
# Betting on bits contextual influences on the perception of 'phonetic categories'

Sarah Hawkins
University of Cambridge
sh110@cam.ac.uk

#### Issues

Context and phoneme/word identification

- Structuring a model of speech understanding
  - top-down vs. bottom-up information
  - abstraction vs exemplar representation



We can understand speech because there's an invariant acoustic correlate for every one of Morris' features

Oh yeah? So why doesn't //what//soomakhhheesaameei in Tahitis and Hawkyiivand an Mikhitingukhun?



# Fine phonetic detail (FPD): random or systematic?

much is systematic & perceptually salient

but does NOT help to identify citation form words or phonemes

#### Fine phonetic detail indicates:

- position in syllable; syllable structure
- word boundaries
- grammatical status
- places where you can join in a conversation
- discourse function of 'the same' words
- other things crucial to a normal conversation
- gross and subtle indexical information

#### Systematizing fine phonetic detail

- a different way of conceptualizing
  - phonetic and phonological structure (Firthian)
  - the processes of understanding speech
- Journal of Phonetics 31(3/4) especially John Local; Sarah Hawkins
- Hawkins & Smith (2001)

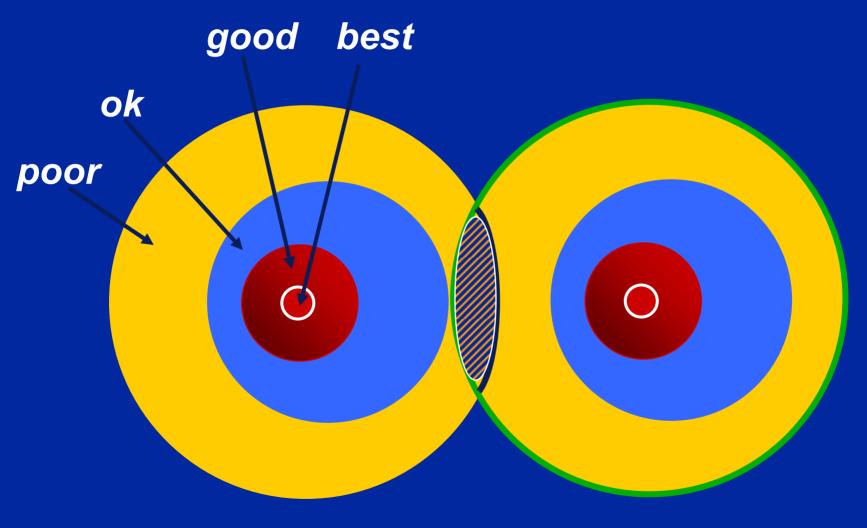
  Italian Journal of Linguistics Riv. de Ling. 13, 99-188

  http://kiri.ling.cam.ac.uk/sarah/pubs.html

#### Systematizing fine phonetic detail

#### - the processes of understanding speech

- Journal of Phonetics 31(3/4) especially John Local; Sarah Hawkins
- Hawkins & Smith (2001)


  Italian Journal of Linguistics Riv. de Ling. 13, 99-188

  http://kiri.ling.cam.ac.uk/sarah/pubs.html

#### What is a category?

A class or division in a system of classification (OED)

#### Structure of a category



Quality of exemplars

Boundaries



Thrush in summer

Thrush in snow



Sparrow in summer

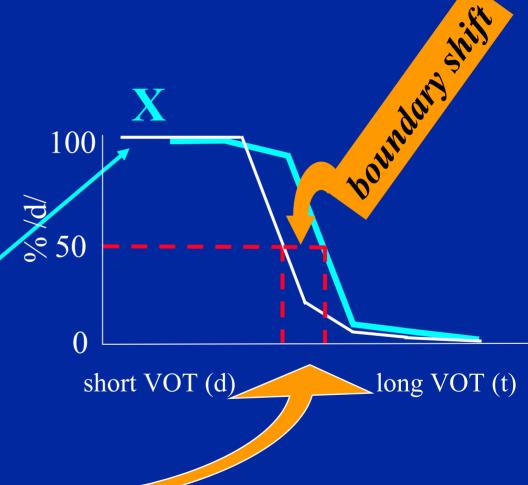
#### Ladefoged and Broadbent (1957)

"Please say what this word is: bit bet bat but

F1 of CARRIER

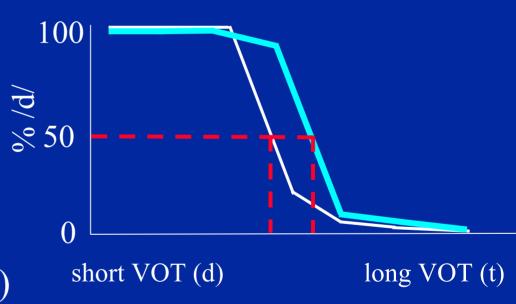
bet 4 200-380 Hz

bit • 380-660 Hz




#### "Range effects" on CP boundary

• identification expt e.g.


VOT continuum
 da.....ta

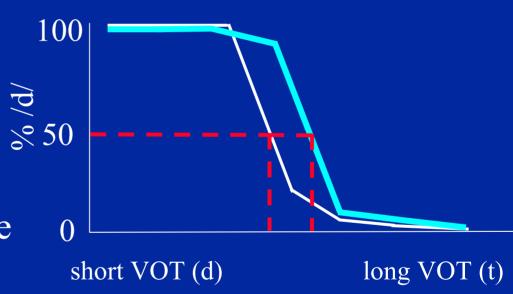
• when stimuli are removed from one end, the 50% id boundary shifts towards the other



#### What causes a boundary shift?

- stimulus range (distribution)
- perceived rate of speech
- lexicality/Ganong (word~nonword)
- sentence meaning (if the task is appropriate)




Summerfield (1981) *JEP:HPP* 7, 1074-1095 Ganong (1980) *J. Exp. Psych: HPP* 6, 110-125 Borsky, Shapiro, Tuller (2000) *J. Psycholinguistic Res.* 29, 155-168

#### What causes a boundary shift?

Perception adjusts to the distribution of stimuli

&

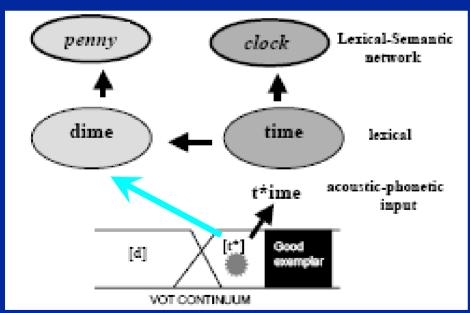
is more forgiving about unclear sounds if the message makes sense

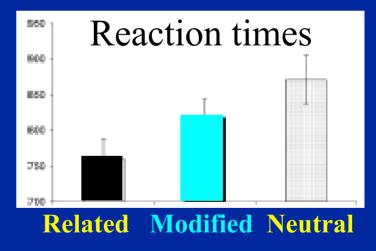


Summerfield (1981) *JEP:HPP* 7, 1074-1095 Ganong (1980) *J. Exp. Psych: HPP* 6, 110-125 Borsky, Shapiro, Tuller (2000) *J. Psycholinguistic Res.* 29, 155-168

#### CP: category goodness

Much evidence that 'better' instances of phonemes exert stronger perceptual effects of many types:


Samuel (P&P 1982 adaptation)
Kuhl (1992 perceptual magnet effect [PME])


And that context affects category goodness
Hawkins & Barrett (ASA 04: PME)
Allen & Miller (P&P 2001: rate and lexicality)

#### CP: category goodness

Mediated Priming in lexical decision task

A /t/ with a short VOT primes unrelated words via rhymes that have /d/ instead of /t/





t\*ime primes penny via dime

#### Linguistic categories: summary

- Perception adjusts to the distribution of stimuli and is more forgiving about unclear sounds if the message makes sense or the task encourages it
- 'Units' are functionally inseparable from 'context'
- Implication: mental representations of linguisticphonetic categories are relational and plastic

#### How might this plasticity occur?

Primary Auditory Cortex (PAC)

An example
Plasticity of single neurons in the

# Spectro-temporal receptive fields (STRFs) in PAC

- Recording from single neurons in PAC
- Sensitive to particular frequency ranges and temporal relationships
- Training:
  - broadband noise: lick
  - tone (constant frequency sine wave): don't lick

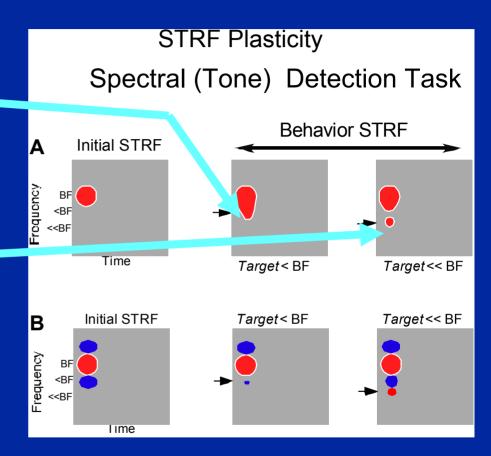



Figure 1. A ferret listens for a sinusoidal target sound amid a succession of broadband reference sounds. New physiological results suggest that neurons in the ferret's auditory cortex reshape their frequency tuning to optimize detection of particular tones.

• Test: different tone frequency

#### Plasticity of STRFs in PAC

- Shift in excitatory response to tone of similar frequency
- Additional field to yet more different tone
- Only when a response is required: 'meaning'
- Poorer task performance and weaker plasticity are correlated



- excitatory field
  - inhibitory field

BF neuron best freq

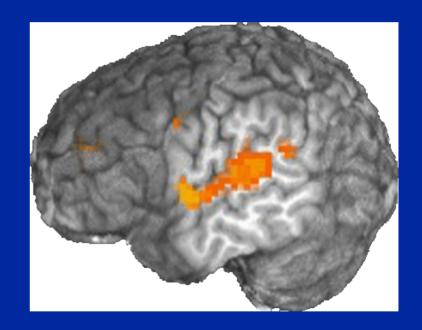
→ target freq

#### Summary: STRF changes in PAC

- Swift (2.5-8 minutes); last several hours
- Reflect
  - sensory content
  - changing behavioral meaning of acoustic stimuli
- Consistent with facts of speech perception
- Similar adaptation/learning probably occurs earlier (lower down) in the auditory pathway

### Brain activation for category boundaries

- Many studies: Superior Temporal Gyrus (STG) is active when phonetic decisions are made (+ many other areas)
- STG activation does not differ when the decisions are hard


(other areas do e.g. frontal regions)

Binder *et al.* (2004) *Nat.Neurosci.* 7, 295-301 Blumstein *et al.* (2005) *J. Cog. Neuroscience* 17, 1353-1366

# Brain activation for category boundaries: Ganong effect

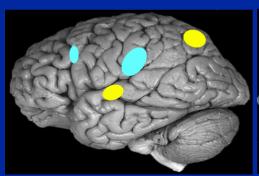
• STG *is* sensitive to change in category boundary due to lexical status: *gift-kift*; *giss-kiss* 

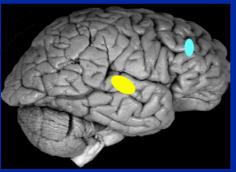
 Conclusion: lexical knowledge influences basic phonetic categorization processes

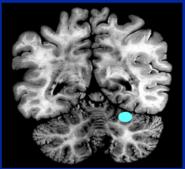


#### yet also.... simple ba-da continuum

brain activation differs for category centers & boundaries (adaptation fMRI)


centers:

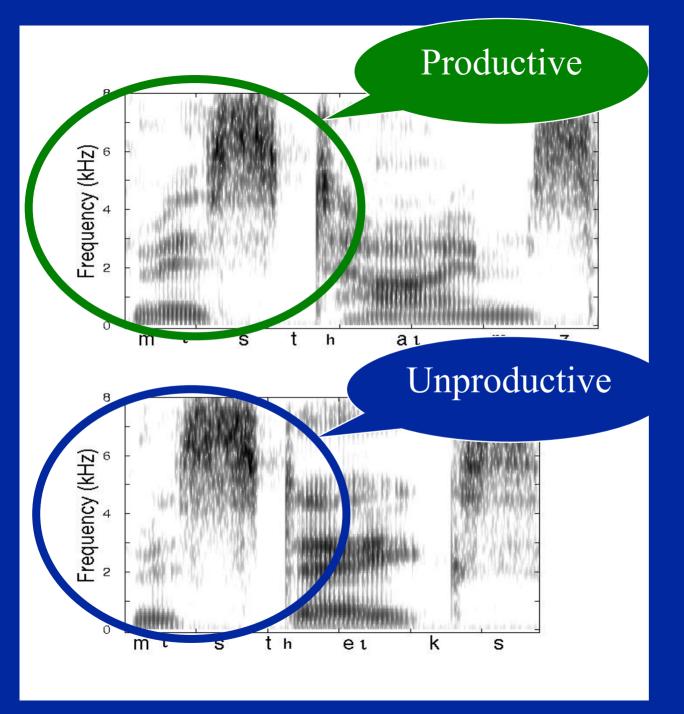

boundaries:


Primary auditory cortex, left parietal

left SMG, L middle frontal, R prefrontal,

Right cerebellum, anterior cingulate










#### What does this mean?

- Category boundaries and centers are analyzed in many different parts of the brain: don't and can't act independently
- Relationships in current signal are constantly interpreted from all available evidence:
  - knowledge
  - current sensation (quite detailed)
  - attention



Fine phonetic detail provides all sorts of information,

not just phonological.

Here, it is grammatical.

#### Summary

- Brain is 'opportunistic': it uses all available information to understand a message
- Fine phonetic detail can be fundamental
- What listeners do with FPD depends on what they are doing at the moment

#### Modeling phonetic representation

- Phonetic categories can map directly to phonological categories BUT
  - relational, dynamic, self-organizing, (multi-modal),
     context-sensitive, task-sensitive
- Sound patterns map to meaning via processes that involve complex (embodied?) structures:
  - MULTIPLE UNITS of speech perception
- Top-down and bottom-up information, episodic vs abstract representation, may not be distinguishable in speech communication