output of the selection function. In the case of complete overlap between
the alternative rule and the original selection function, the first clause of Condition
(i) requires that the output of the alternative rule match that of the selection function.
In the latter case, the language generated by the grammar remains unaffected if this
rule is removed.

Theorem 11. For all selection functions f in any grammar G= 〈V, Cat, Lex, Rule〉 and
for any g ∈ RuleG such that σ′, a permutation of σ in domain( f ), is in domain(g), let
G′ =

¬

V, Cat, Lex, Rule′
¶

, where Rule′ = (Rule−
�

g
	

)∪
�

g −



σ′, g(σ′)
�	

. Then LG = LG′ .

Proof. From the definition of G, G′, it follows that (LexG)0 = (LexG′)0. Supposing that
(LexG)n = (LexG′)n, it can be shown that (LexG)n+1 = (LexG′)n+1.

(LexG′)n+1 ⊆ (LexG)n+1: Also trivial.

(LexG)n+1 ⊆ (LexG′)n+1: Let x ∈ (LexG)n+1. Then either (i) x ∈ (LexG)n or (ii)
∃h ∈ RuleG, ∃α ∈ (LexG)∗n such that h(α) = x .

If (i) then x ∈ (LexG′)n+1.

If (ii) where h= g and α= σ′,

then σ′ ∈ (LexG′)∗n and g(σ′) = f (σ) ∈ (LexG′)n+1.

If (ii) where h 6= g then h(α) ∈ (LexG′)n+1.

If (ii) where h= g and α 6= σ′ then g(α) ∈ (LexG′)n+1

This definition of a selection function can be straightforwardly used to provide a
definition of a selection relationship between elements of the language.

Definition 12 (Selection Relationship). For all u, v ∈ LG, there is a selection relation-
ship between u and v iffu, v ∈ σ for some σ ∈ domain( f ) for f a selection function
in G.

Given that the selection relationship is defined in terms of the generative mechanisms
of the grammar, it is unsurprising that this relationship is provably invariant.

Theorem 13. The selection relationship in a grammar G is invariant.

Proof. Let u, v ∈ LG such that there is a selection relationship between u, v. Then
u, v ∈ σ for some σ ∈ domain( f ) for f a selection function in G and for any h ∈
AutG, because h preserves RuleG, it must be the case that h(u), h(v) ∈ σ for some
σ ∈ domain( f ) for f a selection function in G, thus there is a selection relationship
between h(u) and h(v).
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Note, finally, that grammars satisfying Hypothesis 1 need only contain a single
selection function. While there is a natural intuition that if the presence of selection
functions is one of the defining characteristics of human language grammars, then
such selection functions will do much of the generative work of the grammar, there is
no requirement that they do all of the generative work of the grammar. Though this
stronger stance may turn out to be empirically motivated, it is not the one pursued
and evaluated here. In the following section, I illustrate how even this weaker
stance — that grammars contain a single selection function — can be used in a BG
framework to explain the linear non-symmetries that are found within and across
languages.

3 Linear Order as a Consequence of Selection

Typological investigations frequently center on the licit linear orderings of words
and morphemes in language. Such investigations repeatedly converge on several facts
about linear order in human languages: (i) linear order of elements within a given
language is never truly unrestricted (Legate 2002), (ii) certain linear order patterns
occur frequently in language while others remain unattested (Cinque 2005) and (iii)
the linear order of elements in one domain of a language frequently correlate with
the order of elements in other domains (Greenberg 1966). Given this convergence, it
becomes obvious that the linear order of elements, both within and across languages,
is one of the non-symmetric properties alluded to earlier. An explanation of this
empirical convergence, however, will be dependent upon how linear order relations
are defined and established in a given grammatical framework.

In what follows, I propose a means of explaining the non-symmetry of linear order
within the BG framework outlined above. Given that generative operations within the
BG framework are defined such that they always yield a string output, the linear order
of elements within a BG-defined language can be established as a byproduct of the
rules of the grammar. If an additional restriction is imposed requiring that the string
components in the domain of a function be fully and uniquely reflected in the string
output of the function — a restriction termed here string fixing — the linear order of
elements is provably invariant. The invariant linear order between expressions of the
language is, moreover, a non-symmetric relation if the obligatory selection functions
are subject to an additional restriction over the legitimate sequences of categories
and strings in their domain. Thus, if certain categories are assumed to be instantiated
across languages then so too are the selection relationships that those categories
enter into to. Given that these selection relationships result in the non-symmetry
of linear order within a language, adopting this assumption provides a means of
accounting for the restricted word order patterns found across languages.

3.1 Defining Linear Precedence

The restricted patterns of linear order possibilities within and across languages
suggest that the linear order relations in language are structurally derived. That is,
the generative operations found in grammars of human languages should themselves
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derive the linear order properties of expressions of the grammar and, furthermore,
that restrictions on these generative operations should also yield restrictions on linear
order possibilities. Given that string outputs are an obligatory component of the rules
in a BG-defined grammar, the BG framework provides a straightforward means of
connecting the generative operations of the grammar to the linear order of elements
within the expressions that grammar generates. The relation that will be used here
to explicitly make this connection is that of local precedence, a linear relationship
that is established as the consequence of a single generative step, defined below.

Definition 14 (Local Precedence (PRE)). For all u, v ∈ LG, u PRE v iff∃ f ∈ RuleG and
strings t1, t2, t3, t4, t5 ∈ V∗ such that for some σ ∈ domain( f ), u, v ∈ σ, str( f (σ)) =
t1 t2 t3 t4 t5 and str(u) = t2, str(v) = t4.

In order that a local precedence relation be established between two expression
of a language, the above definition requires that (a) there be a rule of the grammar
that directly combines those expressions and (b) that the string components of each
expression be represented in the string output of said rule.3 Should both of these
requirements be satisfied, the local precedence relation will then be determined by
whichever string component occurs first in the string output of the function that
combines the two expressions. Taking the Permissible Sub-composition Grammar
from Section 2.1.3 as an example, this definition will yield the linear precedence
relations given below.

Example (Permissible Sub-composition Grammar, Redux). Let GPS =



VPS, CatPS ,
RulePS, LexPS

�

with R ∈ RulePS defined as:

f (



John,DPnom
�

,



cake,DPacc
�

, 〈ate, P2〉) 7−→ 〈John ate cake, P0〉
g(



cake,DPacc
�

, 〈ate, P2〉) 7−→ 〈ate cake, P1〉
h(



John,DPnom
�

, 〈ate cake, P1〉) 7−→ 〈John ate cake, P0〉

PRE Relations:



John, DPnom
�

PRE 〈ate, P2〉 ,



John,DPnom
�

PRE



cake, DPacc
�

(by f )
〈ate, P2〉PRE




cake,DPacc
�

(by f, g)



John,DPnom
�

PRE 〈ate cake, P1〉 (by h)

With regard to this example, note that if the function f were removed from the rules
of GPS, then the definition of local precedence would not establish a precedence
relation between




John, DPnom
�

and either 〈ate, P2〉 or



cake,DPacc
�

. The linear order
that does arise between




John,DPnom
�

and these two expressions, then, only does so
due to the local precedence relation between




John, DPnom
�

and 〈ate cake, P1〉.

3.2 Defining the String Operations of a Grammar

Though the precedence relation can easily be defined as a consequence of the
generative operations of the grammar, this definition will fail to provide insight into
the structural properties of the precedence relation lest the string operations of the

3Here and throughout I abstract away from morphophonological processes that may operate so as
to alter the direct correspondence between string inputs and outputs.
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grammar also be restricted. In the model grammar below, for example, though
precedence is defined as a rule-based notion, it nevertheless fails to be invariant
under automorphism.

Example (Non-Invariant Precedence Grammar). Let GNIP =



VNIP, CatNIP, LexNIP, RuleNIP
�

with R ∈ RuleNIP defined as:

f (〈a, A〉 , 〈b, B〉) 7−→ 〈ab, C〉
f (〈d, D〉 , 〈e, E〉) 7−→




f , F
�

PRE Relations: 〈a, A〉PRE 〈b, B〉

Let h be a bijection on GNIP such that

h(〈a, A〉) = 〈d, D〉 h(〈b, B〉) = 〈e, E〉 h(〈ab, C〉) =



f , F
�

h(〈d, D〉) = 〈a, A〉 h(〈e, E〉) = 〈b, B〉 h(



f , F
�

) = 〈ab, C〉
h( f (〈a, A〉 , 〈b, B〉)) = h(〈ab, C〉) =




f , F
�

f (h(〈a, A〉), h(〈b, B〉)) = f (〈d, D〉 , 〈e, E〉) =



f , F
�

Therefore, h commutes with f and is an automorphism on GNIP. Since 〈d, D〉PRE 〈e, E〉
does not hold, h(〈a, A〉)PRE h(〈b, B〉) does not hold, either. Therefore, PRE is not
invariant in GNIP.

The precedence relation in the above grammar fails to be invariant because the
function f does not map string inputs to string outputs in a fixed, predictable
manner. Thus, though precedence relations may be established between elements
in one sequence in the domain of f , these elements are interchangeable under
automorphism with elements that do not stand in the precedence relation.

To establish precedence as an invariant relation within a grammar, it will be
necessary to restrict the string operations of the grammar such that there is a fixed
mapping between string inputs and string outputs. With such a restriction in place,
the string of an element and that of the element that an automorphism interchanges
it with are guaranteed to be treated the same way by the generating functions of the
grammar and, thus, to enter into the same set of precedence relations. One means
of restricting the string operations of a function is to require that they bear a fixed
and transparent relation to their string inputs, a property that I term string fixing and
define below.

Definition 15 (String Fixed). A function f n is string fixed iff there exists a unique
permutation π of {1, . . . , n} and a unique set of strings α0, . . . ,αn+1 ∈ V∗ such that:

∀




s1, C1
�

, . . . ,



sn, Cn
��

∈ domain( f ),

str( f n(




s1, C1
�

, . . . ,



sn, Cn
��

)) = α0sπ(1)α1 . . .αnsπ(n)αn+1

String fixed functions can produce as their output any permutation of the string
components of the expressions in their input, provided that the permutation is fixed
across the entire domain of the function — that is, the function must permute each
sequence of strings in the same manner for all sequences in its domain. Moreover,
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such functions may insert fixed string constants into their string output, provided,
again, that such insertions be fixed across the domain of the functions. Finally, to
enforce that the string outputs of the functions be transparently related to their string
inputs, the definition requires that each string component of their input be fully and
uniquely reflected in their string outputs. Given this, functions cannot copy, delete or
interleave string components of the input in their string output. The local precedence
relations in a grammar containing only functions with string operations restricted in
this manner is invariant.

Theorem 16. For any grammar G such that all f ∈ RuleG are string fixed, local
precedence is invariant.

Proof. Let u, v ∈ LG such that u PRE v. Then ∃ f ∈ RuleG, strings t1, t2, t3, t4, t5 ∈ V∗

and σ such that u, v ∈ σ ∈ domain( f ) and str( f (σ)) = t1 t2 t3 t4 t5 and str(u) =
t2, str(v) = t4. Let




s1, . . . , sn
�

= σ with u = sk, v = sl for 1 ≤ k, l ≤ n such
that str( f (




s1, . . . , sn
�

)) = t1str(sk)t3str(sl)t5. For any h ∈ AutG,



h(s1), . . . , h(sn)
�

∈
domain( f ). But G is string fixed, so str( f (




h(s1), . . . , h(sn)
�

) = t1str(h(sk))t3str(h(sl))t5.
Thus, ∃ f ∈ RuleG such that for σ ∈ domain( f ), h(sk), h(sl) ∈ σ and str( f (σ)) =
t1 t2 t3 t4 t5 and str(h(sk)) = t2, str(h(sl)) = t4 so h(sk)PRE h(sl) and since u = sk, v = sl ,
h(u)PRE h(v).

3.3 Linear Precedence in Human Language

Given that the human language learner is faced with the task of acquiring gram-
matical rules from their string outputs in the primary linguistic data, a reasonable
claim is that these string outputs should be related to their inputs in a relatively
fixed manner. This will have the positive consequence of facilitating the learner’s
acquisition of the domain elements of a given function based solely on the range of
the function — i.e. based solely on the positive, overt evidence the learner receives.
Thus, it is natural to propose that rules in grammars of human languages are string
fixed in the sense above.

Within contemporary generative analysis of human language, the research goals
are twofold. First, analysis seeks to find an explanation for the constrained amount
of variation found across languages. Second, analysis seeks to explain how human
infants learn the grammar of their ambient languages in an unsupervised learning
environment based only on surface-apparent properties of the input. The string
fixed restriction proposed above can provide a partial explanation for how human
language learners are successful under these conditions. Namely, if functions of the
grammar are restricted to string operations that are both fixed and transparent, then
the learner exposed to expressions that are the output of those functions can more
easily identify both the input sequences of the functions and the operations of the
functions themselves. Thus, I propose string fixity of all functions with an arity that
is greater than or equal to two as a second hypothesis regarding the class of possible
grammars of human languages, leaving open the possibility that such grammars may
contain unary functions with copying, deletion or reordering of string components.
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Hypothesis 2. String Fixity. For any function f in a grammar of a human language,
if arity( f )> 1, f is string fixed.

Imposing this restriction not only makes headway into the learning problem of human
languages, but moreover, given the results of the above section, has the consequence
that local precedence in human languages will be invariant, as all functions with an
arity that is greater than or equal to two — that is, all functions that can establish a
local precedence relation — will be string fixed functions.

Restricting human language grammars to those that are string fixed, in light of
the selection functions made obligatory by Hypothesis 1, suggests that the sequence
of categories possible in the selection functions of human language grammars are
subject to an additional restriction.

Example (Category Uniqueness). Let GFr =



VFr, CatFr, LexFr, RuleFr
�

with a selection
function f ∈ RuleFr defined as:

f (〈le chien, DP〉 , 〈chasse, V〉 , 〈le chat,DP〉) 7−→ 〈le chien chasse le chat, S〉

By Condition (ii) of Definition 10, (〈le chat, DP〉 , 〈chasse, V 〉 , 〈le chien,DP〉 ∈ domain( f ).
By Hypothesis 2, f (〈le chat,DP〉 〈chasse, V〉 , 〈le chien,DP〉) ∈ domain( f ) is mapped
to 〈le chat chasse le chien, S〉. It follows that f (〈le chien, DP〉 , 〈chasse, V〉 〈le chat,DP〉)
and f (〈le chat,DP〉 , 〈chasse, V〉 , 〈le chien,DP〉) are distinct. Therefore, Condition (ii)
of Definition 10 and Hypothesis 2 lead to a violation of Condition (iii) of Definition
10.

The interaction of string fixity with the category closure imposed by Condition (ii) of
selection, thus, suggests that selection functions are barred from combining multiple
elements of the same category, lest a violation of Condition (iii) ensue.

Hypothesis 3. Category Uniqueness. For any x ∈ σ ∈ domain( f ) of f a selection
function in G, ¬∃y ∈ σ such that cat(x) = cat(y).

Category uniqueness is motivated not only by the interaction of Hypotheses
1 and 2 but by empirical evidence found across languages. Specifically, domains
wherein it seems reasonable to propose a function that combines a selector with two
arguments of the same category, such as the two-place predicate example above,
frequently contain evidence that such a function is not empirically adequate. This
evidence may come in the form of case or agreement marking distinctions between
the two arguments, the distributional restrictions on anaphors, or the ‘extractability’
of certain argument positions, all of which suggest the presence of a more fine-
grained categorial system. Alternately, constituency and dominance relations in the
derived expression can be used as evidence that a more complex generative sequence
is necessary to produce an empirically adequate structure for the expression.

The invariant linear order relation in human language grammars can be further
strengthened to a non-symmetric relation if a limit on the amount of homophony
permissible in the domain of a selection function is imposed. This limit on homophony
is here formalized as the requirement that selection functions in human language
grammars contain at least one string unique pair, leaving open the empirical and
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theoretical question of how homophony is bounded in natural languages. The
necessity of this restriction in proving the non-symmetry of local precedence is
interesting given the invariant — that is, structural — nature of local precedence and
the inherently non-structural nature of the strings components of expressions of the
language — that is, the traditional observation that string components are paired
with their syntactic and semantic forms in an arbitrary manner. Nevertheless, given
that hypotheses about the nature of human language grammars are intrinsically
hypotheses about the grammars of human language learners and that homophony
negatively affects learnability, this restriction receives independent motivation.

Definition 17 (String Unique Pair). For any x , y ∈ LG such that x , y ∈ σ ∈ domain( f )
for f ∈ RuleG,




x , y
�

is a string unique pair iff str(x) 6= str(y) and ¬∃z ∈ σ such that
str(z) = str(x) or str(z) = str(y).

Hypothesis 4. String Uniqueness. For any grammar G of a human language, there
must exist a pair




x , y
�

∈ σ ∈ domain( f ) for f a selection function in G such
that




x , y
�

is a string unique pair.

Theorem 18. If a grammar G satisfies Hypotheses 1–4, local precedence is non-
symmetric in G.

Proof. Let σ =



(s1, C1), . . . , (sn, Cn)
�

∈ domain( f ) for a selection function f ∈ RuleGHS
.

Then there are u, v ∈ σ such that u= (sk, Ck), v = (sl , Cl) with sk 6= sl for 1≤ k, l ≤ n
and:

(u PRE v ∨ v PRE u): Since u, v ∈ σ ∈ domain( f ), arity( f )≥ 2 so f is string fixed,
so there is some permutation, π, of {1, . . . , n} and strings α0, . . . ,αn+1 ∈ V∗ such
that str(σ) = α0sπ(1)α1 . . .αnsπ(n)αn+1 with sk and sl as proper substrings. Let
α0sπ(1)α1 . . .αnsπ(n)αn+1 = t1 t2 t3 t4 t5. Then either sk = t2 and sl = t4 or vice
versa, so u PRE v or v PRE u.

¬(u PRE v ∧ v PRE u): Let u PRE v. By Condition (iii) of Definition 10, for any
σ′ ∈ domain(g) for g ∈ RuleGHS

such that u, v ∈ σ′, either

σ′ is a permutation of σ: Then str(g(σ′)) = str( f (σ)) = t1str(u)t3str(v)t5.
By Definition 10, u and v are string distinct in σ,σ′, so str(g(σ′)) 6=
t1str(v)t3str(u)t5.

or σ′ is not a permutation of σ: Since | {x | x ∈ σ} ∩
�

y | y ∈ σ′
	

| > 1,
∃ j ∈ RuleGHS

j ◦i g(. . .σ′ . . .) = f (σ). By Hypothesis 2, f is string fixed so
str(g(σ′)) must be a substring of str( f (σ)). By Definition 10, u and v are
string distinct in σ, so there can be no substring tsub of str( f (σ)) such that
tsub = t1str(v)t3str(u)t5, so str(g(σ′)) 6= t1str(v)t3str(u)t5.

Thus, there is no σ′ ∈ domain(g) for g ∈ RuleGHS
such that u, v ∈ σ′ and

str(g(σ′)) = t1str(v)t3str(u)t5, so ¬v PRE u.

The presence of selection functions in grammars of human languages, given that
those grammars are string fixed and that the domains of the selection functions are
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subject to category uniqueness, has the consequence that local precedence relations
in language will be non-symmetric relations. This extends straightforwardly to a
second fact about local precedence relations in grammar: it will be an asymmetric
relation for any string distinct elements in the domain of a selection function

Theorem 19. For any grammar G the local precedence relation between any string
unique pair u, v ∈ LG is asymmetric if u, v ∈ σ ∈ domain( f ) for f a string fixed selection
function in G.

Proof. Follows from the proof of Theorem 18 above.

3.3.1 Linear Non-Symmetry Within a Language
Within a single human language, the linear non-symmetries that are relevant to

the argument made here are those that give rise to typological classification in terms
of word order properties. For example, within a given language, do objects and verbs
come in object-verb (OV) or verb-object (VO) order. If it is assumed that such pairs
enter into selection relationships and are by and large non-homophonous, then the
linear order restrictions found within a given language will be a consequence of the
selection functions that hold in that language.

3.3.2 Linear Non-Symmetry Across Human Languages
Across the class of human languages, the relevant linear non-symmetries are the

patterns of attested and unattested word order possibilities, such as those noted by
Greenberg (1966). If the word order typology of a given language can be deduced
from the selection relationships that hold in that language, then assuming a simi-
larity of categories across human languages yields the conclusion that the selection
relationships will also be similar across languages. The similarity of these selection
relationships will have the effect of forcing a local relationship to hold between
certain categories of expressions across languages. As Cinque (2005), Abels and
Neeleman (2009) and Stabler (to appear) have shown, if local relationships between
expressions are held constant across languages, then only a proper subset of the
logically possibly word orders in a given domain can be generated, even if languages
are permitted string reordering (movement) operations and local precedence rela-
tionships are allowed to vary across languages. Finally, the correlations of linear
order that are found across languages, such as that between subject-object-verb
order and postpositional adpositions, can be related to the similarities in the string
operations that functions perform.

4 Evidence for Selection Across Grammatical Frameworks

The definition of a selection function provided above is designed to be compatible
across a number of grammatical frameworks, thus allowing a verifiability of the
hypothesis of the universality of selection in human languages across theories and
implementation. To illustrate the wide-ranging applicability of the definition of
selection that I have provided, I now discuss it in the context of a number of
generative frameworks that have been developed to account for the grammars of
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human languages. As will become clear in the course of this discussion, not only do
each of these frameworks provide generative mechanisms that can be evaluated with
respect to the conditions for selection outlined above, but in each of them we find
rules that meet all of the conditions. Thus, given that the evaluation undertaken
here is, in most cases, that of the grammatical formalism, not its implementation
with respect to a specific language, assuming that the domain of these functions is
non-empty and that Hypotheses (2)–(4) are true, the results in the previous sections
will hold across these grammatical frameworks.

4.1 Bare Grammars of Typologically Diverse Languages

In outlining the properties of the BG framework, Keenan and Stabler (2003)
develop a number of BG grammars that generate typologically diverse languages. As
discussed above, the presence of selection functions in human language grammars
can provide an explanation for the empirical non-symmetries found across languages.
Though Keenan and Stabler do not impose the selection on the grammars they
develop, it is nevertheless the case that each of the grammars they develop obey this
proposed restriction on human languages.

The Toba grammar, provided by Keenan and Stabler as a model of the effects of
voice marking in Toba Batak, is presented below as an illustration of the universal
presence of selection functions in the Keenan and Stabler grammars.

Example. Toba (Keenan and Stabler 2003: 67-68)
Lex: V × Cat

mang- Vaf
di- Vpf
laughed, cried, sneezed P1n
praised, criticized, saw P2
John, Bill, Sam NP
self NPrefl
and, or CONJ

Rule: Verb Mark (VM), Predicate-Argument (PA), Coordination (Coord)

VM PA
Domain Value Domain Value Conditions

mang- t 7−→ mang-_ t s t 7−→ s_ t x 6= y ∈ {n, a}
Vaf P2 P2a P2x NP P1y
di- t 7−→ di-_ t s t 7−→ s_ t x ∈ {n, a}
Vpf P2 P2n P1x NP P0

s t 7−→ s_ t
P2a NPrefl P1n

s t 7−→ s_ t
P1a NPrefl P1n
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Coord
Domain Value Conditions

and s t 7−→ both_s_and_ t C ∈ Cat−
¦

Vaf , Vpf , CONJ,P2
©

CONJ C C C
or s t 7−→ either_s_or_ t C ∈ Cat−

¦

Vaf , Vpf , CONJ , P2
©

CONJ C C C
and s t 7−→ both_s_and_ t C 6= C′ ∈

¦

NP,NPrefl

©

CONJ C C′ NPrefl

or s t 7−→ either_s_or_ t C 6= C′ ∈
¦

NP,NPrefl

©

CONJ C C′ NPrefl

Though the reader is referred to Keenan and Stabler (2003) for a full exposition of
these facts, the Coord rule above endows Toba with infinite generative capacity, while
VM and PA together account for the fact that argument ordering and the binding of
reflexives is in Toba Batak, as in other similar Austronesian languages, dependent
upon the voice marking prefix found on the verb. With respect to the matter at
issue here, however, both of these rules, VM and PA, can be shown to satisfy each
of the conditions necessary to be a selection function, thus making Toba a selection
grammar.

First, each of the sequences in the domain of both VM and PA are binary, satisfying
Condition (i) of selection. In the case of PA, sequences in the domain are defined by
variables over categories, a definition that automatically yields category closure. This
is also true for the second element in the sequences in the domain of VM — anything
in the P2 category can be verb marked — but the first element of the sequence
is defined as a single vocabulary item:

¬

mang-, Vaf

¶

and
¬

di-, Vpf

¶

. In this case,
however, LexToba contains only a single lexical item of both the Vaf and Vpf categories.
Thus, PA is also category closed. Finally, sequences in the domain of both VM and
PA are uniquely in the domain of these rules — no rules of Toba operate over either
permutations or subsequences of these elements — so Condition (iii) is vacuously
satisfied. Since it is clear that the domain of VM and PA are non-empty, Toba qualifies
as a selection grammar. Furthermore, given that Toba is a BG formalism for a specific
language, the grammar can be evaluated with respect to Hypotheses (2)–(4) as
well, all of which it satisfies. Thus, local precedence in Toba will be an invariant,
non-symmetric relation that is asymmetric for all string unique pairs in the domain
of both VM and PA, which, for the lexicon provided, includes all sequences in the
domain of both rules.

The Toba grammar may also be used as an illustration of an additional fact
mentioned earlier: Hypothesis 1 requires only that grammars of human languages
contain selection functions, not that they contain only selection functions. Though
Toba qualifies as a selection grammar, it contains a function, Coord, which is not
a selection function. As defined, Coord takes as two of its three arguments two
expressions of the same category, with the string output of Coord dependent upon
the order in which it takes these two arguments. As was discussed in relation to
Hypothesis 2 and 3 above, this will allow Coord to produce string-distinct results
when applied to permutations of the same sequence, violating Condition (iii) of
selection.
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Example. Coord, GToba

Coord(〈and, CONJ〉 ,



mang-praised, P2a
�

,



mang-criticized, P2a
�

)
7−→




both_mang-praise_and_mang-criticized, P2a
�

Coord(〈and, CONJ〉



mang-criticized, P2a
�

,



mang-praised, P2a
�

)
7−→




both_mang-criticized_and_mang-praised, P2a
�

The presence of Coord, however, does not affect the status of Toba as a selection
grammar, given the presence of VM and PA.

4.2 Categorial Grammar, ‘Pure’ & ‘Classic’

The categorial system and functions of traditional categorial grammar are outlined
below.

Example. Categorial Grammar.
Basic Categories, BCat:

�

x0, . . . , xn
	

Categories, Cat: x , y ∈ BCat
x/y for x , y ∈ BCat
x\y for x , y ∈ BCat

Function Application (FA):



s, x/y
�


t, y
�

7−→ 〈s_ t, x〉 for x , y ∈ Cat



s, y
�


t, y\x
�

7−→ 〈s_ t, x〉 for x , y ∈ Cat

The FA rule — the only rule defined in traditional categorial grammar — is obligatorily
binary, thus satisfying Condition (i) of selection and, as with VM and PA in Toba,
rendering Condition (iii) vacuously satisfied with respect to sub-composition. With
respect to the permutation clause of Condition (iii), the left or right cancellation of
FA will simply fail to apply to non-identical permutations of the pairs in its domain.
Furthermore, since the domain of FA is defined by variables over category types, FA
satisfies the category closure property of Condition (ii).

Thus, traditional categorial grammars not only contain functions that satisfy
the conditions of selection, but contain only functions of this type. Assuming that
grammars defined in this formalism will contain expressions that make the domain
of FA non-empty, traditional categorial grammars will satisfy Hypothesis 1. Moreover,
since FA always applies to two distinct categories and the string component of the
output is always concatenation of the string components of the input, Hypotheses
(2) and (3) are also satisfied in traditional categorial grammars, with the satisfaction
of Hypothesis (2) rendering local precedence invariant. The non-symmetry of local
precedence in grammars defined in this formalism, however, is dependent upon the
homophony bound of the lexicon — that is, the satisfaction of Hypothesis 4 — an
evaluation which cannot be undertaken abstractly.

4.3 Combinatory Categorial Grammar

Though classic categorial grammars of the type discussed above are easily shown
to be selection grammars, their generative capacity is context free and, thus, in-
sufficient to account for the grammars of human language. This limitation has led
to a number of reformulations categorial grammar, such as that of Combinatory
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Categorial Grammar (CCG), which maintains the inductive definition of category
types as in classic categorial grammar but extends the rules of the grammar beyond
function application. The example below provides a definition of some the rule
additions proposed for CCGs in Steedman (2000), omitting crossed composition and
coordination, the latter of which is much like that of Toba.

Example. Combinatory Categorial Grammar.
Basic Categories, BCat:

�

x0, . . . , xn

	

Categories, Cat: x , y ∈ BCat
x/y for x , y ∈ BCat
x\y for x , y ∈ BCat

Function Application, Forward:



s, x/y
�


t, y
�

7−→ 〈s_ t, x〉
Function Application, Backward:




s, y
�


t, y\x
�

7−→ 〈s_ t, x〉
Type Raising 1: 〈s, x〉 7−→




s, y/(y\x)
�

Type Raising 2: 〈s, x〉 7−→



s, y\(y/x)
�

Forward Composition:



s, x/y
�


t, y/z
�

7−→ 〈s_ t, x/z〉
Backward Composition:




s, y\z
�


t, x\y
�

7−→ 〈s_ t, x\z〉
Backward Crossed Substitution:




s, y/z
�


t, (x\y)/z
�

7−→ 〈s_ t, x/z〉
∀x , y, z ∈ Cat

As the traditional function application rules of classic categorial grammar remain
in the CCG system, it is worthwhile to explore whether any of the additional rules
affect whether or not function application satisfies the criteria of a selection function.

Conditions (i) and (ii), which are determined only on the definition of the
function itself, are still satisfied for function application in CCG, as the domain
of function application remains binary and category closed, as it remains defined
over category variables. With regard to Condition (iii), though type-raising can, in
a sense, reverse the function-argument relation, it nevertheless remains the case
that the role of elements cannot be reversed without this intermediate step, which
is a unary operation. Thus, the sequence of elements in the domain of function
application are not in the domain of any other function the grammar, satisfying
the permutation clause of Condition (iii). Moreover, since all rules of the language,
save the ternary coordination rule not mentioned here, are unary or binary, the
sub-composition clause of Condition (iii) is vacuously satisfied as well. Therefore,
even with the addition of these other rules to the categorial grammar system, the
function application still satisfy the conditions of selection and remain selection
functions provided that their domain is non-empty in a given CCG grammar. Finally,
as with traditional categorial grammar above, the CCG rules also satisfy the string
fixity and category uniqueness (save coordination) of Hypotheses (2) and (3), leaving
the non-symmetry of local precedence determinable by empirical question as to the
extent of homophony in a given grammar, as per Hypothesis (4).

4.4 Principles & Parameters, Minimalism

Though a variety of approaches exist within the minimalist framework, the
presence of the Merge operation is a unifying similarity across these approaches. To
explore concretely the selective nature of Merge, the definitions of Merge here will
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be based on the discussion in Chomsky (2001).

Definition 20 (Merge). For any two elements α, β ,

Mergeset(α,β) =
�

α,β
	

Mergelabel(α,β) =
�

L(
�

α,β
	

),
�

α,β
		

where L is a function identifying the label of
�

α,β
	

.

As is clear in the definition, Mergeset represents label-free set formation, thus gen-
erating the bare phrase structure that Chomsky (1995) assumes to be the most
minimal assumption, whereas Mergelabel generates both a set from the two merged
elements as well as a label for that set. Crucially, following Chomsky, there exists
a function — here, L — responsible for identifying the choice of the label for

�

α,β
	

.
Given the controversial decision between Mergeset and Mergelabel, I will evaluate both
with regard to the selection criteria outlined above, using Merge to refer to both
operations when the presence of the label does not make a difference.

As Merge is an obligatorily binary operation independent of the generation of
a label, Condition (i) is satisfied. If Merge is assumed to be a completely free
operation, with its output filtered only at the level of the interface and not in the
narrow syntax (the grammar, as construed here), then it is trivially closed over
categories, independent of what one decides is the appropriate categorial system.
Thus, Condition (ii) is satisfied.

Because the output of Merge is always in part set formation, for which only
membership is necessary to evaluate identity, the set formed from Merge(α,β) will
be identical to that formed from any permutation of this pair:

�

α,β
	

. In the case
of Mergeset, then, the output for any permutation will be identical as the set is the
only output generated. With regard to Mergelabel, given that L is a function that
takes as input the merged set and that this set, as just noted, is always identical
under permutation, then Mergelabel, too, is identical under permutation. Interestingly,
unlike the issue that arose with Coord in the BG grammar Toba, the interaction of
category closure and permutation will not cause either Merge operation to fail to
meet the selection criteria, as Merge does not itself generate a linear order, only a set
of elements and, for Mergelabel, a label. Finally, because Merge is obligatorily binary,
no Merge operations can put together subsequences of greater than length one, thus
both clauses of Condition (iii) is satisfied. Therefore, looking only at the output of
Merge operations, it is clear that Conditions each of the conditions of selection are
met and that grammars in this framework will be selection grammars provided that
Merge has a non-empty domain.

Less clear, however, is whether any of the additional operations that have been
proposed to exist in minimalist grammars can take as input the pairs in the domain
of Merge — subsequences, due to the binarity of Merge, are again irrelevant — and
produce as output something distinct from Merge applied to those two elements.
External Merge (Move) clearly will not cause a problem here, as it is simply the
special case of Merge in which an element of a set merges with the set itself. However,
certain relations have been proposed to be established in situ, such as the probe-goal
relation established under Agree. Because Agree causes a featural change of some
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kind, regardless of whether it is checking, valuation, sharing or deletion, the output
of the Agree operation applied to any pair of elements is distinct from the application
of Merge to that pair of elements. The fact that such a scenario challenges the
selection grammar status of minimalism could in and of itself be used to motivate
two theoretical proposals: (a) such in situ Agree relations do not hold (Koopman
2006) and (b) Agree itself is a subcomponent of Merge, both external and internal.
With such modifications in place, Merge will fail to be a completely free operation,
but will nevertheless satisfy the category closure of Condition (ii) if categories are
defined by the feature matrices of the expressions of the language. Thus, the presence
of Agree




α,β
�

in the rules of the language will not interfere with the selectional
nature of Merge, as Merge will either definitionally contain the Agree operation or
will only apply to the output of Agree, not to the original




α,β
�

pair.

4.5 Tree Adjoining Grammars

As a final illustration of the presence of selection functions across grammatical
formalisms that have been posited for human language grammars, consider the Tree
Adjoining Grammars (TAG) wherein the functions of the language operate directly
over tree structures. Such grammars are discussed informally here and the reader is
referred to Kallmeyer (1996) for a formal characterization.4 The vocabulary of such
grammars can be defined as the leaf yield of the set of initial and auxiliary trees in
the grammar, with the categories provided by the actual structures of the trees. The
generating rules in TAG are those of tree adjunction and tree substitution, though I
restrict the evaluation here to adjunction given the theorem below.

Theorem 21 (Strong Equivalence of TAGs Without Substitution). For any TAG G
defined as above, there is a strongly equivalent TAG G′ that uses adjunction only.

Proof. Cf. Kallmeyer (1996).

Thus, the lexicon of TAGs can be defined as the leaf yields and tree structures closed
under the adjunction operation.

The adjunction operation in TAG operates over initial trees and foot-marked
trees and is illustrated in Fig. 1 on the following page. Given that this operation,
like those evaluated in each of the grammatical frameworks examined thus far,
is obligatorily binary, Condition (i) of selection is satisfied by adjunction in TAG.
Given that the categories of TAG can be identified by the tree structures and that
adjunction is defined by the nodes of the trees and the constraints that apply at those
nodes, the adjunction operation is one that is category closed, satisfying Condition
(ii). The binarity of TAG adjunction will, as in other rules evaluated, render the
sub-composition clause of Condition (iii) vacuously satisfied. Finally, given that
adjunction is defined only for pairs of initial and foot-marked trees, there will be
no permutation of such pairs that has a distinct output in the domain of adjunction.
Since TAG can be defined by adjunction only, this means that no permutation of

4The reader is also referred to work along the lines of Kasper et al. (1995) as evidence that Head
Driven Phrase Structure Grammars also successfully meet the criteria of selection.
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Initial Tree: Foot-Marked Tree: Output:
S

NP

Bruno

VP

V

play

NP

bagpipes

VP

V

will

VP*

S

NP

Bruno

VP

V

will

VP

V

play

NP

bagpipes

Figure 1: TAG adjunction

such pairs with a distinct output will be in the generative mechanisms of these
grammars. Thus, if it is additionally assumed that adjunction has a non-empty
domain, a reasonable assumption given that, like Merge, it is the only generative
operation, grammars defined in TAG are selection grammars. Moreover, given that
adjunction, as just noted, is defined only between pairs of initial and foot-marked
trees and that its string output is defined by leaf yield, it will satisfy both string fixity
and category closure. Thus, as in other cases, local precedence in TAG will be an
invariant relation, with non-symmetry of this relation dependent upon the presence
of string unique pairs — that is, the satisfaction of Hypothesis 4.

5 Concluding Remarks

Research across grammatical frameworks endeavors to identify the properties that
characterize human language grammars and facilitate their acquisition by human
language learners. One such natural property that is shown here to be pervasive
across diverse frameworks is the obligatory presence of local dependencies between
categories and the fixed structure of these dependencies, as defined by the selection
functions of the grammar. Given an adequate set of restrictions over the string
operations of the language, it has been illustrated that linear non-symmetries within
and across languages can be related to this single local dependency, suggesting that
other non-symmetries of language can also be considered as a result of the local
selection relationships established by the grammar. This result suggests that the
selection relationship established between expressions of a language may also be the
underlying force behind many of empirical phenomena in linguistic research.
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